at v2.6.26-rc7 4666 lines 129 kB view raw
1/******************************************************************************* 2 3 Intel PRO/1000 Linux driver 4 Copyright(c) 1999 - 2008 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, write to the Free Software Foundation, Inc., 17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 18 19 The full GNU General Public License is included in this distribution in 20 the file called "COPYING". 21 22 Contact Information: 23 Linux NICS <linux.nics@intel.com> 24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 26 27*******************************************************************************/ 28 29#include <linux/module.h> 30#include <linux/types.h> 31#include <linux/init.h> 32#include <linux/pci.h> 33#include <linux/vmalloc.h> 34#include <linux/pagemap.h> 35#include <linux/delay.h> 36#include <linux/netdevice.h> 37#include <linux/tcp.h> 38#include <linux/ipv6.h> 39#include <net/checksum.h> 40#include <net/ip6_checksum.h> 41#include <linux/mii.h> 42#include <linux/ethtool.h> 43#include <linux/if_vlan.h> 44#include <linux/cpu.h> 45#include <linux/smp.h> 46#include <linux/pm_qos_params.h> 47 48#include "e1000.h" 49 50#define DRV_VERSION "0.3.3.3-k2" 51char e1000e_driver_name[] = "e1000e"; 52const char e1000e_driver_version[] = DRV_VERSION; 53 54static const struct e1000_info *e1000_info_tbl[] = { 55 [board_82571] = &e1000_82571_info, 56 [board_82572] = &e1000_82572_info, 57 [board_82573] = &e1000_82573_info, 58 [board_80003es2lan] = &e1000_es2_info, 59 [board_ich8lan] = &e1000_ich8_info, 60 [board_ich9lan] = &e1000_ich9_info, 61}; 62 63#ifdef DEBUG 64/** 65 * e1000_get_hw_dev_name - return device name string 66 * used by hardware layer to print debugging information 67 **/ 68char *e1000e_get_hw_dev_name(struct e1000_hw *hw) 69{ 70 return hw->adapter->netdev->name; 71} 72#endif 73 74/** 75 * e1000_desc_unused - calculate if we have unused descriptors 76 **/ 77static int e1000_desc_unused(struct e1000_ring *ring) 78{ 79 if (ring->next_to_clean > ring->next_to_use) 80 return ring->next_to_clean - ring->next_to_use - 1; 81 82 return ring->count + ring->next_to_clean - ring->next_to_use - 1; 83} 84 85/** 86 * e1000_receive_skb - helper function to handle Rx indications 87 * @adapter: board private structure 88 * @status: descriptor status field as written by hardware 89 * @vlan: descriptor vlan field as written by hardware (no le/be conversion) 90 * @skb: pointer to sk_buff to be indicated to stack 91 **/ 92static void e1000_receive_skb(struct e1000_adapter *adapter, 93 struct net_device *netdev, 94 struct sk_buff *skb, 95 u8 status, __le16 vlan) 96{ 97 skb->protocol = eth_type_trans(skb, netdev); 98 99 if (adapter->vlgrp && (status & E1000_RXD_STAT_VP)) 100 vlan_hwaccel_receive_skb(skb, adapter->vlgrp, 101 le16_to_cpu(vlan) & 102 E1000_RXD_SPC_VLAN_MASK); 103 else 104 netif_receive_skb(skb); 105 106 netdev->last_rx = jiffies; 107} 108 109/** 110 * e1000_rx_checksum - Receive Checksum Offload for 82543 111 * @adapter: board private structure 112 * @status_err: receive descriptor status and error fields 113 * @csum: receive descriptor csum field 114 * @sk_buff: socket buffer with received data 115 **/ 116static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err, 117 u32 csum, struct sk_buff *skb) 118{ 119 u16 status = (u16)status_err; 120 u8 errors = (u8)(status_err >> 24); 121 skb->ip_summed = CHECKSUM_NONE; 122 123 /* Ignore Checksum bit is set */ 124 if (status & E1000_RXD_STAT_IXSM) 125 return; 126 /* TCP/UDP checksum error bit is set */ 127 if (errors & E1000_RXD_ERR_TCPE) { 128 /* let the stack verify checksum errors */ 129 adapter->hw_csum_err++; 130 return; 131 } 132 133 /* TCP/UDP Checksum has not been calculated */ 134 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))) 135 return; 136 137 /* It must be a TCP or UDP packet with a valid checksum */ 138 if (status & E1000_RXD_STAT_TCPCS) { 139 /* TCP checksum is good */ 140 skb->ip_summed = CHECKSUM_UNNECESSARY; 141 } else { 142 /* 143 * IP fragment with UDP payload 144 * Hardware complements the payload checksum, so we undo it 145 * and then put the value in host order for further stack use. 146 */ 147 __sum16 sum = (__force __sum16)htons(csum); 148 skb->csum = csum_unfold(~sum); 149 skb->ip_summed = CHECKSUM_COMPLETE; 150 } 151 adapter->hw_csum_good++; 152} 153 154/** 155 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended 156 * @adapter: address of board private structure 157 **/ 158static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, 159 int cleaned_count) 160{ 161 struct net_device *netdev = adapter->netdev; 162 struct pci_dev *pdev = adapter->pdev; 163 struct e1000_ring *rx_ring = adapter->rx_ring; 164 struct e1000_rx_desc *rx_desc; 165 struct e1000_buffer *buffer_info; 166 struct sk_buff *skb; 167 unsigned int i; 168 unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN; 169 170 i = rx_ring->next_to_use; 171 buffer_info = &rx_ring->buffer_info[i]; 172 173 while (cleaned_count--) { 174 skb = buffer_info->skb; 175 if (skb) { 176 skb_trim(skb, 0); 177 goto map_skb; 178 } 179 180 skb = netdev_alloc_skb(netdev, bufsz); 181 if (!skb) { 182 /* Better luck next round */ 183 adapter->alloc_rx_buff_failed++; 184 break; 185 } 186 187 /* 188 * Make buffer alignment 2 beyond a 16 byte boundary 189 * this will result in a 16 byte aligned IP header after 190 * the 14 byte MAC header is removed 191 */ 192 skb_reserve(skb, NET_IP_ALIGN); 193 194 buffer_info->skb = skb; 195map_skb: 196 buffer_info->dma = pci_map_single(pdev, skb->data, 197 adapter->rx_buffer_len, 198 PCI_DMA_FROMDEVICE); 199 if (pci_dma_mapping_error(buffer_info->dma)) { 200 dev_err(&pdev->dev, "RX DMA map failed\n"); 201 adapter->rx_dma_failed++; 202 break; 203 } 204 205 rx_desc = E1000_RX_DESC(*rx_ring, i); 206 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); 207 208 i++; 209 if (i == rx_ring->count) 210 i = 0; 211 buffer_info = &rx_ring->buffer_info[i]; 212 } 213 214 if (rx_ring->next_to_use != i) { 215 rx_ring->next_to_use = i; 216 if (i-- == 0) 217 i = (rx_ring->count - 1); 218 219 /* 220 * Force memory writes to complete before letting h/w 221 * know there are new descriptors to fetch. (Only 222 * applicable for weak-ordered memory model archs, 223 * such as IA-64). 