Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * linux/fs/proc/base.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * proc base directory handling functions
7 *
8 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9 * Instead of using magical inumbers to determine the kind of object
10 * we allocate and fill in-core inodes upon lookup. They don't even
11 * go into icache. We cache the reference to task_struct upon lookup too.
12 * Eventually it should become a filesystem in its own. We don't use the
13 * rest of procfs anymore.
14 *
15 *
16 * Changelog:
17 * 17-Jan-2005
18 * Allan Bezerra
19 * Bruna Moreira <bruna.moreira@indt.org.br>
20 * Edjard Mota <edjard.mota@indt.org.br>
21 * Ilias Biris <ilias.biris@indt.org.br>
22 * Mauricio Lin <mauricio.lin@indt.org.br>
23 *
24 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25 *
26 * A new process specific entry (smaps) included in /proc. It shows the
27 * size of rss for each memory area. The maps entry lacks information
28 * about physical memory size (rss) for each mapped file, i.e.,
29 * rss information for executables and library files.
30 * This additional information is useful for any tools that need to know
31 * about physical memory consumption for a process specific library.
32 *
33 * Changelog:
34 * 21-Feb-2005
35 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36 * Pud inclusion in the page table walking.
37 *
38 * ChangeLog:
39 * 10-Mar-2005
40 * 10LE Instituto Nokia de Tecnologia - INdT:
41 * A better way to walks through the page table as suggested by Hugh Dickins.
42 *
43 * Simo Piiroinen <simo.piiroinen@nokia.com>:
44 * Smaps information related to shared, private, clean and dirty pages.
45 *
46 * Paul Mundt <paul.mundt@nokia.com>:
47 * Overall revision about smaps.
48 */
49
50#include <asm/uaccess.h>
51
52#include <linux/errno.h>
53#include <linux/time.h>
54#include <linux/proc_fs.h>
55#include <linux/stat.h>
56#include <linux/init.h>
57#include <linux/capability.h>
58#include <linux/file.h>
59#include <linux/fdtable.h>
60#include <linux/string.h>
61#include <linux/seq_file.h>
62#include <linux/namei.h>
63#include <linux/mnt_namespace.h>
64#include <linux/mm.h>
65#include <linux/rcupdate.h>
66#include <linux/kallsyms.h>
67#include <linux/resource.h>
68#include <linux/module.h>
69#include <linux/mount.h>
70#include <linux/security.h>
71#include <linux/ptrace.h>
72#include <linux/cgroup.h>
73#include <linux/cpuset.h>
74#include <linux/audit.h>
75#include <linux/poll.h>
76#include <linux/nsproxy.h>
77#include <linux/oom.h>
78#include <linux/elf.h>
79#include <linux/pid_namespace.h>
80#include "internal.h"
81
82/* NOTE:
83 * Implementing inode permission operations in /proc is almost
84 * certainly an error. Permission checks need to happen during
85 * each system call not at open time. The reason is that most of
86 * what we wish to check for permissions in /proc varies at runtime.
87 *
88 * The classic example of a problem is opening file descriptors
89 * in /proc for a task before it execs a suid executable.
90 */
91
92struct pid_entry {
93 char *name;
94 int len;
95 mode_t mode;
96 const struct inode_operations *iop;
97 const struct file_operations *fop;
98 union proc_op op;
99};
100
101#define NOD(NAME, MODE, IOP, FOP, OP) { \
102 .name = (NAME), \
103 .len = sizeof(NAME) - 1, \
104 .mode = MODE, \
105 .iop = IOP, \
106 .fop = FOP, \
107 .op = OP, \
108}
109
110#define DIR(NAME, MODE, OTYPE) \
111 NOD(NAME, (S_IFDIR|(MODE)), \
112 &proc_##OTYPE##_inode_operations, &proc_##OTYPE##_operations, \
113 {} )
114#define LNK(NAME, OTYPE) \
115 NOD(NAME, (S_IFLNK|S_IRWXUGO), \
116 &proc_pid_link_inode_operations, NULL, \
117 { .proc_get_link = &proc_##OTYPE##_link } )
118#define REG(NAME, MODE, OTYPE) \
119 NOD(NAME, (S_IFREG|(MODE)), NULL, \
120 &proc_##OTYPE##_operations, {})
121#define INF(NAME, MODE, OTYPE) \
122 NOD(NAME, (S_IFREG|(MODE)), \
123 NULL, &proc_info_file_operations, \
124 { .proc_read = &proc_##OTYPE } )
125#define ONE(NAME, MODE, OTYPE) \
126 NOD(NAME, (S_IFREG|(MODE)), \
127 NULL, &proc_single_file_operations, \
128 { .proc_show = &proc_##OTYPE } )
129
130/*
131 * Count the number of hardlinks for the pid_entry table, excluding the .
132 * and .. links.
133 */
134static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
135 unsigned int n)
136{
137 unsigned int i;
138 unsigned int count;
139
140 count = 0;
141 for (i = 0; i < n; ++i) {
142 if (S_ISDIR(entries[i].mode))
143 ++count;
144 }
145
146 return count;
147}
148
149int maps_protect;
150EXPORT_SYMBOL(maps_protect);
151
152static struct fs_struct *get_fs_struct(struct task_struct *task)
153{
154 struct fs_struct *fs;
155 task_lock(task);
156 fs = task->fs;
157 if(fs)
158 atomic_inc(&fs->count);
159 task_unlock(task);
160 return fs;
161}
162
163static int get_nr_threads(struct task_struct *tsk)
164{
165 /* Must be called with the rcu_read_lock held */
166 unsigned long flags;
167 int count = 0;
168
169 if (lock_task_sighand(tsk, &flags)) {
170 count = atomic_read(&tsk->signal->count);
171 unlock_task_sighand(tsk, &flags);
172 }
173 return count;
174}
175
176static int proc_cwd_link(struct inode *inode, struct path *path)
177{
178 struct task_struct *task = get_proc_task(inode);
179 struct fs_struct *fs = NULL;
180 int result = -ENOENT;
181
182 if (task) {
183 fs = get_fs_struct(task);
184 put_task_struct(task);
185 }
186 if (fs) {
187 read_lock(&fs->lock);
188 *path = fs->pwd;
189 path_get(&fs->pwd);
190 read_unlock(&fs->lock);
191 result = 0;
192 put_fs_struct(fs);
193 }
194 return result;
195}
196
197static int proc_root_link(struct inode *inode, struct path *path)
198{
199 struct task_struct *task = get_proc_task(inode);
200 struct fs_struct *fs = NULL;
201 int result = -ENOENT;
202
203 if (task) {
204 fs = get_fs_struct(task);
205 put_task_struct(task);
206 }
207 if (fs) {
208 read_lock(&fs->lock);
209 *path = fs->root;
210 path_get(&fs->root);
211 read_unlock(&fs->lock);
212 result = 0;
213 put_fs_struct(fs);
214 }
215 return result;
216}
217
218/*
219 * Return zero if current may access user memory in @task, -error if not.
220 */
221static int check_mem_permission(struct task_struct *task)
222{
223 /*
224 * A task can always look at itself, in case it chooses
225 * to use system calls instead of load instructions.
226 */
227 if (task == current)
228 return 0;
229
230 /*
231 * If current is actively ptrace'ing, and would also be
232 * permitted to freshly attach with ptrace now, permit it.
233 */
234 if (task->parent == current && (task->ptrace & PT_PTRACED) &&
235 task_is_stopped_or_traced(task) &&
236 ptrace_may_attach(task))
237 return 0;
238
239 /*
240 * Noone else is allowed.
241 */
242 return -EPERM;
243}
244
245struct mm_struct *mm_for_maps(struct task_struct *task)
246{
247 struct mm_struct *mm = get_task_mm(task);
248 if (!mm)
249 return NULL;
250 down_read(&mm->mmap_sem);
251 task_lock(task);
252 if (task->mm != mm)
253 goto out;
254 if (task->mm != current->mm && __ptrace_may_attach(task) < 0)
255 goto out;
256 task_unlock(task);
257 return mm;
258out:
259 task_unlock(task);
260 up_read(&mm->mmap_sem);
261 mmput(mm);
262 return NULL;
263}
264
265static int proc_pid_cmdline(struct task_struct *task, char * buffer)
266{
267 int res = 0;
268 unsigned int len;
269 struct mm_struct *mm = get_task_mm(task);
270 if (!mm)
271 goto out;
272 if (!mm->arg_end)
273 goto out_mm; /* Shh! No looking before we're done */
274
275 len = mm->arg_end - mm->arg_start;
276
277 if (len > PAGE_SIZE)
278 len = PAGE_SIZE;
279
280 res = access_process_vm(task, mm->arg_start, buffer, len, 0);
281
282 // If the nul at the end of args has been overwritten, then
283 // assume application is using setproctitle(3).
284 if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
285 len = strnlen(buffer, res);
286 if (len < res) {
287 res = len;
288 } else {
289 len = mm->env_end - mm->env_start;
290 if (len > PAGE_SIZE - res)
291 len = PAGE_SIZE - res;
292 res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
293 res = strnlen(buffer, res);
294 }
295 }
296out_mm:
297 mmput(mm);
298out:
299 return res;
300}
301
302static int proc_pid_auxv(struct task_struct *task, char *buffer)
303{
304 int res = 0;
305 struct mm_struct *mm = get_task_mm(task);
306 if (mm) {
307 unsigned int nwords = 0;
308 do
309 nwords += 2;
310 while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
311 res = nwords * sizeof(mm->saved_auxv[0]);
312 if (res > PAGE_SIZE)
313 res = PAGE_SIZE;
314 memcpy(buffer, mm->saved_auxv, res);
315 mmput(mm);
316 }
317 return res;
318}
319
320
321#ifdef CONFIG_KALLSYMS
322/*
323 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
324 * Returns the resolved symbol. If that fails, simply return the address.
