at v2.6.26-rc8 2810 lines 68 kB view raw
1/* 2 * Generic PPP layer for Linux. 3 * 4 * Copyright 1999-2002 Paul Mackerras. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 * 11 * The generic PPP layer handles the PPP network interfaces, the 12 * /dev/ppp device, packet and VJ compression, and multilink. 13 * It talks to PPP `channels' via the interface defined in 14 * include/linux/ppp_channel.h. Channels provide the basic means for 15 * sending and receiving PPP frames on some kind of communications 16 * channel. 17 * 18 * Part of the code in this driver was inspired by the old async-only 19 * PPP driver, written by Michael Callahan and Al Longyear, and 20 * subsequently hacked by Paul Mackerras. 21 * 22 * ==FILEVERSION 20041108== 23 */ 24 25#include <linux/module.h> 26#include <linux/kernel.h> 27#include <linux/kmod.h> 28#include <linux/init.h> 29#include <linux/list.h> 30#include <linux/netdevice.h> 31#include <linux/poll.h> 32#include <linux/ppp_defs.h> 33#include <linux/filter.h> 34#include <linux/if_ppp.h> 35#include <linux/ppp_channel.h> 36#include <linux/ppp-comp.h> 37#include <linux/skbuff.h> 38#include <linux/rtnetlink.h> 39#include <linux/if_arp.h> 40#include <linux/ip.h> 41#include <linux/tcp.h> 42#include <linux/spinlock.h> 43#include <linux/rwsem.h> 44#include <linux/stddef.h> 45#include <linux/device.h> 46#include <linux/mutex.h> 47#include <net/slhc_vj.h> 48#include <asm/atomic.h> 49 50#define PPP_VERSION "2.4.2" 51 52/* 53 * Network protocols we support. 54 */ 55#define NP_IP 0 /* Internet Protocol V4 */ 56#define NP_IPV6 1 /* Internet Protocol V6 */ 57#define NP_IPX 2 /* IPX protocol */ 58#define NP_AT 3 /* Appletalk protocol */ 59#define NP_MPLS_UC 4 /* MPLS unicast */ 60#define NP_MPLS_MC 5 /* MPLS multicast */ 61#define NUM_NP 6 /* Number of NPs. */ 62 63#define MPHDRLEN 6 /* multilink protocol header length */ 64#define MPHDRLEN_SSN 4 /* ditto with short sequence numbers */ 65#define MIN_FRAG_SIZE 64 66 67/* 68 * An instance of /dev/ppp can be associated with either a ppp 69 * interface unit or a ppp channel. In both cases, file->private_data 70 * points to one of these. 71 */ 72struct ppp_file { 73 enum { 74 INTERFACE=1, CHANNEL 75 } kind; 76 struct sk_buff_head xq; /* pppd transmit queue */ 77 struct sk_buff_head rq; /* receive queue for pppd */ 78 wait_queue_head_t rwait; /* for poll on reading /dev/ppp */ 79 atomic_t refcnt; /* # refs (incl /dev/ppp attached) */ 80 int hdrlen; /* space to leave for headers */ 81 int index; /* interface unit / channel number */ 82 int dead; /* unit/channel has been shut down */ 83}; 84 85#define PF_TO_X(pf, X) container_of(pf, X, file) 86 87#define PF_TO_PPP(pf) PF_TO_X(pf, struct ppp) 88#define PF_TO_CHANNEL(pf) PF_TO_X(pf, struct channel) 89 90/* 91 * Data structure describing one ppp unit. 92 * A ppp unit corresponds to a ppp network interface device 93 * and represents a multilink bundle. 94 * It can have 0 or more ppp channels connected to it. 95 */ 96struct ppp { 97 struct ppp_file file; /* stuff for read/write/poll 0 */ 98 struct file *owner; /* file that owns this unit 48 */ 99 struct list_head channels; /* list of attached channels 4c */ 100 int n_channels; /* how many channels are attached 54 */ 101 spinlock_t rlock; /* lock for receive side 58 */ 102 spinlock_t wlock; /* lock for transmit side 5c */ 103 int mru; /* max receive unit 60 */ 104 unsigned int flags; /* control bits 64 */ 105 unsigned int xstate; /* transmit state bits 68 */ 106 unsigned int rstate; /* receive state bits 6c */ 107 int debug; /* debug flags 70 */ 108 struct slcompress *vj; /* state for VJ header compression */ 109 enum NPmode npmode[NUM_NP]; /* what to do with each net proto 78 */ 110 struct sk_buff *xmit_pending; /* a packet ready to go out 88 */ 111 struct compressor *xcomp; /* transmit packet compressor 8c */ 112 void *xc_state; /* its internal state 90 */ 113 struct compressor *rcomp; /* receive decompressor 94 */ 114 void *rc_state; /* its internal state 98 */ 115 unsigned long last_xmit; /* jiffies when last pkt sent 9c */ 116 unsigned long last_recv; /* jiffies when last pkt rcvd a0 */ 117 struct net_device *dev; /* network interface device a4 */ 118#ifdef CONFIG_PPP_MULTILINK 119 int nxchan; /* next channel to send something on */ 120 u32 nxseq; /* next sequence number to send */ 121 int mrru; /* MP: max reconst. receive unit */ 122 u32 nextseq; /* MP: seq no of next packet */ 123 u32 minseq; /* MP: min of most recent seqnos */ 124 struct sk_buff_head mrq; /* MP: receive reconstruction queue */ 125#endif /* CONFIG_PPP_MULTILINK */ 126#ifdef CONFIG_PPP_FILTER 127 struct sock_filter *pass_filter; /* filter for packets to pass */ 128 struct sock_filter *active_filter;/* filter for pkts to reset idle */ 129 unsigned pass_len, active_len; 130#endif /* CONFIG_PPP_FILTER */ 131}; 132 133/* 134 * Bits in flags: SC_NO_TCP_CCID, SC_CCP_OPEN, SC_CCP_UP, SC_LOOP_TRAFFIC, 135 * SC_MULTILINK, SC_MP_SHORTSEQ, SC_MP_XSHORTSEQ, SC_COMP_TCP, SC_REJ_COMP_TCP, 136 * SC_MUST_COMP 137 * Bits in rstate: SC_DECOMP_RUN, SC_DC_ERROR, SC_DC_FERROR. 138 * Bits in xstate: SC_COMP_RUN 139 */ 140#define SC_FLAG_BITS (SC_NO_TCP_CCID|SC_CCP_OPEN|SC_CCP_UP|SC_LOOP_TRAFFIC \ 141 |SC_MULTILINK|SC_MP_SHORTSEQ|SC_MP_XSHORTSEQ \ 142 |SC_COMP_TCP|SC_REJ_COMP_TCP|SC_MUST_COMP) 143 144/* 145 * Private data structure for each channel. 146 * This includes the data structure used for multilink. 147 */ 148struct channel { 149 struct ppp_file file; /* stuff for read/write/poll */ 150 struct list_head list; /* link in all/new_channels list */ 151 struct ppp_channel *chan; /* public channel data structure */ 152 struct rw_semaphore chan_sem; /* protects `chan' during chan ioctl */ 153 spinlock_t downl; /* protects `chan', file.xq dequeue */ 154 struct ppp *ppp; /* ppp unit we're connected to */ 155 struct list_head clist; /* link in list of channels per unit */ 156 rwlock_t upl; /* protects `ppp' */ 157#ifdef CONFIG_PPP_MULTILINK 158 u8 avail; /* flag used in multilink stuff */ 159 u8 had_frag; /* >= 1 fragments have been sent */ 160 u32 lastseq; /* MP: last sequence # received */ 161#endif /* CONFIG_PPP_MULTILINK */ 162}; 163 164/* 165 * SMP locking issues: 166 * Both the ppp.rlock and ppp.wlock locks protect the ppp.channels 167 * list and the ppp.n_channels field, you need to take both locks 168 * before you modify them. 169 * The lock ordering is: channel.upl -> ppp.wlock -> ppp.rlock -> 170 * channel.downl. 171 */ 172 173/* 174 * A cardmap represents a mapping from unsigned integers to pointers, 175 * and provides a fast "find lowest unused number" operation. 176 * It uses a broad (32-way) tree with a bitmap at each level. 177 * It is designed to be space-efficient for small numbers of entries 178 * and time-efficient for large numbers of entries. 179 */ 180#define CARDMAP_ORDER 5 181#define CARDMAP_WIDTH (1U << CARDMAP_ORDER) 182#define CARDMAP_MASK (CARDMAP_WIDTH - 1) 183 184struct cardmap { 185 int shift; 186 unsigned long inuse; 187 struct cardmap *parent; 188 void *ptr[CARDMAP_WIDTH]; 189}; 190static void *cardmap_get(struct cardmap *map, unsigned int nr); 191static int cardmap_set(struct cardmap **map, unsigned int nr, void *ptr); 192static unsigned int cardmap_find_first_free(struct cardmap *map); 193static void cardmap_destroy(struct cardmap **map); 194 195/* 196 * all_ppp_mutex protects the all_ppp_units mapping. 197 * It also ensures that finding a ppp unit in the all_ppp_units map 198 * and updating its file.refcnt field is atomic. 199 */ 200static DEFINE_MUTEX(all_ppp_mutex); 201static struct cardmap *all_ppp_units; 202static atomic_t ppp_unit_count = ATOMIC_INIT(0); 203 204/* 205 * all_channels_lock protects all_channels and last_channel_index, 206 * and the atomicity of find a channel and updating its file.refcnt 207 * field. 208 */ 209static DEFINE_SPINLOCK(all_channels_lock); 210static LIST_HEAD(all_channels); 211static LIST_HEAD(new_channels); 212static int last_channel_index; 213static atomic_t channel_count = ATOMIC_INIT(0); 214 215/* Get the PPP protocol number from a skb */ 216#define PPP_PROTO(skb) (((skb)->data[0] << 8) + (skb)->data[1]) 217 218/* We limit the length of ppp->file.rq to this (arbitrary) value */ 219#define PPP_MAX_RQLEN 32 220 221/* 222 * Maximum number of multilink fragments queued up. 223 * This has to be large enough to cope with the maximum latency of 224 * the slowest channel relative to the others. Strictly it should 225 * depend on the number of channels and their characteristics. 