at v2.6.26-rc7 2318 lines 62 kB view raw
1/* 2 * ipg.c: Device Driver for the IP1000 Gigabit Ethernet Adapter 3 * 4 * Copyright (C) 2003, 2007 IC Plus Corp 5 * 6 * Original Author: 7 * 8 * Craig Rich 9 * Sundance Technology, Inc. 10 * www.sundanceti.com 11 * craig_rich@sundanceti.com 12 * 13 * Current Maintainer: 14 * 15 * Sorbica Shieh. 16 * http://www.icplus.com.tw 17 * sorbica@icplus.com.tw 18 * 19 * Jesse Huang 20 * http://www.icplus.com.tw 21 * jesse@icplus.com.tw 22 */ 23#include <linux/crc32.h> 24#include <linux/ethtool.h> 25#include <linux/mii.h> 26#include <linux/mutex.h> 27 28#include <asm/div64.h> 29 30#define IPG_RX_RING_BYTES (sizeof(struct ipg_rx) * IPG_RFDLIST_LENGTH) 31#define IPG_TX_RING_BYTES (sizeof(struct ipg_tx) * IPG_TFDLIST_LENGTH) 32#define IPG_RESET_MASK \ 33 (IPG_AC_GLOBAL_RESET | IPG_AC_RX_RESET | IPG_AC_TX_RESET | \ 34 IPG_AC_DMA | IPG_AC_FIFO | IPG_AC_NETWORK | IPG_AC_HOST | \ 35 IPG_AC_AUTO_INIT) 36 37#define ipg_w32(val32, reg) iowrite32((val32), ioaddr + (reg)) 38#define ipg_w16(val16, reg) iowrite16((val16), ioaddr + (reg)) 39#define ipg_w8(val8, reg) iowrite8((val8), ioaddr + (reg)) 40 41#define ipg_r32(reg) ioread32(ioaddr + (reg)) 42#define ipg_r16(reg) ioread16(ioaddr + (reg)) 43#define ipg_r8(reg) ioread8(ioaddr + (reg)) 44 45#define JUMBO_FRAME_4k_ONLY 46enum { 47 netdev_io_size = 128 48}; 49 50#include "ipg.h" 51#define DRV_NAME "ipg" 52 53MODULE_AUTHOR("IC Plus Corp. 2003"); 54MODULE_DESCRIPTION("IC Plus IP1000 Gigabit Ethernet Adapter Linux Driver"); 55MODULE_LICENSE("GPL"); 56 57/* 58 * Variable record -- index by leading revision/length 59 * Revision/Length(=N*4), Address1, Data1, Address2, Data2,...,AddressN,DataN 60 */ 61static unsigned short DefaultPhyParam[] = { 62 /* 11/12/03 IP1000A v1-3 rev=0x40 */ 63 /*-------------------------------------------------------------------------- 64 (0x4000|(15*4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 22, 0x85bd, 24, 0xfff2, 65 27, 0x0c10, 28, 0x0c10, 29, 0x2c10, 31, 0x0003, 23, 0x92f6, 66 31, 0x0000, 23, 0x003d, 30, 0x00de, 20, 0x20e7, 9, 0x0700, 67 --------------------------------------------------------------------------*/ 68 /* 12/17/03 IP1000A v1-4 rev=0x40 */ 69 (0x4000 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31, 70 0x0000, 71 30, 0x005e, 9, 0x0700, 72 /* 01/09/04 IP1000A v1-5 rev=0x41 */ 73 (0x4100 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31, 74 0x0000, 75 30, 0x005e, 9, 0x0700, 76 0x0000 77}; 78 79static const char *ipg_brand_name[] = { 80 "IC PLUS IP1000 1000/100/10 based NIC", 81 "Sundance Technology ST2021 based NIC", 82 "Tamarack Microelectronics TC9020/9021 based NIC", 83 "Tamarack Microelectronics TC9020/9021 based NIC", 84 "D-Link NIC", 85 "D-Link NIC IP1000A" 86}; 87 88static struct pci_device_id ipg_pci_tbl[] __devinitdata = { 89 { PCI_VDEVICE(SUNDANCE, 0x1023), 0 }, 90 { PCI_VDEVICE(SUNDANCE, 0x2021), 1 }, 91 { PCI_VDEVICE(SUNDANCE, 0x1021), 2 }, 92 { PCI_VDEVICE(DLINK, 0x9021), 3 }, 93 { PCI_VDEVICE(DLINK, 0x4000), 4 }, 94 { PCI_VDEVICE(DLINK, 0x4020), 5 }, 95 { 0, } 96}; 97 98MODULE_DEVICE_TABLE(pci, ipg_pci_tbl); 99 100static inline void __iomem *ipg_ioaddr(struct net_device *dev) 101{ 102 struct ipg_nic_private *sp = netdev_priv(dev); 103 return sp->ioaddr; 104} 105 106#ifdef IPG_DEBUG 107static void ipg_dump_rfdlist(struct net_device *dev) 108{ 109 struct ipg_nic_private *sp = netdev_priv(dev); 110 void __iomem *ioaddr = sp->ioaddr; 111 unsigned int i; 112 u32 offset; 113 114 IPG_DEBUG_MSG("_dump_rfdlist\n"); 115 116 printk(KERN_INFO "rx_current = %2.2x\n", sp->rx_current); 117 printk(KERN_INFO "rx_dirty = %2.2x\n", sp->rx_dirty); 118 printk(KERN_INFO "RFDList start address = %16.16lx\n", 119 (unsigned long) sp->rxd_map); 120 printk(KERN_INFO "RFDListPtr register = %8.8x%8.8x\n", 121 ipg_r32(IPG_RFDLISTPTR1), ipg_r32(IPG_RFDLISTPTR0)); 122 123 for (i = 0; i < IPG_RFDLIST_LENGTH; i++) { 124 offset = (u32) &sp->rxd[i].next_desc - (u32) sp->rxd; 125 printk(KERN_INFO "%2.2x %4.4x RFDNextPtr = %16.16lx\n", i, 126 offset, (unsigned long) sp->rxd[i].next_desc); 127 offset = (u32) &sp->rxd[i].rfs - (u32) sp->rxd; 128 printk(KERN_INFO "%2.2x %4.4x RFS = %16.16lx\n", i, 129 offset, (unsigned long) sp->rxd[i].rfs); 130 offset = (u32) &sp->rxd[i].frag_info - (u32) sp->rxd; 131 printk(KERN_INFO "%2.2x %4.4x frag_info = %16.16lx\n", i, 132 offset, (unsigned long) sp->rxd[i].frag_info); 133 } 134} 135 136static void ipg_dump_tfdlist(struct net_device *dev) 137{ 138 struct ipg_nic_private *sp = netdev_priv(dev); 139 void __iomem *ioaddr = sp->ioaddr; 140 unsigned int i; 141 u32 offset; 142 143 IPG_DEBUG_MSG("_dump_tfdlist\n"); 144 145 printk(KERN_INFO "tx_current = %2.2x\n", sp->tx_current); 146 printk(KERN_INFO "tx_dirty = %2.2x\n", sp->tx_dirty); 147 printk(KERN_INFO "TFDList start address = %16.16lx\n", 148 (unsigned long) sp->txd_map); 149 printk(KERN_INFO "TFDListPtr register = %8.8x%8.8x\n", 150 ipg_r32(IPG_TFDLISTPTR1), ipg_r32(IPG_TFDLISTPTR0)); 151 152 for (i = 0; i < IPG_TFDLIST_LENGTH; i++) { 153 offset = (u32) &sp->txd[i].next_desc - (u32) sp->txd; 154 printk(KERN_INFO "%2.2x %4.4x TFDNextPtr = %16.16lx\n", i, 155 offset, (unsigned long) sp->txd[i].next_desc); 156 157 offset = (u32) &sp->txd[i].tfc - (u32) sp->txd; 158 printk(KERN_INFO "%2.2x %4.4x TFC = %16.16lx\n", i, 159 offset, (unsigned long) sp->txd[i].tfc); 160 offset = (u32) &sp->txd[i].frag_info - (u32) sp->txd; 161 printk(KERN_INFO "%2.2x %4.4x frag_info = %16.16lx\n", i, 162 offset, (unsigned long) sp->txd[i].frag_info); 163 } 164} 165#endif 166 167static void ipg_write_phy_ctl(void __iomem *ioaddr, u8 data) 168{ 169 ipg_w8(IPG_PC_RSVD_MASK & data, PHY_CTRL); 170 ndelay(IPG_PC_PHYCTRLWAIT_NS); 171} 172 173static void ipg_drive_phy_ctl_low_high(void __iomem *ioaddr, u8 data) 174{ 175 ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | data); 176 ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | data); 177} 178 179static void send_three_state(void __iomem *ioaddr, u8 phyctrlpolarity) 180{ 181 phyctrlpolarity |= (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR; 182 183 ipg_drive_phy_ctl_low_high(ioaddr, phyctrlpolarity); 184} 185 186static void send_end(void __iomem *ioaddr, u8 phyctrlpolarity) 187{ 188 ipg_w8((IPG_PC_MGMTCLK_LO | (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR | 189 phyctrlpolarity) & IPG_PC_RSVD_MASK, PHY_CTRL); 190} 191 192static u16 read_phy_bit(void __iomem *ioaddr, u8 phyctrlpolarity) 193{ 194 u16 bit_data; 195 196 ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | phyctrlpolarity); 197 198 bit_data = ((ipg_r8(PHY_CTRL) & IPG_PC_MGMTDATA) >> 1) & 1; 199 200 ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | phyctrlpolarity); 201 202 return bit_data; 203} 204 205/* 206 * Read a register from the Physical Layer device located 207 * on the IPG NIC, using the IPG PHYCTRL register. 208 */ 209static int mdio_read(struct net_device *dev, int phy_id, int phy_reg) 210{ 211 void __iomem *ioaddr = ipg_ioaddr(dev); 212 /* 213 * The GMII mangement frame structure for a read is as follows: 214 * 215 * |Preamble|st|op|phyad|regad|ta| data |idle| 216 * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z | 217 * 218 * <32 1s> = 32 consecutive logic 1 values 219 * A = bit of Physical Layer device address (MSB first) 220 * R = bit of register address (MSB first) 221 * z = High impedance state 222 * D = bit of read data (MSB first) 223 * 224 * Transmission order is 'Preamble' field first, bits transmitted 225 * left to right (first to last). 226 */ 227 struct { 228 u32 field; 229 unsigned int len; 230 } p[] = { 231 { GMII_PREAMBLE, 32 }, /* Preamble */ 232 { GMII_ST, 2 }, /* ST */ 233 { GMII_READ, 2 }, /* OP */ 234 { phy_id, 5 }, /* PHYAD */ 235 { phy_reg, 5 }, /* REGAD */ 236 { 0x0000, 2 }, /* TA */ 237 { 0x0000, 16 }, /* DATA */ 238 { 0x0000, 1 } /* IDLE */ 239 }; 240 unsigned int i, j; 241 u8 polarity, data; 242 243 polarity = ipg_r8(PHY_CTRL); 244 polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY); 245 246 /* Create the Preamble, ST, OP, PHYAD, and REGAD field. */ 247 for (j = 0; j < 5; j++) { 248 for (i = 0; i < p[j].len; i++) { 249 /* For each variable length field, the MSB must be 250 * transmitted first. Rotate through the field bits, 251 * starting with the MSB, and move each bit into the 252 * the 1st (2^1) bit position (this is the bit position 253 * corresponding to the MgmtData bit of the PhyCtrl 254 * register for the IPG). 255 * 256 * Example: ST = 01; 257 * 258 * First write a '0' to bit 1 of the PhyCtrl 259 * register, then write a '1' to bit 1 of the 260 * PhyCtrl register. 