325 */
326static int proc_pid_wchan(struct task_struct *task, char *buffer)
327{
328 unsigned long wchan;
329 char symname[KSYM_NAME_LEN];
330
331 wchan = get_wchan(task);
332
333 if (lookup_symbol_name(wchan, symname) < 0)
334 return sprintf(buffer, "%lu", wchan);
335 else
336 return sprintf(buffer, "%s", symname);
337}
338#endif /* CONFIG_KALLSYMS */
339
340#ifdef CONFIG_SCHEDSTATS
341/*
342 * Provides /proc/PID/schedstat
343 */
344static int proc_pid_schedstat(struct task_struct *task, char *buffer)
345{
346 return sprintf(buffer, "%llu %llu %lu\n",
347 task->sched_info.cpu_time,
348 task->sched_info.run_delay,
349 task->sched_info.pcount);
350}
351#endif
352
353#ifdef CONFIG_LATENCYTOP
354static int lstats_show_proc(struct seq_file *m, void *v)
355{
356 int i;
357 struct inode *inode = m->private;
358 struct task_struct *task = get_proc_task(inode);
359
360 if (!task)
361 return -ESRCH;
362 seq_puts(m, "Latency Top version : v0.1\n");
363 for (i = 0; i < 32; i++) {
364 if (task->latency_record[i].backtrace[0]) {
365 int q;
366 seq_printf(m, "%i %li %li ",
367 task->latency_record[i].count,
368 task->latency_record[i].time,
369 task->latency_record[i].max);
370 for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
371 char sym[KSYM_NAME_LEN];
372 char *c;
373 if (!task->latency_record[i].backtrace[q])
374 break;
375 if (task->latency_record[i].backtrace[q] == ULONG_MAX)
376 break;
377 sprint_symbol(sym, task->latency_record[i].backtrace[q]);
378 c = strchr(sym, '+');
379 if (c)
380 *c = 0;
381 seq_printf(m, "%s ", sym);
382 }
383 seq_printf(m, "\n");
384 }
385
386 }
387 put_task_struct(task);
388 return 0;
389}
390
391static int lstats_open(struct inode *inode, struct file *file)
392{
393 return single_open(file, lstats_show_proc, inode);
394}
395
396static ssize_t lstats_write(struct file *file, const char __user *buf,
397 size_t count, loff_t *offs)
398{
399 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
400
401 if (!task)
402 return -ESRCH;
403 clear_all_latency_tracing(task);
404 put_task_struct(task);
405
406 return count;
407}
408
409static const struct file_operations proc_lstats_operations = {
410 .open = lstats_open,
411 .read = seq_read,
412 .write = lstats_write,
413 .llseek = seq_lseek,
414 .release = single_release,
415};
416
417#endif
418
419/* The badness from the OOM killer */
420unsigned long badness(struct task_struct *p, unsigned long uptime);
421static int proc_oom_score(struct task_struct *task, char *buffer)
422{
423 unsigned long points;
424 struct timespec uptime;
425
426 do_posix_clock_monotonic_gettime(&uptime);
427 read_lock(&tasklist_lock);
428 points = badness(task, uptime.tv_sec);
429 read_unlock(&tasklist_lock);
430 return sprintf(buffer, "%lu\n", points);
431}
432
433struct limit_names {
434 char *name;
435 char *unit;
436};
437
438static const struct limit_names lnames[RLIM_NLIMITS] = {
439 [RLIMIT_CPU] = {"Max cpu time", "ms"},
440 [RLIMIT_FSIZE] = {"Max file size", "bytes"},
441 [RLIMIT_DATA] = {"Max data size", "bytes"},
442 [RLIMIT_STACK] = {"Max stack size", "bytes"},
443 [RLIMIT_CORE] = {"Max core file size", "bytes"},
444 [RLIMIT_RSS] = {"Max resident set", "bytes"},
445 [RLIMIT_NPROC] = {"Max processes", "processes"},
446 [RLIMIT_NOFILE] = {"Max open files", "files"},
447 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
448 [RLIMIT_AS] = {"Max address space", "bytes"},
449 [RLIMIT_LOCKS] = {"Max file locks", "locks"},
450 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
451 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
452 [RLIMIT_NICE] = {"Max nice priority", NULL},
453 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
454 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
455};
456
457/* Display limits for a process */
458static int proc_pid_limits(struct task_struct *task, char *buffer)
459{
460 unsigned int i;
461 int count = 0;
462 unsigned long flags;
463 char *bufptr = buffer;
464
465 struct rlimit rlim[RLIM_NLIMITS];
466
467 rcu_read_lock();
468 if (!lock_task_sighand(task,&flags)) {
469 rcu_read_unlock();
470 return 0;
471 }
472 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
473 unlock_task_sighand(task, &flags);
474 rcu_read_unlock();
475
476 /*
477 * print the file header
478 */
479 count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
480 "Limit", "Soft Limit", "Hard Limit", "Units");
481
482 for (i = 0; i < RLIM_NLIMITS; i++) {
483 if (rlim[i].rlim_cur == RLIM_INFINITY)
484 count += sprintf(&bufptr[count], "%-25s %-20s ",
485 lnames[i].name, "unlimited");
486 else
487 count += sprintf(&bufptr[count], "%-25s %-20lu ",
488 lnames[i].name, rlim[i].rlim_cur);
489
490 if (rlim[i].rlim_max == RLIM_INFINITY)
491 count += sprintf(&bufptr[count], "%-20s ", "unlimited");
492 else
493 count += sprintf(&bufptr[count], "%-20lu ",
494 rlim[i].rlim_max);
495
496 if (lnames[i].unit)
497 count += sprintf(&bufptr[count], "%-10s\n",
498 lnames[i].unit);
499 else
500 count += sprintf(&bufptr[count], "\n");
501 }
502
503 return count;
504}
505
506/************************************************************************/
507/* Here the fs part begins */
508/************************************************************************/
509
510/* permission checks */
511static int proc_fd_access_allowed(struct inode *inode)
512{
513 struct task_struct *task;
514 int allowed = 0;
515 /* Allow access to a task's file descriptors if it is us or we
516 * may use ptrace attach to the process and find out that
517 * information.
518 */
519 task = get_proc_task(inode);
520 if (task) {
521 allowed = ptrace_may_attach(task);
522 put_task_struct(task);
523 }
524 return allowed;
525}
526
527static int proc_setattr(struct dentry *dentry, struct iattr *attr)
528{
529 int error;
530 struct inode *inode = dentry->d_inode;
531
532 if (attr->ia_valid & ATTR_MODE)
533 return -EPERM;
534
535 error = inode_change_ok(inode, attr);
536 if (!error)
537 error = inode_setattr(inode, attr);
538 return error;
539}
540
541static const struct inode_operations proc_def_inode_operations = {
542 .setattr = proc_setattr,
543};
544
545static int mounts_open_common(struct inode *inode, struct file *file,
546 const struct seq_operations *op)
547{
548 struct task_struct *task = get_proc_task(inode);
549 struct nsproxy *nsp;
550 struct mnt_namespace *ns = NULL;
551 struct fs_struct *fs = NULL;
552 struct path root;
553 struct proc_mounts *p;
554 int ret = -EINVAL;
555
556 if (task) {
557 rcu_read_lock();
558 nsp = task_nsproxy(task);
559 if (nsp) {
560 ns = nsp->mnt_ns;
561 if (ns)
562 get_mnt_ns(ns);
563 }
564 rcu_read_unlock();
565 if (ns)
566 fs = get_fs_struct(task);
567 put_task_struct(task);
568 }
569
570 if (!ns)
571 goto err;
572 if (!fs)
573 goto err_put_ns;
574
575 read_lock(&fs->lock);
576 root = fs->root;
577 path_get(&root);
578 read_unlock(&fs->lock);
579 put_fs_struct(fs);
580
581 ret = -ENOMEM;
582 p = kmalloc(sizeof(struct proc_mounts), GFP_KERNEL);
583 if (!p)
584 goto err_put_path;
585
586 file->private_data = &p->m;
587 ret = seq_open(file, op);
588 if (ret)
589 goto err_free;
590
591 p->m.private = p;
592 p->ns = ns;
593 p->root = root;
594 p->event = ns->event;
595
596 return 0;
597
598 err_free:
599 kfree(p);
600 err_put_path:
601 path_put(&root);
602 err_put_ns:
603 put_mnt_ns(ns);
604 err:
605 return ret;
606}
607
608static int mounts_release(struct inode *inode, struct file *file)
609{
610 struct proc_mounts *p = file->private_data;
611 path_put(&p->root);
612 put_mnt_ns(p->ns);
613 return seq_release(inode, file);
614}
615
616static unsigned mounts_poll(struct file *file, poll_table *wait)
617{
618 struct proc_mounts *p = file->private_data;
619 struct mnt_namespace *ns = p->ns;
620 unsigned res = 0;
621
622 poll_wait(file, &ns->poll, wait);
623
624 spin_lock(&vfsmount_lock);
625 if (p->event != ns->event) {
626 p->event = ns->event;
627 res = POLLERR;
628 }
629 spin_unlock(&vfsmount_lock);
630
631 return res;
632}
633
634static int mounts_open(struct inode *inode, struct file *file)
635{
636 return mounts_open_common(inode, file, &mounts_op);
637}
638
639static const struct file_operations proc_mounts_operations = {
640 .open = mounts_open,
641 .read = seq_read,
642 .llseek = seq_lseek,
643 .release = mounts_release,
644 .poll = mounts_poll,
645};
646
647static int mountinfo_open(struct inode *inode, struct file *file)
648{
649 return mounts_open_common(inode, file, &mountinfo_op);
650}
651
652static const struct file_operations proc_mountinfo_operations = {
653 .open = mountinfo_open,
654 .read = seq_read,
655 .llseek = seq_lseek,
656 .release = mounts_release,
657 .poll = mounts_poll,
658};
659
660static int mountstats_open(struct inode *inode, struct file *file)
661{
662 return mounts_open_common(inode, file, &mountstats_op);
663}
664
665static const struct file_operations proc_mountstats_operations = {
666 .open = mountstats_open,
667 .read = seq_read,
668 .llseek = seq_lseek,
669 .release = mounts_release,
670};
671
672#define PROC_BLOCK_SIZE (3*1024) /* 4K page size but our output routines use some slack for overruns */
673
674static ssize_t proc_info_read(struct file * file, char __user * buf,
675 size_t count, loff_t *ppos)
676{
677 struct inode * inode = file->f_path.dentry->d_inode;
678 unsigned long page;
679 ssize_t length;
680 struct task_struct *task = get_proc_task(inode);
681
682 length = -ESRCH;
683 if (!task)
684 goto out_no_task;
685
686 if (count > PROC_BLOCK_SIZE)
687 count = PROC_BLOCK_SIZE;
688
689 length = -ENOMEM;
690 if (!(page = __get_free_page(GFP_TEMPORARY)))
691 goto out;
692
693 length = PROC_I(inode)->op.proc_read(task, (char*)page);
694
695 if (length >= 0)
696 length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
697 free_page(page);
698out:
699 put_task_struct(task);
700out_no_task:
701 return length;
702}
703
704static const struct file_operations proc_info_file_operations = {
705 .read = proc_info_read,
706};
707
708static int proc_single_show(struct seq_file *m, void *v)
709{
710 struct inode *inode = m->private;
711 struct pid_namespace *ns;
712 struct pid *pid;
713 struct task_struct *task;
714 int ret;
715
716 ns = inode->i_sb->s_fs_info;
717 pid = proc_pid(inode);
718 task = get_pid_task(pid, PIDTYPE_PID);
719 if (!task)
720 return -ESRCH;
721
722 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
723
724 put_task_struct(task);
725 return ret;
726}
727
728static int proc_single_open(struct inode *inode, struct file *filp)
729{
730 int ret;
731 ret = single_open(filp, proc_single_show, NULL);
732 if (!ret) {
733 struct seq_file *m = filp->private_data;
734
735 m->private = inode;
736 }
737 return ret;
738}
739
740static const struct file_operations proc_single_file_operations = {
741 .open = proc_single_open,
742 .read = seq_read,
743 .llseek = seq_lseek,
744 .release = single_release,
745};
746
747static int mem_open(struct inode* inode, struct file* file)
748{
749 file->private_data = (void*)((long)current->self_exec_id);
750 return 0;
751}
752
753static ssize_t mem_read(struct file * file, char __user * buf,
754 size_t count, loff_t *ppos)