226 */ 227#define PPP_MP_MAX_QLEN 128 228 229/* Multilink header bits. */ 230#define B 0x80 /* this fragment begins a packet */ 231#define E 0x40 /* this fragment ends a packet */ 232 233/* Compare multilink sequence numbers (assumed to be 32 bits wide) */ 234#define seq_before(a, b) ((s32)((a) - (b)) < 0) 235#define seq_after(a, b) ((s32)((a) - (b)) > 0) 236 237/* Prototypes. */ 238static int ppp_unattached_ioctl(struct ppp_file *pf, struct file *file, 239 unsigned int cmd, unsigned long arg); 240static void ppp_xmit_process(struct ppp *ppp); 241static void ppp_send_frame(struct ppp *ppp, struct sk_buff *skb); 242static void ppp_push(struct ppp *ppp); 243static void ppp_channel_push(struct channel *pch); 244static void ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb, 245 struct channel *pch); 246static void ppp_receive_error(struct ppp *ppp); 247static void ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb); 248static struct sk_buff *ppp_decompress_frame(struct ppp *ppp, 249 struct sk_buff *skb); 250#ifdef CONFIG_PPP_MULTILINK 251static void ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb, 252 struct channel *pch); 253static void ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb); 254static struct sk_buff *ppp_mp_reconstruct(struct ppp *ppp); 255static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb); 256#endif /* CONFIG_PPP_MULTILINK */ 257static int ppp_set_compress(struct ppp *ppp, unsigned long arg); 258static void ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound); 259static void ppp_ccp_closed(struct ppp *ppp); 260static struct compressor *find_compressor(int type); 261static void ppp_get_stats(struct ppp *ppp, struct ppp_stats *st); 262static struct ppp *ppp_create_interface(int unit, int *retp); 263static void init_ppp_file(struct ppp_file *pf, int kind); 264static void ppp_shutdown_interface(struct ppp *ppp); 265static void ppp_destroy_interface(struct ppp *ppp); 266static struct ppp *ppp_find_unit(int unit); 267static struct channel *ppp_find_channel(int unit); 268static int ppp_connect_channel(struct channel *pch, int unit); 269static int ppp_disconnect_channel(struct channel *pch); 270static void ppp_destroy_channel(struct channel *pch); 271 272static struct class *ppp_class; 273 274/* Translates a PPP protocol number to a NP index (NP == network protocol) */ 275static inline int proto_to_npindex(int proto) 276{ 277 switch (proto) { 278 case PPP_IP: 279 return NP_IP; 280 case PPP_IPV6: 281 return NP_IPV6; 282 case PPP_IPX: 283 return NP_IPX; 284 case PPP_AT: 285 return NP_AT; 286 case PPP_MPLS_UC: 287 return NP_MPLS_UC; 288 case PPP_MPLS_MC: 289 return NP_MPLS_MC; 290 } 291 return -EINVAL; 292} 293 294/* Translates an NP index into a PPP protocol number */ 295static const int npindex_to_proto[NUM_NP] = { 296 PPP_IP, 297 PPP_IPV6, 298 PPP_IPX, 299 PPP_AT, 300 PPP_MPLS_UC, 301 PPP_MPLS_MC, 302}; 303 304/* Translates an ethertype into an NP index */ 305static inline int ethertype_to_npindex(int ethertype) 306{ 307 switch (ethertype) { 308 case ETH_P_IP: 309 return NP_IP; 310 case ETH_P_IPV6: 311 return NP_IPV6; 312 case ETH_P_IPX: 313 return NP_IPX; 314 case ETH_P_PPPTALK: 315 case ETH_P_ATALK: 316 return NP_AT; 317 case ETH_P_MPLS_UC: 318 return NP_MPLS_UC; 319 case ETH_P_MPLS_MC: 320 return NP_MPLS_MC; 321 } 322 return -1; 323} 324 325/* Translates an NP index into an ethertype */ 326static const int npindex_to_ethertype[NUM_NP] = { 327 ETH_P_IP, 328 ETH_P_IPV6, 329 ETH_P_IPX, 330 ETH_P_PPPTALK, 331 ETH_P_MPLS_UC, 332 ETH_P_MPLS_MC, 333}; 334 335/* 336 * Locking shorthand. 337 */ 338#define ppp_xmit_lock(ppp) spin_lock_bh(&(ppp)->wlock) 339#define ppp_xmit_unlock(ppp) spin_unlock_bh(&(ppp)->wlock) 340#define ppp_recv_lock(ppp) spin_lock_bh(&(ppp)->rlock) 341#define ppp_recv_unlock(ppp) spin_unlock_bh(&(ppp)->rlock) 342#define ppp_lock(ppp) do { ppp_xmit_lock(ppp); \ 343 ppp_recv_lock(ppp); } while (0) 344#define ppp_unlock(ppp) do { ppp_recv_unlock(ppp); \ 345 ppp_xmit_unlock(ppp); } while (0) 346 347/* 348 * /dev/ppp device routines. 349 * The /dev/ppp device is used by pppd to control the ppp unit. 350 * It supports the read, write, ioctl and poll functions. 351 * Open instances of /dev/ppp can be in one of three states: 352 * unattached, attached to a ppp unit, or attached to a ppp channel. 353 */ 354static int ppp_open(struct inode *inode, struct file *file) 355{ 356 /* 357 * This could (should?) be enforced by the permissions on /dev/ppp. 358 */ 359 if (!capable(CAP_NET_ADMIN)) 360 return -EPERM; 361 return 0; 362} 363 364static int ppp_release(struct inode *inode, struct file *file) 365{ 366 struct ppp_file *pf = file->private_data; 367 struct ppp *ppp; 368 369 if (pf) { 370 file->private_data = NULL; 371 if (pf->kind == INTERFACE) { 372 ppp = PF_TO_PPP(pf); 373 if (file == ppp->owner) 374 ppp_shutdown_interface(ppp); 375 } 376 if (atomic_dec_and_test(&pf->refcnt)) { 377 switch (pf->kind) { 378 case INTERFACE: 379 ppp_destroy_interface(PF_TO_PPP(pf)); 380 break; 381 case CHANNEL: 382 ppp_destroy_channel(PF_TO_CHANNEL(pf)); 383 break; 384 } 385 } 386 } 387 return 0; 388} 389 390static ssize_t ppp_read(struct file *file, char __user *buf, 391 size_t count, loff_t *ppos) 392{ 393 struct ppp_file *pf = file->private_data; 394 DECLARE_WAITQUEUE(wait, current); 395 ssize_t ret; 396 struct sk_buff *skb = NULL; 397 398 ret = count; 399 400 if (!pf) 401 return -ENXIO; 402 add_wait_queue(&pf->rwait, &wait); 403 for (;;) { 404 set_current_state(TASK_INTERRUPTIBLE); 405 skb = skb_dequeue(&pf->rq); 406 if (skb) 407 break; 408 ret = 0; 409 if (pf->dead) 410 break; 411 if (pf->kind == INTERFACE) { 412 /* 413 * Return 0 (EOF) on an interface that has no 414 * channels connected, unless it is looping 415 * network traffic (demand mode). 416 */ 417 struct ppp *ppp = PF_TO_PPP(pf); 418 if (ppp->n_channels == 0 419 && (ppp->flags & SC_LOOP_TRAFFIC) == 0) 420 break; 421 } 422 ret = -EAGAIN; 423 if (file->f_flags & O_NONBLOCK) 424 break; 425 ret = -ERESTARTSYS; 426 if (signal_pending(current)) 427 break; 428 schedule(); 429 } 430 set_current_state(TASK_RUNNING); 431 remove_wait_queue(&pf->rwait, &wait); 432 433 if (!skb) 434 goto out; 435 436 ret = -EOVERFLOW; 437 if (skb->len > count) 438 goto outf; 439 ret = -EFAULT; 440 if (copy_to_user(buf, skb->data, skb->len)) 441 goto outf; 442 ret = skb->len; 443 444 outf: 445 kfree_skb(skb); 446 out: 447 return ret; 448} 449 450static ssize_t ppp_write(struct file *file, const char __user *buf, 451 size_t count, loff_t *ppos) 452{ 453 struct ppp_file *pf = file->private_data; 454 struct sk_buff *skb; 455 ssize_t ret; 456 457 if (!pf) 458 return -ENXIO; 459 ret = -ENOMEM; 460 skb = alloc_skb(count + pf->hdrlen, GFP_KERNEL); 461 if (!skb) 462 goto out; 463 skb_reserve(skb, pf->hdrlen); 464 ret = -EFAULT; 465 if (copy_from_user(skb_put(skb, count), buf, count)) { 466 kfree_skb(skb); 467 goto out; 468 } 469 470 skb_queue_tail(&pf->xq, skb); 471 472 switch (pf->kind) { 473 case INTERFACE: 474 ppp_xmit_process(PF_TO_PPP(pf)); 475 break; 476 case CHANNEL: 477 ppp_channel_push(PF_TO_CHANNEL(pf)); 478 break; 479 } 480 481 ret = count; 482 483 out: 484 return ret; 485} 486 487/* No kernel lock - fine */ 488static unsigned int ppp_poll(struct file *file, poll_table *wait) 489{ 490 struct ppp_file *pf = file->private_data; 491 unsigned int mask; 492 493 if (!pf) 494 return 0; 495 poll_wait(file, &pf->rwait, wait); 496 mask = POLLOUT | POLLWRNORM; 497 if (skb_peek(&pf->rq)) 498 mask |= POLLIN | POLLRDNORM; 499 if (pf->dead) 500 mask |= POLLHUP; 501 else if (pf->kind == INTERFACE) { 502 /* see comment in ppp_read */ 503 struct ppp *ppp = PF_TO_PPP(pf); 504 if (ppp->n_channels == 0 505 && (ppp->flags & SC_LOOP_TRAFFIC) == 0) 506 mask |= POLLIN | POLLRDNORM; 507 } 508 509 return mask; 510} 511 512#ifdef CONFIG_PPP_FILTER 513static int get_filter(void __user *arg, struct sock_filter **p) 514{ 515 struct sock_fprog uprog; 516 struct sock_filter *code = NULL; 517 int len, err; 518 519 if (copy_from_user(&uprog, arg, sizeof(uprog))) 520 return -EFAULT; 521 522 if (!uprog.len) { 523 *p = NULL; 524 return 0; 525 } 526 527 len = uprog.len * sizeof(struct sock_filter); 528 code = kmalloc(len, GFP_KERNEL); 529 if (code == NULL) 530 return -ENOMEM; 531 532 if (copy_from_user(code, uprog.filter, len)) { 533 kfree(code); 534 return -EFAULT; 535 } 536 537 err = sk_chk_filter(code, uprog.len); 538 if (err) { 539 kfree(code); 540 return err; 541 } 542 543 *p = code; 544 return uprog.len; 545} 546#endif /* CONFIG_PPP_FILTER */ 547 548static int ppp_ioctl(struct inode *inode, struct file *file, 549 unsigned int cmd, unsigned long arg) 550{ 551 struct ppp_file *pf = file->private_data; 552 struct ppp *ppp; 553 int err = -EFAULT, val, val2, i; 554 struct ppp_idle idle; 555 struct npioctl npi; 556 int unit, cflags; 557 struct slcompress *vj; 558 void __user *argp = (void __user *)arg; 559 int __user *p = argp; 560 561 if (!pf) 562 return ppp_unattached_ioctl(pf, file, cmd, arg); 563 564 if (cmd == PPPIOCDETACH) { 565 /* 566 * We have to be careful here... if the file descriptor 567 * has been dup'd, we could have another process in the 568 * middle of a poll using the same file *, so we had 569 * better not free the interface data structures - 570 * instead we fail the ioctl. Even in this case, we 571 * shut down the interface if we are the owner of it. 572 * Actually, we should get rid of PPPIOCDETACH, userland 573 * (i.e. pppd) could achieve the same effect by closing 574 * this fd and reopening /dev/ppp. 575 */ 576 err = -EINVAL; 577 if (pf->kind == INTERFACE) { 578 ppp = PF_TO_PPP(pf); 579 if (file == ppp->owner) 580 ppp_shutdown_interface(ppp); 581 } 582 if (atomic_read(&file->f_count) <= 2) { 583 ppp_release(inode, file); 584 err = 0; 585 } else 586 printk(KERN_DEBUG "PPPIOCDETACH file->f_count=%d\n", 587 atomic_read(&file->f_count)); 588 return err; 589 } 590 591 if (pf->kind == CHANNEL) { 592 struct channel *pch = PF_TO_CHANNEL(pf); 593 struct ppp_channel *chan; 594 595 switch (cmd) { 596 case PPPIOCCONNECT: 597 if (get_user(unit, p)) 598 break; 599 err = ppp_connect_channel(pch, unit); 600 break; 601 602 case PPPIOCDISCONN: 603 err = ppp_disconnect_channel(pch); 604 break; 605 606 default: 607 down_read(&pch->chan_sem); 608 chan = pch->chan; 609 err = -ENOTTY; 610 if (chan && chan->ops->ioctl) 611 err = chan->ops->ioctl(chan, cmd, arg); 612 up_read(&pch->chan_sem); 613 } 614 return err; 615 } 616 617 if (pf->kind != INTERFACE) { 618 /* can't happen */ 619 printk(KERN_ERR "PPP: not interface or channel??