261 * 262 * To do this, right shift the MSB of ST by the value: 263 * [field length - 1 - #ST bits already written] 264 * then left shift this result by 1. 265 */ 266 data = (p[j].field >> (p[j].len - 1 - i)) << 1; 267 data &= IPG_PC_MGMTDATA; 268 data |= polarity | IPG_PC_MGMTDIR; 269 270 ipg_drive_phy_ctl_low_high(ioaddr, data); 271 } 272 } 273 274 send_three_state(ioaddr, polarity); 275 276 read_phy_bit(ioaddr, polarity); 277 278 /* 279 * For a read cycle, the bits for the next two fields (TA and 280 * DATA) are driven by the PHY (the IPG reads these bits). 281 */ 282 for (i = 0; i < p[6].len; i++) { 283 p[6].field |= 284 (read_phy_bit(ioaddr, polarity) << (p[6].len - 1 - i)); 285 } 286 287 send_three_state(ioaddr, polarity); 288 send_three_state(ioaddr, polarity); 289 send_three_state(ioaddr, polarity); 290 send_end(ioaddr, polarity); 291 292 /* Return the value of the DATA field. */ 293 return p[6].field; 294} 295 296/* 297 * Write to a register from the Physical Layer device located 298 * on the IPG NIC, using the IPG PHYCTRL register. 299 */ 300static void mdio_write(struct net_device *dev, int phy_id, int phy_reg, int val) 301{ 302 void __iomem *ioaddr = ipg_ioaddr(dev); 303 /* 304 * The GMII mangement frame structure for a read is as follows: 305 * 306 * |Preamble|st|op|phyad|regad|ta| data |idle| 307 * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z | 308 * 309 * <32 1s> = 32 consecutive logic 1 values 310 * A = bit of Physical Layer device address (MSB first) 311 * R = bit of register address (MSB first) 312 * z = High impedance state 313 * D = bit of write data (MSB first) 314 * 315 * Transmission order is 'Preamble' field first, bits transmitted 316 * left to right (first to last). 317 */ 318 struct { 319 u32 field; 320 unsigned int len; 321 } p[] = { 322 { GMII_PREAMBLE, 32 }, /* Preamble */ 323 { GMII_ST, 2 }, /* ST */ 324 { GMII_WRITE, 2 }, /* OP */ 325 { phy_id, 5 }, /* PHYAD */ 326 { phy_reg, 5 }, /* REGAD */ 327 { 0x0002, 2 }, /* TA */ 328 { val & 0xffff, 16 }, /* DATA */ 329 { 0x0000, 1 } /* IDLE */ 330 }; 331 unsigned int i, j; 332 u8 polarity, data; 333 334 polarity = ipg_r8(PHY_CTRL); 335 polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY); 336 337 /* Create the Preamble, ST, OP, PHYAD, and REGAD field. */ 338 for (j = 0; j < 7; j++) { 339 for (i = 0; i < p[j].len; i++) { 340 /* For each variable length field, the MSB must be 341 * transmitted first. Rotate through the field bits, 342 * starting with the MSB, and move each bit into the 343 * the 1st (2^1) bit position (this is the bit position 344 * corresponding to the MgmtData bit of the PhyCtrl 345 * register for the IPG). 346 * 347 * Example: ST = 01; 348 * 349 * First write a '0' to bit 1 of the PhyCtrl 350 * register, then write a '1' to bit 1 of the 351 * PhyCtrl register. 352 * 353 * To do this, right shift the MSB of ST by the value: 354 * [field length - 1 - #ST bits already written] 355 * then left shift this result by 1. 356 */ 357 data = (p[j].field >> (p[j].len - 1 - i)) << 1; 358 data &= IPG_PC_MGMTDATA; 359 data |= polarity | IPG_PC_MGMTDIR; 360 361 ipg_drive_phy_ctl_low_high(ioaddr, data); 362 } 363 } 364 365 /* The last cycle is a tri-state, so read from the PHY. */ 366 for (j = 7; j < 8; j++) { 367 for (i = 0; i < p[j].len; i++) { 368 ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | polarity); 369 370 p[j].field |= ((ipg_r8(PHY_CTRL) & 371 IPG_PC_MGMTDATA) >> 1) << (p[j].len - 1 - i); 372 373 ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | polarity); 374 } 375 } 376} 377 378static void ipg_set_led_mode(struct net_device *dev) 379{ 380 struct ipg_nic_private *sp = netdev_priv(dev); 381 void __iomem *ioaddr = sp->ioaddr; 382 u32 mode; 383 384 mode = ipg_r32(ASIC_CTRL); 385 mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED); 386 387 if ((sp->led_mode & 0x03) > 1) 388 mode |= IPG_AC_LED_MODE_BIT_1; /* Write Asic Control Bit 29 */ 389 390 if ((sp->led_mode & 0x01) == 1) 391 mode |= IPG_AC_LED_MODE; /* Write Asic Control Bit 14 */ 392 393 if ((sp->led_mode & 0x08) == 8) 394 mode |= IPG_AC_LED_SPEED; /* Write Asic Control Bit 27 */ 395 396 ipg_w32(mode, ASIC_CTRL); 397} 398 399static void ipg_set_phy_set(struct net_device *dev) 400{ 401 struct ipg_nic_private *sp = netdev_priv(dev); 402 void __iomem *ioaddr = sp->ioaddr; 403 int physet; 404 405 physet = ipg_r8(PHY_SET); 406 physet &= ~(IPG_PS_MEM_LENB9B | IPG_PS_MEM_LEN9 | IPG_PS_NON_COMPDET); 407 physet |= ((sp->led_mode & 0x70) >> 4); 408 ipg_w8(physet, PHY_SET); 409} 410 411static int ipg_reset(struct net_device *dev, u32 resetflags) 412{ 413 /* Assert functional resets via the IPG AsicCtrl 414 * register as specified by the 'resetflags' input 415 * parameter. 416 */ 417 void __iomem *ioaddr = ipg_ioaddr(dev); 418 unsigned int timeout_count = 0; 419 420 IPG_DEBUG_MSG("_reset\n"); 421 422 ipg_w32(ipg_r32(ASIC_CTRL) | resetflags, ASIC_CTRL); 423 424 /* Delay added to account for problem with 10Mbps reset. */ 425 mdelay(IPG_AC_RESETWAIT); 426 427 while (IPG_AC_RESET_BUSY & ipg_r32(ASIC_CTRL)) { 428 mdelay(IPG_AC_RESETWAIT); 429 if (++timeout_count > IPG_AC_RESET_TIMEOUT) 430 return -ETIME; 431 } 432 /* Set LED Mode in Asic Control */ 433 ipg_set_led_mode(dev); 434 435 /* Set PHYSet Register Value */ 436 ipg_set_phy_set(dev); 437 return 0; 438} 439 440/* Find the GMII PHY address. */ 441static int ipg_find_phyaddr(struct net_device *dev) 442{ 443 unsigned int phyaddr, i; 444 445 for (i = 0; i < 32; i++) { 446 u32 status; 447 448 /* Search for the correct PHY address among 32 possible. */ 449 phyaddr = (IPG_NIC_PHY_ADDRESS + i) % 32; 450 451 /* 10/22/03 Grace change verify from GMII_PHY_STATUS to 452 GMII_PHY_ID1 453 */ 454 455 status = mdio_read(dev, phyaddr, MII_BMSR); 456 457 if ((status != 0xFFFF) && (status != 0)) 458 return phyaddr; 459 } 460 461 return 0x1f; 462} 463 464/* 465 * Configure IPG based on result of IEEE 802.3 PHY 466 * auto-negotiation. 467 */ 468static int ipg_config_autoneg(struct net_device *dev) 469{ 470 struct ipg_nic_private *sp = netdev_priv(dev); 471 void __iomem *ioaddr = sp->ioaddr; 472 unsigned int txflowcontrol; 473 unsigned int rxflowcontrol; 474 unsigned int fullduplex; 475 u32 mac_ctrl_val; 476 u32 asicctrl; 477 u8 phyctrl; 478 479 IPG_DEBUG_MSG("_config_autoneg\n"); 480 481 asicctrl = ipg_r32(ASIC_CTRL); 482 phyctrl = ipg_r8(PHY_CTRL); 483 mac_ctrl_val = ipg_r32(MAC_CTRL); 484 485 /* Set flags for use in resolving auto-negotation, assuming 486 * non-1000Mbps, half duplex, no flow control. 487 */ 488 fullduplex = 0; 489 txflowcontrol = 0; 490 rxflowcontrol = 0; 491 492 /* To accomodate a problem in 10Mbps operation, 493 * set a global flag if PHY running in 10Mbps mode. 494 */ 495 sp->tenmbpsmode = 0; 496 497 printk(KERN_INFO "%s: Link speed = ", dev->name); 498 499 /* Determine actual speed of operation. */ 500 switch (phyctrl & IPG_PC_LINK_SPEED) { 501 case IPG_PC_LINK_SPEED_10MBPS: 502 printk("10Mbps.\n"); 503 printk(KERN_INFO "%s: 10Mbps operational mode enabled.\n", 504 dev->name); 505 sp->tenmbpsmode = 1; 506 break; 507 case IPG_PC_LINK_SPEED_100MBPS: 508 printk("100Mbps.\n"); 509 break; 510 case IPG_PC_LINK_SPEED_1000MBPS: 511 printk("1000Mbps.\n"); 512 break; 513 default: 514 printk("undefined!\n"); 515 return 0; 516 } 517 518 if (phyctrl & IPG_PC_DUPLEX_STATUS) { 519 fullduplex = 1; 520 txflowcontrol = 1; 521 rxflowcontrol = 1; 522 } 523 524 /* Configure full duplex, and flow control. */ 525 if (fullduplex == 1) { 526 /* Configure IPG for full duplex operation. */ 527 printk(KERN_INFO "%s: setting full duplex, ", dev->name); 528 529 mac_ctrl_val |= IPG_MC_DUPLEX_SELECT_FD; 530 531 if (txflowcontrol == 1) { 532 printk("TX flow control"); 533 mac_ctrl_val |= IPG_MC_TX_FLOW_CONTROL_ENABLE; 534 } else { 535 printk("no TX flow control"); 536 mac_ctrl_val &= ~IPG_MC_TX_FLOW_CONTROL_ENABLE; 537 } 538 539 if (rxflowcontrol == 1) { 540 printk(", RX flow control."); 541 mac_ctrl_val |= IPG_MC_RX_FLOW_CONTROL_ENABLE; 542 } else { 543 printk(", no RX flow control."); 544 mac_ctrl_val &= ~IPG_MC_RX_FLOW_CONTROL_ENABLE; 545 } 546 547 printk("\n"); 548 } else { 549 /* Configure IPG for half duplex operation. */ 550 printk(KERN_INFO "%s: setting half duplex, " 551 "no TX flow control, no RX flow control.