at v2.6.26-rc7 1034 lines 24 kB view raw
1/* 2 * PPP async serial channel driver for Linux. 3 * 4 * Copyright 1999 Paul Mackerras. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 * 11 * This driver provides the encapsulation and framing for sending 12 * and receiving PPP frames over async serial lines. It relies on 13 * the generic PPP layer to give it frames to send and to process 14 * received frames. It implements the PPP line discipline. 15 * 16 * Part of the code in this driver was inspired by the old async-only 17 * PPP driver, written by Michael Callahan and Al Longyear, and 18 * subsequently hacked by Paul Mackerras. 19 */ 20 21#include <linux/module.h> 22#include <linux/kernel.h> 23#include <linux/skbuff.h> 24#include <linux/tty.h> 25#include <linux/netdevice.h> 26#include <linux/poll.h> 27#include <linux/crc-ccitt.h> 28#include <linux/ppp_defs.h> 29#include <linux/if_ppp.h> 30#include <linux/ppp_channel.h> 31#include <linux/spinlock.h> 32#include <linux/init.h> 33#include <linux/jiffies.h> 34#include <asm/uaccess.h> 35#include <asm/string.h> 36 37#define PPP_VERSION "2.4.2" 38 39#define OBUFSIZE 256 40 41/* Structure for storing local state. */ 42struct asyncppp { 43 struct tty_struct *tty; 44 unsigned int flags; 45 unsigned int state; 46 unsigned int rbits; 47 int mru; 48 spinlock_t xmit_lock; 49 spinlock_t recv_lock; 50 unsigned long xmit_flags; 51 u32 xaccm[8]; 52 u32 raccm; 53 unsigned int bytes_sent; 54 unsigned int bytes_rcvd; 55 56 struct sk_buff *tpkt; 57 int tpkt_pos; 58 u16 tfcs; 59 unsigned char *optr; 60 unsigned char *olim; 61 unsigned long last_xmit; 62 63 struct sk_buff *rpkt; 64 int lcp_fcs; 65 struct sk_buff_head rqueue; 66 67 struct tasklet_struct tsk; 68 69 atomic_t refcnt; 70 struct semaphore dead_sem; 71 struct ppp_channel chan; /* interface to generic ppp layer */ 72 unsigned char obuf[OBUFSIZE]; 73}; 74 75/* Bit numbers in xmit_flags */ 76#define XMIT_WAKEUP 0 77#define XMIT_FULL 1 78#define XMIT_BUSY 2 79 80/* State bits */ 81#define SC_TOSS 1 82#define SC_ESCAPE 2 83#define SC_PREV_ERROR 4 84 85/* Bits in rbits */ 86#define SC_RCV_BITS (SC_RCV_B7_1|SC_RCV_B7_0|SC_RCV_ODDP|SC_RCV_EVNP) 87 88static int flag_time = HZ; 89module_param(flag_time, int, 0); 90MODULE_PARM_DESC(flag_time, "ppp_async: interval between flagged packets (in clock ticks)"); 91MODULE_LICENSE("GPL"); 92MODULE_ALIAS_LDISC(N_PPP); 93 94/* 95 * Prototypes. 96 */ 97static int ppp_async_encode(struct asyncppp *ap); 98static int ppp_async_send(struct ppp_channel *chan, struct sk_buff *skb); 99static int ppp_async_push(struct asyncppp *ap); 100static void ppp_async_flush_output(struct asyncppp *ap); 101static void ppp_async_input(struct asyncppp *ap, const unsigned char *buf, 102 char *flags, int count); 103static int ppp_async_ioctl(struct ppp_channel *chan, unsigned int cmd, 104 unsigned long arg); 105static void ppp_async_process(unsigned long arg); 106 107static void async_lcp_peek(struct asyncppp *ap, unsigned char *data, 108 int len, int inbound); 109 110static struct ppp_channel_ops async_ops = { 111 ppp_async_send, 112 ppp_async_ioctl 113}; 114 115/* 116 * Routines implementing the PPP line discipline. 