\n"); 620 return -EINVAL; 621 } 622 623 ppp = PF_TO_PPP(pf); 624 switch (cmd) { 625 case PPPIOCSMRU: 626 if (get_user(val, p)) 627 break; 628 ppp->mru = val; 629 err = 0; 630 break; 631 632 case PPPIOCSFLAGS: 633 if (get_user(val, p)) 634 break; 635 ppp_lock(ppp); 636 cflags = ppp->flags & ~val; 637 ppp->flags = val & SC_FLAG_BITS; 638 ppp_unlock(ppp); 639 if (cflags & SC_CCP_OPEN) 640 ppp_ccp_closed(ppp); 641 err = 0; 642 break; 643 644 case PPPIOCGFLAGS: 645 val = ppp->flags | ppp->xstate | ppp->rstate; 646 if (put_user(val, p)) 647 break; 648 err = 0; 649 break; 650 651 case PPPIOCSCOMPRESS: 652 err = ppp_set_compress(ppp, arg); 653 break; 654 655 case PPPIOCGUNIT: 656 if (put_user(ppp->file.index, p)) 657 break; 658 err = 0; 659 break; 660 661 case PPPIOCSDEBUG: 662 if (get_user(val, p)) 663 break; 664 ppp->debug = val; 665 err = 0; 666 break; 667 668 case PPPIOCGDEBUG: 669 if (put_user(ppp->debug, p)) 670 break; 671 err = 0; 672 break; 673 674 case PPPIOCGIDLE: 675 idle.xmit_idle = (jiffies - ppp->last_xmit) / HZ; 676 idle.recv_idle = (jiffies - ppp->last_recv) / HZ; 677 if (copy_to_user(argp, &idle, sizeof(idle))) 678 break; 679 err = 0; 680 break; 681 682 case PPPIOCSMAXCID: 683 if (get_user(val, p)) 684 break; 685 val2 = 15; 686 if ((val >> 16) != 0) { 687 val2 = val >> 16; 688 val &= 0xffff; 689 } 690 vj = slhc_init(val2+1, val+1); 691 if (!vj) { 692 printk(KERN_ERR "PPP: no memory (VJ compressor)\n"); 693 err = -ENOMEM; 694 break; 695 } 696 ppp_lock(ppp); 697 if (ppp->vj) 698 slhc_free(ppp->vj); 699 ppp->vj = vj; 700 ppp_unlock(ppp); 701 err = 0; 702 break; 703 704 case PPPIOCGNPMODE: 705 case PPPIOCSNPMODE: 706 if (copy_from_user(&npi, argp, sizeof(npi))) 707 break; 708 err = proto_to_npindex(npi.protocol); 709 if (err < 0) 710 break; 711 i = err; 712 if (cmd == PPPIOCGNPMODE) { 713 err = -EFAULT; 714 npi.mode = ppp->npmode[i]; 715 if (copy_to_user(argp, &npi, sizeof(npi))) 716 break; 717 } else { 718 ppp->npmode[i] = npi.mode; 719 /* we may be able to transmit more packets now (??) */ 720 netif_wake_queue(ppp->dev); 721 } 722 err = 0; 723 break; 724 725#ifdef CONFIG_PPP_FILTER 726 case PPPIOCSPASS: 727 { 728 struct sock_filter *code; 729 err = get_filter(argp, &code); 730 if (err >= 0) { 731 ppp_lock(ppp); 732 kfree(ppp->pass_filter); 733 ppp->pass_filter = code; 734 ppp->pass_len = err; 735 ppp_unlock(ppp); 736 err = 0; 737 } 738 break; 739 } 740 case PPPIOCSACTIVE: 741 { 742 struct sock_filter *code; 743 err = get_filter(argp, &code); 744 if (err >= 0) { 745 ppp_lock(ppp); 746 kfree(ppp->active_filter); 747 ppp->active_filter = code; 748 ppp->active_len = err; 749 ppp_unlock(ppp); 750 err = 0; 751 } 752 break; 753 } 754#endif /* CONFIG_PPP_FILTER */ 755 756#ifdef CONFIG_PPP_MULTILINK 757 case PPPIOCSMRRU: 758 if (get_user(val, p)) 759 break; 760 ppp_recv_lock(ppp); 761 ppp->mrru = val; 762 ppp_recv_unlock(ppp); 763 err = 0; 764 break; 765#endif /* CONFIG_PPP_MULTILINK */ 766 767 default: 768 err = -ENOTTY; 769 } 770 771 return err; 772} 773 774static int ppp_unattached_ioctl(struct ppp_file *pf, struct file *file, 775 unsigned int cmd, unsigned long arg) 776{ 777 int unit, err = -EFAULT; 778 struct ppp *ppp; 779 struct channel *chan; 780 int __user *p = (int __user *)arg; 781 782 switch (cmd) { 783 case PPPIOCNEWUNIT: 784 /* Create a new ppp unit */ 785 if (get_user(unit, p)) 786 break; 787 ppp = ppp_create_interface(unit, &err); 788 if (!ppp) 789 break; 790 file->private_data = &ppp->file; 791 ppp->owner = file; 792 err = -EFAULT; 793 if (put_user(ppp->file.index, p)) 794 break; 795 err = 0; 796 break; 797 798 case PPPIOCATTACH: 799 /* Attach to an existing ppp unit */ 800 if (get_user(unit, p)) 801 break; 802 mutex_lock(&all_ppp_mutex); 803 err = -ENXIO; 804 ppp = ppp_find_unit(unit); 805 if (ppp) { 806 atomic_inc(&ppp->file.refcnt); 807 file->private_data = &ppp->file; 808 err = 0; 809 } 810 mutex_unlock(&all_ppp_mutex); 811 break; 812 813 case PPPIOCATTCHAN: 814 if (get_user(unit, p)) 815 break; 816 spin_lock_bh(&all_channels_lock); 817 err = -ENXIO; 818 chan = ppp_find_channel(unit); 819 if (chan) { 820 atomic_inc(&chan->file.refcnt); 821 file->private_data = &chan->file; 822 err = 0; 823 } 824 spin_unlock_bh(&all_channels_lock); 825 break; 826 827 default: 828 err = -ENOTTY; 829 } 830 return err; 831} 832 833static const struct file_operations ppp_device_fops = { 834 .owner = THIS_MODULE, 835 .read = ppp_read, 836 .write = ppp_write, 837 .poll = ppp_poll, 838 .ioctl = ppp_ioctl, 839 .open = ppp_open, 840 .release = ppp_release 841}; 842 843#define PPP_MAJOR 108 844 845/* Called at boot time if ppp is compiled into the kernel, 846 or at module load time (from init_module) if compiled as a module. */ 847static int __init ppp_init(void) 848{ 849 int err; 850 851 printk(KERN_INFO "PPP generic driver version " PPP_VERSION "\n"); 852 err = register_chrdev(PPP_MAJOR, "ppp", &ppp_device_fops); 853 if (!err) { 854 ppp_class = class_create(THIS_MODULE, "ppp"); 855 if (IS_ERR(ppp_class)) { 856 err = PTR_ERR(ppp_class); 857 goto out_chrdev; 858 } 859 device_create(ppp_class, NULL, MKDEV(PPP_MAJOR, 0), "ppp"); 860 } 861 862out: 863 if (err) 864 printk(KERN_ERR "failed to register PPP device (%d)\n", err); 865 return err; 866 867out_chrdev: 868 unregister_chrdev(PPP_MAJOR, "ppp"); 869 goto out; 870} 871 872/* 873 * Network interface unit routines. 874 */ 875static int 876ppp_start_xmit(struct sk_buff *skb, struct net_device *dev) 877{ 878 struct ppp *ppp = (struct ppp *) dev->priv; 879 int npi, proto; 880 unsigned char *pp; 881 882 npi = ethertype_to_npindex(ntohs(skb->protocol)); 883 if (npi < 0) 884 goto outf; 885 886 /* Drop, accept or reject the packet */ 887 switch (ppp->npmode[npi]) { 888 case NPMODE_PASS: 889 break; 890 case NPMODE_QUEUE: 891 /* it would be nice to have a way to tell the network 892 system to queue this one up for later. */ 893 goto outf; 894 case NPMODE_DROP: 895 case NPMODE_ERROR: 896 goto outf; 897 } 898 899 /* Put the 2-byte PPP protocol number on the front, 900 making sure there is room for the address and control fields. */ 901 if (skb_cow_head(skb, PPP_HDRLEN)) 902 goto outf; 903 904 pp = skb_push(skb, 2); 905 proto = npindex_to_proto[npi]; 906 pp[0] = proto >> 8; 907 pp[1] = proto; 908 909 netif_stop_queue(dev); 910 skb_queue_tail(&ppp->file.xq, skb); 911 ppp_xmit_process(ppp); 912 return 0; 913 914 outf: 915 kfree_skb(skb); 916 ++ppp->dev->stats.tx_dropped; 917 return 0; 918} 919 920static int 921ppp_net_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 922{ 923 struct ppp *ppp = dev->priv; 924 int err = -EFAULT; 925 void __user *addr = (void __user *) ifr->ifr_ifru.ifru_data; 926 struct ppp_stats stats; 927 struct ppp_comp_stats cstats; 928 char *vers; 929 930 switch (cmd) { 931 case SIOCGPPPSTATS: 932 ppp_get_stats(ppp, &stats); 933 if (copy_to_user(addr, &stats, sizeof(stats))) 934 break; 935 err = 0; 936 break; 937 938 case SIOCGPPPCSTATS: 939 memset(&cstats, 0, sizeof(cstats)); 940 if (ppp->xc_state) 941 ppp->xcomp->comp_stat(ppp->xc_state, &cstats.c); 942 if (ppp->rc_state) 943 ppp->rcomp->decomp_stat(ppp->rc_state, &cstats.d); 944 if (copy_to_user(addr, &cstats, sizeof(cstats))) 945 break; 946 err = 0; 947 break; 948 949 case SIOCGPPPVER: 950 vers = PPP_VERSION; 951 if (copy_to_user(addr, vers, strlen(vers) + 1)) 952 break; 953 err = 0; 954 break; 955 956 default: 957 err = -EINVAL; 958 } 959 960 return err; 961} 962 963static void ppp_setup(struct net_device *dev) 964{ 965 dev->hard_header_len = PPP_HDRLEN; 966 dev->mtu = PPP_MTU; 967 dev->addr_len = 0; 968 dev->tx_queue_len = 3; 969 dev->type = ARPHRD_PPP; 970 dev->flags = IFF_POINTOPOINT | IFF_NOARP | IFF_MULTICAST; 971} 972 973/* 974 * Transmit-side routines. 975 */ 976 977/* 978 * Called to do any work queued up on the transmit side 979 * that can now be done. 980 */ 981static void 982ppp_xmit_process(struct ppp *ppp) 983{ 984 struct sk_buff *skb; 985 986 ppp_xmit_lock(ppp); 987 if (ppp->dev) { 988 ppp_push(ppp); 989 while (!ppp->xmit_pending 990 && (skb = skb_dequeue(&ppp->file.xq))) 991 ppp_send_frame(ppp, skb); 992 /* If there's no work left to do, tell the core net 993 code that we can accept some more. */ 994 if (!ppp->xmit_pending && !skb_peek(&ppp->file.xq)) 995 netif_wake_queue(ppp->dev); 996 } 997 ppp_xmit_unlock(ppp); 998} 999 1000static inline struct sk_buff * 1001pad_compress_skb(struct ppp *ppp, struct sk_buff *skb) 1002{ 1003 struct sk_buff *new_skb; 1004 int len; 1005 int new_skb_size = ppp->dev->mtu + 1006 ppp->xcomp->comp_extra + ppp->dev->hard_header_len; 1007 int compressor_skb_size = ppp->dev->mtu + 1008 ppp->xcomp->comp_extra + PPP_HDRLEN; 1009 new_skb = alloc_skb(new_skb_size, GFP_ATOMIC); 1010 if (!new_skb) { 1011 if (net_ratelimit()) 1012 printk(KERN_ERR "PPP: no memory (comp pkt)\n"); 1013 return NULL; 1014 } 1015 if (ppp->dev->hard_header_len > PPP_HDRLEN) 1016 skb_reserve(new_skb, 1017 ppp->dev->hard_header_len - PPP_HDRLEN); 1018 1019 /* compressor still expects A/C bytes in hdr */ 1020 len = ppp->xcomp->compress(ppp->xc_state, skb->data - 2, 1021 new_skb->data, skb->len + 2, 1022 compressor_skb_size); 1023 if (len > 0 && (ppp->flags & SC_CCP_UP)) { 1024 kfree_skb(skb); 1025 skb = new_skb; 1026 skb_put(skb, len); 1027 skb_pull(skb, 2); /* pull off A/C bytes */ 1028 } else if (len == 0) { 1029 /* didn't compress, or CCP not up yet */ 1030 kfree_skb(new_skb); 1031 new_skb = skb; 1032 } else { 1033 /* 1034 * (len < 0) 1035 * MPPE requires that we do not send unencrypted 1036 * frames. The compressor will return -1 if we 1037 * should drop the frame. We cannot simply test 1038 * the compress_proto because MPPE and MPPC share 1039 * the same number. 