\n", dev->name); 552 553 mac_ctrl_val &= ~IPG_MC_DUPLEX_SELECT_FD & 554 ~IPG_MC_TX_FLOW_CONTROL_ENABLE & 555 ~IPG_MC_RX_FLOW_CONTROL_ENABLE; 556 } 557 ipg_w32(mac_ctrl_val, MAC_CTRL); 558 return 0; 559} 560 561/* Determine and configure multicast operation and set 562 * receive mode for IPG. 563 */ 564static void ipg_nic_set_multicast_list(struct net_device *dev) 565{ 566 void __iomem *ioaddr = ipg_ioaddr(dev); 567 struct dev_mc_list *mc_list_ptr; 568 unsigned int hashindex; 569 u32 hashtable[2]; 570 u8 receivemode; 571 572 IPG_DEBUG_MSG("_nic_set_multicast_list\n"); 573 574 receivemode = IPG_RM_RECEIVEUNICAST | IPG_RM_RECEIVEBROADCAST; 575 576 if (dev->flags & IFF_PROMISC) { 577 /* NIC to be configured in promiscuous mode. */ 578 receivemode = IPG_RM_RECEIVEALLFRAMES; 579 } else if ((dev->flags & IFF_ALLMULTI) || 580 ((dev->flags & IFF_MULTICAST) && 581 (dev->mc_count > IPG_MULTICAST_HASHTABLE_SIZE))) { 582 /* NIC to be configured to receive all multicast 583 * frames. */ 584 receivemode |= IPG_RM_RECEIVEMULTICAST; 585 } else if ((dev->flags & IFF_MULTICAST) && (dev->mc_count > 0)) { 586 /* NIC to be configured to receive selected 587 * multicast addresses. */ 588 receivemode |= IPG_RM_RECEIVEMULTICASTHASH; 589 } 590 591 /* Calculate the bits to set for the 64 bit, IPG HASHTABLE. 592 * The IPG applies a cyclic-redundancy-check (the same CRC 593 * used to calculate the frame data FCS) to the destination 594 * address all incoming multicast frames whose destination 595 * address has the multicast bit set. The least significant 596 * 6 bits of the CRC result are used as an addressing index 597 * into the hash table. If the value of the bit addressed by 598 * this index is a 1, the frame is passed to the host system. 599 */ 600 601 /* Clear hashtable. */ 602 hashtable[0] = 0x00000000; 603 hashtable[1] = 0x00000000; 604 605 /* Cycle through all multicast addresses to filter. */ 606 for (mc_list_ptr = dev->mc_list; 607 mc_list_ptr != NULL; mc_list_ptr = mc_list_ptr->next) { 608 /* Calculate CRC result for each multicast address. */ 609 hashindex = crc32_le(0xffffffff, mc_list_ptr->dmi_addr, 610 ETH_ALEN); 611 612 /* Use only the least significant 6 bits. */ 613 hashindex = hashindex & 0x3F; 614 615 /* Within "hashtable", set bit number "hashindex" 616 * to a logic 1. 617 */ 618 set_bit(hashindex, (void *)hashtable); 619 } 620 621 /* Write the value of the hashtable, to the 4, 16 bit 622 * HASHTABLE IPG registers. 623 */ 624 ipg_w32(hashtable[0], HASHTABLE_0); 625 ipg_w32(hashtable[1], HASHTABLE_1); 626 627 ipg_w8(IPG_RM_RSVD_MASK & receivemode, RECEIVE_MODE); 628 629 IPG_DEBUG_MSG("ReceiveMode = %x\n", ipg_r8(RECEIVE_MODE)); 630} 631 632static int ipg_io_config(struct net_device *dev) 633{ 634 void __iomem *ioaddr = ipg_ioaddr(dev); 635 u32 origmacctrl; 636 u32 restoremacctrl; 637 638 IPG_DEBUG_MSG("_io_config\n"); 639 640 origmacctrl = ipg_r32(MAC_CTRL); 641 642 restoremacctrl = origmacctrl | IPG_MC_STATISTICS_ENABLE; 643 644 /* Based on compilation option, determine if FCS is to be 645 * stripped on receive frames by IPG. 646 */ 647 if (!IPG_STRIP_FCS_ON_RX) 648 restoremacctrl |= IPG_MC_RCV_FCS; 649 650 /* Determine if transmitter and/or receiver are 651 * enabled so we may restore MACCTRL correctly. 652 */ 653 if (origmacctrl & IPG_MC_TX_ENABLED) 654 restoremacctrl |= IPG_MC_TX_ENABLE; 655 656 if (origmacctrl & IPG_MC_RX_ENABLED) 657 restoremacctrl |= IPG_MC_RX_ENABLE; 658 659 /* Transmitter and receiver must be disabled before setting 660 * IFSSelect. 661 */ 662 ipg_w32((origmacctrl & (IPG_MC_RX_DISABLE | IPG_MC_TX_DISABLE)) & 663 IPG_MC_RSVD_MASK, MAC_CTRL); 664 665 /* Now that transmitter and receiver are disabled, write 666 * to IFSSelect. 667 */ 668 ipg_w32((origmacctrl & IPG_MC_IFS_96BIT) & IPG_MC_RSVD_MASK, MAC_CTRL); 669 670 /* Set RECEIVEMODE register. */ 671 ipg_nic_set_multicast_list(dev); 672 673 ipg_w16(IPG_MAX_RXFRAME_SIZE, MAX_FRAME_SIZE); 674 675 ipg_w8(IPG_RXDMAPOLLPERIOD_VALUE, RX_DMA_POLL_PERIOD); 676 ipg_w8(IPG_RXDMAURGENTTHRESH_VALUE, RX_DMA_URGENT_THRESH); 677 ipg_w8(IPG_RXDMABURSTTHRESH_VALUE, RX_DMA_BURST_THRESH); 678 ipg_w8(IPG_TXDMAPOLLPERIOD_VALUE, TX_DMA_POLL_PERIOD); 679 ipg_w8(IPG_TXDMAURGENTTHRESH_VALUE, TX_DMA_URGENT_THRESH); 680 ipg_w8(IPG_TXDMABURSTTHRESH_VALUE, TX_DMA_BURST_THRESH); 681 ipg_w16((IPG_IE_HOST_ERROR | IPG_IE_TX_DMA_COMPLETE | 682 IPG_IE_TX_COMPLETE | IPG_IE_INT_REQUESTED | 683 IPG_IE_UPDATE_STATS | IPG_IE_LINK_EVENT | 684 IPG_IE_RX_DMA_COMPLETE | IPG_IE_RX_DMA_PRIORITY), INT_ENABLE); 685 ipg_w16(IPG_FLOWONTHRESH_VALUE, FLOW_ON_THRESH); 686 ipg_w16(IPG_FLOWOFFTHRESH_VALUE, FLOW_OFF_THRESH); 687 688 /* IPG multi-frag frame bug workaround. 689 * Per silicon revision B3 eratta. 690 */ 691 ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0200, DEBUG_CTRL); 692 693 /* IPG TX poll now bug workaround. 694 * Per silicon revision B3 eratta. 695 */ 696 ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0010, DEBUG_CTRL); 697 698 /* IPG RX poll now bug workaround. 699 * Per silicon revision B3 eratta. 700 */ 701 ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0020, DEBUG_CTRL); 702 703 /* Now restore MACCTRL to original setting. */ 704 ipg_w32(IPG_MC_RSVD_MASK & restoremacctrl, MAC_CTRL); 705 706 /* Disable unused RMON statistics. */ 707 ipg_w32(IPG_RZ_ALL, RMON_STATISTICS_MASK); 708 709 /* Disable unused MIB statistics. */ 710 ipg_w32(IPG_SM_MACCONTROLFRAMESXMTD | IPG_SM_MACCONTROLFRAMESRCVD | 711 IPG_SM_BCSTOCTETXMTOK_BCSTFRAMESXMTDOK | IPG_SM_TXJUMBOFRAMES | 712 IPG_SM_MCSTOCTETXMTOK_MCSTFRAMESXMTDOK | IPG_SM_RXJUMBOFRAMES | 713 IPG_SM_BCSTOCTETRCVDOK_BCSTFRAMESRCVDOK | 714 IPG_SM_UDPCHECKSUMERRORS | IPG_SM_TCPCHECKSUMERRORS | 715 IPG_SM_IPCHECKSUMERRORS, STATISTICS_MASK); 716 717 return 0; 718} 719 720/* 721 * Create a receive buffer within system memory and update 722 * NIC private structure appropriately. 723 */ 724static int ipg_get_rxbuff(struct net_device *dev, int entry) 725{ 726 struct ipg_nic_private *sp = netdev_priv(dev); 727 struct ipg_rx *rxfd = sp->rxd + entry; 728 struct sk_buff *skb; 729 u64 rxfragsize; 730 731 IPG_DEBUG_MSG("_get_rxbuff\n"); 732 733 skb = netdev_alloc_skb(dev, IPG_RXSUPPORT_SIZE + NET_IP_ALIGN); 734 if (!skb) { 735 sp->rx_buff[entry] = NULL; 736 return -ENOMEM; 737 } 738 739 /* Adjust the data start location within the buffer to 740 * align IP address field to a 16 byte boundary. 741 */ 742 skb_reserve(skb, NET_IP_ALIGN); 743 744 /* Associate the receive buffer with the IPG NIC. */ 745 skb->dev = dev; 746 747 /* Save the address of the sk_buff structure. */ 748 sp->rx_buff[entry] = skb; 749 750 rxfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data, 751 sp->rx_buf_sz, PCI_DMA_FROMDEVICE)); 752 753 /* Set the RFD fragment length. */ 754 rxfragsize = IPG_RXFRAG_SIZE; 755 rxfd->frag_info |= cpu_to_le64((rxfragsize << 48) & IPG_RFI_FRAGLEN); 756 757 return 0; 758} 759 760static int init_rfdlist(struct net_device *dev) 761{ 762 struct ipg_nic_private *sp = netdev_priv(dev); 763 void __iomem *ioaddr = sp->ioaddr; 764 unsigned int i; 765 766 IPG_DEBUG_MSG("_init_rfdlist\n"); 767 768 for (i = 0; i < IPG_RFDLIST_LENGTH; i++) { 769 struct ipg_rx *rxfd = sp->rxd + i; 770 771 if (sp->rx_buff[i]) { 772 pci_unmap_single(sp->pdev, 773 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN, 774 sp->rx_buf_sz, PCI_DMA_FROMDEVICE); 775 dev_kfree_skb_irq(sp->rx_buff[i]); 776 sp->rx_buff[i] = NULL; 777 } 778 779 /* Clear out the RFS field. */ 780 rxfd->rfs = 0x0000000000000000; 781 782 if (ipg_get_rxbuff(dev, i) < 0) { 783 /* 784 * A receive buffer was not ready, break the 785 * RFD list here. 786 */ 787 IPG_DEBUG_MSG("Cannot allocate Rx buffer.\n"); 788 789 /* Just in case we cannot allocate a single RFD. 790 * Should not occur. 791 */ 792 if (i == 0) { 793 printk(KERN_ERR "%s: No memory available" 794 " for RFD list.\n", dev->name); 795 return -ENOMEM; 796 } 797 } 798 799 rxfd->next_desc = cpu_to_le64(sp->rxd_map + 800 sizeof(struct ipg_rx)*(i + 1)); 801 } 802 sp->rxd[i - 1].next_desc = cpu_to_le64(sp->rxd_map); 803 804 sp->rx_current = 0; 805 sp->rx_dirty = 0; 806 807 /* Write the location of the RFDList to the IPG. */ 808 ipg_w32((u32) sp->rxd_map, RFD_LIST_PTR_0); 809 ipg_w32(0x00000000, RFD_LIST_PTR_1); 810 811 return 0; 812} 813 814static void init_tfdlist(struct net_device *dev) 815{ 816 struct ipg_nic_private *sp = netdev_priv(dev); 817 void __iomem *ioaddr = sp->ioaddr; 818 unsigned int i; 819 820 IPG_DEBUG_MSG("_init_tfdlist\n"); 821 822 for (i = 0; i < IPG_TFDLIST_LENGTH; i++) { 823 struct ipg_tx *txfd = sp->txd + i; 824 825 txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE); 826 827 if (sp->tx_buff[i]) { 828 dev_kfree_skb_irq(sp->tx_buff[i]); 829 sp->tx_buff[i] = NULL; 830 } 831 832 txfd->next_desc = cpu_to_le64(sp->txd_map + 833 sizeof(struct ipg_tx)*(i + 1)); 834 } 835 sp->txd[i - 1].next_desc = cpu_to_le64(sp->txd_map); 836 837 sp->tx_current = 0; 838 sp->tx_dirty = 0; 839 840 /* Write the location of the TFDList to the IPG. */ 841 IPG_DDEBUG_MSG("Starting TFDListPtr = %8.8x\n", 842 (u32) sp->txd_map); 843 ipg_w32((u32) sp->txd_map, TFD_LIST_PTR_0); 844 ipg_w32(0x00000000, TFD_LIST_PTR_1); 845 846 sp->reset_current_tfd = 1; 847} 848 849/* 850 * Free all transmit buffers which have already been transfered 851 * via DMA to the IPG. 852 */ 853static void ipg_nic_txfree(struct net_device *dev) 854{ 855 struct ipg_nic_private *sp = netdev_priv(dev); 856 unsigned int released, pending, dirty; 857 858 IPG_DEBUG_MSG("_nic_txfree\n"); 859 860 pending = sp->tx_current - sp->tx_dirty; 861 dirty = sp->tx_dirty % IPG_TFDLIST_LENGTH; 862 863 for (released = 0; released < pending; released++) { 864 struct sk_buff *skb = sp->tx_buff[dirty]; 865 struct ipg_tx *txfd = sp->txd + dirty; 866 867 IPG_DEBUG_MSG("TFC = %16.16lx\n", (unsigned long) txfd->tfc); 868 869 /* Look at each TFD's TFC field beginning 870 * at the last freed TFD up to the current TFD. 871 * If the TFDDone bit is set, free the associated 872 * buffer. 