224 */ 225 wmb(); 226 writel(i, adapter->hw.hw_addr + rx_ring->tail); 227 } 228} 229 230/** 231 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split 232 * @adapter: address of board private structure 233 **/ 234static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter, 235 int cleaned_count) 236{ 237 struct net_device *netdev = adapter->netdev; 238 struct pci_dev *pdev = adapter->pdev; 239 union e1000_rx_desc_packet_split *rx_desc; 240 struct e1000_ring *rx_ring = adapter->rx_ring; 241 struct e1000_buffer *buffer_info; 242 struct e1000_ps_page *ps_page; 243 struct sk_buff *skb; 244 unsigned int i, j; 245 246 i = rx_ring->next_to_use; 247 buffer_info = &rx_ring->buffer_info[i]; 248 249 while (cleaned_count--) { 250 rx_desc = E1000_RX_DESC_PS(*rx_ring, i); 251 252 for (j = 0; j < PS_PAGE_BUFFERS; j++) { 253 ps_page = &buffer_info->ps_pages[j]; 254 if (j >= adapter->rx_ps_pages) { 255 /* all unused desc entries get hw null ptr */ 256 rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0); 257 continue; 258 } 259 if (!ps_page->page) { 260 ps_page->page = alloc_page(GFP_ATOMIC); 261 if (!ps_page->page) { 262 adapter->alloc_rx_buff_failed++; 263 goto no_buffers; 264 } 265 ps_page->dma = pci_map_page(pdev, 266 ps_page->page, 267 0, PAGE_SIZE, 268 PCI_DMA_FROMDEVICE); 269 if (pci_dma_mapping_error(ps_page->dma)) { 270 dev_err(&adapter->pdev->dev, 271 "RX DMA page map failed\n"); 272 adapter->rx_dma_failed++; 273 goto no_buffers; 274 } 275 } 276 /* 277 * Refresh the desc even if buffer_addrs 278 * didn't change because each write-back 279 * erases this info. 280 */ 281 rx_desc->read.buffer_addr[j+1] = 282 cpu_to_le64(ps_page->dma); 283 } 284 285 skb = netdev_alloc_skb(netdev, 286 adapter->rx_ps_bsize0 + NET_IP_ALIGN); 287 288 if (!skb) { 289 adapter->alloc_rx_buff_failed++; 290 break; 291 } 292 293 /* 294 * Make buffer alignment 2 beyond a 16 byte boundary 295 * this will result in a 16 byte aligned IP header after 296 * the 14 byte MAC header is removed 297 */ 298 skb_reserve(skb, NET_IP_ALIGN); 299 300 buffer_info->skb = skb; 301 buffer_info->dma = pci_map_single(pdev, skb->data, 302 adapter->rx_ps_bsize0, 303 PCI_DMA_FROMDEVICE); 304 if (pci_dma_mapping_error(buffer_info->dma)) { 305 dev_err(&pdev->dev, "RX DMA map failed\n"); 306 adapter->rx_dma_failed++; 307 /* cleanup skb */ 308 dev_kfree_skb_any(skb); 309 buffer_info->skb = NULL; 310 break; 311 } 312 313 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma); 314 315 i++; 316 if (i == rx_ring->count) 317 i = 0; 318 buffer_info = &rx_ring->buffer_info[i]; 319 } 320 321no_buffers: 322 if (rx_ring->next_to_use != i) { 323 rx_ring->next_to_use = i; 324 325 if (!(i--)) 326 i = (rx_ring->count - 1); 327 328 /* 329 * Force memory writes to complete before letting h/w 330 * know there are new descriptors to fetch. (Only 331 * applicable for weak-ordered memory model archs, 332 * such as IA-64). 333 */ 334 wmb(); 335 /* 336 * Hardware increments by 16 bytes, but packet split 337 * descriptors are 32 bytes...so we increment tail 338 * twice as much. 339 */ 340 writel(i<<1, adapter->hw.hw_addr + rx_ring->tail); 341 } 342} 343 344/** 345 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers 346 * @adapter: address of board private structure 347 * @rx_ring: pointer to receive ring structure 348 * @cleaned_count: number of buffers to allocate this pass 349 **/ 350 351static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter, 352 int cleaned_count) 353{ 354 struct net_device *netdev = adapter->netdev; 355 struct pci_dev *pdev = adapter->pdev; 356 struct e1000_rx_desc *rx_desc; 357 struct e1000_ring *rx_ring = adapter->rx_ring; 358 struct e1000_buffer *buffer_info; 359 struct sk_buff *skb; 360 unsigned int i; 361 unsigned int bufsz = 256 - 362 16 /* for skb_reserve */ - 363 NET_IP_ALIGN; 364 365 i = rx_ring->next_to_use; 366 buffer_info = &rx_ring->buffer_info[i]; 367 368 while (cleaned_count--) { 369 skb = buffer_info->skb; 370 if (skb) { 371 skb_trim(skb, 0); 372 goto check_page; 373 } 374 375 skb = netdev_alloc_skb(netdev, bufsz); 376 if (unlikely(!skb)) { 377 /* Better luck next round */ 378 adapter->alloc_rx_buff_failed++; 379 break; 380 } 381 382 /* Make buffer alignment 2 beyond a 16 byte boundary 383 * this will result in a 16 byte aligned IP header after 384 * the 14 byte MAC header is removed 385 */ 386 skb_reserve(skb, NET_IP_ALIGN); 387 388 buffer_info->skb = skb; 389check_page: 390 /* allocate a new page if necessary */ 391 if (!buffer_info->page) { 392 buffer_info->page = alloc_page(GFP_ATOMIC); 393 if (unlikely(!buffer_info->page)) { 394 adapter->alloc_rx_buff_failed++; 395 break; 396 } 397 } 398 399 if (!buffer_info->dma) 400 buffer_info->dma = pci_map_page(pdev, 401 buffer_info->page, 0, 402 PAGE_SIZE, 403 PCI_DMA_FROMDEVICE); 404 405 rx_desc = E1000_RX_DESC(*rx_ring, i); 406 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); 407 408 if (unlikely(++i == rx_ring->count)) 409 i = 0; 410 buffer_info = &rx_ring->buffer_info[i]; 411 } 412 413 if (likely(rx_ring->next_to_use != i)) { 414 rx_ring->next_to_use = i; 415 if (unlikely(i-- == 0)) 416 i = (rx_ring->count - 1); 417 418 /* Force memory writes to complete before letting h/w 419 * know there are new descriptors to fetch. (Only 420 * applicable for weak-ordered memory model archs, 421 * such as IA-64). */ 422 wmb(); 423 writel(i, adapter->hw.hw_addr + rx_ring->tail); 424 } 425} 426 427/** 428 * e1000_clean_rx_irq - Send received data up the network stack; legacy 429 * @adapter: board private structure 430 * 431 * the return value indicates whether actual cleaning was done, there 432 * is no guarantee that everything was cleaned 433 **/ 434static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, 435 int *work_done, int work_to_do) 436{ 437 struct net_device *netdev = adapter->netdev; 438 struct pci_dev *pdev = adapter->pdev; 439 struct e1000_ring *rx_ring = adapter->rx_ring; 440 struct e1000_rx_desc *rx_desc, *next_rxd; 441 struct e1000_buffer *buffer_info, *next_buffer; 442 u32 length; 443 unsigned int i; 444 int cleaned_count = 0; 445 bool cleaned = 0; 446 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 447 448 i = rx_ring->next_to_clean; 449 rx_desc = E1000_RX_DESC(*rx_ring, i); 450 buffer_info = &rx_ring->buffer_info[i]; 451 452 while (rx_desc->status & E1000_RXD_STAT_DD) { 453 struct sk_buff *skb; 454 u8 status; 455 456 if (*work_done >= work_to_do) 457 break; 458 (*work_done)++; 459 460 status = rx_desc->status; 461 skb = buffer_info->skb; 462 buffer_info->skb = NULL; 463 464 prefetch(skb->data - NET_IP_ALIGN); 465 466 i++; 467 if (i == rx_ring->count) 468 i = 0; 469 next_rxd = E1000_RX_DESC(*rx_ring, i); 470 prefetch(next_rxd); 471 472 next_buffer = &rx_ring->buffer_info[i]; 473 474 cleaned = 1; 475 cleaned_count++; 476 pci_unmap_single(pdev, 477 buffer_info->dma, 478 adapter->rx_buffer_len, 479 PCI_DMA_FROMDEVICE); 480 buffer_info->dma = 0; 481 482 length = le16_to_cpu(rx_desc->length); 483 484 /* !EOP means multiple descriptors were used to store a single 485 * packet, also make sure the frame isn't just CRC only */ 486 if (!