117 */ 118 119/* 120 * We have a potential race on dereferencing tty->disc_data, 121 * because the tty layer provides no locking at all - thus one 122 * cpu could be running ppp_asynctty_receive while another 123 * calls ppp_asynctty_close, which zeroes tty->disc_data and 124 * frees the memory that ppp_asynctty_receive is using. The best 125 * way to fix this is to use a rwlock in the tty struct, but for now 126 * we use a single global rwlock for all ttys in ppp line discipline. 127 * 128 * FIXME: this is no longer true. The _close path for the ldisc is 129 * now guaranteed to be sane. 130 */ 131static DEFINE_RWLOCK(disc_data_lock); 132 133static struct asyncppp *ap_get(struct tty_struct *tty) 134{ 135 struct asyncppp *ap; 136 137 read_lock(&disc_data_lock); 138 ap = tty->disc_data; 139 if (ap != NULL) 140 atomic_inc(&ap->refcnt); 141 read_unlock(&disc_data_lock); 142 return ap; 143} 144 145static void ap_put(struct asyncppp *ap) 146{ 147 if (atomic_dec_and_test(&ap->refcnt)) 148 up(&ap->dead_sem); 149} 150 151/* 152 * Called when a tty is put into PPP line discipline. Called in process 153 * context. 154 */ 155static int 156ppp_asynctty_open(struct tty_struct *tty) 157{ 158 struct asyncppp *ap; 159 int err; 160 161 if (tty->ops->write == NULL) 162 return -EOPNOTSUPP; 163 164 err = -ENOMEM; 165 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 166 if (!ap) 167 goto out; 168 169 /* initialize the asyncppp structure */ 170 ap->tty = tty; 171 ap->mru = PPP_MRU; 172 spin_lock_init(&ap->xmit_lock); 173 spin_lock_init(&ap->recv_lock); 174 ap->xaccm[0] = ~0U; 175 ap->xaccm[3] = 0x60000000U; 176 ap->raccm = ~0U; 177 ap->optr = ap->obuf; 178 ap->olim = ap->obuf; 179 ap->lcp_fcs = -1; 180 181 skb_queue_head_init(&ap->rqueue); 182 tasklet_init(&ap->tsk, ppp_async_process, (unsigned long) ap); 183 184 atomic_set(&ap->refcnt, 1); 185 init_MUTEX_LOCKED(&ap->dead_sem); 186 187 ap->chan.private = ap; 188 ap->chan.ops = &async_ops; 189 ap->chan.mtu = PPP_MRU; 190 err = ppp_register_channel(&ap->chan); 191 if (err) 192 goto out_free; 193 194 tty->disc_data = ap; 195 tty->receive_room = 65536; 196 return 0; 197 198 out_free: 199 kfree(ap); 200 out: 201 return err; 202} 203 204/* 205 * Called when the tty is put into another line discipline 206 * or it hangs up. We have to wait for any cpu currently 207 * executing in any of the other ppp_asynctty_* routines to 208 * finish before we can call ppp_unregister_channel and free 209 * the asyncppp struct. This routine must be called from 210 * process context, not interrupt or softirq context. 211 */ 212static void 213ppp_asynctty_close(struct tty_struct *tty) 214{ 215 struct asyncppp *ap; 216 217 write_lock_irq(&disc_data_lock); 218 ap = tty->disc_data; 219 tty->disc_data = NULL; 220 write_unlock_irq(&disc_data_lock); 221 if (!ap) 222 return; 223 224 /* 225 * We have now ensured that nobody can start using ap from now 226 * on, but we have to wait for all existing users to finish. 227 * Note that ppp_unregister_channel ensures that no calls to 228 * our channel ops (i.e. ppp_async_send/ioctl) are in progress 229 * by the time it returns. 230 */ 231 if (!atomic_dec_and_test(&ap->refcnt)) 232 down(&ap->dead_sem); 233 tasklet_kill(&ap->tsk); 234 235 ppp_unregister_channel(&ap->chan); 236 if (ap->rpkt) 237 kfree_skb(ap->rpkt); 238 skb_queue_purge(&ap->rqueue); 239 if (ap->tpkt) 240 kfree_skb(ap->tpkt); 241 kfree(ap); 242} 243 244/* 245 * Called on tty hangup in process context. 