755{
756 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
757 char *page;
758 unsigned long src = *ppos;
759 int ret = -ESRCH;
760 struct mm_struct *mm;
761
762 if (!task)
763 goto out_no_task;
764
765 if (check_mem_permission(task))
766 goto out;
767
768 ret = -ENOMEM;
769 page = (char *)__get_free_page(GFP_TEMPORARY);
770 if (!page)
771 goto out;
772
773 ret = 0;
774
775 mm = get_task_mm(task);
776 if (!mm)
777 goto out_free;
778
779 ret = -EIO;
780
781 if (file->private_data != (void*)((long)current->self_exec_id))
782 goto out_put;
783
784 ret = 0;
785
786 while (count > 0) {
787 int this_len, retval;
788
789 this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
790 retval = access_process_vm(task, src, page, this_len, 0);
791 if (!retval || check_mem_permission(task)) {
792 if (!ret)
793 ret = -EIO;
794 break;
795 }
796
797 if (copy_to_user(buf, page, retval)) {
798 ret = -EFAULT;
799 break;
800 }
801
802 ret += retval;
803 src += retval;
804 buf += retval;
805 count -= retval;
806 }
807 *ppos = src;
808
809out_put:
810 mmput(mm);
811out_free:
812 free_page((unsigned long) page);
813out:
814 put_task_struct(task);
815out_no_task:
816 return ret;
817}
818
819#define mem_write NULL
820
821#ifndef mem_write
822/* This is a security hazard */
823static ssize_t mem_write(struct file * file, const char __user *buf,
824 size_t count, loff_t *ppos)
825{
826 int copied;
827 char *page;
828 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
829 unsigned long dst = *ppos;
830
831 copied = -ESRCH;
832 if (!task)
833 goto out_no_task;
834
835 if (check_mem_permission(task))
836 goto out;
837
838 copied = -ENOMEM;
839 page = (char *)__get_free_page(GFP_TEMPORARY);
840 if (!page)
841 goto out;
842
843 copied = 0;
844 while (count > 0) {
845 int this_len, retval;
846
847 this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
848 if (copy_from_user(page, buf, this_len)) {
849 copied = -EFAULT;
850 break;
851 }
852 retval = access_process_vm(task, dst, page, this_len, 1);
853 if (!retval) {
854 if (!copied)
855 copied = -EIO;
856 break;
857 }
858 copied += retval;
859 buf += retval;
860 dst += retval;
861 count -= retval;
862 }
863 *ppos = dst;
864 free_page((unsigned long) page);
865out:
866 put_task_struct(task);
867out_no_task:
868 return copied;
869}
870#endif
871
872loff_t mem_lseek(struct file *file, loff_t offset, int orig)
873{
874 switch (orig) {
875 case 0:
876 file->f_pos = offset;
877 break;
878 case 1:
879 file->f_pos += offset;
880 break;
881 default:
882 return -EINVAL;
883 }
884 force_successful_syscall_return();
885 return file->f_pos;
886}
887
888static const struct file_operations proc_mem_operations = {
889 .llseek = mem_lseek,
890 .read = mem_read,
891 .write = mem_write,
892 .open = mem_open,
893};
894
895static ssize_t environ_read(struct file *file, char __user *buf,
896 size_t count, loff_t *ppos)
897{
898 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
899 char *page;
900 unsigned long src = *ppos;
901 int ret = -ESRCH;
902 struct mm_struct *mm;
903
904 if (!task)
905 goto out_no_task;
906
907 if (!ptrace_may_attach(task))
908 goto out;
909
910 ret = -ENOMEM;
911 page = (char *)__get_free_page(GFP_TEMPORARY);
912 if (!page)
913 goto out;
914
915 ret = 0;
916
917 mm = get_task_mm(task);
918 if (!mm)
919 goto out_free;
920
921 while (count > 0) {
922 int this_len, retval, max_len;
923
924 this_len = mm->env_end - (mm->env_start + src);
925
926 if (this_len <= 0)
927 break;
928
929 max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
930 this_len = (this_len > max_len) ? max_len : this_len;
931
932 retval = access_process_vm(task, (mm->env_start + src),
933 page, this_len, 0);
934
935 if (retval <= 0) {
936 ret = retval;
937 break;
938 }
939
940 if (copy_to_user(buf, page, retval)) {
941 ret = -EFAULT;
942 break;
943 }
944
945 ret += retval;
946 src += retval;
947 buf += retval;
948 count -= retval;
949 }
950 *ppos = src;
951
952 mmput(mm);
953out_free:
954 free_page((unsigned long) page);
955out:
956 put_task_struct(task);
957out_no_task:
958 return ret;
959}
960
961static const struct file_operations proc_environ_operations = {
962 .read = environ_read,
963};
964
965static ssize_t oom_adjust_read(struct file *file, char __user *buf,
966 size_t count, loff_t *ppos)
967{
968 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
969 char buffer[PROC_NUMBUF];
970 size_t len;
971 int oom_adjust;
972
973 if (!task)
974 return -ESRCH;
975 oom_adjust = task->oomkilladj;
976 put_task_struct(task);
977
978 len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
979
980 return simple_read_from_buffer(buf, count, ppos, buffer, len);
981}
982
983static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
984 size_t count, loff_t *ppos)
985{
986 struct task_struct *task;
987 char buffer[PROC_NUMBUF], *end;
988 int oom_adjust;
989
990 memset(buffer, 0, sizeof(buffer));
991 if (count > sizeof(buffer) - 1)
992 count = sizeof(buffer) - 1;
993 if (copy_from_user(buffer, buf, count))
994 return -EFAULT;
995 oom_adjust = simple_strtol(buffer, &end, 0);
996 if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) &&
997 oom_adjust != OOM_DISABLE)
998 return -EINVAL;
999 if (*end == '\n')
1000 end++;
1001 task = get_proc_task(file->f_path.dentry->d_inode);
1002 if (!task)
1003 return -ESRCH;
1004 if (oom_adjust < task->oomkilladj && !capable(CAP_SYS_RESOURCE)) {
1005 put_task_struct(task);
1006 return -EACCES;
1007 }
1008 task->oomkilladj = oom_adjust;
1009 put_task_struct(task);
1010 if (end - buffer == 0)
1011 return -EIO;
1012 return end - buffer;
1013}
1014
1015static const struct file_operations proc_oom_adjust_operations = {
1016 .read = oom_adjust_read,
1017 .write = oom_adjust_write,
1018};
1019
1020#ifdef CONFIG_AUDITSYSCALL
1021#define TMPBUFLEN 21
1022static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1023 size_t count, loff_t *ppos)
1024{
1025 struct inode * inode = file->f_path.dentry->d_inode;
1026 struct task_struct *task = get_proc_task(inode);
1027 ssize_t length;
1028 char tmpbuf[TMPBUFLEN];
1029
1030 if (!task)
1031 return -ESRCH;
1032 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1033 audit_get_loginuid(task));
1034 put_task_struct(task);
1035 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1036}
1037
1038static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1039 size_t count, loff_t *ppos)
1040{
1041 struct inode * inode = file->f_path.dentry->d_inode;
1042 char *page, *tmp;
1043 ssize_t length;
1044 uid_t loginuid;
1045
1046 if (!capable(CAP_AUDIT_CONTROL))
1047 return -EPERM;
1048
1049 if (current != pid_task(proc_pid(inode), PIDTYPE_PID))
1050 return -EPERM;
1051
1052 if (count >= PAGE_SIZE)
1053 count = PAGE_SIZE - 1;
1054
1055 if (*ppos != 0) {
1056 /* No partial writes. */
1057 return -EINVAL;
1058 }
1059 page = (char*)__get_free_page(GFP_TEMPORARY);
1060 if (!page)
1061 return -ENOMEM;
1062 length = -EFAULT;
1063 if (copy_from_user(page, buf, count))
1064 goto out_free_page;
1065
1066 page[count] = '\0';
1067 loginuid = simple_strtoul(page, &tmp, 10);
1068 if (tmp == page) {
1069 length = -EINVAL;
1070 goto out_free_page;
1071
1072 }
1073 length = audit_set_loginuid(current, loginuid);
1074 if (likely(length == 0))
1075 length = count;
1076
1077out_free_page:
1078 free_page((unsigned long) page);
1079 return length;
1080}
1081
1082static const struct file_operations proc_loginuid_operations = {
1083 .read = proc_loginuid_read,
1084 .write = proc_loginuid_write,
1085};
1086
1087static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1088 size_t count, loff_t *ppos)
1089{
1090 struct inode * inode = file->f_path.dentry->d_inode;
1091 struct task_struct *task = get_proc_task(inode);
1092 ssize_t length;
1093 char tmpbuf[TMPBUFLEN];
1094
1095 if (!task)
1096 return -ESRCH;
1097 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1098 audit_get_sessionid(task));
1099 put_task_struct(task);
1100 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1101}
1102
1103static const struct file_operations proc_sessionid_operations = {
1104 .read = proc_sessionid_read,
1105};
1106#endif
1107
1108#ifdef CONFIG_FAULT_INJECTION
1109static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1110 size_t count, loff_t *ppos)
1111{
1112 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1113 char buffer[PROC_NUMBUF];
1114 size_t len;
1115 int make_it_fail;
1116
1117 if (!task)
1118 return -ESRCH;
1119 make_it_fail = task->make_it_fail;
1120 put_task_struct(task);
1121
1122 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1123
1124 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1125}
1126
1127static ssize_t proc_fault_inject_write(struct file * file,
1128 const char __user * buf, size_t count, loff_t *ppos)
1129{
1130 struct task_struct *task;
1131 char buffer[PROC_NUMBUF], *end;
1132 int make_it_fail;
1133
1134 if (!capable(CAP_SYS_RESOURCE))
1135 return -EPERM;
1136 memset(buffer, 0, sizeof(buffer));
1137 if (count > sizeof(buffer) - 1)
1138 count = sizeof(buffer) - 1;
1139 if (copy_from_user(buffer, buf, count))
1140 return -EFAULT;
1141 make_it_fail = simple_strtol(buffer, &end, 0);
1142 if (*end == '\n')
1143 end++;
1144 task = get_proc_task(file->f_dentry->d_inode);
1145 if (!task)
1146 return -ESRCH;
1147 task->make_it_fail = make_it_fail;
1148 put_task_struct(task);
1149 if (end - buffer == 0)
1150 return -EIO;
1151 return end - buffer;
1152}
1153
1154static const struct file_operations proc_fault_inject_operations = {
1155 .read = proc_fault_inject_read,
1156 .write = proc_fault_inject_write,
1157};
1158#endif
1159
1160
1161#ifdef CONFIG_SCHED_DEBUG
1162/*
1163 * Print out various scheduling related per-task fields:
1164 */
1165static int sched_show(struct seq_file *m, void *v)
1166{
1167 struct inode *inode = m->private;
1168 struct task_struct *p;
1169
1170 WARN_ON(!inode);
1171
1172 p = get_proc_task(inode);
1173 if (!p)
1174 return -ESRCH;
1175 proc_sched_show_task(p, m);
1176
1177 put_task_struct(p);
1178
1179 return 0;
1180}
1181
1182static ssize_t
1183sched_write(struct file *file, const char __user *buf,
1184 size_t count, loff_t *offset)
1185{
1186 struct inode *inode = file->f_path.dentry->d_inode;
1187 struct task_struct *p;
1188
1189 WARN_ON(!inode);
1190
1191 p = get_proc_task(inode);
1192 if (!p)
1193 return -ESRCH;
1194 proc_sched_set_task(p);
1195
1196 put_task_struct(p);
1197
1198 return count;
1199}
1200
1201static int sched_open(struct inode *inode, struct file *filp)
1202{
1203 int ret;
1204
1205 ret = single_open(filp, sched_show, NULL);
1206 if (!ret) {
1207 struct seq_file *m = filp->private_data;
1208
1209 m->private = inode;
1210 }
1211 return ret;
1212}
1213
1214static const struct file_operations proc_pid_sched_operations = {
1215 .open = sched_open,
1216 .read = seq_read,
1217 .write = sched_write,
1218 .llseek = seq_lseek,
1219 .release = single_release,
1220};
1221
1222#endif
1223
1224/*
1225 * We added or removed a vma mapping the executable. The vmas are only mapped
1226 * during exec and are not mapped with the mmap system call.