(status & E1000_RXD_STAT_EOP) || (length <= 4)) { 487 /* All receives must fit into a single buffer */ 488 ndev_dbg(netdev, "%s: Receive packet consumed " 489 "multiple buffers\n", netdev->name); 490 /* recycle */ 491 buffer_info->skb = skb; 492 goto next_desc; 493 } 494 495 if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) { 496 /* recycle */ 497 buffer_info->skb = skb; 498 goto next_desc; 499 } 500 501 total_rx_bytes += length; 502 total_rx_packets++; 503 504 /* 505 * code added for copybreak, this should improve 506 * performance for small packets with large amounts 507 * of reassembly being done in the stack 508 */ 509 if (length < copybreak) { 510 struct sk_buff *new_skb = 511 netdev_alloc_skb(netdev, length + NET_IP_ALIGN); 512 if (new_skb) { 513 skb_reserve(new_skb, NET_IP_ALIGN); 514 memcpy(new_skb->data - NET_IP_ALIGN, 515 skb->data - NET_IP_ALIGN, 516 length + NET_IP_ALIGN); 517 /* save the skb in buffer_info as good */ 518 buffer_info->skb = skb; 519 skb = new_skb; 520 } 521 /* else just continue with the old one */ 522 } 523 /* end copybreak code */ 524 skb_put(skb, length); 525 526 /* Receive Checksum Offload */ 527 e1000_rx_checksum(adapter, 528 (u32)(status) | 529 ((u32)(rx_desc->errors) << 24), 530 le16_to_cpu(rx_desc->csum), skb); 531 532 e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special); 533 534next_desc: 535 rx_desc->status = 0; 536 537 /* return some buffers to hardware, one at a time is too slow */ 538 if (cleaned_count >= E1000_RX_BUFFER_WRITE) { 539 adapter->alloc_rx_buf(adapter, cleaned_count); 540 cleaned_count = 0; 541 } 542 543 /* use prefetched values */ 544 rx_desc = next_rxd; 545 buffer_info = next_buffer; 546 } 547 rx_ring->next_to_clean = i; 548 549 cleaned_count = e1000_desc_unused(rx_ring); 550 if (cleaned_count) 551 adapter->alloc_rx_buf(adapter, cleaned_count); 552 553 adapter->total_rx_bytes += total_rx_bytes; 554 adapter->total_rx_packets += total_rx_packets; 555 adapter->net_stats.rx_bytes += total_rx_bytes; 556 adapter->net_stats.rx_packets += total_rx_packets; 557 return cleaned; 558} 559 560static void e1000_put_txbuf(struct e1000_adapter *adapter, 561 struct e1000_buffer *buffer_info) 562{ 563 if (buffer_info->dma) { 564 pci_unmap_page(adapter->pdev, buffer_info->dma, 565 buffer_info->length, PCI_DMA_TODEVICE); 566 buffer_info->dma = 0; 567 } 568 if (buffer_info->skb) { 569 dev_kfree_skb_any(buffer_info->skb); 570 buffer_info->skb = NULL; 571 } 572} 573 574static void e1000_print_tx_hang(struct e1000_adapter *adapter) 575{ 576 struct e1000_ring *tx_ring = adapter->tx_ring; 577 unsigned int i = tx_ring->next_to_clean; 578 unsigned int eop = tx_ring->buffer_info[i].next_to_watch; 579 struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop); 580 struct net_device *netdev = adapter->netdev; 581 582 /* detected Tx unit hang */ 583 ndev_err(netdev, 584 "Detected Tx Unit Hang:\n" 585 " TDH <%x>\n" 586 " TDT <%x>\n" 587 " next_to_use <%x>\n" 588 " next_to_clean <%x>\n" 589 "buffer_info[next_to_clean]:\n" 590 " time_stamp <%lx>\n" 591 " next_to_watch <%x>\n" 592 " jiffies <%lx>\n" 593 " next_to_watch.status <%x>\n", 594 readl(adapter->hw.hw_addr + tx_ring->head), 595 readl(adapter->hw.hw_addr + tx_ring->tail), 596 tx_ring->next_to_use, 597 tx_ring->next_to_clean, 598 tx_ring->buffer_info[eop].time_stamp, 599 eop, 600 jiffies, 601 eop_desc->upper.fields.status); 602} 603 604/** 605 * e1000_clean_tx_irq - Reclaim resources after transmit completes 606 * @adapter: board private structure 607 * 608 * the return value indicates whether actual cleaning was done, there 609 * is no guarantee that everything was cleaned 610 **/ 611static bool e1000_clean_tx_irq(struct e1000_adapter *adapter) 612{ 613 struct net_device *netdev = adapter->netdev; 614 struct e1000_hw *hw = &adapter->hw; 615 struct e1000_ring *tx_ring = adapter->tx_ring; 616 struct e1000_tx_desc *tx_desc, *eop_desc; 617 struct e1000_buffer *buffer_info; 618 unsigned int i, eop; 619 unsigned int count = 0; 620 bool cleaned = 0; 621 unsigned int total_tx_bytes = 0, total_tx_packets = 0; 622 623 i = tx_ring->next_to_clean; 624 eop = tx_ring->buffer_info[i].next_to_watch; 625 eop_desc = E1000_TX_DESC(*tx_ring, eop); 626 627 while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) { 628 for (cleaned = 0; !cleaned; ) { 629 tx_desc = E1000_TX_DESC(*tx_ring, i); 630 buffer_info = &tx_ring->buffer_info[i]; 631 cleaned = (i == eop); 632 633 if (cleaned) { 634 struct sk_buff *skb = buffer_info->skb; 635 unsigned int segs, bytecount; 636 segs = skb_shinfo(skb)->gso_segs ?: 1; 637 /* multiply data chunks by size of headers */ 638 bytecount = ((segs - 1) * skb_headlen(skb)) + 639 skb->len; 640 total_tx_packets += segs; 641 total_tx_bytes += bytecount; 642 } 643 644 e1000_put_txbuf(adapter, buffer_info); 645 tx_desc->upper.data = 0; 646 647 i++; 648 if (i == tx_ring->count) 649 i = 0; 650 } 651 652 eop = tx_ring->buffer_info[i].next_to_watch; 653 eop_desc = E1000_TX_DESC(*tx_ring, eop); 654#define E1000_TX_WEIGHT 64 655 /* weight of a sort for tx, to avoid endless transmit cleanup */ 656 if (count++ == E1000_TX_WEIGHT) 657 break; 658 } 659 660 tx_ring->next_to_clean = i; 661 662#define TX_WAKE_THRESHOLD 32 663 if (cleaned && netif_carrier_ok(netdev) && 664 e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) { 665 /* Make sure that anybody stopping the queue after this 666 * sees the new next_to_clean. 667 */ 668 smp_mb(); 669 670 if (netif_queue_stopped(netdev) && 671 !(test_bit(__E1000_DOWN, &adapter->state))) { 672 netif_wake_queue(netdev); 673 ++adapter->restart_queue; 674 } 675 } 676 677 if (adapter->detect_tx_hung) { 678 /* 679 * Detect a transmit hang in hardware, this serializes the 680 * check with the clearing of time_stamp and movement of i 681 */ 682 adapter->detect_tx_hung = 0; 683 if (tx_ring->buffer_info[eop].dma && 684 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp 685 + (adapter->tx_timeout_factor * HZ)) 686 && !