1040 */ 1041 if (net_ratelimit()) 1042 printk(KERN_ERR "ppp: compressor dropped pkt\n"); 1043 kfree_skb(skb); 1044 kfree_skb(new_skb); 1045 new_skb = NULL; 1046 } 1047 return new_skb; 1048} 1049 1050/* 1051 * Compress and send a frame. 1052 * The caller should have locked the xmit path, 1053 * and xmit_pending should be 0. 1054 */ 1055static void 1056ppp_send_frame(struct ppp *ppp, struct sk_buff *skb) 1057{ 1058 int proto = PPP_PROTO(skb); 1059 struct sk_buff *new_skb; 1060 int len; 1061 unsigned char *cp; 1062 1063 if (proto < 0x8000) { 1064#ifdef CONFIG_PPP_FILTER 1065 /* check if we should pass this packet */ 1066 /* the filter instructions are constructed assuming 1067 a four-byte PPP header on each packet */ 1068 *skb_push(skb, 2) = 1; 1069 if (ppp->pass_filter 1070 && sk_run_filter(skb, ppp->pass_filter, 1071 ppp->pass_len) == 0) { 1072 if (ppp->debug & 1) 1073 printk(KERN_DEBUG "PPP: outbound frame not passed\n"); 1074 kfree_skb(skb); 1075 return; 1076 } 1077 /* if this packet passes the active filter, record the time */ 1078 if (!(ppp->active_filter 1079 && sk_run_filter(skb, ppp->active_filter, 1080 ppp->active_len) == 0)) 1081 ppp->last_xmit = jiffies; 1082 skb_pull(skb, 2); 1083#else 1084 /* for data packets, record the time */ 1085 ppp->last_xmit = jiffies; 1086#endif /* CONFIG_PPP_FILTER */ 1087 } 1088 1089 ++ppp->dev->stats.tx_packets; 1090 ppp->dev->stats.tx_bytes += skb->len - 2; 1091 1092 switch (proto) { 1093 case PPP_IP: 1094 if (!ppp->vj || (ppp->flags & SC_COMP_TCP) == 0) 1095 break; 1096 /* try to do VJ TCP header compression */ 1097 new_skb = alloc_skb(skb->len + ppp->dev->hard_header_len - 2, 1098 GFP_ATOMIC); 1099 if (!new_skb) { 1100 printk(KERN_ERR "PPP: no memory (VJ comp pkt)\n"); 1101 goto drop; 1102 } 1103 skb_reserve(new_skb, ppp->dev->hard_header_len - 2); 1104 cp = skb->data + 2; 1105 len = slhc_compress(ppp->vj, cp, skb->len - 2, 1106 new_skb->data + 2, &cp, 1107 !(ppp->flags & SC_NO_TCP_CCID)); 1108 if (cp == skb->data + 2) { 1109 /* didn't compress */ 1110 kfree_skb(new_skb); 1111 } else { 1112 if (cp[0] & SL_TYPE_COMPRESSED_TCP) { 1113 proto = PPP_VJC_COMP; 1114 cp[0] &= ~SL_TYPE_COMPRESSED_TCP; 1115 } else { 1116 proto = PPP_VJC_UNCOMP; 1117 cp[0] = skb->data[2]; 1118 } 1119 kfree_skb(skb); 1120 skb = new_skb; 1121 cp = skb_put(skb, len + 2); 1122 cp[0] = 0; 1123 cp[1] = proto; 1124 } 1125 break; 1126 1127 case PPP_CCP: 1128 /* peek at outbound CCP frames */ 1129 ppp_ccp_peek(ppp, skb, 0); 1130 break; 1131 } 1132 1133 /* try to do packet compression */ 1134 if ((ppp->xstate & SC_COMP_RUN) && ppp->xc_state 1135 && proto != PPP_LCP && proto != PPP_CCP) { 1136 if (!(ppp->flags & SC_CCP_UP) && (ppp->flags & SC_MUST_COMP)) { 1137 if (net_ratelimit()) 1138 printk(KERN_ERR "ppp: compression required but down - pkt dropped.\n"); 1139 goto drop; 1140 } 1141 skb = pad_compress_skb(ppp, skb); 1142 if (!skb) 1143 goto drop; 1144 } 1145 1146 /* 1147 * If we are waiting for traffic (demand dialling), 1148 * queue it up for pppd to receive. 1149 */ 1150 if (ppp->flags & SC_LOOP_TRAFFIC) { 1151 if (ppp->file.rq.qlen > PPP_MAX_RQLEN) 1152 goto drop; 1153 skb_queue_tail(&ppp->file.rq, skb); 1154 wake_up_interruptible(&ppp->file.rwait); 1155 return; 1156 } 1157 1158 ppp->xmit_pending = skb; 1159 ppp_push(ppp); 1160 return; 1161 1162 drop: 1163 if (skb) 1164 kfree_skb(skb); 1165 ++ppp->dev->stats.tx_errors; 1166} 1167 1168/* 1169 * Try to send the frame in xmit_pending. 1170 * The caller should have the xmit path locked. 1171 */ 1172static void 1173ppp_push(struct ppp *ppp) 1174{ 1175 struct list_head *list; 1176 struct channel *pch; 1177 struct sk_buff *skb = ppp->xmit_pending; 1178 1179 if (!skb) 1180 return; 1181 1182 list = &ppp->channels; 1183 if (list_empty(list)) { 1184 /* nowhere to send the packet, just drop it */ 1185 ppp->xmit_pending = NULL; 1186 kfree_skb(skb); 1187 return; 1188 } 1189 1190 if ((ppp->flags & SC_MULTILINK) == 0) { 1191 /* not doing multilink: send it down the first channel */ 1192 list = list->next; 1193 pch = list_entry(list, struct channel, clist); 1194 1195 spin_lock_bh(&pch->downl); 1196 if (pch->chan) { 1197 if (pch->chan->ops->start_xmit(pch->chan, skb)) 1198 ppp->xmit_pending = NULL; 1199 } else { 1200 /* channel got unregistered */ 1201 kfree_skb(skb); 1202 ppp->xmit_pending = NULL; 1203 } 1204 spin_unlock_bh(&pch->downl); 1205 return; 1206 } 1207 1208#ifdef CONFIG_PPP_MULTILINK 1209 /* Multilink: fragment the packet over as many links 1210 as can take the packet at the moment. */ 1211 if (!ppp_mp_explode(ppp, skb)) 1212 return; 1213#endif /* CONFIG_PPP_MULTILINK */ 1214 1215 ppp->xmit_pending = NULL; 1216 kfree_skb(skb); 1217} 1218 1219#ifdef CONFIG_PPP_MULTILINK 1220/* 1221 * Divide a packet to be transmitted into fragments and 1222 * send them out the individual links. 1223 */ 1224static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb) 1225{ 1226 int len, fragsize; 1227 int i, bits, hdrlen, mtu; 1228 int flen; 1229 int navail, nfree; 1230 int nbigger; 1231 unsigned char *p, *q; 1232 struct list_head *list; 1233 struct channel *pch; 1234 struct sk_buff *frag; 1235 struct ppp_channel *chan; 1236 1237 nfree = 0; /* # channels which have no packet already queued */ 1238 navail = 0; /* total # of usable channels (not deregistered) */ 1239 hdrlen = (ppp->flags & SC_MP_XSHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN; 1240 i = 0; 1241 list_for_each_entry(pch, &ppp->channels, clist) { 1242 navail += pch->avail = (pch->chan != NULL); 1243 if (pch->avail) { 1244 if (skb_queue_empty(&pch->file.xq) || 1245 !pch->had_frag) { 1246 pch->avail = 2; 1247 ++nfree; 1248 } 1249 if (!pch->had_frag && i < ppp->nxchan) 1250 ppp->nxchan = i; 1251 } 1252 ++i; 1253 } 1254 1255 /* 1256 * Don't start sending this packet unless at least half of 1257 * the channels are free. This gives much better TCP 1258 * performance if we have a lot of channels. 1259 */ 1260 if (nfree == 0 || nfree < navail / 2) 1261 return 0; /* can't take now, leave it in xmit_pending */ 1262 1263 /* Do protocol field compression (XXX this should be optional) */ 1264 p = skb->data; 1265 len = skb->len; 1266 if (*p == 0) { 1267 ++p; 1268 --len; 1269 } 1270 1271 /* 1272 * Decide on fragment size. 1273 * We create a fragment for each free channel regardless of 1274 * how small they are (i.e. even 0 length) in order to minimize 1275 * the time that it will take to detect when a channel drops 1276 * a fragment. 1277 */ 1278 fragsize = len; 1279 if (nfree > 1) 1280 fragsize = DIV_ROUND_UP(fragsize, nfree); 1281 /* nbigger channels get fragsize bytes, the rest get fragsize-1, 1282 except if nbigger==0, then they all get fragsize. */ 1283 nbigger = len % nfree; 1284 1285 /* skip to the channel after the one we last used 1286 and start at that one */ 1287 list = &ppp->channels; 1288 for (i = 0; i < ppp->nxchan; ++i) { 1289 list = list->next; 1290 if (list == &ppp->channels) { 1291 i = 0; 1292 break; 1293 } 1294 } 1295 1296 /* create a fragment for each channel */ 1297 bits = B; 1298 while (nfree > 0 || len > 0) { 1299 list = list->next; 1300 if (list == &ppp->channels) { 1301 i = 0; 1302 continue; 1303 } 1304 pch = list_entry(list, struct channel, clist); 1305 ++i; 1306 if (!pch->avail) 1307 continue; 1308 1309 /* 1310 * Skip this channel if it has a fragment pending already and 1311 * we haven't given a fragment to all of the free channels. 1312 */ 1313 if (pch->avail == 1) { 1314 if (nfree > 0) 1315 continue; 1316 } else { 1317 --nfree; 1318 pch->avail = 1; 1319 } 1320 1321 /* check the channel's mtu and whether it is still attached. */ 1322 spin_lock_bh(&pch->downl); 1323 if (pch->chan == NULL) { 1324 /* can't use this channel, it's being deregistered */ 1325 spin_unlock_bh(&pch->downl); 1326 pch->avail = 0; 1327 if (--navail == 0) 1328 break; 1329 continue; 1330 } 1331 1332 /* 1333 * Create a fragment for this channel of 1334 * min(max(mtu+2-hdrlen, 4), fragsize, len) bytes. 1335 * If mtu+2-hdrlen < 4, that is a ridiculously small 1336 * MTU, so we use mtu = 2 + hdrlen. 1337 */ 1338 if (fragsize > len) 1339 fragsize = len; 1340 flen = fragsize; 1341 mtu = pch->chan->mtu + 2 - hdrlen; 1342 if (mtu < 4) 1343 mtu = 4; 1344 if (flen > mtu) 1345 flen = mtu; 1346 if (flen == len && nfree == 0) 1347 bits |= E; 1348 frag = alloc_skb(flen + hdrlen + (flen == 0), GFP_ATOMIC); 1349 if (!frag) 1350 goto noskb; 1351 q = skb_put(frag, flen + hdrlen); 1352 1353 /* make the MP header */ 1354 q[0] = PPP_MP >> 8; 1355 q[1] = PPP_MP; 1356 if (ppp->flags & SC_MP_XSHORTSEQ) { 1357 q[2] = bits + ((ppp->nxseq >> 8) & 0xf); 1358 q[3] = ppp->nxseq; 1359 } else { 1360 q[2] = bits; 1361 q[3] = ppp->nxseq >> 16; 1362 q[4] = ppp->nxseq >> 8; 1363 q[5] = ppp->nxseq; 1364 } 1365 1366 /* 1367 * Copy the data in. 1368 * Unfortunately there is a bug in older versions of 1369 * the Linux PPP multilink reconstruction code where it 1370 * drops 0-length fragments. Therefore we make sure the 1371 * fragment has at least one byte of data. Any bytes 1372 * we add in this situation will end up as padding on the 1373 * end of the reconstructed packet. 