246 * 247 * Wait for I/O to driver to complete and unregister PPP channel. 248 * This is already done by the close routine, so just call that. 249 */ 250static int ppp_asynctty_hangup(struct tty_struct *tty) 251{ 252 ppp_asynctty_close(tty); 253 return 0; 254} 255 256/* 257 * Read does nothing - no data is ever available this way. 258 * Pppd reads and writes packets via /dev/ppp instead. 259 */ 260static ssize_t 261ppp_asynctty_read(struct tty_struct *tty, struct file *file, 262 unsigned char __user *buf, size_t count) 263{ 264 return -EAGAIN; 265} 266 267/* 268 * Write on the tty does nothing, the packets all come in 269 * from the ppp generic stuff. 270 */ 271static ssize_t 272ppp_asynctty_write(struct tty_struct *tty, struct file *file, 273 const unsigned char *buf, size_t count) 274{ 275 return -EAGAIN; 276} 277 278/* 279 * Called in process context only. May be re-entered by multiple 280 * ioctl calling threads. 281 */ 282 283static int 284ppp_asynctty_ioctl(struct tty_struct *tty, struct file *file, 285 unsigned int cmd, unsigned long arg) 286{ 287 struct asyncppp *ap = ap_get(tty); 288 int err, val; 289 int __user *p = (int __user *)arg; 290 291 if (!ap) 292 return -ENXIO; 293 err = -EFAULT; 294 switch (cmd) { 295 case PPPIOCGCHAN: 296 err = -ENXIO; 297 if (!ap) 298 break; 299 err = -EFAULT; 300 if (put_user(ppp_channel_index(&ap->chan), p)) 301 break; 302 err = 0; 303 break; 304 305 case PPPIOCGUNIT: 306 err = -ENXIO; 307 if (!ap) 308 break; 309 err = -EFAULT; 310 if (put_user(ppp_unit_number(&ap->chan), p)) 311 break; 312 err = 0; 313 break; 314 315 case TCFLSH: 316 /* flush our buffers and the serial port's buffer */ 317 if (arg == TCIOFLUSH || arg == TCOFLUSH) 318 ppp_async_flush_output(ap); 319 err = tty_perform_flush(tty, arg); 320 break; 321 322 case FIONREAD: 323 val = 0; 324 if (put_user(val, p)) 325 break; 326 err = 0; 327 break; 328 329 default: 330 /* Try the various mode ioctls */ 331 err = tty_mode_ioctl(tty, file, cmd, arg); 332 } 333 334 ap_put(ap); 335 return err; 336} 337 338/* No kernel lock - fine */ 339static unsigned int 340ppp_asynctty_poll(struct tty_struct *tty, struct file *file, poll_table *wait) 341{ 342 return 0; 343} 344 345/* 346 * This can now be called from hard interrupt level as well 347 * as soft interrupt level or mainline. 348 */ 349static void 350ppp_asynctty_receive(struct tty_struct *tty, const unsigned char *buf, 351 char *cflags, int count) 352{ 353 struct asyncppp *ap = ap_get(tty); 354 unsigned long flags; 355 356 if (!ap) 357 return; 358 spin_lock_irqsave(&ap->recv_lock, flags); 359 ppp_async_input(ap, buf, cflags, count); 360 spin_unlock_irqrestore(&ap->recv_lock, flags); 361 if (!skb_queue_empty(&ap->rqueue)) 362 tasklet_schedule(&ap->tsk); 363 ap_put(ap); 364 tty_unthrottle(tty); 365} 366 367static void 368ppp_asynctty_wakeup(struct tty_struct *tty) 369{ 370 struct asyncppp *ap = ap_get(tty); 371 372 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags); 373 if (!ap) 374 return; 375 set_bit(XMIT_WAKEUP, &ap->xmit_flags); 376 tasklet_schedule(&ap->tsk); 377 ap_put(ap); 378} 379 380 381static struct tty_ldisc ppp_ldisc = { 382 .owner = THIS_MODULE, 383 .magic = TTY_LDISC_MAGIC, 384 .name = "ppp", 385 .open = ppp_asynctty_open, 386 .close = ppp_asynctty_close, 387 .hangup = ppp_asynctty_hangup, 388 .read = ppp_asynctty_read, 389 .write = ppp_asynctty_write, 390 .ioctl = ppp_asynctty_ioctl, 391 .poll = ppp_asynctty_poll, 392 .receive_buf = ppp_asynctty_receive, 393 .write_wakeup = ppp_asynctty_wakeup, 394}; 395 396static int __init 397ppp_async_init(void) 398{ 399 int err; 400 401 err = tty_register_ldisc(N_PPP, &ppp_ldisc); 402 if (err != 0) 403 printk(KERN_ERR "PPP_async: error %d registering line disc.