873 */ 874 if (!(txfd->tfc & cpu_to_le64(IPG_TFC_TFDDONE))) 875 break; 876 877 /* Free the transmit buffer. */ 878 if (skb) { 879 pci_unmap_single(sp->pdev, 880 le64_to_cpu(txfd->frag_info) & ~IPG_TFI_FRAGLEN, 881 skb->len, PCI_DMA_TODEVICE); 882 883 dev_kfree_skb_irq(skb); 884 885 sp->tx_buff[dirty] = NULL; 886 } 887 dirty = (dirty + 1) % IPG_TFDLIST_LENGTH; 888 } 889 890 sp->tx_dirty += released; 891 892 if (netif_queue_stopped(dev) && 893 (sp->tx_current != (sp->tx_dirty + IPG_TFDLIST_LENGTH))) { 894 netif_wake_queue(dev); 895 } 896} 897 898static void ipg_tx_timeout(struct net_device *dev) 899{ 900 struct ipg_nic_private *sp = netdev_priv(dev); 901 void __iomem *ioaddr = sp->ioaddr; 902 903 ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA | IPG_AC_NETWORK | 904 IPG_AC_FIFO); 905 906 spin_lock_irq(&sp->lock); 907 908 /* Re-configure after DMA reset. */ 909 if (ipg_io_config(dev) < 0) { 910 printk(KERN_INFO "%s: Error during re-configuration.\n", 911 dev->name); 912 } 913 914 init_tfdlist(dev); 915 916 spin_unlock_irq(&sp->lock); 917 918 ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) & IPG_MC_RSVD_MASK, 919 MAC_CTRL); 920} 921 922/* 923 * For TxComplete interrupts, free all transmit 924 * buffers which have already been transfered via DMA 925 * to the IPG. 926 */ 927static void ipg_nic_txcleanup(struct net_device *dev) 928{ 929 struct ipg_nic_private *sp = netdev_priv(dev); 930 void __iomem *ioaddr = sp->ioaddr; 931 unsigned int i; 932 933 IPG_DEBUG_MSG("_nic_txcleanup\n"); 934 935 for (i = 0; i < IPG_TFDLIST_LENGTH; i++) { 936 /* Reading the TXSTATUS register clears the 937 * TX_COMPLETE interrupt. 938 */ 939 u32 txstatusdword = ipg_r32(TX_STATUS); 940 941 IPG_DEBUG_MSG("TxStatus = %8.8x\n", txstatusdword); 942 943 /* Check for Transmit errors. Error bits only valid if 944 * TX_COMPLETE bit in the TXSTATUS register is a 1. 945 */ 946 if (!(txstatusdword & IPG_TS_TX_COMPLETE)) 947 break; 948 949 /* If in 10Mbps mode, indicate transmit is ready. */ 950 if (sp->tenmbpsmode) { 951 netif_wake_queue(dev); 952 } 953 954 /* Transmit error, increment stat counters. */ 955 if (txstatusdword & IPG_TS_TX_ERROR) { 956 IPG_DEBUG_MSG("Transmit error.\n"); 957 sp->stats.tx_errors++; 958 } 959 960 /* Late collision, re-enable transmitter. */ 961 if (txstatusdword & IPG_TS_LATE_COLLISION) { 962 IPG_DEBUG_MSG("Late collision on transmit.\n"); 963 ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) & 964 IPG_MC_RSVD_MASK, MAC_CTRL); 965 } 966 967 /* Maximum collisions, re-enable transmitter. */ 968 if (txstatusdword & IPG_TS_TX_MAX_COLL) { 969 IPG_DEBUG_MSG("Maximum collisions on transmit.\n"); 970 ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) & 971 IPG_MC_RSVD_MASK, MAC_CTRL); 972 } 973 974 /* Transmit underrun, reset and re-enable 975 * transmitter. 976 */ 977 if (txstatusdword & IPG_TS_TX_UNDERRUN) { 978 IPG_DEBUG_MSG("Transmitter underrun.\n"); 979 sp->stats.tx_fifo_errors++; 980 ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA | 981 IPG_AC_NETWORK | IPG_AC_FIFO); 982 983 /* Re-configure after DMA reset. */ 984 if (ipg_io_config(dev) < 0) { 985 printk(KERN_INFO 986 "%s: Error during re-configuration.\n", 987 dev->name); 988 } 989 init_tfdlist(dev); 990 991 ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) & 992 IPG_MC_RSVD_MASK, MAC_CTRL); 993 } 994 } 995 996 ipg_nic_txfree(dev); 997} 998 999/* Provides statistical information about the IPG NIC. */ 1000static struct net_device_stats *ipg_nic_get_stats(struct net_device *dev) 1001{ 1002 struct ipg_nic_private *sp = netdev_priv(dev); 1003 void __iomem *ioaddr = sp->ioaddr; 1004 u16 temp1; 1005 u16 temp2; 1006 1007 IPG_DEBUG_MSG("_nic_get_stats\n"); 1008 1009 /* Check to see if the NIC has been initialized via nic_open, 1010 * before trying to read statistic registers. 1011 */ 1012 if (!test_bit(__LINK_STATE_START, &dev->state)) 1013 return &sp->stats; 1014 1015 sp->stats.rx_packets += ipg_r32(IPG_FRAMESRCVDOK); 1016 sp->stats.tx_packets += ipg_r32(IPG_FRAMESXMTDOK); 1017 sp->stats.rx_bytes += ipg_r32(IPG_OCTETRCVOK); 1018 sp->stats.tx_bytes += ipg_r32(IPG_OCTETXMTOK); 1019 temp1 = ipg_r16(IPG_FRAMESLOSTRXERRORS); 1020 sp->stats.rx_errors += temp1; 1021 sp->stats.rx_missed_errors += temp1; 1022 temp1 = ipg_r32(IPG_SINGLECOLFRAMES) + ipg_r32(IPG_MULTICOLFRAMES) + 1023 ipg_r32(IPG_LATECOLLISIONS); 1024 temp2 = ipg_r16(IPG_CARRIERSENSEERRORS); 1025 sp->stats.collisions += temp1; 1026 sp->stats.tx_dropped += ipg_r16(IPG_FRAMESABORTXSCOLLS); 1027 sp->stats.tx_errors += ipg_r16(IPG_FRAMESWEXDEFERRAL) + 1028 ipg_r32(IPG_FRAMESWDEFERREDXMT) + temp1 + temp2; 1029 sp->stats.multicast += ipg_r32(IPG_MCSTOCTETRCVDOK); 1030 1031 /* detailed tx_errors */ 1032 sp->stats.tx_carrier_errors += temp2; 1033 1034 /* detailed rx_errors */ 1035 sp->stats.rx_length_errors += ipg_r16(IPG_INRANGELENGTHERRORS) + 1036 ipg_r16(IPG_FRAMETOOLONGERRRORS); 1037 sp->stats.rx_crc_errors += ipg_r16(IPG_FRAMECHECKSEQERRORS); 1038 1039 /* Unutilized IPG statistic registers. */ 1040 ipg_r32(IPG_MCSTFRAMESRCVDOK); 1041 1042 return &sp->stats; 1043} 1044 1045/* Restore used receive buffers. */ 1046static int ipg_nic_rxrestore(struct net_device *dev) 1047{ 1048 struct ipg_nic_private *sp = netdev_priv(dev); 1049 const unsigned int curr = sp->rx_current; 1050 unsigned int dirty = sp->rx_dirty; 1051 1052 IPG_DEBUG_MSG("_nic_rxrestore\n"); 1053 1054 for (dirty = sp->rx_dirty; curr - dirty > 0; dirty++) { 1055 unsigned int entry = dirty % IPG_RFDLIST_LENGTH; 1056 1057 /* rx_copybreak may poke hole here and there. */ 1058 if (sp->rx_buff[entry]) 1059 continue; 1060 1061 /* Generate a new receive buffer to replace the 1062 * current buffer (which will be released by the 1063 * Linux system). 1064 */ 1065 if (ipg_get_rxbuff(dev, entry) < 0) { 1066 IPG_DEBUG_MSG("Cannot allocate new Rx buffer.\n"); 1067 1068 break; 1069 } 1070 1071 /* Reset the RFS field. */ 1072 sp->rxd[entry].rfs = 0x0000000000000000; 1073 } 1074 sp->rx_dirty = dirty; 1075 1076 return 0; 1077} 1078 1079#ifdef JUMBO_FRAME 1080 1081/* use jumboindex and jumbosize to control jumbo frame status 1082 * initial status is jumboindex=-1 and jumbosize=0 1083 * 1. jumboindex = -1 and jumbosize=0 : previous jumbo frame has been done. 1084 * 2. jumboindex != -1 and jumbosize != 0 : jumbo frame is not over size and receiving 1085 * 3. jumboindex = -1 and jumbosize != 0 : jumbo frame is over size, already dump 1086 * previous receiving and need to continue dumping the current one 1087 */ 1088enum { 1089 NORMAL_PACKET, 1090 ERROR_PACKET 1091}; 1092 1093enum { 1094 FRAME_NO_START_NO_END = 0, 1095 FRAME_WITH_START = 1, 1096 FRAME_WITH_END = 10, 1097 FRAME_WITH_START_WITH_END = 11 1098}; 1099 1100inline void ipg_nic_rx_free_skb(struct net_device *dev) 1101{ 1102 struct ipg_nic_private *sp = netdev_priv(dev); 1103 unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH; 1104 1105 if (sp->rx_buff[entry]) { 1106 struct ipg_rx *rxfd = sp->rxd + entry; 1107 1108 pci_unmap_single(sp->pdev, 1109 le64_to_cpu(rxfd->frag_info & ~IPG_RFI_FRAGLEN), 1110 sp->rx_buf_sz, PCI_DMA_FROMDEVICE); 1111 dev_kfree_skb_irq(sp->rx_buff[entry]); 1112 sp->rx_buff[entry] = NULL; 1113 } 1114} 1115 1116inline int ipg_nic_rx_check_frame_type(struct net_device *dev) 1117{ 1118 struct ipg_nic_private *sp = netdev_priv(dev); 1119 struct ipg_rx *rxfd = sp->rxd + (sp->rx_current % IPG_RFDLIST_LENGTH); 1120 int type = FRAME_NO_START_NO_END; 1121 1122 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART) 1123 type += FRAME_WITH_START; 1124 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND) 1125 type += FRAME_WITH_END; 1126 return type; 1127} 1128 1129inline int ipg_nic_rx_check_error(struct net_device *dev) 1130{ 1131 struct ipg_nic_private *sp = netdev_priv(dev); 1132 unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH; 1133 struct ipg_rx *rxfd = sp->rxd + entry; 1134 1135 if (IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) & 1136 (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME | 1137 IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR | 1138 IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR))) { 1139 IPG_DEBUG_MSG("Rx error, RFS = %16.16lx\n", 1140 (unsigned long) rxfd->rfs); 1141 1142 /* Increment general receive error statistic. */ 1143 sp->stats.rx_errors++; 1144 1145 /* Increment detailed receive error statistics. */ 1146 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) { 1147 IPG_DEBUG_MSG("RX FIFO overrun occured.