1374 */ 1375 if (flen == 0) 1376 *skb_put(frag, 1) = 0; 1377 else 1378 memcpy(q + hdrlen, p, flen); 1379 1380 /* try to send it down the channel */ 1381 chan = pch->chan; 1382 if (!skb_queue_empty(&pch->file.xq) || 1383 !chan->ops->start_xmit(chan, frag)) 1384 skb_queue_tail(&pch->file.xq, frag); 1385 pch->had_frag = 1; 1386 p += flen; 1387 len -= flen; 1388 ++ppp->nxseq; 1389 bits = 0; 1390 spin_unlock_bh(&pch->downl); 1391 1392 if (--nbigger == 0 && fragsize > 0) 1393 --fragsize; 1394 } 1395 ppp->nxchan = i; 1396 1397 return 1; 1398 1399 noskb: 1400 spin_unlock_bh(&pch->downl); 1401 if (ppp->debug & 1) 1402 printk(KERN_ERR "PPP: no memory (fragment)\n"); 1403 ++ppp->dev->stats.tx_errors; 1404 ++ppp->nxseq; 1405 return 1; /* abandon the frame */ 1406} 1407#endif /* CONFIG_PPP_MULTILINK */ 1408 1409/* 1410 * Try to send data out on a channel. 1411 */ 1412static void 1413ppp_channel_push(struct channel *pch) 1414{ 1415 struct sk_buff *skb; 1416 struct ppp *ppp; 1417 1418 spin_lock_bh(&pch->downl); 1419 if (pch->chan) { 1420 while (!skb_queue_empty(&pch->file.xq)) { 1421 skb = skb_dequeue(&pch->file.xq); 1422 if (!pch->chan->ops->start_xmit(pch->chan, skb)) { 1423 /* put the packet back and try again later */ 1424 skb_queue_head(&pch->file.xq, skb); 1425 break; 1426 } 1427 } 1428 } else { 1429 /* channel got deregistered */ 1430 skb_queue_purge(&pch->file.xq); 1431 } 1432 spin_unlock_bh(&pch->downl); 1433 /* see if there is anything from the attached unit to be sent */ 1434 if (skb_queue_empty(&pch->file.xq)) { 1435 read_lock_bh(&pch->upl); 1436 ppp = pch->ppp; 1437 if (ppp) 1438 ppp_xmit_process(ppp); 1439 read_unlock_bh(&pch->upl); 1440 } 1441} 1442 1443/* 1444 * Receive-side routines. 1445 */ 1446 1447/* misuse a few fields of the skb for MP reconstruction */ 1448#define sequence priority 1449#define BEbits cb[0] 1450 1451static inline void 1452ppp_do_recv(struct ppp *ppp, struct sk_buff *skb, struct channel *pch) 1453{ 1454 ppp_recv_lock(ppp); 1455 /* ppp->dev == 0 means interface is closing down */ 1456 if (ppp->dev) 1457 ppp_receive_frame(ppp, skb, pch); 1458 else 1459 kfree_skb(skb); 1460 ppp_recv_unlock(ppp); 1461} 1462 1463void 1464ppp_input(struct ppp_channel *chan, struct sk_buff *skb) 1465{ 1466 struct channel *pch = chan->ppp; 1467 int proto; 1468 1469 if (!pch || skb->len == 0) { 1470 kfree_skb(skb); 1471 return; 1472 } 1473 1474 proto = PPP_PROTO(skb); 1475 read_lock_bh(&pch->upl); 1476 if (!pch->ppp || proto >= 0xc000 || proto == PPP_CCPFRAG) { 1477 /* put it on the channel queue */ 1478 skb_queue_tail(&pch->file.rq, skb); 1479 /* drop old frames if queue too long */ 1480 while (pch->file.rq.qlen > PPP_MAX_RQLEN 1481 && (skb = skb_dequeue(&pch->file.rq))) 1482 kfree_skb(skb); 1483 wake_up_interruptible(&pch->file.rwait); 1484 } else { 1485 ppp_do_recv(pch->ppp, skb, pch); 1486 } 1487 read_unlock_bh(&pch->upl); 1488} 1489 1490/* Put a 0-length skb in the receive queue as an error indication */ 1491void 1492ppp_input_error(struct ppp_channel *chan, int code) 1493{ 1494 struct channel *pch = chan->ppp; 1495 struct sk_buff *skb; 1496 1497 if (!pch) 1498 return; 1499 1500 read_lock_bh(&pch->upl); 1501 if (pch->ppp) { 1502 skb = alloc_skb(0, GFP_ATOMIC); 1503 if (skb) { 1504 skb->len = 0; /* probably unnecessary */ 1505 skb->cb[0] = code; 1506 ppp_do_recv(pch->ppp, skb, pch); 1507 } 1508 } 1509 read_unlock_bh(&pch->upl); 1510} 1511 1512/* 1513 * We come in here to process a received frame. 1514 * The receive side of the ppp unit is locked. 1515 */ 1516static void 1517ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch) 1518{ 1519 if (pskb_may_pull(skb, 2)) { 1520#ifdef CONFIG_PPP_MULTILINK 1521 /* XXX do channel-level decompression here */ 1522 if (PPP_PROTO(skb) == PPP_MP) 1523 ppp_receive_mp_frame(ppp, skb, pch); 1524 else 1525#endif /* CONFIG_PPP_MULTILINK */ 1526 ppp_receive_nonmp_frame(ppp, skb); 1527 return; 1528 } 1529 1530 if (skb->len > 0) 1531 /* note: a 0-length skb is used as an error indication */ 1532 ++ppp->dev->stats.rx_length_errors; 1533 1534 kfree_skb(skb); 1535 ppp_receive_error(ppp); 1536} 1537 1538static void 1539ppp_receive_error(struct ppp *ppp) 1540{ 1541 ++ppp->dev->stats.rx_errors; 1542 if (ppp->vj) 1543 slhc_toss(ppp->vj); 1544} 1545 1546static void 1547ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb) 1548{ 1549 struct sk_buff *ns; 1550 int proto, len, npi; 1551 1552 /* 1553 * Decompress the frame, if compressed. 1554 * Note that some decompressors need to see uncompressed frames 1555 * that come in as well as compressed frames. 1556 */ 1557 if (ppp->rc_state && (ppp->rstate & SC_DECOMP_RUN) 1558 && (ppp->rstate & (SC_DC_FERROR | SC_DC_ERROR)) == 0) 1559 skb = ppp_decompress_frame(ppp, skb); 1560 1561 if (ppp->flags & SC_MUST_COMP && ppp->rstate & SC_DC_FERROR) 1562 goto err; 1563 1564 proto = PPP_PROTO(skb); 1565 switch (proto) { 1566 case PPP_VJC_COMP: 1567 /* decompress VJ compressed packets */ 1568 if (!ppp->vj || (ppp->flags & SC_REJ_COMP_TCP)) 1569 goto err; 1570 1571 if (skb_tailroom(skb) < 124 || skb_cloned(skb)) { 1572 /* copy to a new sk_buff with more tailroom */ 1573 ns = dev_alloc_skb(skb->len + 128); 1574 if (!ns) { 1575 printk(KERN_ERR"PPP: no memory (VJ decomp)\n"); 1576 goto err; 1577 } 1578 skb_reserve(ns, 2); 1579 skb_copy_bits(skb, 0, skb_put(ns, skb->len), skb->len); 1580 kfree_skb(skb); 1581 skb = ns; 1582 } 1583 else 1584 skb->ip_summed = CHECKSUM_NONE; 1585 1586 len = slhc_uncompress(ppp->vj, skb->data + 2, skb->len - 2); 1587 if (len <= 0) { 1588 printk(KERN_DEBUG "PPP: VJ decompression error\n"); 1589 goto err; 1590 } 1591 len += 2; 1592 if (len > skb->len) 1593 skb_put(skb, len - skb->len); 1594 else if (len < skb->len) 1595 skb_trim(skb, len); 1596 proto = PPP_IP; 1597 break; 1598 1599 case PPP_VJC_UNCOMP: 1600 if (!ppp->vj || (ppp->flags & SC_REJ_COMP_TCP)) 1601 goto err; 1602 1603 /* Until we fix the decompressor need to make sure 1604 * data portion is linear. 1605 */ 1606 if (!pskb_may_pull(skb, skb->len)) 1607 goto err; 1608 1609 if (slhc_remember(ppp->vj, skb->data + 2, skb->len - 2) <= 0) { 1610 printk(KERN_ERR "PPP: VJ uncompressed error\n"); 1611 goto err; 1612 } 1613 proto = PPP_IP; 1614 break; 1615 1616 case PPP_CCP: 1617 ppp_ccp_peek(ppp, skb, 1); 1618 break; 1619 } 1620 1621 ++ppp->dev->stats.rx_packets; 1622 ppp->dev->stats.rx_bytes += skb->len - 2; 1623 1624 npi = proto_to_npindex(proto); 1625 if (npi < 0) { 1626 /* control or unknown frame - pass it to pppd */ 1627 skb_queue_tail(&ppp->file.rq, skb); 1628 /* limit queue length by dropping old frames */ 1629 while (ppp->file.rq.qlen > PPP_MAX_RQLEN 1630 && (skb = skb_dequeue(&ppp->file.rq))) 1631 kfree_skb(skb); 1632 /* wake up any process polling or blocking on read */ 1633 wake_up_interruptible(&ppp->file.rwait); 1634 1635 } else { 1636 /* network protocol frame - give it to the kernel */ 1637 1638#ifdef CONFIG_PPP_FILTER 1639 /* check if the packet passes the pass and active filters */ 1640 /* the filter instructions are constructed assuming 1641 a four-byte PPP header on each packet */ 1642 if (ppp->pass_filter || ppp->active_filter) { 1643 if (skb_cloned(skb) && 1644 pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) 1645 goto err; 1646 1647 *skb_push(skb, 2) = 0; 1648 if (ppp->pass_filter 1649 && sk_run_filter(skb, ppp->pass_filter, 1650 ppp->pass_len) == 0) { 1651 if (ppp->debug & 1) 1652 printk(KERN_DEBUG "PPP: inbound frame " 1653 "not passed\n"); 1654 kfree_skb(skb); 1655 return; 1656 } 1657 if (!(ppp->active_filter 1658 && sk_run_filter(skb, ppp->active_filter, 1659 ppp->active_len) == 0)) 1660 ppp->last_recv = jiffies; 1661 __skb_pull(skb, 2); 1662 } else 1663#endif /* CONFIG_PPP_FILTER */ 1664 ppp->last_recv = jiffies; 1665 1666 if ((ppp->dev->flags & IFF_UP) == 0 1667 || ppp->npmode[npi] != NPMODE_PASS) { 1668 kfree_skb(skb); 1669 } else { 1670 /* chop off protocol */ 1671 skb_pull_rcsum(skb, 2); 1672 skb->dev = ppp->dev; 1673 skb->protocol = htons(npindex_to_ethertype[npi]); 1674 skb_reset_mac_header(skb); 1675 netif_rx(skb); 1676 ppp->dev->last_rx = jiffies; 1677 } 1678 } 1679 return; 1680 1681 err: 1682 kfree_skb(skb); 1683 ppp_receive_error(ppp); 1684} 1685 1686static struct sk_buff * 1687ppp_decompress_frame(struct ppp *ppp, struct sk_buff *skb) 1688{ 1689 int proto = PPP_PROTO(skb); 1690 struct sk_buff *ns; 1691 int len; 1692 1693 /* Until we fix all the decompressor's need to make sure 1694 * data portion is linear. 1695 */ 1696 if (!pskb_may_pull(skb, skb->len)) 1697 goto err; 1698 1699 if (proto == PPP_COMP) { 1700 int obuff_size; 1701 1702 switch(ppp->rcomp->compress_proto) { 1703 case CI_MPPE: 1704 obuff_size = ppp->mru + PPP_HDRLEN + 1; 1705 break; 1706 default: 1707 obuff_size = ppp->mru + PPP_HDRLEN; 1708 break; 1709 } 1710 1711 ns = dev_alloc_skb(obuff_size); 1712 if (!ns) { 1713 printk(KERN_ERR "ppp_decompress_frame: no memory\n"); 1714 goto err; 1715 } 1716 /* the decompressor still expects the A/C bytes in the hdr */ 1717 len = ppp->rcomp->decompress(ppp->rc_state, skb->data - 2, 1718 skb->len + 2, ns->data, obuff_size); 1719 if (len < 0) { 1720 /* Pass the compressed frame to pppd as an 1721 error indication. */ 1722 if (len == DECOMP_FATALERROR) 1723 ppp->rstate |= SC_DC_FERROR; 1724 kfree_skb(ns); 1725 goto err; 1726 } 1727 1728 kfree_skb(skb); 1729 skb = ns; 1730 skb_put(skb, len); 1731 skb_pull(skb, 2); /* pull off the A/C bytes */ 1732 1733 } else { 1734 /* Uncompressed frame - pass to decompressor so it 1735 can update its dictionary if necessary. */ 1736 if (ppp->rcomp->incomp) 1737 ppp->rcomp->incomp(ppp->rc_state, skb->data - 2, 1738 skb->len + 2); 1739 } 1740 1741 return skb; 1742 1743 err: 1744 ppp->rstate |= SC_DC_ERROR; 1745 ppp_receive_error(ppp); 1746 return skb; 1747} 1748 1749#ifdef CONFIG_PPP_MULTILINK 1750/* 1751 * Receive a multilink frame. 