\n", 404 err); 405 return err; 406} 407 408/* 409 * The following routines provide the PPP channel interface. 410 */ 411static int 412ppp_async_ioctl(struct ppp_channel *chan, unsigned int cmd, unsigned long arg) 413{ 414 struct asyncppp *ap = chan->private; 415 void __user *argp = (void __user *)arg; 416 int __user *p = argp; 417 int err, val; 418 u32 accm[8]; 419 420 err = -EFAULT; 421 switch (cmd) { 422 case PPPIOCGFLAGS: 423 val = ap->flags | ap->rbits; 424 if (put_user(val, p)) 425 break; 426 err = 0; 427 break; 428 case PPPIOCSFLAGS: 429 if (get_user(val, p)) 430 break; 431 ap->flags = val & ~SC_RCV_BITS; 432 spin_lock_irq(&ap->recv_lock); 433 ap->rbits = val & SC_RCV_BITS; 434 spin_unlock_irq(&ap->recv_lock); 435 err = 0; 436 break; 437 438 case PPPIOCGASYNCMAP: 439 if (put_user(ap->xaccm[0], (u32 __user *)argp)) 440 break; 441 err = 0; 442 break; 443 case PPPIOCSASYNCMAP: 444 if (get_user(ap->xaccm[0], (u32 __user *)argp)) 445 break; 446 err = 0; 447 break; 448 449 case PPPIOCGRASYNCMAP: 450 if (put_user(ap->raccm, (u32 __user *)argp)) 451 break; 452 err = 0; 453 break; 454 case PPPIOCSRASYNCMAP: 455 if (get_user(ap->raccm, (u32 __user *)argp)) 456 break; 457 err = 0; 458 break; 459 460 case PPPIOCGXASYNCMAP: 461 if (copy_to_user(argp, ap->xaccm, sizeof(ap->xaccm))) 462 break; 463 err = 0; 464 break; 465 case PPPIOCSXASYNCMAP: 466 if (copy_from_user(accm, argp, sizeof(accm))) 467 break; 468 accm[2] &= ~0x40000000U; /* can't escape 0x5e */ 469 accm[3] |= 0x60000000U; /* must escape 0x7d, 0x7e */ 470 memcpy(ap->xaccm, accm, sizeof(ap->xaccm)); 471 err = 0; 472 break; 473 474 case PPPIOCGMRU: 475 if (put_user(ap->mru, p)) 476 break; 477 err = 0; 478 break; 479 case PPPIOCSMRU: 480 if (get_user(val, p)) 481 break; 482 if (val < PPP_MRU) 483 val = PPP_MRU; 484 ap->mru = val; 485 err = 0; 486 break; 487 488 default: 489 err = -ENOTTY; 490 } 491 492 return err; 493} 494 495/* 496 * This is called at softirq level to deliver received packets 497 * to the ppp_generic code, and to tell the ppp_generic code 498 * if we can accept more output now. 499 */ 500static void ppp_async_process(unsigned long arg) 501{ 502 struct asyncppp *ap = (struct asyncppp *) arg; 503 struct sk_buff *skb; 504 505 /* process received packets */ 506 while ((skb = skb_dequeue(&ap->rqueue)) != NULL) { 507 if (skb->cb[0]) 508 ppp_input_error(&ap->chan, 0); 509 ppp_input(&ap->chan, skb); 510 } 511 512 /* try to push more stuff out */ 513 if (test_bit(XMIT_WAKEUP, &ap->xmit_flags) && ppp_async_push(ap)) 514 ppp_output_wakeup(&ap->chan); 515} 516 517/* 518 * Procedures for encapsulation and framing. 519 */ 520 521/* 522 * Procedure to encode the data for async serial transmission. 523 * Does octet stuffing (escaping), puts the address/control bytes 524 * on if A/C compression is disabled, and does protocol compression. 