(er32(STATUS) & E1000_STATUS_TXOFF)) { 687 e1000_print_tx_hang(adapter); 688 netif_stop_queue(netdev); 689 } 690 } 691 adapter->total_tx_bytes += total_tx_bytes; 692 adapter->total_tx_packets += total_tx_packets; 693 adapter->net_stats.tx_bytes += total_tx_bytes; 694 adapter->net_stats.tx_packets += total_tx_packets; 695 return cleaned; 696} 697 698/** 699 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split 700 * @adapter: board private structure 701 * 702 * the return value indicates whether actual cleaning was done, there 703 * is no guarantee that everything was cleaned 704 **/ 705static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter, 706 int *work_done, int work_to_do) 707{ 708 union e1000_rx_desc_packet_split *rx_desc, *next_rxd; 709 struct net_device *netdev = adapter->netdev; 710 struct pci_dev *pdev = adapter->pdev; 711 struct e1000_ring *rx_ring = adapter->rx_ring; 712 struct e1000_buffer *buffer_info, *next_buffer; 713 struct e1000_ps_page *ps_page; 714 struct sk_buff *skb; 715 unsigned int i, j; 716 u32 length, staterr; 717 int cleaned_count = 0; 718 bool cleaned = 0; 719 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 720 721 i = rx_ring->next_to_clean; 722 rx_desc = E1000_RX_DESC_PS(*rx_ring, i); 723 staterr = le32_to_cpu(rx_desc->wb.middle.status_error); 724 buffer_info = &rx_ring->buffer_info[i]; 725 726 while (staterr & E1000_RXD_STAT_DD) { 727 if (*work_done >= work_to_do) 728 break; 729 (*work_done)++; 730 skb = buffer_info->skb; 731 732 /* in the packet split case this is header only */ 733 prefetch(skb->data - NET_IP_ALIGN); 734 735 i++; 736 if (i == rx_ring->count) 737 i = 0; 738 next_rxd = E1000_RX_DESC_PS(*rx_ring, i); 739 prefetch(next_rxd); 740 741 next_buffer = &rx_ring->buffer_info[i]; 742 743 cleaned = 1; 744 cleaned_count++; 745 pci_unmap_single(pdev, buffer_info->dma, 746 adapter->rx_ps_bsize0, 747 PCI_DMA_FROMDEVICE); 748 buffer_info->dma = 0; 749 750 if (!(staterr & E1000_RXD_STAT_EOP)) { 751 ndev_dbg(netdev, "%s: Packet Split buffers didn't pick " 752 "up the full packet\n", netdev->name); 753 dev_kfree_skb_irq(skb); 754 goto next_desc; 755 } 756 757 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) { 758 dev_kfree_skb_irq(skb); 759 goto next_desc; 760 } 761 762 length = le16_to_cpu(rx_desc->wb.middle.length0); 763 764 if (!length) { 765 ndev_dbg(netdev, "%s: Last part of the packet spanning" 766 " multiple descriptors\n", netdev->name); 767 dev_kfree_skb_irq(skb); 768 goto next_desc; 769 } 770 771 /* Good Receive */ 772 skb_put(skb, length); 773 774 { 775 /* 776 * this looks ugly, but it seems compiler issues make it 777 * more efficient than reusing j 778 */ 779 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]); 780 781 /* 782 * page alloc/put takes too long and effects small packet 783 * throughput, so unsplit small packets and save the alloc/put 784 * only valid in softirq (napi) context to call kmap_* 785 */ 786 if (l1 && (l1 <= copybreak) && 787 ((length + l1) <= adapter->rx_ps_bsize0)) { 788 u8 *vaddr; 789 790 ps_page = &buffer_info->ps_pages[0]; 791 792 /* 793 * there is no documentation about how to call 794 * kmap_atomic, so we can't hold the mapping 795 * very long 796 */ 797 pci_dma_sync_single_for_cpu(pdev, ps_page->dma, 798 PAGE_SIZE, PCI_DMA_FROMDEVICE); 799 vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ); 800 memcpy(skb_tail_pointer(skb), vaddr, l1); 801 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ); 802 pci_dma_sync_single_for_device(pdev, ps_page->dma, 803 PAGE_SIZE, PCI_DMA_FROMDEVICE); 804 805 skb_put(skb, l1); 806 goto copydone; 807 } /* if */ 808 } 809 810 for (j = 0; j < PS_PAGE_BUFFERS; j++) { 811 length = le16_to_cpu(rx_desc->wb.upper.length[j]); 812 if (!length) 813 break; 814 815 ps_page = &buffer_info->ps_pages[j]; 816 pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE, 817 PCI_DMA_FROMDEVICE); 818 ps_page->dma = 0; 819 skb_fill_page_desc(skb, j, ps_page->page, 0, length); 820 ps_page->page = NULL; 821 skb->len += length; 822 skb->data_len += length; 823 skb->truesize += length; 824 } 825 826copydone: 827 total_rx_bytes += skb->len; 828 total_rx_packets++; 829 830 e1000_rx_checksum(adapter, staterr, le16_to_cpu( 831 rx_desc->wb.lower.hi_dword.csum_ip.csum), skb); 832 833 if (rx_desc->wb.upper.header_status & 834 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)) 835 adapter->rx_hdr_split++; 836 837 e1000_receive_skb(adapter, netdev, skb, 838 staterr, rx_desc->wb.middle.vlan); 839 840next_desc: 841 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF); 842 buffer_info->skb = NULL; 843 844 /* return some buffers to hardware, one at a time is too slow */ 845 if (cleaned_count >= E1000_RX_BUFFER_WRITE) { 846 adapter->alloc_rx_buf(adapter, cleaned_count); 847 cleaned_count = 0; 848 } 849 850 /* use prefetched values */ 851 rx_desc = next_rxd; 852 buffer_info = next_buffer; 853 854 staterr = le32_to_cpu(rx_desc->wb.middle.status_error); 855 } 856 rx_ring->next_to_clean = i; 857 858 cleaned_count = e1000_desc_unused(rx_ring); 859 if (cleaned_count) 860 adapter->alloc_rx_buf(adapter, cleaned_count); 861 862 adapter->total_rx_bytes += total_rx_bytes; 863 adapter->total_rx_packets += total_rx_packets; 864 adapter->net_stats.rx_bytes += total_rx_bytes; 865 adapter->net_stats.rx_packets += total_rx_packets; 866 return cleaned; 867} 868 869/** 870 * e1000_consume_page - helper function 871 **/ 872static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb, 873 u16 length) 874{ 875 bi->page = NULL; 876 skb->len += length; 877 skb->data_len += length; 878 skb->truesize += length; 879} 880 881/** 882 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy 883 * @adapter: board private structure 884 * 885 * the return value indicates whether actual cleaning was done, there 886 * is no guarantee that everything was cleaned 887 **/ 888 889static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter, 890 int *work_done, int work_to_do) 891{ 892 struct net_device *netdev = adapter->netdev; 893 struct pci_dev *pdev = adapter->pdev; 894 struct e1000_ring *rx_ring = adapter->rx_ring; 895 struct e1000_rx_desc *rx_desc, *next_rxd; 896 struct e1000_buffer *buffer_info, *next_buffer; 897 u32 length; 898 unsigned int i; 899 int cleaned_count = 0; 900 bool cleaned = false; 901 unsigned int total_rx_bytes=0, total_rx_packets=0; 902 903 i = rx_ring->next_to_clean; 904 rx_desc = E1000_RX_DESC(*rx_ring, i); 905 buffer_info = &rx_ring->buffer_info[i]; 906 907 while (rx_desc->status & E1000_RXD_STAT_DD) { 908 struct sk_buff *skb; 909 u8 status; 910 911 if (*work_done >= work_to_do) 912 break; 913 (*work_done)++; 914 915 status = rx_desc->status; 916 skb = buffer_info->skb; 917 buffer_info->skb = NULL; 918 919 ++i; 920 if (i == rx_ring->count) 921 i = 0; 922 next_rxd = E1000_RX_DESC(*rx_ring, i); 923 prefetch(next_rxd); 924 925 next_buffer = &rx_ring->buffer_info[i]; 926 927 cleaned = true; 928 cleaned_count++; 929 pci_unmap_page(pdev, buffer_info->dma, PAGE_SIZE, 930 PCI_DMA_FROMDEVICE); 931 buffer_info->dma = 0; 932 933 length = le16_to_cpu(rx_desc->length); 934 935 /* errors is only valid for DD + EOP descriptors */ 936 if (unlikely((status & E1000_RXD_STAT_EOP) && 937 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) { 938 /* recycle both page and skb */ 939 buffer_info->skb = skb; 940 /* an error means any chain goes out the window 941 * too */ 942 if (rx_ring->rx_skb_top) 943 dev_kfree_skb(rx_ring->rx_skb_top); 944 rx_ring->rx_skb_top = NULL; 945 goto next_desc; 946 } 947 948#define rxtop rx_ring->rx_skb_top 949 if (!