1227 * Callers must hold down_write() on the mm's mmap_sem for these
1228 */
1229void added_exe_file_vma(struct mm_struct *mm)
1230{
1231 mm->num_exe_file_vmas++;
1232}
1233
1234void removed_exe_file_vma(struct mm_struct *mm)
1235{
1236 mm->num_exe_file_vmas--;
1237 if ((mm->num_exe_file_vmas == 0) && mm->exe_file){
1238 fput(mm->exe_file);
1239 mm->exe_file = NULL;
1240 }
1241
1242}
1243
1244void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1245{
1246 if (new_exe_file)
1247 get_file(new_exe_file);
1248 if (mm->exe_file)
1249 fput(mm->exe_file);
1250 mm->exe_file = new_exe_file;
1251 mm->num_exe_file_vmas = 0;
1252}
1253
1254struct file *get_mm_exe_file(struct mm_struct *mm)
1255{
1256 struct file *exe_file;
1257
1258 /* We need mmap_sem to protect against races with removal of
1259 * VM_EXECUTABLE vmas */
1260 down_read(&mm->mmap_sem);
1261 exe_file = mm->exe_file;
1262 if (exe_file)
1263 get_file(exe_file);
1264 up_read(&mm->mmap_sem);
1265 return exe_file;
1266}
1267
1268void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
1269{
1270 /* It's safe to write the exe_file pointer without exe_file_lock because
1271 * this is called during fork when the task is not yet in /proc */
1272 newmm->exe_file = get_mm_exe_file(oldmm);
1273}
1274
1275static int proc_exe_link(struct inode *inode, struct path *exe_path)
1276{
1277 struct task_struct *task;
1278 struct mm_struct *mm;
1279 struct file *exe_file;
1280
1281 task = get_proc_task(inode);
1282 if (!task)
1283 return -ENOENT;
1284 mm = get_task_mm(task);
1285 put_task_struct(task);
1286 if (!mm)
1287 return -ENOENT;
1288 exe_file = get_mm_exe_file(mm);
1289 mmput(mm);
1290 if (exe_file) {
1291 *exe_path = exe_file->f_path;
1292 path_get(&exe_file->f_path);
1293 fput(exe_file);
1294 return 0;
1295 } else
1296 return -ENOENT;
1297}
1298
1299static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1300{
1301 struct inode *inode = dentry->d_inode;
1302 int error = -EACCES;
1303
1304 /* We don't need a base pointer in the /proc filesystem */
1305 path_put(&nd->path);
1306
1307 /* Are we allowed to snoop on the tasks file descriptors? */
1308 if (!proc_fd_access_allowed(inode))
1309 goto out;
1310
1311 error = PROC_I(inode)->op.proc_get_link(inode, &nd->path);
1312 nd->last_type = LAST_BIND;
1313out:
1314 return ERR_PTR(error);
1315}
1316
1317static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1318{
1319 char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1320 char *pathname;
1321 int len;
1322
1323 if (!tmp)
1324 return -ENOMEM;
1325
1326 pathname = d_path(path, tmp, PAGE_SIZE);
1327 len = PTR_ERR(pathname);
1328 if (IS_ERR(pathname))
1329 goto out;
1330 len = tmp + PAGE_SIZE - 1 - pathname;
1331
1332 if (len > buflen)
1333 len = buflen;
1334 if (copy_to_user(buffer, pathname, len))
1335 len = -EFAULT;
1336 out:
1337 free_page((unsigned long)tmp);
1338 return len;
1339}
1340
1341static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1342{
1343 int error = -EACCES;
1344 struct inode *inode = dentry->d_inode;
1345 struct path path;
1346
1347 /* Are we allowed to snoop on the tasks file descriptors? */
1348 if (!proc_fd_access_allowed(inode))
1349 goto out;
1350
1351 error = PROC_I(inode)->op.proc_get_link(inode, &path);
1352 if (error)
1353 goto out;
1354
1355 error = do_proc_readlink(&path, buffer, buflen);
1356 path_put(&path);
1357out:
1358 return error;
1359}
1360
1361static const struct inode_operations proc_pid_link_inode_operations = {
1362 .readlink = proc_pid_readlink,
1363 .follow_link = proc_pid_follow_link,
1364 .setattr = proc_setattr,
1365};
1366
1367
1368/* building an inode */
1369
1370static int task_dumpable(struct task_struct *task)
1371{
1372 int dumpable = 0;
1373 struct mm_struct *mm;
1374
1375 task_lock(task);
1376 mm = task->mm;
1377 if (mm)
1378 dumpable = get_dumpable(mm);
1379 task_unlock(task);
1380 if(dumpable == 1)
1381 return 1;
1382 return 0;
1383}
1384
1385
1386static struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1387{
1388 struct inode * inode;
1389 struct proc_inode *ei;
1390
1391 /* We need a new inode */
1392
1393 inode = new_inode(sb);
1394 if (!inode)
1395 goto out;
1396
1397 /* Common stuff */
1398 ei = PROC_I(inode);
1399 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1400 inode->i_op = &proc_def_inode_operations;
1401
1402 /*
1403 * grab the reference to task.
1404 */
1405 ei->pid = get_task_pid(task, PIDTYPE_PID);
1406 if (!ei->pid)
1407 goto out_unlock;
1408
1409 inode->i_uid = 0;
1410 inode->i_gid = 0;
1411 if (task_dumpable(task)) {
1412 inode->i_uid = task->euid;
1413 inode->i_gid = task->egid;
1414 }
1415 security_task_to_inode(task, inode);
1416
1417out:
1418 return inode;
1419
1420out_unlock:
1421 iput(inode);
1422 return NULL;
1423}
1424
1425static int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1426{
1427 struct inode *inode = dentry->d_inode;
1428 struct task_struct *task;
1429 generic_fillattr(inode, stat);
1430
1431 rcu_read_lock();
1432 stat->uid = 0;
1433 stat->gid = 0;
1434 task = pid_task(proc_pid(inode), PIDTYPE_PID);
1435 if (task) {
1436 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1437 task_dumpable(task)) {
1438 stat->uid = task->euid;
1439 stat->gid = task->egid;
1440 }
1441 }
1442 rcu_read_unlock();
1443 return 0;
1444}
1445
1446/* dentry stuff */
1447
1448/*
1449 * Exceptional case: normally we are not allowed to unhash a busy
1450 * directory. In this case, however, we can do it - no aliasing problems
1451 * due to the way we treat inodes.
1452 *
1453 * Rewrite the inode's ownerships here because the owning task may have
1454 * performed a setuid(), etc.
1455 *
1456 * Before the /proc/pid/status file was created the only way to read
1457 * the effective uid of a /process was to stat /proc/pid. Reading
1458 * /proc/pid/status is slow enough that procps and other packages
1459 * kept stating /proc/pid. To keep the rules in /proc simple I have
1460 * made this apply to all per process world readable and executable
1461 * directories.
1462 */
1463static int pid_revalidate(struct dentry *dentry, struct nameidata *nd)
1464{
1465 struct inode *inode = dentry->d_inode;
1466 struct task_struct *task = get_proc_task(inode);
1467 if (task) {
1468 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1469 task_dumpable(task)) {
1470 inode->i_uid = task->euid;
1471 inode->i_gid = task->egid;
1472 } else {
1473 inode->i_uid = 0;
1474 inode->i_gid = 0;
1475 }
1476 inode->i_mode &= ~(S_ISUID | S_ISGID);
1477 security_task_to_inode(task, inode);
1478 put_task_struct(task);
1479 return 1;
1480 }
1481 d_drop(dentry);
1482 return 0;
1483}
1484
1485static int pid_delete_dentry(struct dentry * dentry)
1486{
1487 /* Is the task we represent dead?
1488 * If so, then don't put the dentry on the lru list,
1489 * kill it immediately.
1490 */
1491 return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1492}
1493
1494static struct dentry_operations pid_dentry_operations =
1495{
1496 .d_revalidate = pid_revalidate,
1497 .d_delete = pid_delete_dentry,
1498};
1499
1500/* Lookups */
1501
1502typedef struct dentry *instantiate_t(struct inode *, struct dentry *,
1503 struct task_struct *, const void *);
1504
1505/*
1506 * Fill a directory entry.
1507 *
1508 * If possible create the dcache entry and derive our inode number and
1509 * file type from dcache entry.
1510 *
1511 * Since all of the proc inode numbers are dynamically generated, the inode
1512 * numbers do not exist until the inode is cache. This means creating the
1513 * the dcache entry in readdir is necessary to keep the inode numbers
1514 * reported by readdir in sync with the inode numbers reported
1515 * by stat.
1516 */
1517static int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1518 char *name, int len,
1519 instantiate_t instantiate, struct task_struct *task, const void *ptr)
1520{
1521 struct dentry *child, *dir = filp->f_path.dentry;
1522 struct inode *inode;
1523 struct qstr qname;
1524 ino_t ino = 0;
1525 unsigned type = DT_UNKNOWN;
1526
1527 qname.name = name;
1528 qname.len = len;
1529 qname.hash = full_name_hash(name, len);
1530
1531 child = d_lookup(dir, &qname);
1532 if (!child) {
1533 struct dentry *new;
1534 new = d_alloc(dir, &qname);
1535 if (new) {
1536 child = instantiate(dir->d_inode, new, task, ptr);
1537 if (child)
1538 dput(new);
1539 else
1540 child = new;
1541 }
1542 }
1543 if (!child || IS_ERR(child) || !child->d_inode)
1544 goto end_instantiate;
1545 inode = child->d_inode;
1546 if (inode) {
1547 ino = inode->i_ino;
1548 type = inode->i_mode >> 12;
1549 }
1550 dput(child);
1551end_instantiate:
1552 if (!ino)
1553 ino = find_inode_number(dir, &qname);
1554 if (!ino)
1555 ino = 1;
1556 return filldir(dirent, name, len, filp->f_pos, ino, type);
1557}
1558
1559static unsigned name_to_int(struct dentry *dentry)
1560{
1561 const char *name = dentry->d_name.name;
1562 int len = dentry->d_name.len;
1563 unsigned n = 0;
1564
1565 if (len > 1 && *name == '0')
1566 goto out;
1567 while (len-- > 0) {
1568 unsigned c = *name++ - '0';
1569 if (c > 9)
1570 goto out;
1571 if (n >= (~0U-9)/10)
1572 goto out;
1573 n *= 10;
1574 n += c;
1575 }
1576 return n;
1577out:
1578 return ~0U;
1579}
1580
1581#define PROC_FDINFO_MAX 64
1582
1583static int proc_fd_info(struct inode *inode, struct path *path, char *info)
1584{
1585 struct task_struct *task = get_proc_task(inode);
1586 struct files_struct *files = NULL;
1587 struct file *file;
1588 int fd = proc_fd(inode);
1589
1590 if (task) {
1591 files = get_files_struct(task);
1592 put_task_struct(task);
1593 }
1594 if (files) {
1595 /*
1596 * We are not taking a ref to the file structure, so we must
1597 * hold ->file_lock.