525 * Assumes ap->tpkt != 0 on entry. 526 * Returns 1 if we finished the current frame, 0 otherwise. 527 */ 528 529#define PUT_BYTE(ap, buf, c, islcp) do { \ 530 if ((islcp && c < 0x20) || (ap->xaccm[c >> 5] & (1 << (c & 0x1f)))) {\ 531 *buf++ = PPP_ESCAPE; \ 532 *buf++ = c ^ 0x20; \ 533 } else \ 534 *buf++ = c; \ 535} while (0) 536 537static int 538ppp_async_encode(struct asyncppp *ap) 539{ 540 int fcs, i, count, c, proto; 541 unsigned char *buf, *buflim; 542 unsigned char *data; 543 int islcp; 544 545 buf = ap->obuf; 546 ap->olim = buf; 547 ap->optr = buf; 548 i = ap->tpkt_pos; 549 data = ap->tpkt->data; 550 count = ap->tpkt->len; 551 fcs = ap->tfcs; 552 proto = (data[0] << 8) + data[1]; 553 554 /* 555 * LCP packets with code values between 1 (configure-reqest) 556 * and 7 (code-reject) must be sent as though no options 557 * had been negotiated. 558 */ 559 islcp = proto == PPP_LCP && 1 <= data[2] && data[2] <= 7; 560 561 if (i == 0) { 562 if (islcp) 563 async_lcp_peek(ap, data, count, 0); 564 565 /* 566 * Start of a new packet - insert the leading FLAG 567 * character if necessary. 568 */ 569 if (islcp || flag_time == 0 570 || time_after_eq(jiffies, ap->last_xmit + flag_time)) 571 *buf++ = PPP_FLAG; 572 ap->last_xmit = jiffies; 573 fcs = PPP_INITFCS; 574 575 /* 576 * Put in the address/control bytes if necessary 577 */ 578 if ((ap->flags & SC_COMP_AC) == 0 || islcp) { 579 PUT_BYTE(ap, buf, 0xff, islcp); 580 fcs = PPP_FCS(fcs, 0xff); 581 PUT_BYTE(ap, buf, 0x03, islcp); 582 fcs = PPP_FCS(fcs, 0x03); 583 } 584 } 585 586 /* 587 * Once we put in the last byte, we need to put in the FCS 588 * and closing flag, so make sure there is at least 7 bytes 589 * of free space in the output buffer. 590 */ 591 buflim = ap->obuf + OBUFSIZE - 6; 592 while (i < count && buf < buflim) { 593 c = data[i++]; 594 if (i == 1 && c == 0 && (ap->flags & SC_COMP_PROT)) 595 continue; /* compress protocol field */ 596 fcs = PPP_FCS(fcs, c); 597 PUT_BYTE(ap, buf, c, islcp); 598 } 599 600 if (i < count) { 601 /* 602 * Remember where we are up to in this packet. 603 */ 604 ap->olim = buf; 605 ap->tpkt_pos = i; 606 ap->tfcs = fcs; 607 return 0; 608 } 609 610 /* 611 * We have finished the packet. Add the FCS and flag. 612 */ 613 fcs = ~fcs; 614 c = fcs & 0xff; 615 PUT_BYTE(ap, buf, c, islcp); 616 c = (fcs >> 8) & 0xff; 617 PUT_BYTE(ap, buf, c, islcp); 618 *buf++ = PPP_FLAG; 619 ap->olim = buf; 620 621 kfree_skb(ap->tpkt); 622 ap->tpkt = NULL; 623 return 1; 624} 625 626/* 627 * Transmit-side routines. 628 */ 629 630/* 631 * Send a packet to the peer over an async tty line. 632 * Returns 1 iff the packet was accepted. 633 * If the packet was not accepted, we will call ppp_output_wakeup 634 * at some later time. 635 */ 636static int 637ppp_async_send(struct ppp_channel *chan, struct sk_buff *skb) 638{ 639 struct asyncppp *ap = chan->private; 640 641 ppp_async_push(ap); 642 643 if (test_and_set_bit(XMIT_FULL, &ap->xmit_flags)) 644 return 0; /* already full */ 645 ap->tpkt = skb; 646 ap->tpkt_pos = 0; 647 648 ppp_async_push(ap); 649 return 1; 650} 651 652/* 653 * Push as much data as possible out to the tty. 654 */ 655static int 656ppp_async_push(struct asyncppp *ap) 657{ 658 int avail, sent, done = 0; 659 struct tty_struct *tty = ap->tty; 660 int tty_stuffed = 0; 661 662 /* 663 * We can get called recursively here if the tty write 664 * function calls our wakeup function. This can happen 665 * for example on a pty with both the master and slave 666 * set to PPP line discipline. 