1752 * We put it on the reconstruction queue and then pull off 1753 * as many completed frames as we can. 1754 */ 1755static void 1756ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch) 1757{ 1758 u32 mask, seq; 1759 struct channel *ch; 1760 int mphdrlen = (ppp->flags & SC_MP_SHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN; 1761 1762 if (!pskb_may_pull(skb, mphdrlen + 1) || ppp->mrru == 0) 1763 goto err; /* no good, throw it away */ 1764 1765 /* Decode sequence number and begin/end bits */ 1766 if (ppp->flags & SC_MP_SHORTSEQ) { 1767 seq = ((skb->data[2] & 0x0f) << 8) | skb->data[3]; 1768 mask = 0xfff; 1769 } else { 1770 seq = (skb->data[3] << 16) | (skb->data[4] << 8)| skb->data[5]; 1771 mask = 0xffffff; 1772 } 1773 skb->BEbits = skb->data[2]; 1774 skb_pull(skb, mphdrlen); /* pull off PPP and MP headers */ 1775 1776 /* 1777 * Do protocol ID decompression on the first fragment of each packet. 1778 */ 1779 if ((skb->BEbits & B) && (skb->data[0] & 1)) 1780 *skb_push(skb, 1) = 0; 1781 1782 /* 1783 * Expand sequence number to 32 bits, making it as close 1784 * as possible to ppp->minseq. 1785 */ 1786 seq |= ppp->minseq & ~mask; 1787 if ((int)(ppp->minseq - seq) > (int)(mask >> 1)) 1788 seq += mask + 1; 1789 else if ((int)(seq - ppp->minseq) > (int)(mask >> 1)) 1790 seq -= mask + 1; /* should never happen */ 1791 skb->sequence = seq; 1792 pch->lastseq = seq; 1793 1794 /* 1795 * If this packet comes before the next one we were expecting, 1796 * drop it. 1797 */ 1798 if (seq_before(seq, ppp->nextseq)) { 1799 kfree_skb(skb); 1800 ++ppp->dev->stats.rx_dropped; 1801 ppp_receive_error(ppp); 1802 return; 1803 } 1804 1805 /* 1806 * Reevaluate minseq, the minimum over all channels of the 1807 * last sequence number received on each channel. Because of 1808 * the increasing sequence number rule, we know that any fragment 1809 * before `minseq' which hasn't arrived is never going to arrive. 1810 * The list of channels can't change because we have the receive 1811 * side of the ppp unit locked. 1812 */ 1813 list_for_each_entry(ch, &ppp->channels, clist) { 1814 if (seq_before(ch->lastseq, seq)) 1815 seq = ch->lastseq; 1816 } 1817 if (seq_before(ppp->minseq, seq)) 1818 ppp->minseq = seq; 1819 1820 /* Put the fragment on the reconstruction queue */ 1821 ppp_mp_insert(ppp, skb); 1822 1823 /* If the queue is getting long, don't wait any longer for packets 1824 before the start of the queue. */ 1825 if (skb_queue_len(&ppp->mrq) >= PPP_MP_MAX_QLEN 1826 && seq_before(ppp->minseq, ppp->mrq.next->sequence)) 1827 ppp->minseq = ppp->mrq.next->sequence; 1828 1829 /* Pull completed packets off the queue and receive them. */ 1830 while ((skb = ppp_mp_reconstruct(ppp))) 1831 ppp_receive_nonmp_frame(ppp, skb); 1832 1833 return; 1834 1835 err: 1836 kfree_skb(skb); 1837 ppp_receive_error(ppp); 1838} 1839 1840/* 1841 * Insert a fragment on the MP reconstruction queue. 1842 * The queue is ordered by increasing sequence number. 1843 */ 1844static void 1845ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb) 1846{ 1847 struct sk_buff *p; 1848 struct sk_buff_head *list = &ppp->mrq; 1849 u32 seq = skb->sequence; 1850 1851 /* N.B. we don't need to lock the list lock because we have the 1852 ppp unit receive-side lock. */ 1853 for (p = list->next; p != (struct sk_buff *)list; p = p->next) 1854 if (seq_before(seq, p->sequence)) 1855 break; 1856 __skb_insert(skb, p->prev, p, list); 1857} 1858 1859/* 1860 * Reconstruct a packet from the MP fragment queue. 1861 * We go through increasing sequence numbers until we find a 1862 * complete packet, or we get to the sequence number for a fragment 1863 * which hasn't arrived but might still do so. 1864 */ 1865static struct sk_buff * 1866ppp_mp_reconstruct(struct ppp *ppp) 1867{ 1868 u32 seq = ppp->nextseq; 1869 u32 minseq = ppp->minseq; 1870 struct sk_buff_head *list = &ppp->mrq; 1871 struct sk_buff *p, *next; 1872 struct sk_buff *head, *tail; 1873 struct sk_buff *skb = NULL; 1874 int lost = 0, len = 0; 1875 1876 if (ppp->mrru == 0) /* do nothing until mrru is set */ 1877 return NULL; 1878 head = list->next; 1879 tail = NULL; 1880 for (p = head; p != (struct sk_buff *) list; p = next) { 1881 next = p->next; 1882 if (seq_before(p->sequence, seq)) { 1883 /* this can't happen, anyway ignore the skb */ 1884 printk(KERN_ERR "ppp_mp_reconstruct bad seq %u < %u\n", 1885 p->sequence, seq); 1886 head = next; 1887 continue; 1888 } 1889 if (p->sequence != seq) { 1890 /* Fragment `seq' is missing. If it is after 1891 minseq, it might arrive later, so stop here. */ 1892 if (seq_after(seq, minseq)) 1893 break; 1894 /* Fragment `seq' is lost, keep going. */ 1895 lost = 1; 1896 seq = seq_before(minseq, p->sequence)? 1897 minseq + 1: p->sequence; 1898 next = p; 1899 continue; 1900 } 1901 1902 /* 1903 * At this point we know that all the fragments from 1904 * ppp->nextseq to seq are either present or lost. 1905 * Also, there are no complete packets in the queue 1906 * that have no missing fragments and end before this 1907 * fragment. 1908 */ 1909 1910 /* B bit set indicates this fragment starts a packet */ 1911 if (p->BEbits & B) { 1912 head = p; 1913 lost = 0; 1914 len = 0; 1915 } 1916 1917 len += p->len; 1918 1919 /* Got a complete packet yet? */ 1920 if (lost == 0 && (p->BEbits & E) && (head->BEbits & B)) { 1921 if (len > ppp->mrru + 2) { 1922 ++ppp->dev->stats.rx_length_errors; 1923 printk(KERN_DEBUG "PPP: reconstructed packet" 1924 " is too long (%d)\n", len); 1925 } else if (p == head) { 1926 /* fragment is complete packet - reuse skb */ 1927 tail = p; 1928 skb = skb_get(p); 1929 break; 1930 } else if ((skb = dev_alloc_skb(len)) == NULL) { 1931 ++ppp->dev->stats.rx_missed_errors; 1932 printk(KERN_DEBUG "PPP: no memory for " 1933 "reconstructed packet"); 1934 } else { 1935 tail = p; 1936 break; 1937 } 1938 ppp->nextseq = seq + 1; 1939 } 1940 1941 /* 1942 * If this is the ending fragment of a packet, 1943 * and we haven't found a complete valid packet yet, 1944 * we can discard up to and including this fragment. 1945 */ 1946 if (p->BEbits & E) 1947 head = next; 1948 1949 ++seq; 1950 } 1951 1952 /* If we have a complete packet, copy it all into one skb. */ 1953 if (tail != NULL) { 1954 /* If we have discarded any fragments, 1955 signal a receive error. */ 1956 if (head->sequence != ppp->nextseq) { 1957 if (ppp->debug & 1) 1958 printk(KERN_DEBUG " missed pkts %u..%u\n", 1959 ppp->nextseq, head->sequence-1); 1960 ++ppp->dev->stats.rx_dropped; 1961 ppp_receive_error(ppp); 1962 } 1963 1964 if (head != tail) 1965 /* copy to a single skb */ 1966 for (p = head; p != tail->next; p = p->next) 1967 skb_copy_bits(p, 0, skb_put(skb, p->len), p->len); 1968 ppp->nextseq = tail->sequence + 1; 1969 head = tail->next; 1970 } 1971 1972 /* Discard all the skbuffs that we have copied the data out of 1973 or that we can't use. */ 1974 while ((p = list->next) != head) { 1975 __skb_unlink(p, list); 1976 kfree_skb(p); 1977 } 1978 1979 return skb; 1980} 1981#endif /* CONFIG_PPP_MULTILINK */ 1982 1983/* 1984 * Channel interface. 1985 */ 1986 1987/* 1988 * Create a new, unattached ppp channel. 1989 */ 1990int 1991ppp_register_channel(struct ppp_channel *chan) 1992{ 1993 struct channel *pch; 1994 1995 pch = kzalloc(sizeof(struct channel), GFP_KERNEL); 1996 if (!pch) 1997 return -ENOMEM; 1998 pch->ppp = NULL; 1999 pch->chan = chan; 2000 chan->ppp = pch; 2001 init_ppp_file(&pch->file, CHANNEL); 2002 pch->file.hdrlen = chan->hdrlen; 2003#ifdef CONFIG_PPP_MULTILINK 2004 pch->lastseq = -1; 2005#endif /* CONFIG_PPP_MULTILINK */ 2006 init_rwsem(&pch->chan_sem); 2007 spin_lock_init(&pch->downl); 2008 rwlock_init(&pch->upl); 2009 spin_lock_bh(&all_channels_lock); 2010 pch->file.index = ++last_channel_index; 2011 list_add(&pch->list, &new_channels); 2012 atomic_inc(&channel_count); 2013 spin_unlock_bh(&all_channels_lock); 2014 return 0; 2015} 2016 2017/* 2018 * Return the index of a channel. 2019 */ 2020int ppp_channel_index(struct ppp_channel *chan) 2021{ 2022 struct channel *pch = chan->ppp; 2023 2024 if (pch) 2025 return pch->file.index; 2026 return -1; 2027} 2028 2029/* 2030 * Return the PPP unit number to which a channel is connected. 2031 */ 2032int ppp_unit_number(struct ppp_channel *chan) 2033{ 2034 struct channel *pch = chan->ppp; 2035 int unit = -1; 2036 2037 if (pch) { 2038 read_lock_bh(&pch->upl); 2039 if (pch->ppp) 2040 unit = pch->ppp->file.index; 2041 read_unlock_bh(&pch->upl); 2042 } 2043 return unit; 2044} 2045 2046/* 2047 * Disconnect a channel from the generic layer. 2048 * This must be called in process context. 2049 */ 2050void 2051ppp_unregister_channel(struct ppp_channel *chan) 2052{ 2053 struct channel *pch = chan->ppp; 2054 2055 if (!pch) 2056 return; /* should never happen */ 2057 chan->ppp = NULL; 2058 2059 /* 2060 * This ensures that we have returned from any calls into the 2061 * the channel's start_xmit or ioctl routine before we proceed. 