\n"); 1148 1149 sp->stats.rx_fifo_errors++; 1150 } 1151 1152 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) { 1153 IPG_DEBUG_MSG("RX runt occured.\n"); 1154 sp->stats.rx_length_errors++; 1155 } 1156 1157 /* Do nothing for IPG_RFS_RXOVERSIZEDFRAME, 1158 * error count handled by a IPG statistic register. 1159 */ 1160 1161 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) { 1162 IPG_DEBUG_MSG("RX alignment error occured.\n"); 1163 sp->stats.rx_frame_errors++; 1164 } 1165 1166 /* Do nothing for IPG_RFS_RXFCSERROR, error count 1167 * handled by a IPG statistic register. 1168 */ 1169 1170 /* Free the memory associated with the RX 1171 * buffer since it is erroneous and we will 1172 * not pass it to higher layer processes. 1173 */ 1174 if (sp->rx_buff[entry]) { 1175 pci_unmap_single(sp->pdev, 1176 le64_to_cpu(rxfd->frag_info & ~IPG_RFI_FRAGLEN), 1177 sp->rx_buf_sz, PCI_DMA_FROMDEVICE); 1178 1179 dev_kfree_skb_irq(sp->rx_buff[entry]); 1180 sp->rx_buff[entry] = NULL; 1181 } 1182 return ERROR_PACKET; 1183 } 1184 return NORMAL_PACKET; 1185} 1186 1187static void ipg_nic_rx_with_start_and_end(struct net_device *dev, 1188 struct ipg_nic_private *sp, 1189 struct ipg_rx *rxfd, unsigned entry) 1190{ 1191 struct ipg_jumbo *jumbo = &sp->jumbo; 1192 struct sk_buff *skb; 1193 int framelen; 1194 1195 if (jumbo->found_start) { 1196 dev_kfree_skb_irq(jumbo->skb); 1197 jumbo->found_start = 0; 1198 jumbo->current_size = 0; 1199 jumbo->skb = NULL; 1200 } 1201 1202 /* 1: found error, 0 no error */ 1203 if (ipg_nic_rx_check_error(dev) != NORMAL_PACKET) 1204 return; 1205 1206 skb = sp->rx_buff[entry]; 1207 if (!skb) 1208 return; 1209 1210 /* accept this frame and send to upper layer */ 1211 framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN; 1212 if (framelen > IPG_RXFRAG_SIZE) 1213 framelen = IPG_RXFRAG_SIZE; 1214 1215 skb_put(skb, framelen); 1216 skb->protocol = eth_type_trans(skb, dev); 1217 skb->ip_summed = CHECKSUM_NONE; 1218 netif_rx(skb); 1219 dev->last_rx = jiffies; 1220 sp->rx_buff[entry] = NULL; 1221} 1222 1223static void ipg_nic_rx_with_start(struct net_device *dev, 1224 struct ipg_nic_private *sp, 1225 struct ipg_rx *rxfd, unsigned entry) 1226{ 1227 struct ipg_jumbo *jumbo = &sp->jumbo; 1228 struct pci_dev *pdev = sp->pdev; 1229 struct sk_buff *skb; 1230 1231 /* 1: found error, 0 no error */ 1232 if (ipg_nic_rx_check_error(dev) != NORMAL_PACKET) 1233 return; 1234 1235 /* accept this frame and send to upper layer */ 1236 skb = sp->rx_buff[entry]; 1237 if (!skb) 1238 return; 1239 1240 if (jumbo->found_start) 1241 dev_kfree_skb_irq(jumbo->skb); 1242 1243 pci_unmap_single(pdev, le64_to_cpu(rxfd->frag_info & ~IPG_RFI_FRAGLEN), 1244 sp->rx_buf_sz, PCI_DMA_FROMDEVICE); 1245 1246 skb_put(skb, IPG_RXFRAG_SIZE); 1247 1248 jumbo->found_start = 1; 1249 jumbo->current_size = IPG_RXFRAG_SIZE; 1250 jumbo->skb = skb; 1251 1252 sp->rx_buff[entry] = NULL; 1253 dev->last_rx = jiffies; 1254} 1255 1256static void ipg_nic_rx_with_end(struct net_device *dev, 1257 struct ipg_nic_private *sp, 1258 struct ipg_rx *rxfd, unsigned entry) 1259{ 1260 struct ipg_jumbo *jumbo = &sp->jumbo; 1261 1262 /* 1: found error, 0 no error */ 1263 if (ipg_nic_rx_check_error(dev) == NORMAL_PACKET) { 1264 struct sk_buff *skb = sp->rx_buff[entry]; 1265 1266 if (!skb) 1267 return; 1268 1269 if (jumbo->found_start) { 1270 int framelen, endframelen; 1271 1272 framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN; 1273 1274 endframeLen = framelen - jumbo->current_size; 1275 /* 1276 if (framelen > IPG_RXFRAG_SIZE) 1277 framelen=IPG_RXFRAG_SIZE; 1278 */ 1279 if (framelen > IPG_RXSUPPORT_SIZE) 1280 dev_kfree_skb_irq(jumbo->skb); 1281 else { 1282 memcpy(skb_put(jumbo->skb, endframeLen), 1283 skb->data, endframeLen); 1284 1285 jumbo->skb->protocol = 1286 eth_type_trans(jumbo->skb, dev); 1287 1288 jumbo->skb->ip_summed = CHECKSUM_NONE; 1289 netif_rx(jumbo->skb); 1290 } 1291 } 1292 1293 dev->last_rx = jiffies; 1294 jumbo->found_start = 0; 1295 jumbo->current_size = 0; 1296 jumbo->skb = NULL; 1297 1298 ipg_nic_rx_free_skb(dev); 1299 } else { 1300 dev_kfree_skb_irq(jumbo->skb); 1301 jumbo->found_start = 0; 1302 jumbo->current_size = 0; 1303 jumbo->skb = NULL; 1304 } 1305} 1306 1307static void ipg_nic_rx_no_start_no_end(struct net_device *dev, 1308 struct ipg_nic_private *sp, 1309 struct ipg_rx *rxfd, unsigned entry) 1310{ 1311 struct ipg_jumbo *jumbo = &sp->jumbo; 1312 1313 /* 1: found error, 0 no error */ 1314 if (ipg_nic_rx_check_error(dev) == NORMAL_PACKET) { 1315 struct sk_buff *skb = sp->rx_buff[entry]; 1316 1317 if (skb) { 1318 if (jumbo->found_start) { 1319 jumbo->current_size += IPG_RXFRAG_SIZE; 1320 if (jumbo->current_size <= IPG_RXSUPPORT_SIZE) { 1321 memcpy(skb_put(jumbo->skb, 1322 IPG_RXFRAG_SIZE), 1323 skb->data, IPG_RXFRAG_SIZE); 1324 } 1325 } 1326 dev->last_rx = jiffies; 1327 ipg_nic_rx_free_skb(dev); 1328 } 1329 } else { 1330 dev_kfree_skb_irq(jumbo->skb); 1331 jumbo->found_start = 0; 1332 jumbo->current_size = 0; 1333 jumbo->skb = NULL; 1334 } 1335} 1336 1337static int ipg_nic_rx(struct net_device *dev) 1338{ 1339 struct ipg_nic_private *sp = netdev_priv(dev); 1340 unsigned int curr = sp->rx_current; 1341 void __iomem *ioaddr = sp->ioaddr; 1342 unsigned int i; 1343 1344 IPG_DEBUG_MSG("_nic_rx\n"); 1345 1346 for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) { 1347 unsigned int entry = curr % IPG_RFDLIST_LENGTH; 1348 struct ipg_rx *rxfd = sp->rxd + entry; 1349 1350 if (!(rxfd->rfs & le64_to_cpu(IPG_RFS_RFDDONE))) 1351 break; 1352 1353 switch (ipg_nic_rx_check_frame_type(dev)) { 1354 case FRAME_WITH_START_WITH_END: 1355 ipg_nic_rx_with_start_and_end(dev, tp, rxfd, entry); 1356 break; 1357 case FRAME_WITH_START: 1358 ipg_nic_rx_with_start(dev, tp, rxfd, entry); 1359 break; 1360 case FRAME_WITH_END: 1361 ipg_nic_rx_with_end(dev, tp, rxfd, entry); 1362 break; 1363 case FRAME_NO_START_NO_END: 1364 ipg_nic_rx_no_start_no_end(dev, tp, rxfd, entry); 1365 break; 1366 } 1367 } 1368 1369 sp->rx_current = curr; 1370 1371 if (i == IPG_MAXRFDPROCESS_COUNT) { 1372 /* There are more RFDs to process, however the 1373 * allocated amount of RFD processing time has 1374 * expired. Assert Interrupt Requested to make 1375 * sure we come back to process the remaining RFDs. 1376 */ 1377 ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL); 1378 } 1379 1380 ipg_nic_rxrestore(dev); 1381 1382 return 0; 1383} 1384 1385#else 1386static int ipg_nic_rx(struct net_device *dev) 1387{ 1388 /* Transfer received Ethernet frames to higher network layers. */ 1389 struct ipg_nic_private *sp = netdev_priv(dev); 1390 unsigned int curr = sp->rx_current; 1391 void __iomem *ioaddr = sp->ioaddr; 1392 struct ipg_rx *rxfd; 1393 unsigned int i; 1394 1395 IPG_DEBUG_MSG("_nic_rx\n"); 1396 1397#define __RFS_MASK \ 1398 cpu_to_le64(IPG_RFS_RFDDONE | IPG_RFS_FRAMESTART | IPG_RFS_FRAMEEND) 1399 1400 for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) { 1401 unsigned int entry = curr % IPG_RFDLIST_LENGTH; 1402 struct sk_buff *skb = sp->rx_buff[entry]; 1403 unsigned int framelen; 1404 1405 rxfd = sp->rxd + entry; 1406 1407 if (((rxfd->rfs & __RFS_MASK) != __RFS_MASK) || !skb) 1408 break; 1409 1410 /* Get received frame length. */ 1411 framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN; 1412 1413 /* Check for jumbo frame arrival with too small 1414 * RXFRAG_SIZE. 1415 */ 1416 if (framelen > IPG_RXFRAG_SIZE) { 1417 IPG_DEBUG_MSG 1418 ("RFS FrameLen > allocated fragment size.