(status & E1000_RXD_STAT_EOP)) { 950 /* this descriptor is only the beginning (or middle) */ 951 if (!rxtop) { 952 /* this is the beginning of a chain */ 953 rxtop = skb; 954 skb_fill_page_desc(rxtop, 0, buffer_info->page, 955 0, length); 956 } else { 957 /* this is the middle of a chain */ 958 skb_fill_page_desc(rxtop, 959 skb_shinfo(rxtop)->nr_frags, 960 buffer_info->page, 0, length); 961 /* re-use the skb, only consumed the page */ 962 buffer_info->skb = skb; 963 } 964 e1000_consume_page(buffer_info, rxtop, length); 965 goto next_desc; 966 } else { 967 if (rxtop) { 968 /* end of the chain */ 969 skb_fill_page_desc(rxtop, 970 skb_shinfo(rxtop)->nr_frags, 971 buffer_info->page, 0, length); 972 /* re-use the current skb, we only consumed the 973 * page */ 974 buffer_info->skb = skb; 975 skb = rxtop; 976 rxtop = NULL; 977 e1000_consume_page(buffer_info, skb, length); 978 } else { 979 /* no chain, got EOP, this buf is the packet 980 * copybreak to save the put_page/alloc_page */ 981 if (length <= copybreak && 982 skb_tailroom(skb) >= length) { 983 u8 *vaddr; 984 vaddr = kmap_atomic(buffer_info->page, 985 KM_SKB_DATA_SOFTIRQ); 986 memcpy(skb_tail_pointer(skb), vaddr, 987 length); 988 kunmap_atomic(vaddr, 989 KM_SKB_DATA_SOFTIRQ); 990 /* re-use the page, so don't erase 991 * buffer_info->page */ 992 skb_put(skb, length); 993 } else { 994 skb_fill_page_desc(skb, 0, 995 buffer_info->page, 0, 996 length); 997 e1000_consume_page(buffer_info, skb, 998 length); 999 } 1000 } 1001 } 1002 1003 /* Receive Checksum Offload XXX recompute due to CRC strip? */ 1004 e1000_rx_checksum(adapter, 1005 (u32)(status) | 1006 ((u32)(rx_desc->errors) << 24), 1007 le16_to_cpu(rx_desc->csum), skb); 1008 1009 /* probably a little skewed due to removing CRC */ 1010 total_rx_bytes += skb->len; 1011 total_rx_packets++; 1012 1013 /* eth type trans needs skb->data to point to something */ 1014 if (!pskb_may_pull(skb, ETH_HLEN)) { 1015 ndev_err(netdev, "pskb_may_pull failed.\n"); 1016 dev_kfree_skb(skb); 1017 goto next_desc; 1018 } 1019 1020 e1000_receive_skb(adapter, netdev, skb, status, 1021 rx_desc->special); 1022 1023next_desc: 1024 rx_desc->status = 0; 1025 1026 /* return some buffers to hardware, one at a time is too slow */ 1027 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { 1028 adapter->alloc_rx_buf(adapter, cleaned_count); 1029 cleaned_count = 0; 1030 } 1031 1032 /* use prefetched values */ 1033 rx_desc = next_rxd; 1034 buffer_info = next_buffer; 1035 } 1036 rx_ring->next_to_clean = i; 1037 1038 cleaned_count = e1000_desc_unused(rx_ring); 1039 if (cleaned_count) 1040 adapter->alloc_rx_buf(adapter, cleaned_count); 1041 1042 adapter->total_rx_bytes += total_rx_bytes; 1043 adapter->total_rx_packets += total_rx_packets; 1044 adapter->net_stats.rx_bytes += total_rx_bytes; 1045 adapter->net_stats.rx_packets += total_rx_packets; 1046 return cleaned; 1047} 1048 1049/** 1050 * e1000_clean_rx_ring - Free Rx Buffers per Queue 1051 * @adapter: board private structure 1052 **/ 1053static void e1000_clean_rx_ring(struct e1000_adapter *adapter) 1054{ 1055 struct e1000_ring *rx_ring = adapter->rx_ring; 1056 struct e1000_buffer *buffer_info; 1057 struct e1000_ps_page *ps_page; 1058 struct pci_dev *pdev = adapter->pdev; 1059 unsigned int i, j; 1060 1061 /* Free all the Rx ring sk_buffs */ 1062 for (i = 0; i < rx_ring->count; i++) { 1063 buffer_info = &rx_ring->buffer_info[i]; 1064 if (buffer_info->dma) { 1065 if (adapter->clean_rx == e1000_clean_rx_irq) 1066 pci_unmap_single(pdev, buffer_info->dma, 1067 adapter->rx_buffer_len, 1068 PCI_DMA_FROMDEVICE); 1069 else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) 1070 pci_unmap_page(pdev, buffer_info->dma, 1071 PAGE_SIZE, 1072 PCI_DMA_FROMDEVICE); 1073 else if (adapter->clean_rx == e1000_clean_rx_irq_ps) 1074 pci_unmap_single(pdev, buffer_info->dma, 1075 adapter->rx_ps_bsize0, 1076 PCI_DMA_FROMDEVICE); 1077 buffer_info->dma = 0; 1078 } 1079 1080 if (buffer_info->page) { 1081 put_page(buffer_info->page); 1082 buffer_info->page = NULL; 1083 } 1084 1085 if (buffer_info->skb) { 1086 dev_kfree_skb(buffer_info->skb); 1087 buffer_info->skb = NULL; 1088 } 1089 1090 for (j = 0; j < PS_PAGE_BUFFERS; j++) { 1091 ps_page = &buffer_info->ps_pages[j]; 1092 if (!ps_page->page) 1093 break; 1094 pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE, 1095 PCI_DMA_FROMDEVICE); 1096 ps_page->dma = 0; 1097 put_page(ps_page->page); 1098 ps_page->page = NULL; 1099 } 1100 } 1101 1102 /* there also may be some cached data from a chained receive */ 1103 if (rx_ring->rx_skb_top) { 1104 dev_kfree_skb(rx_ring->rx_skb_top); 1105 rx_ring->rx_skb_top = NULL; 1106 } 1107 1108 /* Zero out the descriptor ring */ 1109 memset(rx_ring->desc, 0, rx_ring->size); 1110 1111 rx_ring->next_to_clean = 0; 1112 rx_ring->next_to_use = 0; 1113 1114 writel(0, adapter->hw.hw_addr + rx_ring->head); 1115 writel(0, adapter->hw.hw_addr + rx_ring->tail); 1116} 1117 1118/** 1119 * e1000_intr_msi - Interrupt Handler 1120 * @irq: interrupt number 1121 * @data: pointer to a network interface device structure 1122 **/ 1123static irqreturn_t e1000_intr_msi(int irq, void *data) 1124{ 1125 struct net_device *netdev = data; 1126 struct e1000_adapter *adapter = netdev_priv(netdev); 1127 struct e1000_hw *hw = &adapter->hw; 1128 u32 icr = er32(ICR); 1129 1130 /* 1131 * read ICR disables interrupts using IAM 1132 */ 1133 1134 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { 1135 hw->mac.get_link_status = 1; 1136 /* 1137 * ICH8 workaround-- Call gig speed drop workaround on cable 1138 * disconnect (LSC) before accessing any PHY registers 1139 */ 1140 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) && 1141 (!