2062 */ 2063 down_write(&pch->chan_sem); 2064 spin_lock_bh(&pch->downl); 2065 pch->chan = NULL; 2066 spin_unlock_bh(&pch->downl); 2067 up_write(&pch->chan_sem); 2068 ppp_disconnect_channel(pch); 2069 spin_lock_bh(&all_channels_lock); 2070 list_del(&pch->list); 2071 spin_unlock_bh(&all_channels_lock); 2072 pch->file.dead = 1; 2073 wake_up_interruptible(&pch->file.rwait); 2074 if (atomic_dec_and_test(&pch->file.refcnt)) 2075 ppp_destroy_channel(pch); 2076} 2077 2078/* 2079 * Callback from a channel when it can accept more to transmit. 2080 * This should be called at BH/softirq level, not interrupt level. 2081 */ 2082void 2083ppp_output_wakeup(struct ppp_channel *chan) 2084{ 2085 struct channel *pch = chan->ppp; 2086 2087 if (!pch) 2088 return; 2089 ppp_channel_push(pch); 2090} 2091 2092/* 2093 * Compression control. 2094 */ 2095 2096/* Process the PPPIOCSCOMPRESS ioctl. */ 2097static int 2098ppp_set_compress(struct ppp *ppp, unsigned long arg) 2099{ 2100 int err; 2101 struct compressor *cp, *ocomp; 2102 struct ppp_option_data data; 2103 void *state, *ostate; 2104 unsigned char ccp_option[CCP_MAX_OPTION_LENGTH]; 2105 2106 err = -EFAULT; 2107 if (copy_from_user(&data, (void __user *) arg, sizeof(data)) 2108 || (data.length <= CCP_MAX_OPTION_LENGTH 2109 && copy_from_user(ccp_option, (void __user *) data.ptr, data.length))) 2110 goto out; 2111 err = -EINVAL; 2112 if (data.length > CCP_MAX_OPTION_LENGTH 2113 || ccp_option[1] < 2 || ccp_option[1] > data.length) 2114 goto out; 2115 2116 cp = find_compressor(ccp_option[0]); 2117#ifdef CONFIG_KMOD 2118 if (!cp) { 2119 request_module("ppp-compress-%d", ccp_option[0]); 2120 cp = find_compressor(ccp_option[0]); 2121 } 2122#endif /* CONFIG_KMOD */ 2123 if (!cp) 2124 goto out; 2125 2126 err = -ENOBUFS; 2127 if (data.transmit) { 2128 state = cp->comp_alloc(ccp_option, data.length); 2129 if (state) { 2130 ppp_xmit_lock(ppp); 2131 ppp->xstate &= ~SC_COMP_RUN; 2132 ocomp = ppp->xcomp; 2133 ostate = ppp->xc_state; 2134 ppp->xcomp = cp; 2135 ppp->xc_state = state; 2136 ppp_xmit_unlock(ppp); 2137 if (ostate) { 2138 ocomp->comp_free(ostate); 2139 module_put(ocomp->owner); 2140 } 2141 err = 0; 2142 } else 2143 module_put(cp->owner); 2144 2145 } else { 2146 state = cp->decomp_alloc(ccp_option, data.length); 2147 if (state) { 2148 ppp_recv_lock(ppp); 2149 ppp->rstate &= ~SC_DECOMP_RUN; 2150 ocomp = ppp->rcomp; 2151 ostate = ppp->rc_state; 2152 ppp->rcomp = cp; 2153 ppp->rc_state = state; 2154 ppp_recv_unlock(ppp); 2155 if (ostate) { 2156 ocomp->decomp_free(ostate); 2157 module_put(ocomp->owner); 2158 } 2159 err = 0; 2160 } else 2161 module_put(cp->owner); 2162 } 2163 2164 out: 2165 return err; 2166} 2167 2168/* 2169 * Look at a CCP packet and update our state accordingly. 2170 * We assume the caller has the xmit or recv path locked. 2171 */ 2172static void 2173ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound) 2174{ 2175 unsigned char *dp; 2176 int len; 2177 2178 if (!pskb_may_pull(skb, CCP_HDRLEN + 2)) 2179 return; /* no header */ 2180 dp = skb->data + 2; 2181 2182 switch (CCP_CODE(dp)) { 2183 case CCP_CONFREQ: 2184 2185 /* A ConfReq starts negotiation of compression 2186 * in one direction of transmission, 2187 * and hence brings it down...but which way? 2188 * 2189 * Remember: 2190 * A ConfReq indicates what the sender would like to receive 2191 */ 2192 if(inbound) 2193 /* He is proposing what I should send */ 2194 ppp->xstate &= ~SC_COMP_RUN; 2195 else 2196 /* I am proposing to what he should send */ 2197 ppp->rstate &= ~SC_DECOMP_RUN; 2198 2199 break; 2200 2201 case CCP_TERMREQ: 2202 case CCP_TERMACK: 2203 /* 2204 * CCP is going down, both directions of transmission 2205 */ 2206 ppp->rstate &= ~SC_DECOMP_RUN; 2207 ppp->xstate &= ~SC_COMP_RUN; 2208 break; 2209 2210 case CCP_CONFACK: 2211 if ((ppp->flags & (SC_CCP_OPEN | SC_CCP_UP)) != SC_CCP_OPEN) 2212 break; 2213 len = CCP_LENGTH(dp); 2214 if (!pskb_may_pull(skb, len + 2)) 2215 return; /* too short */ 2216 dp += CCP_HDRLEN; 2217 len -= CCP_HDRLEN; 2218 if (len < CCP_OPT_MINLEN || len < CCP_OPT_LENGTH(dp)) 2219 break; 2220 if (inbound) { 2221 /* we will start receiving compressed packets */ 2222 if (!ppp->rc_state) 2223 break; 2224 if (ppp->rcomp->decomp_init(ppp->rc_state, dp, len, 2225 ppp->file.index, 0, ppp->mru, ppp->debug)) { 2226 ppp->rstate |= SC_DECOMP_RUN; 2227 ppp->rstate &= ~(SC_DC_ERROR | SC_DC_FERROR); 2228 } 2229 } else { 2230 /* we will soon start sending compressed packets */ 2231 if (!ppp->xc_state) 2232 break; 2233 if (ppp->xcomp->comp_init(ppp->xc_state, dp, len, 2234 ppp->file.index, 0, ppp->debug)) 2235 ppp->xstate |= SC_COMP_RUN; 2236 } 2237 break; 2238 2239 case CCP_RESETACK: 2240 /* reset the [de]compressor */ 2241 if ((ppp->flags & SC_CCP_UP) == 0) 2242 break; 2243 if (inbound) { 2244 if (ppp->rc_state && (ppp->rstate & SC_DECOMP_RUN)) { 2245 ppp->rcomp->decomp_reset(ppp->rc_state); 2246 ppp->rstate &= ~SC_DC_ERROR; 2247 } 2248 } else { 2249 if (ppp->xc_state && (ppp->xstate & SC_COMP_RUN)) 2250 ppp->xcomp->comp_reset(ppp->xc_state); 2251 } 2252 break; 2253 } 2254} 2255 2256/* Free up compression resources. */ 2257static void 2258ppp_ccp_closed(struct ppp *ppp) 2259{ 2260 void *xstate, *rstate; 2261 struct compressor *xcomp, *rcomp; 2262 2263 ppp_lock(ppp); 2264 ppp->flags &= ~(SC_CCP_OPEN | SC_CCP_UP); 2265 ppp->xstate = 0; 2266 xcomp = ppp->xcomp; 2267 xstate = ppp->xc_state; 2268 ppp->xc_state = NULL; 2269 ppp->rstate = 0; 2270 rcomp = ppp->rcomp; 2271 rstate = ppp->rc_state; 2272 ppp->rc_state = NULL; 2273 ppp_unlock(ppp); 2274 2275 if (xstate) { 2276 xcomp->comp_free(xstate); 2277 module_put(xcomp->owner); 2278 } 2279 if (rstate) { 2280 rcomp->decomp_free(rstate); 2281 module_put(rcomp->owner); 2282 } 2283} 2284 2285/* List of compressors. */ 2286static LIST_HEAD(compressor_list); 2287static DEFINE_SPINLOCK(compressor_list_lock); 2288 2289struct compressor_entry { 2290 struct list_head list; 2291 struct compressor *comp; 2292}; 2293 2294static struct compressor_entry * 2295find_comp_entry(int proto) 2296{ 2297 struct compressor_entry *ce; 2298 2299 list_for_each_entry(ce, &compressor_list, list) { 2300 if (ce->comp->compress_proto == proto) 2301 return ce; 2302 } 2303 return NULL; 2304} 2305 2306/* Register a compressor */ 2307int 2308ppp_register_compressor(struct compressor *cp) 2309{ 2310 struct compressor_entry *ce; 2311 int ret; 2312 spin_lock(&compressor_list_lock); 2313 ret = -EEXIST; 2314 if (find_comp_entry(cp->compress_proto)) 2315 goto out; 2316 ret = -ENOMEM; 2317 ce = kmalloc(sizeof(struct compressor_entry), GFP_ATOMIC); 2318 if (!ce) 2319 goto out; 2320 ret = 0; 2321 ce->comp = cp; 2322 list_add(&ce->list, &compressor_list); 2323 out: 2324 spin_unlock(&compressor_list_lock); 2325 return ret; 2326} 2327 2328/* Unregister a compressor */ 2329void 2330ppp_unregister_compressor(struct compressor *cp) 2331{ 2332 struct compressor_entry *ce; 2333 2334 spin_lock(&compressor_list_lock); 2335 ce = find_comp_entry(cp->compress_proto); 2336 if (ce && ce->comp == cp) { 2337 list_del(&ce->list); 2338 kfree(ce); 2339 } 2340 spin_unlock(&compressor_list_lock); 2341} 2342 2343/* Find a compressor. */ 2344static struct compressor * 2345find_compressor(int type) 2346{ 2347 struct compressor_entry *ce; 2348 struct compressor *cp = NULL; 2349 2350 spin_lock(&compressor_list_lock); 2351 ce = find_comp_entry(type); 2352 if (ce) { 2353 cp = ce->comp; 2354 if (!try_module_get(cp->owner)) 2355 cp = NULL; 2356 } 2357 spin_unlock(&compressor_list_lock); 2358 return cp; 2359} 2360 2361/* 2362 * Miscelleneous stuff. 2363 */ 2364 2365static void 2366ppp_get_stats(struct ppp *ppp, struct ppp_stats *st) 2367{ 2368 struct slcompress *vj = ppp->vj; 2369 2370 memset(st, 0, sizeof(*st)); 2371 st->p.ppp_ipackets = ppp->dev->stats.rx_packets; 2372 st->p.ppp_ierrors = ppp->dev->stats.rx_errors; 2373 st->p.ppp_ibytes = ppp->dev->stats.rx_bytes; 2374 st->p.ppp_opackets = ppp->dev->stats.tx_packets; 2375 st->p.ppp_oerrors = ppp->dev->stats.tx_errors; 2376 st->p.ppp_obytes = ppp->dev->stats.tx_bytes; 2377 if (!vj) 2378 return; 2379 st->vj.vjs_packets = vj->sls_o_compressed + vj->sls_o_uncompressed; 2380 st->vj.vjs_compressed = vj->sls_o_compressed; 2381 st->vj.vjs_searches = vj->sls_o_searches; 2382 st->vj.vjs_misses = vj->sls_o_misses; 2383 st->vj.vjs_errorin = vj->sls_i_error; 2384 st->vj.vjs_tossed = vj->sls_i_tossed; 2385 st->vj.vjs_uncompressedin = vj->sls_i_uncompressed; 2386 st->vj.vjs_compressedin = vj->sls_i_compressed; 2387} 2388 2389/* 2390 * Stuff for handling the lists of ppp units and channels 2391 * and for initialization. 2392 */ 2393 2394/* 2395 * Create a new ppp interface unit. Fails if it can't allocate memory 2396 * or if there is already a unit with the requested number. 2397 * unit == -1 means allocate a new number. 