1598 */
1599 spin_lock(&files->file_lock);
1600 file = fcheck_files(files, fd);
1601 if (file) {
1602 if (path) {
1603 *path = file->f_path;
1604 path_get(&file->f_path);
1605 }
1606 if (info)
1607 snprintf(info, PROC_FDINFO_MAX,
1608 "pos:\t%lli\n"
1609 "flags:\t0%o\n",
1610 (long long) file->f_pos,
1611 file->f_flags);
1612 spin_unlock(&files->file_lock);
1613 put_files_struct(files);
1614 return 0;
1615 }
1616 spin_unlock(&files->file_lock);
1617 put_files_struct(files);
1618 }
1619 return -ENOENT;
1620}
1621
1622static int proc_fd_link(struct inode *inode, struct path *path)
1623{
1624 return proc_fd_info(inode, path, NULL);
1625}
1626
1627static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd)
1628{
1629 struct inode *inode = dentry->d_inode;
1630 struct task_struct *task = get_proc_task(inode);
1631 int fd = proc_fd(inode);
1632 struct files_struct *files;
1633
1634 if (task) {
1635 files = get_files_struct(task);
1636 if (files) {
1637 rcu_read_lock();
1638 if (fcheck_files(files, fd)) {
1639 rcu_read_unlock();
1640 put_files_struct(files);
1641 if (task_dumpable(task)) {
1642 inode->i_uid = task->euid;
1643 inode->i_gid = task->egid;
1644 } else {
1645 inode->i_uid = 0;
1646 inode->i_gid = 0;
1647 }
1648 inode->i_mode &= ~(S_ISUID | S_ISGID);
1649 security_task_to_inode(task, inode);
1650 put_task_struct(task);
1651 return 1;
1652 }
1653 rcu_read_unlock();
1654 put_files_struct(files);
1655 }
1656 put_task_struct(task);
1657 }
1658 d_drop(dentry);
1659 return 0;
1660}
1661
1662static struct dentry_operations tid_fd_dentry_operations =
1663{
1664 .d_revalidate = tid_fd_revalidate,
1665 .d_delete = pid_delete_dentry,
1666};
1667
1668static struct dentry *proc_fd_instantiate(struct inode *dir,
1669 struct dentry *dentry, struct task_struct *task, const void *ptr)
1670{
1671 unsigned fd = *(const unsigned *)ptr;
1672 struct file *file;
1673 struct files_struct *files;
1674 struct inode *inode;
1675 struct proc_inode *ei;
1676 struct dentry *error = ERR_PTR(-ENOENT);
1677
1678 inode = proc_pid_make_inode(dir->i_sb, task);
1679 if (!inode)
1680 goto out;
1681 ei = PROC_I(inode);
1682 ei->fd = fd;
1683 files = get_files_struct(task);
1684 if (!files)
1685 goto out_iput;
1686 inode->i_mode = S_IFLNK;
1687
1688 /*
1689 * We are not taking a ref to the file structure, so we must
1690 * hold ->file_lock.
1691 */
1692 spin_lock(&files->file_lock);
1693 file = fcheck_files(files, fd);
1694 if (!file)
1695 goto out_unlock;
1696 if (file->f_mode & 1)
1697 inode->i_mode |= S_IRUSR | S_IXUSR;
1698 if (file->f_mode & 2)
1699 inode->i_mode |= S_IWUSR | S_IXUSR;
1700 spin_unlock(&files->file_lock);
1701 put_files_struct(files);
1702
1703 inode->i_op = &proc_pid_link_inode_operations;
1704 inode->i_size = 64;
1705 ei->op.proc_get_link = proc_fd_link;
1706 dentry->d_op = &tid_fd_dentry_operations;
1707 d_add(dentry, inode);
1708 /* Close the race of the process dying before we return the dentry */
1709 if (tid_fd_revalidate(dentry, NULL))
1710 error = NULL;
1711
1712 out:
1713 return error;
1714out_unlock:
1715 spin_unlock(&files->file_lock);
1716 put_files_struct(files);
1717out_iput:
1718 iput(inode);
1719 goto out;
1720}
1721
1722static struct dentry *proc_lookupfd_common(struct inode *dir,
1723 struct dentry *dentry,
1724 instantiate_t instantiate)
1725{
1726 struct task_struct *task = get_proc_task(dir);
1727 unsigned fd = name_to_int(dentry);
1728 struct dentry *result = ERR_PTR(-ENOENT);
1729
1730 if (!task)
1731 goto out_no_task;
1732 if (fd == ~0U)
1733 goto out;
1734
1735 result = instantiate(dir, dentry, task, &fd);
1736out:
1737 put_task_struct(task);
1738out_no_task:
1739 return result;
1740}
1741
1742static int proc_readfd_common(struct file * filp, void * dirent,
1743 filldir_t filldir, instantiate_t instantiate)
1744{
1745 struct dentry *dentry = filp->f_path.dentry;
1746 struct inode *inode = dentry->d_inode;
1747 struct task_struct *p = get_proc_task(inode);
1748 unsigned int fd, ino;
1749 int retval;
1750 struct files_struct * files;
1751
1752 retval = -ENOENT;
1753 if (!p)
1754 goto out_no_task;
1755 retval = 0;
1756
1757 fd = filp->f_pos;
1758 switch (fd) {
1759 case 0:
1760 if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
1761 goto out;
1762 filp->f_pos++;
1763 case 1:
1764 ino = parent_ino(dentry);
1765 if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
1766 goto out;
1767 filp->f_pos++;
1768 default:
1769 files = get_files_struct(p);
1770 if (!files)
1771 goto out;
1772 rcu_read_lock();
1773 for (fd = filp->f_pos-2;
1774 fd < files_fdtable(files)->max_fds;
1775 fd++, filp->f_pos++) {
1776 char name[PROC_NUMBUF];
1777 int len;
1778
1779 if (!fcheck_files(files, fd))
1780 continue;
1781 rcu_read_unlock();
1782
1783 len = snprintf(name, sizeof(name), "%d", fd);
1784 if (proc_fill_cache(filp, dirent, filldir,
1785 name, len, instantiate,
1786 p, &fd) < 0) {
1787 rcu_read_lock();
1788 break;
1789 }
1790 rcu_read_lock();
1791 }
1792 rcu_read_unlock();
1793 put_files_struct(files);
1794 }
1795out:
1796 put_task_struct(p);
1797out_no_task:
1798 return retval;
1799}
1800
1801static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry,
1802 struct nameidata *nd)
1803{
1804 return proc_lookupfd_common(dir, dentry, proc_fd_instantiate);
1805}
1806
1807static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir)
1808{
1809 return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate);
1810}
1811
1812static ssize_t proc_fdinfo_read(struct file *file, char __user *buf,
1813 size_t len, loff_t *ppos)
1814{
1815 char tmp[PROC_FDINFO_MAX];
1816 int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp);
1817 if (!err)
1818 err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp));
1819 return err;
1820}
1821
1822static const struct file_operations proc_fdinfo_file_operations = {
1823 .open = nonseekable_open,
1824 .read = proc_fdinfo_read,
1825};
1826
1827static const struct file_operations proc_fd_operations = {
1828 .read = generic_read_dir,
1829 .readdir = proc_readfd,
1830};
1831
1832/*
1833 * /proc/pid/fd needs a special permission handler so that a process can still
1834 * access /proc/self/fd after it has executed a setuid().
1835 */
1836static int proc_fd_permission(struct inode *inode, int mask,
1837 struct nameidata *nd)
1838{
1839 int rv;
1840
1841 rv = generic_permission(inode, mask, NULL);
1842 if (rv == 0)
1843 return 0;
1844 if (task_pid(current) == proc_pid(inode))
1845 rv = 0;
1846 return rv;
1847}
1848
1849/*
1850 * proc directories can do almost nothing..
1851 */
1852static const struct inode_operations proc_fd_inode_operations = {
1853 .lookup = proc_lookupfd,
1854 .permission = proc_fd_permission,
1855 .setattr = proc_setattr,
1856};
1857
1858static struct dentry *proc_fdinfo_instantiate(struct inode *dir,
1859 struct dentry *dentry, struct task_struct *task, const void *ptr)
1860{
1861 unsigned fd = *(unsigned *)ptr;
1862 struct inode *inode;
1863 struct proc_inode *ei;
1864 struct dentry *error = ERR_PTR(-ENOENT);
1865
1866 inode = proc_pid_make_inode(dir->i_sb, task);
1867 if (!inode)
1868 goto out;
1869 ei = PROC_I(inode);
1870 ei->fd = fd;
1871 inode->i_mode = S_IFREG | S_IRUSR;
1872 inode->i_fop = &proc_fdinfo_file_operations;
1873 dentry->d_op = &tid_fd_dentry_operations;
1874 d_add(dentry, inode);
1875 /* Close the race of the process dying before we return the dentry */
1876 if (tid_fd_revalidate(dentry, NULL))
1877 error = NULL;
1878
1879 out:
1880 return error;
1881}
1882
1883static struct dentry *proc_lookupfdinfo(struct inode *dir,
1884 struct dentry *dentry,
1885 struct nameidata *nd)
1886{
1887 return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate);
1888}
1889
1890static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir)
1891{
1892 return proc_readfd_common(filp, dirent, filldir,
1893 proc_fdinfo_instantiate);
1894}
1895
1896static const struct file_operations proc_fdinfo_operations = {
1897 .read = generic_read_dir,
1898 .readdir = proc_readfdinfo,
1899};
1900
1901/*
1902 * proc directories can do almost nothing..
1903 */
1904static const struct inode_operations proc_fdinfo_inode_operations = {
1905 .lookup = proc_lookupfdinfo,
1906 .setattr = proc_setattr,
1907};
1908
1909
1910static struct dentry *proc_pident_instantiate(struct inode *dir,
1911 struct dentry *dentry, struct task_struct *task, const void *ptr)
1912{
1913 const struct pid_entry *p = ptr;
1914 struct inode *inode;
1915 struct proc_inode *ei;
1916 struct dentry *error = ERR_PTR(-EINVAL);
1917
1918 inode = proc_pid_make_inode(dir->i_sb, task);
1919 if (!inode)
1920 goto out;
1921
1922 ei = PROC_I(inode);
1923 inode->i_mode = p->mode;
1924 if (S_ISDIR(inode->i_mode))
1925 inode->i_nlink = 2; /* Use getattr to fix if necessary */
1926 if (p->iop)
1927 inode->i_op = p->iop;
1928 if (p->fop)
1929 inode->i_fop = p->fop;
1930 ei->op = p->op;
1931 dentry->d_op = &pid_dentry_operations;
1932 d_add(dentry, inode);
1933 /* Close the race of the process dying before we return the dentry */
1934 if (pid_revalidate(dentry, NULL))
1935 error = NULL;
1936out:
1937 return error;
1938}
1939
1940static struct dentry *proc_pident_lookup(struct inode *dir,
1941 struct dentry *dentry,
1942 const struct pid_entry *ents,
1943 unsigned int nents)
1944{
1945 struct inode *inode;
1946 struct dentry *error;
1947 struct task_struct *task = get_proc_task(dir);
1948 const struct pid_entry *p, *last;
1949
1950 error = ERR_PTR(-ENOENT);
1951 inode = NULL;
1952
1953 if (!task)
1954 goto out_no_task;
1955
1956 /*
1957 * Yes, it does not scale. And it should not. Don't add
1958 * new entries into /proc/<tgid>/ without very good reasons.