(er32(STATUS) & E1000_STATUS_LU))) 1142 e1000e_gig_downshift_workaround_ich8lan(hw); 1143 1144 /* 1145 * 80003ES2LAN workaround-- For packet buffer work-around on 1146 * link down event; disable receives here in the ISR and reset 1147 * adapter in watchdog 1148 */ 1149 if (netif_carrier_ok(netdev) && 1150 adapter->flags & FLAG_RX_NEEDS_RESTART) { 1151 /* disable receives */ 1152 u32 rctl = er32(RCTL); 1153 ew32(RCTL, rctl & ~E1000_RCTL_EN); 1154 adapter->flags |= FLAG_RX_RESTART_NOW; 1155 } 1156 /* guard against interrupt when we're going down */ 1157 if (!test_bit(__E1000_DOWN, &adapter->state)) 1158 mod_timer(&adapter->watchdog_timer, jiffies + 1); 1159 } 1160 1161 if (netif_rx_schedule_prep(netdev, &adapter->napi)) { 1162 adapter->total_tx_bytes = 0; 1163 adapter->total_tx_packets = 0; 1164 adapter->total_rx_bytes = 0; 1165 adapter->total_rx_packets = 0; 1166 __netif_rx_schedule(netdev, &adapter->napi); 1167 } 1168 1169 return IRQ_HANDLED; 1170} 1171 1172/** 1173 * e1000_intr - Interrupt Handler 1174 * @irq: interrupt number 1175 * @data: pointer to a network interface device structure 1176 **/ 1177static irqreturn_t e1000_intr(int irq, void *data) 1178{ 1179 struct net_device *netdev = data; 1180 struct e1000_adapter *adapter = netdev_priv(netdev); 1181 struct e1000_hw *hw = &adapter->hw; 1182 1183 u32 rctl, icr = er32(ICR); 1184 if (!icr) 1185 return IRQ_NONE; /* Not our interrupt */ 1186 1187 /* 1188 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is 1189 * not set, then the adapter didn't send an interrupt 1190 */ 1191 if (!(icr & E1000_ICR_INT_ASSERTED)) 1192 return IRQ_NONE; 1193 1194 /* 1195 * Interrupt Auto-Mask...upon reading ICR, 1196 * interrupts are masked. No need for the 1197 * IMC write 1198 */ 1199 1200 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { 1201 hw->mac.get_link_status = 1; 1202 /* 1203 * ICH8 workaround-- Call gig speed drop workaround on cable 1204 * disconnect (LSC) before accessing any PHY registers 1205 */ 1206 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) && 1207 (!(er32(STATUS) & E1000_STATUS_LU))) 1208 e1000e_gig_downshift_workaround_ich8lan(hw); 1209 1210 /* 1211 * 80003ES2LAN workaround-- 1212 * For packet buffer work-around on link down event; 1213 * disable receives here in the ISR and 1214 * reset adapter in watchdog 1215 */ 1216 if (netif_carrier_ok(netdev) && 1217 (adapter->flags & FLAG_RX_NEEDS_RESTART)) { 1218 /* disable receives */ 1219 rctl = er32(RCTL); 1220 ew32(RCTL, rctl & ~E1000_RCTL_EN); 1221 adapter->flags |= FLAG_RX_RESTART_NOW; 1222 } 1223 /* guard against interrupt when we're going down */ 1224 if (!test_bit(__E1000_DOWN, &adapter->state)) 1225 mod_timer(&adapter->watchdog_timer, jiffies + 1); 1226 } 1227 1228 if (netif_rx_schedule_prep(netdev, &adapter->napi)) { 1229 adapter->total_tx_bytes = 0; 1230 adapter->total_tx_packets = 0; 1231 adapter->total_rx_bytes = 0; 1232 adapter->total_rx_packets = 0; 1233 __netif_rx_schedule(netdev, &adapter->napi); 1234 } 1235 1236 return IRQ_HANDLED; 1237} 1238 1239static int e1000_request_irq(struct e1000_adapter *adapter) 1240{ 1241 struct net_device *netdev = adapter->netdev; 1242 irq_handler_t handler = e1000_intr; 1243 int irq_flags = IRQF_SHARED; 1244 int err; 1245 1246 if (!pci_enable_msi(adapter->pdev)) { 1247 adapter->flags |= FLAG_MSI_ENABLED; 1248 handler = e1000_intr_msi; 1249 irq_flags = 0; 1250 } 1251 1252 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name, 1253 netdev); 1254 if (err) { 1255 ndev_err(netdev, 1256 "Unable to allocate %s interrupt (return: %d)\n", 1257 adapter->flags & FLAG_MSI_ENABLED ? "MSI":"INTx", 1258 err); 1259 if (adapter->flags & FLAG_MSI_ENABLED) 1260 pci_disable_msi(adapter->pdev); 1261 } 1262 1263 return err; 1264} 1265 1266static void e1000_free_irq(struct e1000_adapter *adapter) 1267{ 1268 struct net_device *netdev = adapter->netdev; 1269 1270 free_irq(adapter->pdev->irq, netdev); 1271 if (adapter->flags & FLAG_MSI_ENABLED) { 1272 pci_disable_msi(adapter->pdev); 1273 adapter->flags &= ~FLAG_MSI_ENABLED; 1274 } 1275} 1276 1277/** 1278 * e1000_irq_disable - Mask off interrupt generation on the NIC 1279 **/ 1280static void e1000_irq_disable(struct e1000_adapter *adapter) 1281{ 1282 struct e1000_hw *hw = &adapter->hw; 1283 1284 ew32(IMC, ~0); 1285 e1e_flush(); 1286 synchronize_irq(adapter->pdev->irq); 1287} 1288 1289/** 1290 * e1000_irq_enable - Enable default interrupt generation settings 1291 **/ 1292static void e1000_irq_enable(struct e1000_adapter *adapter) 1293{ 1294 struct e1000_hw *hw = &adapter->hw; 1295 1296 ew32(IMS, IMS_ENABLE_MASK); 1297 e1e_flush(); 1298} 1299 1300/** 1301 * e1000_get_hw_control - get control of the h/w from f/w 1302 * @adapter: address of board private structure 1303 * 1304 * e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit. 1305 * For ASF and Pass Through versions of f/w this means that 1306 * the driver is loaded. For AMT version (only with 82573) 1307 * of the f/w this means that the network i/f is open. 1308 **/ 1309static void e1000_get_hw_control(struct e1000_adapter *adapter) 1310{ 1311 struct e1000_hw *hw = &adapter->hw; 1312 u32 ctrl_ext; 1313 u32 swsm; 1314 1315 /* Let firmware know the driver has taken over */ 1316 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) { 1317 swsm = er32(SWSM); 1318 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD); 1319 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) { 1320 ctrl_ext = er32(CTRL_EXT); 1321 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); 1322 } 1323} 1324 1325/** 1326 * e1000_release_hw_control - release control of the h/w to f/w 1327 * @adapter: address of board private structure 1328 * 1329 * e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit. 1330 * For ASF and Pass Through versions of f/w this means that the 1331 * driver is no longer loaded. For AMT version (only with 82573) i 1332 * of the f/w this means that the network i/f is closed. 