\n"); 1419 1420 framelen = IPG_RXFRAG_SIZE; 1421 } 1422 1423 if ((IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) & 1424 (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME | 1425 IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR | 1426 IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR)))) { 1427 1428 IPG_DEBUG_MSG("Rx error, RFS = %16.16lx\n", 1429 (unsigned long int) rxfd->rfs); 1430 1431 /* Increment general receive error statistic. */ 1432 sp->stats.rx_errors++; 1433 1434 /* Increment detailed receive error statistics. */ 1435 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) { 1436 IPG_DEBUG_MSG("RX FIFO overrun occured.\n"); 1437 sp->stats.rx_fifo_errors++; 1438 } 1439 1440 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) { 1441 IPG_DEBUG_MSG("RX runt occured.\n"); 1442 sp->stats.rx_length_errors++; 1443 } 1444 1445 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXOVERSIZEDFRAME) ; 1446 /* Do nothing, error count handled by a IPG 1447 * statistic register. 1448 */ 1449 1450 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) { 1451 IPG_DEBUG_MSG("RX alignment error occured.\n"); 1452 sp->stats.rx_frame_errors++; 1453 } 1454 1455 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFCSERROR) ; 1456 /* Do nothing, error count handled by a IPG 1457 * statistic register. 1458 */ 1459 1460 /* Free the memory associated with the RX 1461 * buffer since it is erroneous and we will 1462 * not pass it to higher layer processes. 1463 */ 1464 if (skb) { 1465 __le64 info = rxfd->frag_info; 1466 1467 pci_unmap_single(sp->pdev, 1468 le64_to_cpu(info) & ~IPG_RFI_FRAGLEN, 1469 sp->rx_buf_sz, PCI_DMA_FROMDEVICE); 1470 1471 dev_kfree_skb_irq(skb); 1472 } 1473 } else { 1474 1475 /* Adjust the new buffer length to accomodate the size 1476 * of the received frame. 1477 */ 1478 skb_put(skb, framelen); 1479 1480 /* Set the buffer's protocol field to Ethernet. */ 1481 skb->protocol = eth_type_trans(skb, dev); 1482 1483 /* The IPG encountered an error with (or 1484 * there were no) IP/TCP/UDP checksums. 1485 * This may or may not indicate an invalid 1486 * IP/TCP/UDP frame was received. Let the 1487 * upper layer decide. 1488 */ 1489 skb->ip_summed = CHECKSUM_NONE; 1490 1491 /* Hand off frame for higher layer processing. 1492 * The function netif_rx() releases the sk_buff 1493 * when processing completes. 1494 */ 1495 netif_rx(skb); 1496 1497 /* Record frame receive time (jiffies = Linux 1498 * kernel current time stamp). 1499 */ 1500 dev->last_rx = jiffies; 1501 } 1502 1503 /* Assure RX buffer is not reused by IPG. */ 1504 sp->rx_buff[entry] = NULL; 1505 } 1506 1507 /* 1508 * If there are more RFDs to proces and the allocated amount of RFD 1509 * processing time has expired, assert Interrupt Requested to make 1510 * sure we come back to process the remaining RFDs. 1511 */ 1512 if (i == IPG_MAXRFDPROCESS_COUNT) 1513 ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL); 1514 1515#ifdef IPG_DEBUG 1516 /* Check if the RFD list contained no receive frame data. */ 1517 if (!i) 1518 sp->EmptyRFDListCount++; 1519#endif 1520 while ((le64_to_cpu(rxfd->rfs) & IPG_RFS_RFDDONE) && 1521 !((le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART) && 1522 (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND))) { 1523 unsigned int entry = curr++ % IPG_RFDLIST_LENGTH; 1524 1525 rxfd = sp->rxd + entry; 1526 1527 IPG_DEBUG_MSG("Frame requires multiple RFDs.\n"); 1528 1529 /* An unexpected event, additional code needed to handle 1530 * properly. So for the time being, just disregard the 1531 * frame. 1532 */ 1533 1534 /* Free the memory associated with the RX 1535 * buffer since it is erroneous and we will 1536 * not pass it to higher layer processes. 1537 */ 1538 if (sp->rx_buff[entry]) { 1539 pci_unmap_single(sp->pdev, 1540 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN, 1541 sp->rx_buf_sz, PCI_DMA_FROMDEVICE); 1542 dev_kfree_skb_irq(sp->rx_buff[entry]); 1543 } 1544 1545 /* Assure RX buffer is not reused by IPG. */ 1546 sp->rx_buff[entry] = NULL; 1547 } 1548 1549 sp->rx_current = curr; 1550 1551 /* Check to see if there are a minimum number of used 1552 * RFDs before restoring any (should improve performance.) 1553 */ 1554 if ((curr - sp->rx_dirty) >= IPG_MINUSEDRFDSTOFREE) 1555 ipg_nic_rxrestore(dev); 1556 1557 return 0; 1558} 1559#endif 1560 1561static void ipg_reset_after_host_error(struct work_struct *work) 1562{ 1563 struct ipg_nic_private *sp = 1564 container_of(work, struct ipg_nic_private, task.work); 1565 struct net_device *dev = sp->dev; 1566 1567 IPG_DDEBUG_MSG("DMACtrl = %8.8x\n", ioread32(sp->ioaddr + IPG_DMACTRL)); 1568 1569 /* 1570 * Acknowledge HostError interrupt by resetting 1571 * IPG DMA and HOST. 1572 */ 1573 ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA); 1574 1575 init_rfdlist(dev); 1576 init_tfdlist(dev); 1577 1578 if (ipg_io_config(dev) < 0) { 1579 printk(KERN_INFO "%s: Cannot recover from PCI error.\n", 1580 dev->name); 1581 schedule_delayed_work(&sp->task, HZ); 1582 } 1583} 1584 1585static irqreturn_t ipg_interrupt_handler(int irq, void *dev_inst) 1586{ 1587 struct net_device *dev = dev_inst; 1588 struct ipg_nic_private *sp = netdev_priv(dev); 1589 void __iomem *ioaddr = sp->ioaddr; 1590 unsigned int handled = 0; 1591 u16 status; 1592 1593 IPG_DEBUG_MSG("_interrupt_handler\n"); 1594 1595#ifdef JUMBO_FRAME 1596 ipg_nic_rxrestore(dev); 1597#endif 1598 spin_lock(&sp->lock); 1599 1600 /* Get interrupt source information, and acknowledge 1601 * some (i.e. TxDMAComplete, RxDMAComplete, RxEarly, 1602 * IntRequested, MacControlFrame, LinkEvent) interrupts 1603 * if issued. Also, all IPG interrupts are disabled by 1604 * reading IntStatusAck. 1605 */ 1606 status = ipg_r16(INT_STATUS_ACK); 1607 1608 IPG_DEBUG_MSG("IntStatusAck = %4.4x\n", status); 1609 1610 /* Shared IRQ of remove event. */ 1611 if (!(status & IPG_IS_RSVD_MASK)) 1612 goto out_enable; 1613 1614 handled = 1; 1615 1616 if (unlikely(!netif_running(dev))) 1617 goto out_unlock; 1618 1619 /* If RFDListEnd interrupt, restore all used RFDs. */ 1620 if (status & IPG_IS_RFD_LIST_END) { 1621 IPG_DEBUG_MSG("RFDListEnd Interrupt.\n"); 1622 1623 /* The RFD list end indicates an RFD was encountered 1624 * with a 0 NextPtr, or with an RFDDone bit set to 1 1625 * (indicating the RFD is not read for use by the 1626 * IPG.) Try to restore all RFDs. 1627 */ 1628 ipg_nic_rxrestore(dev); 1629 1630#ifdef IPG_DEBUG 1631 /* Increment the RFDlistendCount counter. */ 1632 sp->RFDlistendCount++; 1633#endif 1634 } 1635 1636 /* If RFDListEnd, RxDMAPriority, RxDMAComplete, or 1637 * IntRequested interrupt, process received frames. */ 1638 if ((status & IPG_IS_RX_DMA_PRIORITY) || 1639 (status & IPG_IS_RFD_LIST_END) || 1640 (status & IPG_IS_RX_DMA_COMPLETE) || 1641 (status & IPG_IS_INT_REQUESTED)) { 1642#ifdef IPG_DEBUG 1643 /* Increment the RFD list checked counter if interrupted 1644 * only to check the RFD list. */ 1645 if (status & (~(IPG_IS_RX_DMA_PRIORITY | IPG_IS_RFD_LIST_END | 1646 IPG_IS_RX_DMA_COMPLETE | IPG_IS_INT_REQUESTED) & 1647 (IPG_IS_HOST_ERROR | IPG_IS_TX_DMA_COMPLETE | 1648 IPG_IS_LINK_EVENT | IPG_IS_TX_COMPLETE | 1649 IPG_IS_UPDATE_STATS))) 1650 sp->RFDListCheckedCount++; 1651#endif 1652 1653 ipg_nic_rx(dev); 1654 } 1655 1656 /* If TxDMAComplete interrupt, free used TFDs. */ 1657 if (status & IPG_IS_TX_DMA_COMPLETE) 1658 ipg_nic_txfree(dev); 1659 1660 /* TxComplete interrupts indicate one of numerous actions. 1661 * Determine what action to take based on TXSTATUS register. 1662 */ 1663 if (status & IPG_IS_TX_COMPLETE) 1664 ipg_nic_txcleanup(dev); 1665 1666 /* If UpdateStats interrupt, update Linux Ethernet statistics */ 1667 if (status & IPG_IS_UPDATE_STATS) 1668 ipg_nic_get_stats(dev); 1669 1670 /* If HostError interrupt, reset IPG. */ 1671 if (status & IPG_IS_HOST_ERROR) { 1672 IPG_DDEBUG_MSG("HostError Interrupt\n"); 1673 1674 schedule_delayed_work(&sp->task, 0); 1675 } 1676 1677 /* If LinkEvent interrupt, resolve autonegotiation. */ 1678 if (status & IPG_IS_LINK_EVENT) { 1679 if (ipg_config_autoneg(dev) < 0) 1680 printk(KERN_INFO "%s: Auto-negotiation error.\n", 1681 dev->name); 1682 } 1683 1684 /* If MACCtrlFrame interrupt, do nothing. */ 1685 if (status & IPG_IS_MAC_CTRL_FRAME) 1686 IPG_DEBUG_MSG("MACCtrlFrame interrupt.\n"); 1687 1688 /* If RxComplete interrupt, do nothing. */ 1689 if (status & IPG_IS_RX_COMPLETE) 1690 IPG_DEBUG_MSG("RxComplete interrupt.\n"); 1691 1692 /* If RxEarly interrupt, do nothing. */ 1693 if (status & IPG_IS_RX_EARLY) 1694 IPG_DEBUG_MSG("RxEarly interrupt.