1959 */
1960 last = &ents[nents - 1];
1961 for (p = ents; p <= last; p++) {
1962 if (p->len != dentry->d_name.len)
1963 continue;
1964 if (!memcmp(dentry->d_name.name, p->name, p->len))
1965 break;
1966 }
1967 if (p > last)
1968 goto out;
1969
1970 error = proc_pident_instantiate(dir, dentry, task, p);
1971out:
1972 put_task_struct(task);
1973out_no_task:
1974 return error;
1975}
1976
1977static int proc_pident_fill_cache(struct file *filp, void *dirent,
1978 filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
1979{
1980 return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
1981 proc_pident_instantiate, task, p);
1982}
1983
1984static int proc_pident_readdir(struct file *filp,
1985 void *dirent, filldir_t filldir,
1986 const struct pid_entry *ents, unsigned int nents)
1987{
1988 int i;
1989 struct dentry *dentry = filp->f_path.dentry;
1990 struct inode *inode = dentry->d_inode;
1991 struct task_struct *task = get_proc_task(inode);
1992 const struct pid_entry *p, *last;
1993 ino_t ino;
1994 int ret;
1995
1996 ret = -ENOENT;
1997 if (!task)
1998 goto out_no_task;
1999
2000 ret = 0;
2001 i = filp->f_pos;
2002 switch (i) {
2003 case 0:
2004 ino = inode->i_ino;
2005 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2006 goto out;
2007 i++;
2008 filp->f_pos++;
2009 /* fall through */
2010 case 1:
2011 ino = parent_ino(dentry);
2012 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2013 goto out;
2014 i++;
2015 filp->f_pos++;
2016 /* fall through */
2017 default:
2018 i -= 2;
2019 if (i >= nents) {
2020 ret = 1;
2021 goto out;
2022 }
2023 p = ents + i;
2024 last = &ents[nents - 1];
2025 while (p <= last) {
2026 if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2027 goto out;
2028 filp->f_pos++;
2029 p++;
2030 }
2031 }
2032
2033 ret = 1;
2034out:
2035 put_task_struct(task);
2036out_no_task:
2037 return ret;
2038}
2039
2040#ifdef CONFIG_SECURITY
2041static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2042 size_t count, loff_t *ppos)
2043{
2044 struct inode * inode = file->f_path.dentry->d_inode;
2045 char *p = NULL;
2046 ssize_t length;
2047 struct task_struct *task = get_proc_task(inode);
2048
2049 if (!task)
2050 return -ESRCH;
2051
2052 length = security_getprocattr(task,
2053 (char*)file->f_path.dentry->d_name.name,
2054 &p);
2055 put_task_struct(task);
2056 if (length > 0)
2057 length = simple_read_from_buffer(buf, count, ppos, p, length);
2058 kfree(p);
2059 return length;
2060}
2061
2062static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2063 size_t count, loff_t *ppos)
2064{
2065 struct inode * inode = file->f_path.dentry->d_inode;
2066 char *page;
2067 ssize_t length;
2068 struct task_struct *task = get_proc_task(inode);
2069
2070 length = -ESRCH;
2071 if (!task)
2072 goto out_no_task;
2073 if (count > PAGE_SIZE)
2074 count = PAGE_SIZE;
2075
2076 /* No partial writes. */
2077 length = -EINVAL;
2078 if (*ppos != 0)
2079 goto out;
2080
2081 length = -ENOMEM;
2082 page = (char*)__get_free_page(GFP_TEMPORARY);
2083 if (!page)
2084 goto out;
2085
2086 length = -EFAULT;
2087 if (copy_from_user(page, buf, count))
2088 goto out_free;
2089
2090 length = security_setprocattr(task,
2091 (char*)file->f_path.dentry->d_name.name,
2092 (void*)page, count);
2093out_free:
2094 free_page((unsigned long) page);
2095out:
2096 put_task_struct(task);
2097out_no_task:
2098 return length;
2099}
2100
2101static const struct file_operations proc_pid_attr_operations = {
2102 .read = proc_pid_attr_read,
2103 .write = proc_pid_attr_write,
2104};
2105
2106static const struct pid_entry attr_dir_stuff[] = {
2107 REG("current", S_IRUGO|S_IWUGO, pid_attr),
2108 REG("prev", S_IRUGO, pid_attr),
2109 REG("exec", S_IRUGO|S_IWUGO, pid_attr),
2110 REG("fscreate", S_IRUGO|S_IWUGO, pid_attr),
2111 REG("keycreate", S_IRUGO|S_IWUGO, pid_attr),
2112 REG("sockcreate", S_IRUGO|S_IWUGO, pid_attr),
2113};
2114
2115static int proc_attr_dir_readdir(struct file * filp,
2116 void * dirent, filldir_t filldir)
2117{
2118 return proc_pident_readdir(filp,dirent,filldir,
2119 attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2120}
2121
2122static const struct file_operations proc_attr_dir_operations = {
2123 .read = generic_read_dir,
2124 .readdir = proc_attr_dir_readdir,
2125};
2126
2127static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2128 struct dentry *dentry, struct nameidata *nd)
2129{
2130 return proc_pident_lookup(dir, dentry,
2131 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2132}
2133
2134static const struct inode_operations proc_attr_dir_inode_operations = {
2135 .lookup = proc_attr_dir_lookup,
2136 .getattr = pid_getattr,
2137 .setattr = proc_setattr,
2138};
2139
2140#endif
2141
2142#if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
2143static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2144 size_t count, loff_t *ppos)
2145{
2146 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2147 struct mm_struct *mm;
2148 char buffer[PROC_NUMBUF];
2149 size_t len;
2150 int ret;
2151
2152 if (!task)
2153 return -ESRCH;
2154
2155 ret = 0;
2156 mm = get_task_mm(task);
2157 if (mm) {
2158 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2159 ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2160 MMF_DUMP_FILTER_SHIFT));
2161 mmput(mm);
2162 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2163 }
2164
2165 put_task_struct(task);
2166
2167 return ret;
2168}
2169
2170static ssize_t proc_coredump_filter_write(struct file *file,
2171 const char __user *buf,
2172 size_t count,
2173 loff_t *ppos)
2174{
2175 struct task_struct *task;
2176 struct mm_struct *mm;
2177 char buffer[PROC_NUMBUF], *end;
2178 unsigned int val;
2179 int ret;
2180 int i;
2181 unsigned long mask;
2182
2183 ret = -EFAULT;
2184 memset(buffer, 0, sizeof(buffer));
2185 if (count > sizeof(buffer) - 1)
2186 count = sizeof(buffer) - 1;
2187 if (copy_from_user(buffer, buf, count))
2188 goto out_no_task;
2189
2190 ret = -EINVAL;
2191 val = (unsigned int)simple_strtoul(buffer, &end, 0);
2192 if (*end == '\n')
2193 end++;
2194 if (end - buffer == 0)
2195 goto out_no_task;
2196
2197 ret = -ESRCH;
2198 task = get_proc_task(file->f_dentry->d_inode);
2199 if (!task)
2200 goto out_no_task;
2201
2202 ret = end - buffer;
2203 mm = get_task_mm(task);
2204 if (!mm)
2205 goto out_no_mm;
2206
2207 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2208 if (val & mask)
2209 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2210 else
2211 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2212 }
2213
2214 mmput(mm);
2215 out_no_mm:
2216 put_task_struct(task);
2217 out_no_task:
2218 return ret;
2219}
2220
2221static const struct file_operations proc_coredump_filter_operations = {
2222 .read = proc_coredump_filter_read,
2223 .write = proc_coredump_filter_write,
2224};
2225#endif
2226
2227/*
2228 * /proc/self:
2229 */
2230static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2231 int buflen)
2232{
2233 struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2234 pid_t tgid = task_tgid_nr_ns(current, ns);
2235 char tmp[PROC_NUMBUF];
2236 if (!tgid)
2237 return -ENOENT;
2238 sprintf(tmp, "%d", tgid);
2239 return vfs_readlink(dentry,buffer,buflen,tmp);
2240}
2241
2242static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2243{
2244 struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2245 pid_t tgid = task_tgid_nr_ns(current, ns);
2246 char tmp[PROC_NUMBUF];
2247 if (!tgid)
2248 return ERR_PTR(-ENOENT);
2249 sprintf(tmp, "%d", task_tgid_nr_ns(current, ns));
2250 return ERR_PTR(vfs_follow_link(nd,tmp));
2251}
2252
2253static const struct inode_operations proc_self_inode_operations = {
2254 .readlink = proc_self_readlink,
2255 .follow_link = proc_self_follow_link,
2256};
2257
2258/*
2259 * proc base
2260 *
2261 * These are the directory entries in the root directory of /proc
2262 * that properly belong to the /proc filesystem, as they describe
2263 * describe something that is process related.
2264 */
2265static const struct pid_entry proc_base_stuff[] = {
2266 NOD("self", S_IFLNK|S_IRWXUGO,
2267 &proc_self_inode_operations, NULL, {}),
2268};
2269
2270/*
2271 * Exceptional case: normally we are not allowed to unhash a busy
2272 * directory. In this case, however, we can do it - no aliasing problems
2273 * due to the way we treat inodes.
2274 */
2275static int proc_base_revalidate(struct dentry *dentry, struct nameidata *nd)
2276{
2277 struct inode *inode = dentry->d_inode;
2278 struct task_struct *task = get_proc_task(inode);
2279 if (task) {
2280 put_task_struct(task);
2281 return 1;
2282 }
2283 d_drop(dentry);
2284 return 0;
2285}
2286
2287static struct dentry_operations proc_base_dentry_operations =
2288{
2289 .d_revalidate = proc_base_revalidate,
2290 .d_delete = pid_delete_dentry,
2291};
2292
2293static struct dentry *proc_base_instantiate(struct inode *dir,
2294 struct dentry *dentry, struct task_struct *task, const void *ptr)
2295{
2296 const struct pid_entry *p = ptr;
2297 struct inode *inode;
2298 struct proc_inode *ei;
2299 struct dentry *error = ERR_PTR(-EINVAL);
2300
2301 /* Allocate the inode */
2302 error = ERR_PTR(-ENOMEM);
2303 inode = new_inode(dir->i_sb);
2304 if (!inode)
2305 goto out;
2306
2307 /* Initialize the inode */
2308 ei = PROC_I(inode);
2309 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2310
2311 /*
2312 * grab the reference to the task.