1333 * 1334 **/ 1335static void e1000_release_hw_control(struct e1000_adapter *adapter) 1336{ 1337 struct e1000_hw *hw = &adapter->hw; 1338 u32 ctrl_ext; 1339 u32 swsm; 1340 1341 /* Let firmware taken over control of h/w */ 1342 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) { 1343 swsm = er32(SWSM); 1344 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD); 1345 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) { 1346 ctrl_ext = er32(CTRL_EXT); 1347 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); 1348 } 1349} 1350 1351/** 1352 * @e1000_alloc_ring - allocate memory for a ring structure 1353 **/ 1354static int e1000_alloc_ring_dma(struct e1000_adapter *adapter, 1355 struct e1000_ring *ring) 1356{ 1357 struct pci_dev *pdev = adapter->pdev; 1358 1359 ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma, 1360 GFP_KERNEL); 1361 if (!ring->desc) 1362 return -ENOMEM; 1363 1364 return 0; 1365} 1366 1367/** 1368 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors) 1369 * @adapter: board private structure 1370 * 1371 * Return 0 on success, negative on failure 1372 **/ 1373int e1000e_setup_tx_resources(struct e1000_adapter *adapter) 1374{ 1375 struct e1000_ring *tx_ring = adapter->tx_ring; 1376 int err = -ENOMEM, size; 1377 1378 size = sizeof(struct e1000_buffer) * tx_ring->count; 1379 tx_ring->buffer_info = vmalloc(size); 1380 if (!tx_ring->buffer_info) 1381 goto err; 1382 memset(tx_ring->buffer_info, 0, size); 1383 1384 /* round up to nearest 4K */ 1385 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc); 1386 tx_ring->size = ALIGN(tx_ring->size, 4096); 1387 1388 err = e1000_alloc_ring_dma(adapter, tx_ring); 1389 if (err) 1390 goto err; 1391 1392 tx_ring->next_to_use = 0; 1393 tx_ring->next_to_clean = 0; 1394 spin_lock_init(&adapter->tx_queue_lock); 1395 1396 return 0; 1397err: 1398 vfree(tx_ring->buffer_info); 1399 ndev_err(adapter->netdev, 1400 "Unable to allocate memory for the transmit descriptor ring\n"); 1401 return err; 1402} 1403 1404/** 1405 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors) 1406 * @adapter: board private structure 1407 * 1408 * Returns 0 on success, negative on failure 1409 **/ 1410int e1000e_setup_rx_resources(struct e1000_adapter *adapter) 1411{ 1412 struct e1000_ring *rx_ring = adapter->rx_ring; 1413 struct e1000_buffer *buffer_info; 1414 int i, size, desc_len, err = -ENOMEM; 1415 1416 size = sizeof(struct e1000_buffer) * rx_ring->count; 1417 rx_ring->buffer_info = vmalloc(size); 1418 if (!rx_ring->buffer_info) 1419 goto err; 1420 memset(rx_ring->buffer_info, 0, size); 1421 1422 for (i = 0; i < rx_ring->count; i++) { 1423 buffer_info = &rx_ring->buffer_info[i]; 1424 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS, 1425 sizeof(struct e1000_ps_page), 1426 GFP_KERNEL); 1427 if (!buffer_info->ps_pages) 1428 goto err_pages; 1429 } 1430 1431 desc_len = sizeof(union e1000_rx_desc_packet_split); 1432 1433 /* Round up to nearest 4K */ 1434 rx_ring->size = rx_ring->count * desc_len; 1435 rx_ring->size = ALIGN(rx_ring->size, 4096); 1436 1437 err = e1000_alloc_ring_dma(adapter, rx_ring); 1438 if (err) 1439 goto err_pages; 1440 1441 rx_ring->next_to_clean = 0; 1442 rx_ring->next_to_use = 0; 1443 rx_ring->rx_skb_top = NULL; 1444 1445 return 0; 1446 1447err_pages: 1448 for (i = 0; i < rx_ring->count; i++) { 1449 buffer_info = &rx_ring->buffer_info[i]; 1450 kfree(buffer_info->ps_pages); 1451 } 1452err: 1453 vfree(rx_ring->buffer_info); 1454 ndev_err(adapter->netdev, 1455 "Unable to allocate memory for the transmit descriptor ring\n"); 1456 return err; 1457} 1458 1459/** 1460 * e1000_clean_tx_ring - Free Tx Buffers 1461 * @adapter: board private structure 1462 **/ 1463static void e1000_clean_tx_ring(struct e1000_adapter *adapter) 1464{ 1465 struct e1000_ring *tx_ring = adapter->tx_ring; 1466 struct e1000_buffer *buffer_info; 1467 unsigned long size; 1468 unsigned int i; 1469 1470 for (i = 0; i < tx_ring->count; i++) { 1471 buffer_info = &tx_ring->buffer_info[i]; 1472 e1000_put_txbuf(adapter, buffer_info); 1473 } 1474 1475 size = sizeof(struct e1000_buffer) * tx_ring->count; 1476 memset(tx_ring->buffer_info, 0, size); 1477 1478 memset(tx_ring->desc, 0, tx_ring->size); 1479 1480 tx_ring->next_to_use = 0; 1481 tx_ring->next_to_clean = 0; 1482 1483 writel(0, adapter->hw.hw_addr + tx_ring->head); 1484 writel(0, adapter->hw.hw_addr + tx_ring->tail); 1485} 1486 1487/** 1488 * e1000e_free_tx_resources - Free Tx Resources per Queue 1489 * @adapter: board private structure 1490 * 1491 * Free all transmit software resources 1492 **/ 1493void e1000e_free_tx_resources(struct e1000_adapter *adapter) 1494{ 1495 struct pci_dev *pdev = adapter->pdev; 1496 struct e1000_ring *tx_ring = adapter->tx_ring; 1497 1498 e1000_clean_tx_ring(adapter); 1499 1500 vfree(tx_ring->buffer_info); 1501 tx_ring->buffer_info = NULL; 1502 1503 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, 1504 tx_ring->dma); 1505 tx_ring->desc = NULL; 1506} 1507 1508/** 1509 * e1000e_free_rx_resources - Free Rx Resources 1510 * @adapter: board private structure 1511 * 1512 * Free all receive software resources 1513 **/ 1514 1515void e1000e_free_rx_resources(struct e1000_adapter *adapter) 1516{ 1517 struct pci_dev *pdev = adapter->pdev; 1518 struct e1000_ring *rx_ring = adapter->rx_ring; 1519 int i; 1520 1521 e1000_clean_rx_ring(adapter); 1522 1523 for (i = 0; i < rx_ring->count; i++) { 1524 kfree(rx_ring->buffer_info[i].ps_pages); 1525 } 1526 1527 vfree(rx_ring->buffer_info); 1528 rx_ring->buffer_info = NULL; 1529 1530 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, 1531 rx_ring->dma); 1532 rx_ring->desc = NULL; 1533} 1534 1535/** 1536 * e1000_update_itr - update the dynamic ITR value based on statistics 1537 * @adapter: pointer to adapter 1538 * @itr_setting: current adapter->itr 1539 * @packets: the number of packets during this measurement interval 1540 * @bytes: the number of bytes during this measurement interval 1541 * 1542 * Stores a new ITR value based on packets and byte 1543 * counts during the last interrupt. The advantage of per interrupt 1544 * computation is faster updates and more accurate ITR for the current 1545 * traffic pattern. Constants in this function were computed 1546 * based on theoretical maximum wire speed and thresholds were set based 1547 * on testing data as well as attempting to minimize response time 1548 * while increasing bulk throughput. 