\n"); 1695 1696out_enable: 1697 /* Re-enable IPG interrupts. */ 1698 ipg_w16(IPG_IE_TX_DMA_COMPLETE | IPG_IE_RX_DMA_COMPLETE | 1699 IPG_IE_HOST_ERROR | IPG_IE_INT_REQUESTED | IPG_IE_TX_COMPLETE | 1700 IPG_IE_LINK_EVENT | IPG_IE_UPDATE_STATS, INT_ENABLE); 1701out_unlock: 1702 spin_unlock(&sp->lock); 1703 1704 return IRQ_RETVAL(handled); 1705} 1706 1707static void ipg_rx_clear(struct ipg_nic_private *sp) 1708{ 1709 unsigned int i; 1710 1711 for (i = 0; i < IPG_RFDLIST_LENGTH; i++) { 1712 if (sp->rx_buff[i]) { 1713 struct ipg_rx *rxfd = sp->rxd + i; 1714 1715 dev_kfree_skb_irq(sp->rx_buff[i]); 1716 sp->rx_buff[i] = NULL; 1717 pci_unmap_single(sp->pdev, 1718 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN, 1719 sp->rx_buf_sz, PCI_DMA_FROMDEVICE); 1720 } 1721 } 1722} 1723 1724static void ipg_tx_clear(struct ipg_nic_private *sp) 1725{ 1726 unsigned int i; 1727 1728 for (i = 0; i < IPG_TFDLIST_LENGTH; i++) { 1729 if (sp->tx_buff[i]) { 1730 struct ipg_tx *txfd = sp->txd + i; 1731 1732 pci_unmap_single(sp->pdev, 1733 le64_to_cpu(txfd->frag_info) & ~IPG_TFI_FRAGLEN, 1734 sp->tx_buff[i]->len, PCI_DMA_TODEVICE); 1735 1736 dev_kfree_skb_irq(sp->tx_buff[i]); 1737 1738 sp->tx_buff[i] = NULL; 1739 } 1740 } 1741} 1742 1743static int ipg_nic_open(struct net_device *dev) 1744{ 1745 struct ipg_nic_private *sp = netdev_priv(dev); 1746 void __iomem *ioaddr = sp->ioaddr; 1747 struct pci_dev *pdev = sp->pdev; 1748 int rc; 1749 1750 IPG_DEBUG_MSG("_nic_open\n"); 1751 1752 sp->rx_buf_sz = IPG_RXSUPPORT_SIZE; 1753 1754 /* Check for interrupt line conflicts, and request interrupt 1755 * line for IPG. 1756 * 1757 * IMPORTANT: Disable IPG interrupts prior to registering 1758 * IRQ. 1759 */ 1760 ipg_w16(0x0000, INT_ENABLE); 1761 1762 /* Register the interrupt line to be used by the IPG within 1763 * the Linux system. 1764 */ 1765 rc = request_irq(pdev->irq, &ipg_interrupt_handler, IRQF_SHARED, 1766 dev->name, dev); 1767 if (rc < 0) { 1768 printk(KERN_INFO "%s: Error when requesting interrupt.\n", 1769 dev->name); 1770 goto out; 1771 } 1772 1773 dev->irq = pdev->irq; 1774 1775 rc = -ENOMEM; 1776 1777 sp->rxd = dma_alloc_coherent(&pdev->dev, IPG_RX_RING_BYTES, 1778 &sp->rxd_map, GFP_KERNEL); 1779 if (!sp->rxd) 1780 goto err_free_irq_0; 1781 1782 sp->txd = dma_alloc_coherent(&pdev->dev, IPG_TX_RING_BYTES, 1783 &sp->txd_map, GFP_KERNEL); 1784 if (!sp->txd) 1785 goto err_free_rx_1; 1786 1787 rc = init_rfdlist(dev); 1788 if (rc < 0) { 1789 printk(KERN_INFO "%s: Error during configuration.\n", 1790 dev->name); 1791 goto err_free_tx_2; 1792 } 1793 1794 init_tfdlist(dev); 1795 1796 rc = ipg_io_config(dev); 1797 if (rc < 0) { 1798 printk(KERN_INFO "%s: Error during configuration.\n", 1799 dev->name); 1800 goto err_release_tfdlist_3; 1801 } 1802 1803 /* Resolve autonegotiation. */ 1804 if (ipg_config_autoneg(dev) < 0) 1805 printk(KERN_INFO "%s: Auto-negotiation error.\n", dev->name); 1806 1807#ifdef JUMBO_FRAME 1808 /* initialize JUMBO Frame control variable */ 1809 sp->jumbo.found_start = 0; 1810 sp->jumbo.current_size = 0; 1811 sp->jumbo.skb = 0; 1812 dev->mtu = IPG_TXFRAG_SIZE; 1813#endif 1814 1815 /* Enable transmit and receive operation of the IPG. */ 1816 ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_RX_ENABLE | IPG_MC_TX_ENABLE) & 1817 IPG_MC_RSVD_MASK, MAC_CTRL); 1818 1819 netif_start_queue(dev); 1820out: 1821 return rc; 1822 1823err_release_tfdlist_3: 1824 ipg_tx_clear(sp); 1825 ipg_rx_clear(sp); 1826err_free_tx_2: 1827 dma_free_coherent(&pdev->dev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map); 1828err_free_rx_1: 1829 dma_free_coherent(&pdev->dev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map); 1830err_free_irq_0: 1831 free_irq(pdev->irq, dev); 1832 goto out; 1833} 1834 1835static int ipg_nic_stop(struct net_device *dev) 1836{ 1837 struct ipg_nic_private *sp = netdev_priv(dev); 1838 void __iomem *ioaddr = sp->ioaddr; 1839 struct pci_dev *pdev = sp->pdev; 1840 1841 IPG_DEBUG_MSG("_nic_stop\n"); 1842 1843 netif_stop_queue(dev); 1844 1845 IPG_DDEBUG_MSG("RFDlistendCount = %i\n", sp->RFDlistendCount); 1846 IPG_DDEBUG_MSG("RFDListCheckedCount = %i\n", sp->rxdCheckedCount); 1847 IPG_DDEBUG_MSG("EmptyRFDListCount = %i\n", sp->EmptyRFDListCount); 1848 IPG_DUMPTFDLIST(dev); 1849 1850 do { 1851 (void) ipg_r16(INT_STATUS_ACK); 1852 1853 ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA); 1854 1855 synchronize_irq(pdev->irq); 1856 } while (ipg_r16(INT_ENABLE) & IPG_IE_RSVD_MASK); 1857 1858 ipg_rx_clear(sp); 1859 1860 ipg_tx_clear(sp); 1861 1862 pci_free_consistent(pdev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map); 1863 pci_free_consistent(pdev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map); 1864 1865 free_irq(pdev->irq, dev); 1866 1867 return 0; 1868} 1869 1870static int ipg_nic_hard_start_xmit(struct sk_buff *skb, struct net_device *dev) 1871{ 1872 struct ipg_nic_private *sp = netdev_priv(dev); 1873 void __iomem *ioaddr = sp->ioaddr; 1874 unsigned int entry = sp->tx_current % IPG_TFDLIST_LENGTH; 1875 unsigned long flags; 1876 struct ipg_tx *txfd; 1877 1878 IPG_DDEBUG_MSG("_nic_hard_start_xmit\n"); 1879 1880 /* If in 10Mbps mode, stop the transmit queue so 1881 * no more transmit frames are accepted. 1882 */ 1883 if (sp->tenmbpsmode) 1884 netif_stop_queue(dev); 1885 1886 if (sp->reset_current_tfd) { 1887 sp->reset_current_tfd = 0; 1888 entry = 0; 1889 } 1890 1891 txfd = sp->txd + entry; 1892 1893 sp->tx_buff[entry] = skb; 1894 1895 /* Clear all TFC fields, except TFDDONE. */ 1896 txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE); 1897 1898 /* Specify the TFC field within the TFD. */ 1899 txfd->tfc |= cpu_to_le64(IPG_TFC_WORDALIGNDISABLED | 1900 (IPG_TFC_FRAMEID & sp->tx_current) | 1901 (IPG_TFC_FRAGCOUNT & (1 << 24))); 1902 /* 1903 * 16--17 (WordAlign) <- 3 (disable), 1904 * 0--15 (FrameId) <- sp->tx_current, 1905 * 24--27 (FragCount) <- 1 1906 */ 1907 1908 /* Request TxComplete interrupts at an interval defined 1909 * by the constant IPG_FRAMESBETWEENTXCOMPLETES. 1910 * Request TxComplete interrupt for every frame 1911 * if in 10Mbps mode to accomodate problem with 10Mbps 1912 * processing. 1913 */ 1914 if (sp->tenmbpsmode) 1915 txfd->tfc |= cpu_to_le64(IPG_TFC_TXINDICATE); 1916 txfd->tfc |= cpu_to_le64(IPG_TFC_TXDMAINDICATE); 1917 /* Based on compilation option, determine if FCS is to be 1918 * appended to transmit frame by IPG. 1919 */ 1920 if (!(IPG_APPEND_FCS_ON_TX)) 1921 txfd->tfc |= cpu_to_le64(IPG_TFC_FCSAPPENDDISABLE); 1922 1923 /* Based on compilation option, determine if IP, TCP and/or 1924 * UDP checksums are to be added to transmit frame by IPG. 1925 */ 1926 if (IPG_ADD_IPCHECKSUM_ON_TX) 1927 txfd->tfc |= cpu_to_le64(IPG_TFC_IPCHECKSUMENABLE); 1928 1929 if (IPG_ADD_TCPCHECKSUM_ON_TX) 1930 txfd->tfc |= cpu_to_le64(IPG_TFC_TCPCHECKSUMENABLE); 1931 1932 if (IPG_ADD_UDPCHECKSUM_ON_TX) 1933 txfd->tfc |= cpu_to_le64(IPG_TFC_UDPCHECKSUMENABLE); 1934 1935 /* Based on compilation option, determine if VLAN tag info is to be 1936 * inserted into transmit frame by IPG. 1937 */ 1938 if (IPG_INSERT_MANUAL_VLAN_TAG) { 1939 txfd->tfc |= cpu_to_le64(IPG_TFC_VLANTAGINSERT | 1940 ((u64) IPG_MANUAL_VLAN_VID << 32) | 1941 ((u64) IPG_MANUAL_VLAN_CFI << 44) | 1942 ((u64) IPG_MANUAL_VLAN_USERPRIORITY << 45)); 1943 } 1944 1945 /* The fragment start location within system memory is defined 1946 * by the sk_buff structure's data field. The physical address 1947 * of this location within the system's virtual memory space 1948 * is determined using the IPG_HOST2BUS_MAP function. 1949 */ 1950 txfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data, 1951 skb->len, PCI_DMA_TODEVICE)); 1952 1953 /* The length of the fragment within system memory is defined by 1954 * the sk_buff structure's len field. 1955 */ 1956 txfd->frag_info |= cpu_to_le64(IPG_TFI_FRAGLEN & 1957 ((u64) (skb->len & 0xffff) << 48)); 1958 1959 /* Clear the TFDDone bit last to indicate the TFD is ready 1960 * for transfer to the IPG. 1961 */ 1962 txfd->tfc &= cpu_to_le64(~IPG_TFC_TFDDONE); 1963 1964 spin_lock_irqsave(&sp->lock, flags); 1965 1966 sp->tx_current++; 1967 1968 mmiowb(); 1969 1970 ipg_w32(IPG_DC_TX_DMA_POLL_NOW, DMA_CTRL); 1971 1972 if (sp->tx_current == (sp->tx_dirty + IPG_TFDLIST_LENGTH)) 1973 netif_stop_queue(dev); 1974 1975 spin_unlock_irqrestore(&sp->lock, flags); 1976 1977 return NETDEV_TX_OK; 1978} 1979 1980static void ipg_set_phy_default_param(unsigned char rev, 1981 struct net_device *dev, int phy_address) 1982{ 1983 unsigned short length; 1984 unsigned char revision; 1985 unsigned short *phy_param; 1986 unsigned short address, value; 1987 1988 phy_param = &DefaultPhyParam[0]; 1989 length = *phy_param & 0x00FF; 1990 revision = (unsigned char)((*phy_param) >> 8); 1991 phy_param++; 1992 while (length != 0) { 1993 if (rev == revision) { 1994 while (length > 1) { 1995 address = *phy_param; 1996 value = *(phy_param + 1); 1997 phy_param += 2; 1998 mdio_write(dev, phy_address, address, value); 1999 length -= 4; 2000 } 2001 break; 2002 } else { 2003 phy_param += length / 2; 2004 length = *phy_param & 0x00FF; 2005 revision = (unsigned char)((*phy_param) >> 8); 2006 phy_param++; 2007 } 2008 } 2009} 2010 2011static int read_eeprom(struct net_device *dev, int eep_addr) 2012{ 2013 void __iomem *ioaddr = ipg_ioaddr(dev); 2014 unsigned int i; 2015 int ret = 0; 2016 u16 value; 2017 2018 value = IPG_EC_EEPROM_READOPCODE | (eep_addr & 0xff); 2019 ipg_w16(value, EEPROM_CTRL); 2020 2021 for (i = 0; i < 1000; i++) { 2022 u16 data; 2023 2024 mdelay(10); 2025 data = ipg_r16(EEPROM_CTRL); 2026 if (!