667 * We use the XMIT_BUSY bit to detect this and get out, 668 * leaving the XMIT_WAKEUP bit set to tell the other 669 * instance that it may now be able to write more now. 670 */ 671 if (test_and_set_bit(XMIT_BUSY, &ap->xmit_flags)) 672 return 0; 673 spin_lock_bh(&ap->xmit_lock); 674 for (;;) { 675 if (test_and_clear_bit(XMIT_WAKEUP, &ap->xmit_flags)) 676 tty_stuffed = 0; 677 if (!tty_stuffed && ap->optr < ap->olim) { 678 avail = ap->olim - ap->optr; 679 set_bit(TTY_DO_WRITE_WAKEUP, &tty->flags); 680 sent = tty->ops->write(tty, ap->optr, avail); 681 if (sent < 0) 682 goto flush; /* error, e.g. loss of CD */ 683 ap->optr += sent; 684 if (sent < avail) 685 tty_stuffed = 1; 686 continue; 687 } 688 if (ap->optr >= ap->olim && ap->tpkt) { 689 if (ppp_async_encode(ap)) { 690 /* finished processing ap->tpkt */ 691 clear_bit(XMIT_FULL, &ap->xmit_flags); 692 done = 1; 693 } 694 continue; 695 } 696 /* 697 * We haven't made any progress this time around. 698 * Clear XMIT_BUSY to let other callers in, but 699 * after doing so we have to check if anyone set 700 * XMIT_WAKEUP since we last checked it. If they 701 * did, we should try again to set XMIT_BUSY and go 702 * around again in case XMIT_BUSY was still set when 703 * the other caller tried. 704 */ 705 clear_bit(XMIT_BUSY, &ap->xmit_flags); 706 /* any more work to do? if not, exit the loop */ 707 if (!(test_bit(XMIT_WAKEUP, &ap->xmit_flags) 708 || (!tty_stuffed && ap->tpkt))) 709 break; 710 /* more work to do, see if we can do it now */ 711 if (test_and_set_bit(XMIT_BUSY, &ap->xmit_flags)) 712 break; 713 } 714 spin_unlock_bh(&ap->xmit_lock); 715 return done; 716 717flush: 718 clear_bit(XMIT_BUSY, &ap->xmit_flags); 719 if (ap->tpkt) { 720 kfree_skb(ap->tpkt); 721 ap->tpkt = NULL; 722 clear_bit(XMIT_FULL, &ap->xmit_flags); 723 done = 1; 724 } 725 ap->optr = ap->olim; 726 spin_unlock_bh(&ap->xmit_lock); 727 return done; 728} 729 730/* 731 * Flush output from our internal buffers. 732 * Called for the TCFLSH ioctl. Can be entered in parallel 733 * but this is covered by the xmit_lock. 734 */ 735static void 736ppp_async_flush_output(struct asyncppp *ap) 737{ 738 int done = 0; 739 740 spin_lock_bh(&ap->xmit_lock); 741 ap->optr = ap->olim; 742 if (ap->tpkt != NULL) { 743 kfree_skb(ap->tpkt); 744 ap->tpkt = NULL; 745 clear_bit(XMIT_FULL, &ap->xmit_flags); 746 done = 1; 747 } 748 spin_unlock_bh(&ap->xmit_lock); 749 if (done) 750 ppp_output_wakeup(&ap->chan); 751} 752 753/* 754 * Receive-side routines. 755 */ 756 757/* see how many ordinary chars there are at the start of buf */ 758static inline int 759scan_ordinary(struct asyncppp *ap, const unsigned char *buf, int count) 760{ 761 int i, c; 762 763 for (i = 0; i < count; ++i) { 764 c = buf[i]; 765 if (c == PPP_ESCAPE || c == PPP_FLAG 766 || (c < 0x20 && (ap->raccm & (1 << c)) != 0)) 767 break; 768 } 769 return i; 770} 771 772/* called when a flag is seen - do end-of-packet processing */ 773static void 774process_input_packet(struct asyncppp *ap) 775{ 776 struct sk_buff *skb; 777 unsigned char *p; 778 unsigned int len, fcs, proto; 779 780 skb = ap->rpkt; 781 if (ap->state & (SC_TOSS | SC_ESCAPE)) 782 goto err; 783 784 if (skb == NULL) 785 return; /* 0-length packet */ 786 787 /* check the FCS */ 788 p = skb->data; 789 len = skb->len; 790 if (len < 3) 791 goto err; /* too short */ 792 fcs = PPP_INITFCS; 793 for (; len > 0; --len) 794 fcs = PPP_FCS(fcs, *p++); 795 if (fcs != PPP_GOODFCS) 796 goto err; /* bad FCS */ 797 skb_trim(skb, skb->len - 2); 798 799 /* check for address/control and protocol compression */ 800 p = skb->data; 801 if (p[0] == PPP_ALLSTATIONS) { 802 /* chop off address/control */ 803 if (p[1] != PPP_UI || skb->len < 3) 804 goto err; 805 p = skb_pull(skb, 2); 806 } 807 proto = p[0]; 808 if (proto & 1) { 809 /* protocol is compressed */ 810 skb_push(skb, 1)[0] = 0; 811 } else { 812 if (skb->len < 2) 813 goto err; 814 proto = (proto << 8) + p[1]; 815 if (proto == PPP_LCP) 816 async_lcp_peek(ap, p, skb->len, 1); 817 } 818 819 /* queue the frame to be processed */ 820 skb->cb[0] = ap->state; 821 skb_queue_tail(&ap->rqueue, skb); 822 ap->rpkt = NULL; 823 ap->state = 0; 824 return; 825 826 err: 827 /* frame had an error, remember that, reset SC_TOSS & SC_ESCAPE */ 828 ap->state = SC_PREV_ERROR; 829 if (skb) { 830 /* make skb appear as freshly allocated */ 831 skb_trim(skb, 0); 832 skb_reserve(skb, - skb_headroom(skb)); 833 } 834} 835 836/* Called when the tty driver has data for us. Runs parallel with the 837 other ldisc functions but will not be re-entered */ 838 839static void 840ppp_async_input(struct asyncppp *ap, const unsigned char *buf, 841 char *flags, int count) 842{ 843 struct sk_buff *skb; 844 int c, i, j, n, s, f; 845 unsigned char *sp; 846 847 /* update bits used for 8-bit cleanness detection */ 848 if (~ap->rbits & SC_RCV_BITS) { 849 s = 0; 850 for (i = 0; i < count; ++i) { 851 c = buf[i]; 852 if (flags && flags[i] != 0) 853 continue; 854 s |= (c & 0x80)? SC_RCV_B7_1: SC_RCV_B7_0; 855 c = ((c >> 4) ^ c) & 0xf; 856 s |= (0x6996 & (1 << c))? SC_RCV_ODDP: SC_RCV_EVNP; 857 } 858 ap->rbits |= s; 859 } 860 861 while (count > 0) { 862 /* scan through and see how many chars we can do in bulk */ 863 if ((ap->state & SC_ESCAPE) && buf[0] == PPP_ESCAPE) 864 n = 1; 865 else 866 n = scan_ordinary(ap, buf, count); 867 868 f = 0; 869 if (flags && (ap->state & SC_TOSS) == 0) { 870 /* check the flags to see if any char had an error */ 871 for (j = 0; j < n; ++j) 872 if ((f = flags[j]) != 0) 873 break; 874 } 875 if (f != 0) { 876 /* start tossing */ 877 ap->state |= SC_TOSS; 878 879 } else if (n > 0 && (ap->state & SC_TOSS) == 0) { 880 /* stuff the chars in the skb */ 881 skb = ap->rpkt; 882 if (!skb) { 883 skb = dev_alloc_skb(ap->mru + PPP_HDRLEN + 2); 884 if (!skb) 885 goto nomem; 886 ap->rpkt = skb; 887 } 888 if (skb->len == 0) { 889 /* Try to get the payload 4-byte aligned. 890 * This should match the 891 * PPP_ALLSTATIONS/PPP_UI/compressed tests in 892 * process_input_packet, but we do not have 893 * enough chars here to test buf[1] and buf[2]. 