2313 */
2314 ei->pid = get_task_pid(task, PIDTYPE_PID);
2315 if (!ei->pid)
2316 goto out_iput;
2317
2318 inode->i_uid = 0;
2319 inode->i_gid = 0;
2320 inode->i_mode = p->mode;
2321 if (S_ISDIR(inode->i_mode))
2322 inode->i_nlink = 2;
2323 if (S_ISLNK(inode->i_mode))
2324 inode->i_size = 64;
2325 if (p->iop)
2326 inode->i_op = p->iop;
2327 if (p->fop)
2328 inode->i_fop = p->fop;
2329 ei->op = p->op;
2330 dentry->d_op = &proc_base_dentry_operations;
2331 d_add(dentry, inode);
2332 error = NULL;
2333out:
2334 return error;
2335out_iput:
2336 iput(inode);
2337 goto out;
2338}
2339
2340static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2341{
2342 struct dentry *error;
2343 struct task_struct *task = get_proc_task(dir);
2344 const struct pid_entry *p, *last;
2345
2346 error = ERR_PTR(-ENOENT);
2347
2348 if (!task)
2349 goto out_no_task;
2350
2351 /* Lookup the directory entry */
2352 last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2353 for (p = proc_base_stuff; p <= last; p++) {
2354 if (p->len != dentry->d_name.len)
2355 continue;
2356 if (!memcmp(dentry->d_name.name, p->name, p->len))
2357 break;
2358 }
2359 if (p > last)
2360 goto out;
2361
2362 error = proc_base_instantiate(dir, dentry, task, p);
2363
2364out:
2365 put_task_struct(task);
2366out_no_task:
2367 return error;
2368}
2369
2370static int proc_base_fill_cache(struct file *filp, void *dirent,
2371 filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2372{
2373 return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2374 proc_base_instantiate, task, p);
2375}
2376
2377#ifdef CONFIG_TASK_IO_ACCOUNTING
2378static int proc_pid_io_accounting(struct task_struct *task, char *buffer)
2379{
2380 return sprintf(buffer,
2381#ifdef CONFIG_TASK_XACCT
2382 "rchar: %llu\n"
2383 "wchar: %llu\n"
2384 "syscr: %llu\n"
2385 "syscw: %llu\n"
2386#endif
2387 "read_bytes: %llu\n"
2388 "write_bytes: %llu\n"
2389 "cancelled_write_bytes: %llu\n",
2390#ifdef CONFIG_TASK_XACCT
2391 (unsigned long long)task->rchar,
2392 (unsigned long long)task->wchar,
2393 (unsigned long long)task->syscr,
2394 (unsigned long long)task->syscw,
2395#endif
2396 (unsigned long long)task->ioac.read_bytes,
2397 (unsigned long long)task->ioac.write_bytes,
2398 (unsigned long long)task->ioac.cancelled_write_bytes);
2399}
2400#endif
2401
2402/*
2403 * Thread groups
2404 */
2405static const struct file_operations proc_task_operations;
2406static const struct inode_operations proc_task_inode_operations;
2407
2408static const struct pid_entry tgid_base_stuff[] = {
2409 DIR("task", S_IRUGO|S_IXUGO, task),
2410 DIR("fd", S_IRUSR|S_IXUSR, fd),
2411 DIR("fdinfo", S_IRUSR|S_IXUSR, fdinfo),
2412#ifdef CONFIG_NET
2413 DIR("net", S_IRUGO|S_IXUGO, net),
2414#endif
2415 REG("environ", S_IRUSR, environ),
2416 INF("auxv", S_IRUSR, pid_auxv),
2417 ONE("status", S_IRUGO, pid_status),
2418 INF("limits", S_IRUSR, pid_limits),
2419#ifdef CONFIG_SCHED_DEBUG
2420 REG("sched", S_IRUGO|S_IWUSR, pid_sched),
2421#endif
2422 INF("cmdline", S_IRUGO, pid_cmdline),
2423 ONE("stat", S_IRUGO, tgid_stat),
2424 ONE("statm", S_IRUGO, pid_statm),
2425 REG("maps", S_IRUGO, maps),
2426#ifdef CONFIG_NUMA
2427 REG("numa_maps", S_IRUGO, numa_maps),
2428#endif
2429 REG("mem", S_IRUSR|S_IWUSR, mem),
2430 LNK("cwd", cwd),
2431 LNK("root", root),
2432 LNK("exe", exe),
2433 REG("mounts", S_IRUGO, mounts),
2434 REG("mountinfo", S_IRUGO, mountinfo),
2435 REG("mountstats", S_IRUSR, mountstats),
2436#ifdef CONFIG_PROC_PAGE_MONITOR
2437 REG("clear_refs", S_IWUSR, clear_refs),
2438 REG("smaps", S_IRUGO, smaps),
2439 REG("pagemap", S_IRUSR, pagemap),
2440#endif
2441#ifdef CONFIG_SECURITY
2442 DIR("attr", S_IRUGO|S_IXUGO, attr_dir),
2443#endif
2444#ifdef CONFIG_KALLSYMS
2445 INF("wchan", S_IRUGO, pid_wchan),
2446#endif
2447#ifdef CONFIG_SCHEDSTATS
2448 INF("schedstat", S_IRUGO, pid_schedstat),
2449#endif
2450#ifdef CONFIG_LATENCYTOP
2451 REG("latency", S_IRUGO, lstats),
2452#endif
2453#ifdef CONFIG_PROC_PID_CPUSET
2454 REG("cpuset", S_IRUGO, cpuset),
2455#endif
2456#ifdef CONFIG_CGROUPS
2457 REG("cgroup", S_IRUGO, cgroup),
2458#endif
2459 INF("oom_score", S_IRUGO, oom_score),
2460 REG("oom_adj", S_IRUGO|S_IWUSR, oom_adjust),
2461#ifdef CONFIG_AUDITSYSCALL
2462 REG("loginuid", S_IWUSR|S_IRUGO, loginuid),
2463 REG("sessionid", S_IRUGO, sessionid),
2464#endif
2465#ifdef CONFIG_FAULT_INJECTION
2466 REG("make-it-fail", S_IRUGO|S_IWUSR, fault_inject),
2467#endif
2468#if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
2469 REG("coredump_filter", S_IRUGO|S_IWUSR, coredump_filter),
2470#endif
2471#ifdef CONFIG_TASK_IO_ACCOUNTING
2472 INF("io", S_IRUGO, pid_io_accounting),
2473#endif
2474};
2475
2476static int proc_tgid_base_readdir(struct file * filp,
2477 void * dirent, filldir_t filldir)
2478{
2479 return proc_pident_readdir(filp,dirent,filldir,
2480 tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
2481}
2482
2483static const struct file_operations proc_tgid_base_operations = {
2484 .read = generic_read_dir,
2485 .readdir = proc_tgid_base_readdir,
2486};
2487
2488static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2489 return proc_pident_lookup(dir, dentry,
2490 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2491}
2492
2493static const struct inode_operations proc_tgid_base_inode_operations = {
2494 .lookup = proc_tgid_base_lookup,
2495 .getattr = pid_getattr,
2496 .setattr = proc_setattr,
2497};
2498
2499static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2500{
2501 struct dentry *dentry, *leader, *dir;
2502 char buf[PROC_NUMBUF];
2503 struct qstr name;
2504
2505 name.name = buf;
2506 name.len = snprintf(buf, sizeof(buf), "%d", pid);
2507 dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2508 if (dentry) {
2509 if (!(current->flags & PF_EXITING))
2510 shrink_dcache_parent(dentry);
2511 d_drop(dentry);
2512 dput(dentry);
2513 }
2514
2515 if (tgid == 0)
2516 goto out;
2517
2518 name.name = buf;
2519 name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2520 leader = d_hash_and_lookup(mnt->mnt_root, &name);
2521 if (!leader)
2522 goto out;
2523
2524 name.name = "task";
2525 name.len = strlen(name.name);
2526 dir = d_hash_and_lookup(leader, &name);
2527 if (!dir)
2528 goto out_put_leader;
2529
2530 name.name = buf;
2531 name.len = snprintf(buf, sizeof(buf), "%d", pid);
2532 dentry = d_hash_and_lookup(dir, &name);
2533 if (dentry) {
2534 shrink_dcache_parent(dentry);
2535 d_drop(dentry);
2536 dput(dentry);
2537 }
2538
2539 dput(dir);
2540out_put_leader:
2541 dput(leader);
2542out:
2543 return;
2544}
2545
2546/**
2547 * proc_flush_task - Remove dcache entries for @task from the /proc dcache.
2548 * @task: task that should be flushed.
2549 *
2550 * When flushing dentries from proc, one needs to flush them from global
2551 * proc (proc_mnt) and from all the namespaces' procs this task was seen
2552 * in. This call is supposed to do all of this job.
2553 *
2554 * Looks in the dcache for
2555 * /proc/@pid
2556 * /proc/@tgid/task/@pid
2557 * if either directory is present flushes it and all of it'ts children
2558 * from the dcache.
2559 *
2560 * It is safe and reasonable to cache /proc entries for a task until
2561 * that task exits. After that they just clog up the dcache with
2562 * useless entries, possibly causing useful dcache entries to be
2563 * flushed instead. This routine is proved to flush those useless
2564 * dcache entries at process exit time.
2565 *
2566 * NOTE: This routine is just an optimization so it does not guarantee
2567 * that no dcache entries will exist at process exit time it
2568 * just makes it very unlikely that any will persist.
2569 */
2570
2571void proc_flush_task(struct task_struct *task)
2572{
2573 int i;
2574 struct pid *pid, *tgid = NULL;
2575 struct upid *upid;
2576
2577 pid = task_pid(task);
2578 if (thread_group_leader(task))
2579 tgid = task_tgid(task);
2580
2581 for (i = 0; i <= pid->level; i++) {
2582 upid = &pid->numbers[i];
2583 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2584 tgid ? tgid->numbers[i].nr : 0);
2585 }
2586
2587 upid = &pid->numbers[pid->level];
2588 if (upid->nr == 1)
2589 pid_ns_release_proc(upid->ns);
2590}
2591
2592static struct dentry *proc_pid_instantiate(struct inode *dir,
2593 struct dentry * dentry,
2594 struct task_struct *task, const void *ptr)
2595{
2596 struct dentry *error = ERR_PTR(-ENOENT);
2597 struct inode *inode;
2598
2599 inode = proc_pid_make_inode(dir->i_sb, task);
2600 if (!inode)
2601 goto out;
2602
2603 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2604 inode->i_op = &proc_tgid_base_inode_operations;
2605 inode->i_fop = &proc_tgid_base_operations;
2606 inode->i_flags|=S_IMMUTABLE;
2607
2608 inode->i_nlink = 2 + pid_entry_count_dirs(tgid_base_stuff,
2609 ARRAY_SIZE(tgid_base_stuff));
2610
2611 dentry->d_op = &pid_dentry_operations;
2612
2613 d_add(dentry, inode);
2614 /* Close the race of the process dying before we return the dentry */
2615 if (pid_revalidate(dentry, NULL))
2616 error = NULL;
2617out:
2618 return error;
2619}
2620
2621struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
2622{
2623 struct dentry *result = ERR_PTR(-ENOENT);
2624 struct task_struct *task;
2625 unsigned tgid;
2626 struct pid_namespace *ns;
2627
2628 result = proc_base_lookup(dir, dentry);
2629 if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
2630 goto out;
2631
2632 tgid = name_to_int(dentry);
2633 if (tgid == ~0U)
2634 goto out;
2635
2636 ns = dentry->d_sb->s_fs_info;
2637 rcu_read_lock();
2638 task = find_task_by_pid_ns(tgid, ns);
2639 if (task)
2640 get_task_struct(task);
2641 rcu_read_unlock();
2642 if (!task)
2643 goto out;
2644
2645 result = proc_pid_instantiate(dir, dentry, task, NULL);
2646 put_task_struct(task);
2647out:
2648 return result;
2649}
2650
2651/*
2652 * Find the first task with tgid >= tgid
2653 *
2654 */
2655struct tgid_iter {
2656 unsigned int tgid;
2657 struct task_struct *task;
2658};
2659static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
2660{
2661 struct pid *pid;
2662
2663 if (iter.task)
2664 put_task_struct(iter.task);
2665 rcu_read_lock();
2666retry:
2667 iter.task = NULL;
2668 pid = find_ge_pid(iter.tgid, ns);
2669 if (pid) {
2670 iter.tgid = pid_nr_ns(pid, ns);
2671 iter.task = pid_task(pid, PIDTYPE_PID);
2672 /* What we to know is if the pid we have find is the
2673 * pid of a thread_group_leader. Testing for task
2674 * being a thread_group_leader is the obvious thing
2675 * todo but there is a window when it fails, due to
2676 * the pid transfer logic in de_thread.
2677 *
2678 * So we perform the straight forward test of seeing
2679 * if the pid we have found is the pid of a thread
2680 * group leader, and don't worry if the task we have
2681 * found doesn't happen to be a thread group leader.
2682 * As we don't care in the case of readdir.