(data & IPG_EC_EEPROM_BUSY)) { 2027 ret = ipg_r16(EEPROM_DATA); 2028 break; 2029 } 2030 } 2031 return ret; 2032} 2033 2034static void ipg_init_mii(struct net_device *dev) 2035{ 2036 struct ipg_nic_private *sp = netdev_priv(dev); 2037 struct mii_if_info *mii_if = &sp->mii_if; 2038 int phyaddr; 2039 2040 mii_if->dev = dev; 2041 mii_if->mdio_read = mdio_read; 2042 mii_if->mdio_write = mdio_write; 2043 mii_if->phy_id_mask = 0x1f; 2044 mii_if->reg_num_mask = 0x1f; 2045 2046 mii_if->phy_id = phyaddr = ipg_find_phyaddr(dev); 2047 2048 if (phyaddr != 0x1f) { 2049 u16 mii_phyctrl, mii_1000cr; 2050 u8 revisionid = 0; 2051 2052 mii_1000cr = mdio_read(dev, phyaddr, MII_CTRL1000); 2053 mii_1000cr |= ADVERTISE_1000FULL | ADVERTISE_1000HALF | 2054 GMII_PHY_1000BASETCONTROL_PreferMaster; 2055 mdio_write(dev, phyaddr, MII_CTRL1000, mii_1000cr); 2056 2057 mii_phyctrl = mdio_read(dev, phyaddr, MII_BMCR); 2058 2059 /* Set default phyparam */ 2060 pci_read_config_byte(sp->pdev, PCI_REVISION_ID, &revisionid); 2061 ipg_set_phy_default_param(revisionid, dev, phyaddr); 2062 2063 /* Reset PHY */ 2064 mii_phyctrl |= BMCR_RESET | BMCR_ANRESTART; 2065 mdio_write(dev, phyaddr, MII_BMCR, mii_phyctrl); 2066 2067 } 2068} 2069 2070static int ipg_hw_init(struct net_device *dev) 2071{ 2072 struct ipg_nic_private *sp = netdev_priv(dev); 2073 void __iomem *ioaddr = sp->ioaddr; 2074 unsigned int i; 2075 int rc; 2076 2077 /* Read/Write and Reset EEPROM Value */ 2078 /* Read LED Mode Configuration from EEPROM */ 2079 sp->led_mode = read_eeprom(dev, 6); 2080 2081 /* Reset all functions within the IPG. Do not assert 2082 * RST_OUT as not compatible with some PHYs. 2083 */ 2084 rc = ipg_reset(dev, IPG_RESET_MASK); 2085 if (rc < 0) 2086 goto out; 2087 2088 ipg_init_mii(dev); 2089 2090 /* Read MAC Address from EEPROM */ 2091 for (i = 0; i < 3; i++) 2092 sp->station_addr[i] = read_eeprom(dev, 16 + i); 2093 2094 for (i = 0; i < 3; i++) 2095 ipg_w16(sp->station_addr[i], STATION_ADDRESS_0 + 2*i); 2096 2097 /* Set station address in ethernet_device structure. */ 2098 dev->dev_addr[0] = ipg_r16(STATION_ADDRESS_0) & 0x00ff; 2099 dev->dev_addr[1] = (ipg_r16(STATION_ADDRESS_0) & 0xff00) >> 8; 2100 dev->dev_addr[2] = ipg_r16(STATION_ADDRESS_1) & 0x00ff; 2101 dev->dev_addr[3] = (ipg_r16(STATION_ADDRESS_1) & 0xff00) >> 8; 2102 dev->dev_addr[4] = ipg_r16(STATION_ADDRESS_2) & 0x00ff; 2103 dev->dev_addr[5] = (ipg_r16(STATION_ADDRESS_2) & 0xff00) >> 8; 2104out: 2105 return rc; 2106} 2107 2108static int ipg_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 2109{ 2110 struct ipg_nic_private *sp = netdev_priv(dev); 2111 int rc; 2112 2113 mutex_lock(&sp->mii_mutex); 2114 rc = generic_mii_ioctl(&sp->mii_if, if_mii(ifr), cmd, NULL); 2115 mutex_unlock(&sp->mii_mutex); 2116 2117 return rc; 2118} 2119 2120static int ipg_nic_change_mtu(struct net_device *dev, int new_mtu) 2121{ 2122 /* Function to accomodate changes to Maximum Transfer Unit 2123 * (or MTU) of IPG NIC. Cannot use default function since 2124 * the default will not allow for MTU > 1500 bytes. 2125 */ 2126 2127 IPG_DEBUG_MSG("_nic_change_mtu\n"); 2128 2129 /* Check that the new MTU value is between 68 (14 byte header, 46 2130 * byte payload, 4 byte FCS) and IPG_MAX_RXFRAME_SIZE, which 2131 * corresponds to the MAXFRAMESIZE register in the IPG. 2132 */ 2133 if ((new_mtu < 68) || (new_mtu > IPG_MAX_RXFRAME_SIZE)) 2134 return -EINVAL; 2135 2136 dev->mtu = new_mtu; 2137 2138 return 0; 2139} 2140 2141static int ipg_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 2142{ 2143 struct ipg_nic_private *sp = netdev_priv(dev); 2144 int rc; 2145 2146 mutex_lock(&sp->mii_mutex); 2147 rc = mii_ethtool_gset(&sp->mii_if, cmd); 2148 mutex_unlock(&sp->mii_mutex); 2149 2150 return rc; 2151} 2152 2153static int ipg_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 2154{ 2155 struct ipg_nic_private *sp = netdev_priv(dev); 2156 int rc; 2157 2158 mutex_lock(&sp->mii_mutex); 2159 rc = mii_ethtool_sset(&sp->mii_if, cmd); 2160 mutex_unlock(&sp->mii_mutex); 2161 2162 return rc; 2163} 2164 2165static int ipg_nway_reset(struct net_device *dev) 2166{ 2167 struct ipg_nic_private *sp = netdev_priv(dev); 2168 int rc; 2169 2170 mutex_lock(&sp->mii_mutex); 2171 rc = mii_nway_restart(&sp->mii_if); 2172 mutex_unlock(&sp->mii_mutex); 2173 2174 return rc; 2175} 2176 2177static struct ethtool_ops ipg_ethtool_ops = { 2178 .get_settings = ipg_get_settings, 2179 .set_settings = ipg_set_settings, 2180 .nway_reset = ipg_nway_reset, 2181}; 2182 2183static void __devexit ipg_remove(struct pci_dev *pdev) 2184{ 2185 struct net_device *dev = pci_get_drvdata(pdev); 2186 struct ipg_nic_private *sp = netdev_priv(dev); 2187 2188 IPG_DEBUG_MSG("_remove\n"); 2189 2190 /* Un-register Ethernet device. */ 2191 unregister_netdev(dev); 2192 2193 pci_iounmap(pdev, sp->ioaddr); 2194 2195 pci_release_regions(pdev); 2196 2197 free_netdev(dev); 2198 pci_disable_device(pdev); 2199 pci_set_drvdata(pdev, NULL); 2200} 2201 2202static int __devinit ipg_probe(struct pci_dev *pdev, 2203 const struct pci_device_id *id) 2204{ 2205 unsigned int i = id->driver_data; 2206 struct ipg_nic_private *sp; 2207 struct net_device *dev; 2208 void __iomem *ioaddr; 2209 int rc; 2210 2211 rc = pci_enable_device(pdev); 2212 if (rc < 0) 2213 goto out; 2214 2215 printk(KERN_INFO "%s: %s\n", pci_name(pdev), ipg_brand_name[i]); 2216 2217 pci_set_master(pdev); 2218 2219 rc = pci_set_dma_mask(pdev, DMA_40BIT_MASK); 2220 if (rc < 0) { 2221 rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK); 2222 if (rc < 0) { 2223 printk(KERN_ERR "%s: DMA config failed.\n", 2224 pci_name(pdev)); 2225 goto err_disable_0; 2226 } 2227 } 2228 2229 /* 2230 * Initialize net device. 2231 */ 2232 dev = alloc_etherdev(sizeof(struct ipg_nic_private)); 2233 if (!dev) { 2234 printk(KERN_ERR "%s: alloc_etherdev failed\n", pci_name(pdev)); 2235 rc = -ENOMEM; 2236 goto err_disable_0; 2237 } 2238 2239 sp = netdev_priv(dev); 2240 spin_lock_init(&sp->lock); 2241 mutex_init(&sp->mii_mutex); 2242 2243 /* Declare IPG NIC functions for Ethernet device methods. 2244 */ 2245 dev->open = &ipg_nic_open; 2246 dev->stop = &ipg_nic_stop; 2247 dev->hard_start_xmit = &ipg_nic_hard_start_xmit; 2248 dev->get_stats = &ipg_nic_get_stats; 2249 dev->set_multicast_list = &ipg_nic_set_multicast_list; 2250 dev->do_ioctl = ipg_ioctl; 2251 dev->tx_timeout = ipg_tx_timeout; 2252 dev->change_mtu = &ipg_nic_change_mtu; 2253 2254 SET_NETDEV_DEV(dev, &pdev->dev); 2255 SET_ETHTOOL_OPS(dev, &ipg_ethtool_ops); 2256 2257 rc = pci_request_regions(pdev, DRV_NAME); 2258 if (rc) 2259 goto err_free_dev_1; 2260 2261 ioaddr = pci_iomap(pdev, 1, pci_resource_len(pdev, 1)); 2262 if (!ioaddr) { 2263 printk(KERN_ERR "%s cannot map MMIO\n", pci_name(pdev)); 2264 rc = -EIO; 2265 goto err_release_regions_2; 2266 } 2267 2268 /* Save the pointer to the PCI device information. */ 2269 sp->ioaddr = ioaddr; 2270 sp->pdev = pdev; 2271 sp->dev = dev; 2272 2273 INIT_DELAYED_WORK(&sp->task, ipg_reset_after_host_error); 2274 2275 pci_set_drvdata(pdev, dev); 2276 2277 rc = ipg_hw_init(dev); 2278 if (rc < 0) 2279 goto err_unmap_3; 2280 2281 rc = register_netdev(dev); 2282 if (rc < 0) 2283 goto err_unmap_3; 2284 2285 printk(KERN_INFO "Ethernet device registered as: %s\n", dev->name); 2286out: 2287 return rc; 2288 2289err_unmap_3: 2290 pci_iounmap(pdev, ioaddr); 2291err_release_regions_2: 2292 pci_release_regions(pdev); 2293err_free_dev_1: 2294 free_netdev(dev); 2295err_disable_0: 2296 pci_disable_device(pdev); 2297 goto out; 2298} 2299 2300static struct pci_driver ipg_pci_driver = { 2301 .name = IPG_DRIVER_NAME, 2302 .id_table = ipg_pci_tbl, 2303 .probe = ipg_probe, 2304 .remove = __devexit_p(ipg_remove), 2305}; 2306 2307static int __init ipg_init_module(void) 2308{ 2309 return pci_register_driver(&ipg_pci_driver); 2310} 2311 2312static void __exit ipg_exit_module(void) 2313{ 2314 pci_unregister_driver(&ipg_pci_driver); 2315} 2316 2317module_init(ipg_init_module); 2318module_exit(ipg_exit_module);