894 */ 895 if (buf[0] != PPP_ALLSTATIONS) 896 skb_reserve(skb, 2 + (buf[0] & 1)); 897 } 898 if (n > skb_tailroom(skb)) { 899 /* packet overflowed MRU */ 900 ap->state |= SC_TOSS; 901 } else { 902 sp = skb_put(skb, n); 903 memcpy(sp, buf, n); 904 if (ap->state & SC_ESCAPE) { 905 sp[0] ^= 0x20; 906 ap->state &= ~SC_ESCAPE; 907 } 908 } 909 } 910 911 if (n >= count) 912 break; 913 914 c = buf[n]; 915 if (flags != NULL && flags[n] != 0) { 916 ap->state |= SC_TOSS; 917 } else if (c == PPP_FLAG) { 918 process_input_packet(ap); 919 } else if (c == PPP_ESCAPE) { 920 ap->state |= SC_ESCAPE; 921 } else if (I_IXON(ap->tty)) { 922 if (c == START_CHAR(ap->tty)) 923 start_tty(ap->tty); 924 else if (c == STOP_CHAR(ap->tty)) 925 stop_tty(ap->tty); 926 } 927 /* otherwise it's a char in the recv ACCM */ 928 ++n; 929 930 buf += n; 931 if (flags) 932 flags += n; 933 count -= n; 934 } 935 return; 936 937 nomem: 938 printk(KERN_ERR "PPPasync: no memory (input pkt)\n"); 939 ap->state |= SC_TOSS; 940} 941 942/* 943 * We look at LCP frames going past so that we can notice 944 * and react to the LCP configure-ack from the peer. 945 * In the situation where the peer has been sent a configure-ack 946 * already, LCP is up once it has sent its configure-ack 947 * so the immediately following packet can be sent with the 948 * configured LCP options. This allows us to process the following 949 * packet correctly without pppd needing to respond quickly. 950 * 951 * We only respond to the received configure-ack if we have just 952 * sent a configure-request, and the configure-ack contains the 953 * same data (this is checked using a 16-bit crc of the data). 954 */ 955#define CONFREQ 1 /* LCP code field values */ 956#define CONFACK 2 957#define LCP_MRU 1 /* LCP option numbers */ 958#define LCP_ASYNCMAP 2 959 960static void async_lcp_peek(struct asyncppp *ap, unsigned char *data, 961 int len, int inbound) 962{ 963 int dlen, fcs, i, code; 964 u32 val; 965 966 data += 2; /* skip protocol bytes */ 967 len -= 2; 968 if (len < 4) /* 4 = code, ID, length */ 969 return; 970 code = data[0]; 971 if (code != CONFACK && code != CONFREQ) 972 return; 973 dlen = (data[2] << 8) + data[3]; 974 if (len < dlen) 975 return; /* packet got truncated or length is bogus */ 976 977 if (code == (inbound? CONFACK: CONFREQ)) { 978 /* 979 * sent confreq or received confack: 980 * calculate the crc of the data from the ID field on. 981 */ 982 fcs = PPP_INITFCS; 983 for (i = 1; i < dlen; ++i) 984 fcs = PPP_FCS(fcs, data[i]); 985 986 if (!inbound) { 987 /* outbound confreq - remember the crc for later */ 988 ap->lcp_fcs = fcs; 989 return; 990 } 991 992 /* received confack, check the crc */ 993 fcs ^= ap->lcp_fcs; 994 ap->lcp_fcs = -1; 995 if (fcs != 0) 996 return; 997 } else if (inbound) 998 return; /* not interested in received confreq */ 999 1000 /* process the options in the confack */ 1001 data += 4; 1002 dlen -= 4; 1003 /* data[0] is code, data[1] is length */ 1004 while (dlen >= 2 && dlen >= data[1] && data[1] >= 2) { 1005 switch (data[0]) { 1006 case LCP_MRU: 1007 val = (data[2] << 8) + data[3]; 1008 if (inbound) 1009 ap->mru = val; 1010 else 1011 ap->chan.mtu = val; 1012 break; 1013 case LCP_ASYNCMAP: 1014 val = (data[2] << 24) + (data[3] << 16) 1015 + (data[4] << 8) + data[5]; 1016 if (inbound) 1017 ap->raccm = val; 1018 else 1019 ap->xaccm[0] = val; 1020 break; 1021 } 1022 dlen -= data[1]; 1023 data += data[1]; 1024 } 1025} 1026 1027static void __exit ppp_async_cleanup(void) 1028{ 1029 if (tty_unregister_ldisc(N_PPP) != 0) 1030 printk(KERN_ERR "failed to unregister PPP line discipline\n"); 1031} 1032 1033module_init(ppp_async_init); 1034module_exit(ppp_async_cleanup);