2683 */
2684 if (!iter.task || !has_group_leader_pid(iter.task)) {
2685 iter.tgid += 1;
2686 goto retry;
2687 }
2688 get_task_struct(iter.task);
2689 }
2690 rcu_read_unlock();
2691 return iter;
2692}
2693
2694#define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
2695
2696static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
2697 struct tgid_iter iter)
2698{
2699 char name[PROC_NUMBUF];
2700 int len = snprintf(name, sizeof(name), "%d", iter.tgid);
2701 return proc_fill_cache(filp, dirent, filldir, name, len,
2702 proc_pid_instantiate, iter.task, NULL);
2703}
2704
2705/* for the /proc/ directory itself, after non-process stuff has been done */
2706int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
2707{
2708 unsigned int nr = filp->f_pos - FIRST_PROCESS_ENTRY;
2709 struct task_struct *reaper = get_proc_task(filp->f_path.dentry->d_inode);
2710 struct tgid_iter iter;
2711 struct pid_namespace *ns;
2712
2713 if (!reaper)
2714 goto out_no_task;
2715
2716 for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
2717 const struct pid_entry *p = &proc_base_stuff[nr];
2718 if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
2719 goto out;
2720 }
2721
2722 ns = filp->f_dentry->d_sb->s_fs_info;
2723 iter.task = NULL;
2724 iter.tgid = filp->f_pos - TGID_OFFSET;
2725 for (iter = next_tgid(ns, iter);
2726 iter.task;
2727 iter.tgid += 1, iter = next_tgid(ns, iter)) {
2728 filp->f_pos = iter.tgid + TGID_OFFSET;
2729 if (proc_pid_fill_cache(filp, dirent, filldir, iter) < 0) {
2730 put_task_struct(iter.task);
2731 goto out;
2732 }
2733 }
2734 filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
2735out:
2736 put_task_struct(reaper);
2737out_no_task:
2738 return 0;
2739}
2740
2741/*
2742 * Tasks
2743 */
2744static const struct pid_entry tid_base_stuff[] = {
2745 DIR("fd", S_IRUSR|S_IXUSR, fd),
2746 DIR("fdinfo", S_IRUSR|S_IXUSR, fdinfo),
2747 REG("environ", S_IRUSR, environ),
2748 INF("auxv", S_IRUSR, pid_auxv),
2749 ONE("status", S_IRUGO, pid_status),
2750 INF("limits", S_IRUSR, pid_limits),
2751#ifdef CONFIG_SCHED_DEBUG
2752 REG("sched", S_IRUGO|S_IWUSR, pid_sched),
2753#endif
2754 INF("cmdline", S_IRUGO, pid_cmdline),
2755 ONE("stat", S_IRUGO, tid_stat),
2756 ONE("statm", S_IRUGO, pid_statm),
2757 REG("maps", S_IRUGO, maps),
2758#ifdef CONFIG_NUMA
2759 REG("numa_maps", S_IRUGO, numa_maps),
2760#endif
2761 REG("mem", S_IRUSR|S_IWUSR, mem),
2762 LNK("cwd", cwd),
2763 LNK("root", root),
2764 LNK("exe", exe),
2765 REG("mounts", S_IRUGO, mounts),
2766 REG("mountinfo", S_IRUGO, mountinfo),
2767#ifdef CONFIG_PROC_PAGE_MONITOR
2768 REG("clear_refs", S_IWUSR, clear_refs),
2769 REG("smaps", S_IRUGO, smaps),
2770 REG("pagemap", S_IRUSR, pagemap),
2771#endif
2772#ifdef CONFIG_SECURITY
2773 DIR("attr", S_IRUGO|S_IXUGO, attr_dir),
2774#endif
2775#ifdef CONFIG_KALLSYMS
2776 INF("wchan", S_IRUGO, pid_wchan),
2777#endif
2778#ifdef CONFIG_SCHEDSTATS
2779 INF("schedstat", S_IRUGO, pid_schedstat),
2780#endif
2781#ifdef CONFIG_LATENCYTOP
2782 REG("latency", S_IRUGO, lstats),
2783#endif
2784#ifdef CONFIG_PROC_PID_CPUSET
2785 REG("cpuset", S_IRUGO, cpuset),
2786#endif
2787#ifdef CONFIG_CGROUPS
2788 REG("cgroup", S_IRUGO, cgroup),
2789#endif
2790 INF("oom_score", S_IRUGO, oom_score),
2791 REG("oom_adj", S_IRUGO|S_IWUSR, oom_adjust),
2792#ifdef CONFIG_AUDITSYSCALL
2793 REG("loginuid", S_IWUSR|S_IRUGO, loginuid),
2794 REG("sessionid", S_IRUSR, sessionid),
2795#endif
2796#ifdef CONFIG_FAULT_INJECTION
2797 REG("make-it-fail", S_IRUGO|S_IWUSR, fault_inject),
2798#endif
2799};
2800
2801static int proc_tid_base_readdir(struct file * filp,
2802 void * dirent, filldir_t filldir)
2803{
2804 return proc_pident_readdir(filp,dirent,filldir,
2805 tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
2806}
2807
2808static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2809 return proc_pident_lookup(dir, dentry,
2810 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
2811}
2812
2813static const struct file_operations proc_tid_base_operations = {
2814 .read = generic_read_dir,
2815 .readdir = proc_tid_base_readdir,
2816};
2817
2818static const struct inode_operations proc_tid_base_inode_operations = {
2819 .lookup = proc_tid_base_lookup,
2820 .getattr = pid_getattr,
2821 .setattr = proc_setattr,
2822};
2823
2824static struct dentry *proc_task_instantiate(struct inode *dir,
2825 struct dentry *dentry, struct task_struct *task, const void *ptr)
2826{
2827 struct dentry *error = ERR_PTR(-ENOENT);
2828 struct inode *inode;
2829 inode = proc_pid_make_inode(dir->i_sb, task);
2830
2831 if (!inode)
2832 goto out;
2833 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2834 inode->i_op = &proc_tid_base_inode_operations;
2835 inode->i_fop = &proc_tid_base_operations;
2836 inode->i_flags|=S_IMMUTABLE;
2837
2838 inode->i_nlink = 2 + pid_entry_count_dirs(tid_base_stuff,
2839 ARRAY_SIZE(tid_base_stuff));
2840
2841 dentry->d_op = &pid_dentry_operations;
2842
2843 d_add(dentry, inode);
2844 /* Close the race of the process dying before we return the dentry */
2845 if (pid_revalidate(dentry, NULL))
2846 error = NULL;
2847out:
2848 return error;
2849}
2850
2851static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
2852{
2853 struct dentry *result = ERR_PTR(-ENOENT);
2854 struct task_struct *task;
2855 struct task_struct *leader = get_proc_task(dir);
2856 unsigned tid;
2857 struct pid_namespace *ns;
2858
2859 if (!leader)
2860 goto out_no_task;
2861
2862 tid = name_to_int(dentry);
2863 if (tid == ~0U)
2864 goto out;
2865
2866 ns = dentry->d_sb->s_fs_info;
2867 rcu_read_lock();
2868 task = find_task_by_pid_ns(tid, ns);
2869 if (task)
2870 get_task_struct(task);
2871 rcu_read_unlock();
2872 if (!task)
2873 goto out;
2874 if (!same_thread_group(leader, task))
2875 goto out_drop_task;
2876
2877 result = proc_task_instantiate(dir, dentry, task, NULL);
2878out_drop_task:
2879 put_task_struct(task);
2880out:
2881 put_task_struct(leader);
2882out_no_task:
2883 return result;
2884}
2885
2886/*
2887 * Find the first tid of a thread group to return to user space.
2888 *
2889 * Usually this is just the thread group leader, but if the users
2890 * buffer was too small or there was a seek into the middle of the
2891 * directory we have more work todo.
2892 *
2893 * In the case of a short read we start with find_task_by_pid.
2894 *
2895 * In the case of a seek we start with the leader and walk nr
2896 * threads past it.
2897 */
2898static struct task_struct *first_tid(struct task_struct *leader,
2899 int tid, int nr, struct pid_namespace *ns)
2900{
2901 struct task_struct *pos;
2902
2903 rcu_read_lock();
2904 /* Attempt to start with the pid of a thread */
2905 if (tid && (nr > 0)) {
2906 pos = find_task_by_pid_ns(tid, ns);
2907 if (pos && (pos->group_leader == leader))
2908 goto found;
2909 }
2910
2911 /* If nr exceeds the number of threads there is nothing todo */
2912 pos = NULL;
2913 if (nr && nr >= get_nr_threads(leader))
2914 goto out;
2915
2916 /* If we haven't found our starting place yet start
2917 * with the leader and walk nr threads forward.
2918 */
2919 for (pos = leader; nr > 0; --nr) {
2920 pos = next_thread(pos);
2921 if (pos == leader) {
2922 pos = NULL;
2923 goto out;
2924 }
2925 }
2926found:
2927 get_task_struct(pos);
2928out:
2929 rcu_read_unlock();
2930 return pos;
2931}
2932
2933/*
2934 * Find the next thread in the thread list.
2935 * Return NULL if there is an error or no next thread.
2936 *
2937 * The reference to the input task_struct is released.
2938 */
2939static struct task_struct *next_tid(struct task_struct *start)
2940{
2941 struct task_struct *pos = NULL;
2942 rcu_read_lock();
2943 if (pid_alive(start)) {
2944 pos = next_thread(start);
2945 if (thread_group_leader(pos))
2946 pos = NULL;
2947 else
2948 get_task_struct(pos);
2949 }
2950 rcu_read_unlock();
2951 put_task_struct(start);
2952 return pos;
2953}
2954
2955static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
2956 struct task_struct *task, int tid)
2957{
2958 char name[PROC_NUMBUF];
2959 int len = snprintf(name, sizeof(name), "%d", tid);
2960 return proc_fill_cache(filp, dirent, filldir, name, len,
2961 proc_task_instantiate, task, NULL);
2962}
2963
2964/* for the /proc/TGID/task/ directories */
2965static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
2966{
2967 struct dentry *dentry = filp->f_path.dentry;
2968 struct inode *inode = dentry->d_inode;
2969 struct task_struct *leader = NULL;
2970 struct task_struct *task;
2971 int retval = -ENOENT;
2972 ino_t ino;
2973 int tid;
2974 unsigned long pos = filp->f_pos; /* avoiding "long long" filp->f_pos */
2975 struct pid_namespace *ns;
2976
2977 task = get_proc_task(inode);
2978 if (!task)
2979 goto out_no_task;
2980 rcu_read_lock();
2981 if (pid_alive(task)) {
2982 leader = task->group_leader;
2983 get_task_struct(leader);
2984 }
2985 rcu_read_unlock();
2986 put_task_struct(task);
2987 if (!leader)
2988 goto out_no_task;
2989 retval = 0;
2990
2991 switch (pos) {
2992 case 0:
2993 ino = inode->i_ino;
2994 if (filldir(dirent, ".", 1, pos, ino, DT_DIR) < 0)
2995 goto out;
2996 pos++;
2997 /* fall through */
2998 case 1:
2999 ino = parent_ino(dentry);
3000 if (filldir(dirent, "..", 2, pos, ino, DT_DIR) < 0)
3001 goto out;
3002 pos++;
3003 /* fall through */
3004 }
3005
3006 /* f_version caches the tgid value that the last readdir call couldn't
3007 * return. lseek aka telldir automagically resets f_version to 0.
3008 */
3009 ns = filp->f_dentry->d_sb->s_fs_info;
3010 tid = (int)filp->f_version;
3011 filp->f_version = 0;
3012 for (task = first_tid(leader, tid, pos - 2, ns);
3013 task;
3014 task = next_tid(task), pos++) {
3015 tid = task_pid_nr_ns(task, ns);
3016 if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
3017 /* returning this tgid failed, save it as the first
3018 * pid for the next readir call */
3019 filp->f_version = (u64)tid;
3020 put_task_struct(task);
3021 break;
3022 }
3023 }
3024out:
3025 filp->f_pos = pos;
3026 put_task_struct(leader);
3027out_no_task:
3028 return retval;
3029}
3030
3031static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3032{
3033 struct inode *inode = dentry->d_inode;
3034 struct task_struct *p = get_proc_task(inode);
3035 generic_fillattr(inode, stat);
3036
3037 if (p) {
3038 rcu_read_lock();
3039 stat->nlink += get_nr_threads(p);
3040 rcu_read_unlock();
3041 put_task_struct(p);
3042 }
3043
3044 return 0;
3045}
3046
3047static const struct inode_operations proc_task_inode_operations = {
3048 .lookup = proc_task_lookup,
3049 .getattr = proc_task_getattr,
3050 .setattr = proc_setattr,
3051};
3052
3053static const struct file_operations proc_task_operations = {
3054 .read = generic_read_dir,
3055 .readdir = proc_task_readdir,
3056};