2398 */ 2399static struct ppp * 2400ppp_create_interface(int unit, int *retp) 2401{ 2402 struct ppp *ppp; 2403 struct net_device *dev = NULL; 2404 int ret = -ENOMEM; 2405 int i; 2406 2407 ppp = kzalloc(sizeof(struct ppp), GFP_KERNEL); 2408 if (!ppp) 2409 goto out; 2410 dev = alloc_netdev(0, "", ppp_setup); 2411 if (!dev) 2412 goto out1; 2413 2414 ppp->mru = PPP_MRU; 2415 init_ppp_file(&ppp->file, INTERFACE); 2416 ppp->file.hdrlen = PPP_HDRLEN - 2; /* don't count proto bytes */ 2417 for (i = 0; i < NUM_NP; ++i) 2418 ppp->npmode[i] = NPMODE_PASS; 2419 INIT_LIST_HEAD(&ppp->channels); 2420 spin_lock_init(&ppp->rlock); 2421 spin_lock_init(&ppp->wlock); 2422#ifdef CONFIG_PPP_MULTILINK 2423 ppp->minseq = -1; 2424 skb_queue_head_init(&ppp->mrq); 2425#endif /* CONFIG_PPP_MULTILINK */ 2426 ppp->dev = dev; 2427 dev->priv = ppp; 2428 2429 dev->hard_start_xmit = ppp_start_xmit; 2430 dev->do_ioctl = ppp_net_ioctl; 2431 2432 ret = -EEXIST; 2433 mutex_lock(&all_ppp_mutex); 2434 if (unit < 0) 2435 unit = cardmap_find_first_free(all_ppp_units); 2436 else if (cardmap_get(all_ppp_units, unit) != NULL) 2437 goto out2; /* unit already exists */ 2438 2439 /* Initialize the new ppp unit */ 2440 ppp->file.index = unit; 2441 sprintf(dev->name, "ppp%d", unit); 2442 2443 ret = register_netdev(dev); 2444 if (ret != 0) { 2445 printk(KERN_ERR "PPP: couldn't register device %s (%d)\n", 2446 dev->name, ret); 2447 goto out2; 2448 } 2449 2450 atomic_inc(&ppp_unit_count); 2451 ret = cardmap_set(&all_ppp_units, unit, ppp); 2452 if (ret != 0) 2453 goto out3; 2454 2455 mutex_unlock(&all_ppp_mutex); 2456 *retp = 0; 2457 return ppp; 2458 2459out3: 2460 atomic_dec(&ppp_unit_count); 2461 unregister_netdev(dev); 2462out2: 2463 mutex_unlock(&all_ppp_mutex); 2464 free_netdev(dev); 2465out1: 2466 kfree(ppp); 2467out: 2468 *retp = ret; 2469 return NULL; 2470} 2471 2472/* 2473 * Initialize a ppp_file structure. 2474 */ 2475static void 2476init_ppp_file(struct ppp_file *pf, int kind) 2477{ 2478 pf->kind = kind; 2479 skb_queue_head_init(&pf->xq); 2480 skb_queue_head_init(&pf->rq); 2481 atomic_set(&pf->refcnt, 1); 2482 init_waitqueue_head(&pf->rwait); 2483} 2484 2485/* 2486 * Take down a ppp interface unit - called when the owning file 2487 * (the one that created the unit) is closed or detached. 2488 */ 2489static void ppp_shutdown_interface(struct ppp *ppp) 2490{ 2491 struct net_device *dev; 2492 2493 mutex_lock(&all_ppp_mutex); 2494 ppp_lock(ppp); 2495 dev = ppp->dev; 2496 ppp->dev = NULL; 2497 ppp_unlock(ppp); 2498 /* This will call dev_close() for us. */ 2499 if (dev) { 2500 unregister_netdev(dev); 2501 free_netdev(dev); 2502 } 2503 cardmap_set(&all_ppp_units, ppp->file.index, NULL); 2504 ppp->file.dead = 1; 2505 ppp->owner = NULL; 2506 wake_up_interruptible(&ppp->file.rwait); 2507 mutex_unlock(&all_ppp_mutex); 2508} 2509 2510/* 2511 * Free the memory used by a ppp unit. This is only called once 2512 * there are no channels connected to the unit and no file structs 2513 * that reference the unit. 2514 */ 2515static void ppp_destroy_interface(struct ppp *ppp) 2516{ 2517 atomic_dec(&ppp_unit_count); 2518 2519 if (!ppp->file.dead || ppp->n_channels) { 2520 /* "can't happen" */ 2521 printk(KERN_ERR "ppp: destroying ppp struct %p but dead=%d " 2522 "n_channels=%d !\n", ppp, ppp->file.dead, 2523 ppp->n_channels); 2524 return; 2525 } 2526 2527 ppp_ccp_closed(ppp); 2528 if (ppp->vj) { 2529 slhc_free(ppp->vj); 2530 ppp->vj = NULL; 2531 } 2532 skb_queue_purge(&ppp->file.xq); 2533 skb_queue_purge(&ppp->file.rq); 2534#ifdef CONFIG_PPP_MULTILINK 2535 skb_queue_purge(&ppp->mrq); 2536#endif /* CONFIG_PPP_MULTILINK */ 2537#ifdef CONFIG_PPP_FILTER 2538 kfree(ppp->pass_filter); 2539 ppp->pass_filter = NULL; 2540 kfree(ppp->active_filter); 2541 ppp->active_filter = NULL; 2542#endif /* CONFIG_PPP_FILTER */ 2543 2544 if (ppp->xmit_pending) 2545 kfree_skb(ppp->xmit_pending); 2546 2547 kfree(ppp); 2548} 2549 2550/* 2551 * Locate an existing ppp unit. 2552 * The caller should have locked the all_ppp_mutex. 2553 */ 2554static struct ppp * 2555ppp_find_unit(int unit) 2556{ 2557 return cardmap_get(all_ppp_units, unit); 2558} 2559 2560/* 2561 * Locate an existing ppp channel. 2562 * The caller should have locked the all_channels_lock. 2563 * First we look in the new_channels list, then in the 2564 * all_channels list. If found in the new_channels list, 2565 * we move it to the all_channels list. This is for speed 2566 * when we have a lot of channels in use. 2567 */ 2568static struct channel * 2569ppp_find_channel(int unit) 2570{ 2571 struct channel *pch; 2572 2573 list_for_each_entry(pch, &new_channels, list) { 2574 if (pch->file.index == unit) { 2575 list_move(&pch->list, &all_channels); 2576 return pch; 2577 } 2578 } 2579 list_for_each_entry(pch, &all_channels, list) { 2580 if (pch->file.index == unit) 2581 return pch; 2582 } 2583 return NULL; 2584} 2585 2586/* 2587 * Connect a PPP channel to a PPP interface unit. 2588 */ 2589static int 2590ppp_connect_channel(struct channel *pch, int unit) 2591{ 2592 struct ppp *ppp; 2593 int ret = -ENXIO; 2594 int hdrlen; 2595 2596 mutex_lock(&all_ppp_mutex); 2597 ppp = ppp_find_unit(unit); 2598 if (!ppp) 2599 goto out; 2600 write_lock_bh(&pch->upl); 2601 ret = -EINVAL; 2602 if (pch->ppp) 2603 goto outl; 2604 2605 ppp_lock(ppp); 2606 if (pch->file.hdrlen > ppp->file.hdrlen) 2607 ppp->file.hdrlen = pch->file.hdrlen; 2608 hdrlen = pch->file.hdrlen + 2; /* for protocol bytes */ 2609 if (ppp->dev && hdrlen > ppp->dev->hard_header_len) 2610 ppp->dev->hard_header_len = hdrlen; 2611 list_add_tail(&pch->clist, &ppp->channels); 2612 ++ppp->n_channels; 2613 pch->ppp = ppp; 2614 atomic_inc(&ppp->file.refcnt); 2615 ppp_unlock(ppp); 2616 ret = 0; 2617 2618 outl: 2619 write_unlock_bh(&pch->upl); 2620 out: 2621 mutex_unlock(&all_ppp_mutex); 2622 return ret; 2623} 2624 2625/* 2626 * Disconnect a channel from its ppp unit. 2627 */ 2628static int 2629ppp_disconnect_channel(struct channel *pch) 2630{ 2631 struct ppp *ppp; 2632 int err = -EINVAL; 2633 2634 write_lock_bh(&pch->upl); 2635 ppp = pch->ppp; 2636 pch->ppp = NULL; 2637 write_unlock_bh(&pch->upl); 2638 if (ppp) { 2639 /* remove it from the ppp unit's list */ 2640 ppp_lock(ppp); 2641 list_del(&pch->clist); 2642 if (--ppp->n_channels == 0) 2643 wake_up_interruptible(&ppp->file.rwait); 2644 ppp_unlock(ppp); 2645 if (atomic_dec_and_test(&ppp->file.refcnt)) 2646 ppp_destroy_interface(ppp); 2647 err = 0; 2648 } 2649 return err; 2650} 2651 2652/* 2653 * Free up the resources used by a ppp channel. 2654 */ 2655static void ppp_destroy_channel(struct channel *pch) 2656{ 2657 atomic_dec(&channel_count); 2658 2659 if (!pch->file.dead) { 2660 /* "can't happen" */ 2661 printk(KERN_ERR "ppp: destroying undead channel %p !\n", 2662 pch); 2663 return; 2664 } 2665 skb_queue_purge(&pch->file.xq); 2666 skb_queue_purge(&pch->file.rq); 2667 kfree(pch); 2668} 2669 2670static void __exit ppp_cleanup(void) 2671{ 2672 /* should never happen */ 2673 if (atomic_read(&ppp_unit_count) || atomic_read(&channel_count)) 2674 printk(KERN_ERR "PPP: removing module but units remain!\n"); 2675 cardmap_destroy(&all_ppp_units); 2676 unregister_chrdev(PPP_MAJOR, "ppp"); 2677 device_destroy(ppp_class, MKDEV(PPP_MAJOR, 0)); 2678 class_destroy(ppp_class); 2679} 2680 2681/* 2682 * Cardmap implementation. 2683 */ 2684static void *cardmap_get(struct cardmap *map, unsigned int nr) 2685{ 2686 struct cardmap *p; 2687 int i; 2688 2689 for (p = map; p != NULL; ) { 2690 if ((i = nr >> p->shift) >= CARDMAP_WIDTH) 2691 return NULL; 2692 if (p->shift == 0) 2693 return p->ptr[i]; 2694 nr &= ~(CARDMAP_MASK << p->shift); 2695 p = p->ptr[i]; 2696 } 2697 return NULL; 2698} 2699 2700static int cardmap_set(struct cardmap **pmap, unsigned int nr, void *ptr) 2701{ 2702 struct cardmap *p; 2703 int i; 2704 2705 p = *pmap; 2706 if (p == NULL || (nr >> p->shift) >= CARDMAP_WIDTH) { 2707 do { 2708 /* need a new top level */ 2709 struct cardmap *np = kzalloc(sizeof(*np), GFP_KERNEL); 2710 if (!np) 2711 goto enomem; 2712 np->ptr[0] = p; 2713 if (p != NULL) { 2714 np->shift = p->shift + CARDMAP_ORDER; 2715 p->parent = np; 2716 } else 2717 np->shift = 0; 2718 p = np; 2719 } while ((nr >> p->shift) >= CARDMAP_WIDTH); 2720 *pmap = p; 2721 } 2722 while (p->shift > 0) { 2723 i = (nr >> p->shift) & CARDMAP_MASK; 2724 if (p->ptr[i] == NULL) { 2725 struct cardmap *np = kzalloc(sizeof(*np), GFP_KERNEL); 2726 if (!np) 2727 goto enomem; 2728 np->shift = p->shift - CARDMAP_ORDER; 2729 np->parent = p; 2730 p->ptr[i] = np; 2731 } 2732 if (ptr == NULL) 2733 clear_bit(i, &p->inuse); 2734 p = p->ptr[i]; 2735 } 2736 i = nr & CARDMAP_MASK; 2737 p->ptr[i] = ptr; 2738 if (ptr != NULL) 2739 set_bit(i, &p->inuse); 2740 else 2741 clear_bit(i, &p->inuse); 2742 return 0; 2743 enomem: 2744 return -ENOMEM; 2745} 2746 2747static unsigned int cardmap_find_first_free(struct cardmap *map) 2748{ 2749 struct cardmap *p; 2750 unsigned int nr = 0; 2751 int i; 2752 2753 if ((p = map) == NULL) 2754 return 0; 2755 for (;;) { 2756 i = find_first_zero_bit(&p->inuse, CARDMAP_WIDTH); 2757 if (i >= CARDMAP_WIDTH) { 2758 if (p->parent == NULL) 2759 return CARDMAP_WIDTH << p->shift; 2760 p = p->parent; 2761 i = (nr >> p->shift) & CARDMAP_MASK; 2762 set_bit(i, &p->inuse); 2763 continue; 2764 } 2765 nr = (nr & (~CARDMAP_MASK << p->shift)) | (i << p->shift); 2766 if (p->shift == 0 || p->ptr[i] == NULL) 2767 return nr; 2768 p = p->ptr[i]; 2769 } 2770} 2771 2772static void cardmap_destroy(struct cardmap **pmap) 2773{ 2774 struct cardmap *p, *np; 2775 int i; 2776 2777 for (p = *pmap; p != NULL; p = np) { 2778 if (p->shift != 0) { 2779 for (i = 0; i < CARDMAP_WIDTH; ++i) 2780 if (p->ptr[i] != NULL) 2781 break; 2782 if (i < CARDMAP_WIDTH) { 2783 np = p->ptr[i]; 2784 p->ptr[i] = NULL; 2785 continue; 2786 } 2787 } 2788 np = p->parent; 2789 kfree(p); 2790 } 2791 *pmap = NULL; 2792} 2793 2794/* Module/initialization stuff */ 2795 2796module_init(ppp_init); 2797module_exit(ppp_cleanup); 2798 2799EXPORT_SYMBOL(ppp_register_channel); 2800EXPORT_SYMBOL(ppp_unregister_channel); 2801EXPORT_SYMBOL(ppp_channel_index); 2802EXPORT_SYMBOL(ppp_unit_number); 2803EXPORT_SYMBOL(ppp_input); 2804EXPORT_SYMBOL(ppp_input_error); 2805EXPORT_SYMBOL(ppp_output_wakeup); 2806EXPORT_SYMBOL(ppp_register_compressor); 2807EXPORT_SYMBOL(ppp_unregister_compressor); 2808MODULE_LICENSE("GPL"); 2809MODULE_ALIAS_CHARDEV_MAJOR(PPP_MAJOR); 2810MODULE_ALIAS("/dev/ppp");