1549 * this functionality is controlled by the InterruptThrottleRate module 1550 * parameter (see e1000_param.c) 1551 **/ 1552static unsigned int e1000_update_itr(struct e1000_adapter *adapter, 1553 u16 itr_setting, int packets, 1554 int bytes) 1555{ 1556 unsigned int retval = itr_setting; 1557 1558 if (packets == 0) 1559 goto update_itr_done; 1560 1561 switch (itr_setting) { 1562 case lowest_latency: 1563 /* handle TSO and jumbo frames */ 1564 if (bytes/packets > 8000) 1565 retval = bulk_latency; 1566 else if ((packets < 5) && (bytes > 512)) { 1567 retval = low_latency; 1568 } 1569 break; 1570 case low_latency: /* 50 usec aka 20000 ints/s */ 1571 if (bytes > 10000) { 1572 /* this if handles the TSO accounting */ 1573 if (bytes/packets > 8000) { 1574 retval = bulk_latency; 1575 } else if ((packets < 10) || ((bytes/packets) > 1200)) { 1576 retval = bulk_latency; 1577 } else if ((packets > 35)) { 1578 retval = lowest_latency; 1579 } 1580 } else if (bytes/packets > 2000) { 1581 retval = bulk_latency; 1582 } else if (packets <= 2 && bytes < 512) { 1583 retval = lowest_latency; 1584 } 1585 break; 1586 case bulk_latency: /* 250 usec aka 4000 ints/s */ 1587 if (bytes > 25000) { 1588 if (packets > 35) { 1589 retval = low_latency; 1590 } 1591 } else if (bytes < 6000) { 1592 retval = low_latency; 1593 } 1594 break; 1595 } 1596 1597update_itr_done: 1598 return retval; 1599} 1600 1601static void e1000_set_itr(struct e1000_adapter *adapter) 1602{ 1603 struct e1000_hw *hw = &adapter->hw; 1604 u16 current_itr; 1605 u32 new_itr = adapter->itr; 1606 1607 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ 1608 if (adapter->link_speed != SPEED_1000) { 1609 current_itr = 0; 1610 new_itr = 4000; 1611 goto set_itr_now; 1612 } 1613 1614 adapter->tx_itr = e1000_update_itr(adapter, 1615 adapter->tx_itr, 1616 adapter->total_tx_packets, 1617 adapter->total_tx_bytes); 1618 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 1619 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency) 1620 adapter->tx_itr = low_latency; 1621 1622 adapter->rx_itr = e1000_update_itr(adapter, 1623 adapter->rx_itr, 1624 adapter->total_rx_packets, 1625 adapter->total_rx_bytes); 1626 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 1627 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency) 1628 adapter->rx_itr = low_latency; 1629 1630 current_itr = max(adapter->rx_itr, adapter->tx_itr); 1631 1632 switch (current_itr) { 1633 /* counts and packets in update_itr are dependent on these numbers */ 1634 case lowest_latency: 1635 new_itr = 70000; 1636 break; 1637 case low_latency: 1638 new_itr = 20000; /* aka hwitr = ~200 */ 1639 break; 1640 case bulk_latency: 1641 new_itr = 4000; 1642 break; 1643 default: 1644 break; 1645 } 1646 1647set_itr_now: 1648 if (new_itr != adapter->itr) { 1649 /* 1650 * this attempts to bias the interrupt rate towards Bulk 1651 * by adding intermediate steps when interrupt rate is 1652 * increasing 1653 */ 1654 new_itr = new_itr > adapter->itr ? 1655 min(adapter->itr + (new_itr >> 2), new_itr) : 1656 new_itr; 1657 adapter->itr = new_itr; 1658 ew32(ITR, 1000000000 / (new_itr * 256)); 1659 } 1660} 1661 1662/** 1663 * e1000_clean - NAPI Rx polling callback 1664 * @napi: struct associated with this polling callback 1665 * @budget: amount of packets driver is allowed to process this poll 1666 **/ 1667static int e1000_clean(struct napi_struct *napi, int budget) 1668{ 1669 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi); 1670 struct net_device *poll_dev = adapter->netdev; 1671 int tx_cleaned = 0, work_done = 0; 1672 1673 /* Must NOT use netdev_priv macro here. */ 1674 adapter = poll_dev->priv; 1675 1676 /* 1677 * e1000_clean is called per-cpu. This lock protects 1678 * tx_ring from being cleaned by multiple cpus 1679 * simultaneously. A failure obtaining the lock means 1680 * tx_ring is currently being cleaned anyway. 1681 */ 1682 if (spin_trylock(&adapter->tx_queue_lock)) { 1683 tx_cleaned = e1000_clean_tx_irq(adapter); 1684 spin_unlock(&adapter->tx_queue_lock); 1685 } 1686 1687 adapter->clean_rx(adapter, &work_done, budget); 1688 1689 if (tx_cleaned) 1690 work_done = budget; 1691 1692 /* If budget not fully consumed, exit the polling mode */ 1693 if (work_done < budget) { 1694 if (adapter->itr_setting & 3) 1695 e1000_set_itr(adapter); 1696 netif_rx_complete(poll_dev, napi); 1697 e1000_irq_enable(adapter); 1698 } 1699 1700 return work_done; 1701} 1702 1703static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid) 1704{ 1705 struct e1000_adapter *adapter = netdev_priv(netdev); 1706 struct e1000_hw *hw = &adapter->hw; 1707 u32 vfta, index; 1708 1709 /* don't update vlan cookie if already programmed */ 1710 if ((adapter->hw.mng_cookie.status & 1711 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && 1712 (vid == adapter->mng_vlan_id)) 1713 return; 1714 /* add VID to filter table */ 1715 index = (vid >> 5) & 0x7F; 1716 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index); 1717 vfta |= (1 << (vid & 0x1F)); 1718 e1000e_write_vfta(hw, index, vfta); 1719} 1720 1721static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid) 1722{ 1723 struct e1000_adapter *adapter = netdev_priv(netdev); 1724 struct e1000_hw *hw = &adapter->hw; 1725 u32 vfta, index; 1726 1727 if (!test_bit(__E1000_DOWN, &adapter->state)) 1728 e1000_irq_disable(adapter); 1729 vlan_group_set_device(adapter->vlgrp, vid, NULL); 1730 1731 if (!test_bit(__E1000_DOWN, &adapter->state)) 1732 e1000_irq_enable(adapter); 1733 1734 if ((adapter->hw.mng_cookie.status & 1735 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && 1736 (vid == adapter->mng_vlan_id)) { 1737 /* release control to f/w */ 1738 e1000_release_hw_control(adapter); 1739 return; 1740 } 1741 1742 /* remove VID from filter table */ 1743 index = (vid >> 5) & 0x7F; 1744 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index); 1745 vfta &= ~(1 << (vid & 0x1F)); 1746 e1000e_write_vfta(hw, index, vfta); 1747} 1748 1749static void e1000_update_mng_vlan(struct e1000_adapter *adapter) 1750{ 1751 struct net_device *netdev = adapter->netdev; 1752 u16 vid = adapter->hw.mng_cookie.vlan_id; 1753 u16 old_vid = adapter->mng_vlan_id; 1754 1755 if (!adapter->vlgrp) 1756 return; 1757 1758 if (!vlan_group_get_device(adapter->vlgrp, vid)) { 1759 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; 1760 if (adapter->hw.mng_cookie.status & 1761 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) { 1762 e1000_vlan_rx_add_vid(netdev, vid); 1763 adapter->mng_vlan_id = vid; 1764 } 1765 1766 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && 1767 (vid != old_vid) && 1768 !vlan_group_get_device(adapter->vlgrp, old_vid)) 1769 e1000_vlan_rx_kill_vid(netdev, old_vid); 1770 } else { 1771 adapter->mng_vlan_id = vid; 1772 } 1773} 1774 1775 1776static void e1000_vlan_rx_register(struct net_device *netdev, 1777 struct vlan_group *grp) 1778{ 1779 struct e1000_adapter *adapter = netdev_priv(netdev); 1780 struct e1000_hw *hw = &adapter->hw; 1781 u32 ctrl, rctl; 1782 1783 if (!test_bit(__E1000_DOWN, &adapter->state)) 1784 e1000_irq_disable(adapter); 1785 adapter->vlgrp = grp; 1786 1787 if (grp) { 1788 /* enable VLAN tag insert/strip */ 1789 ctrl = er32(CTRL); 1790 ctrl |= E1000_CTRL_VME; 1791 ew32(CTRL, ctrl); 1792 1793 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { 1794 /* enable VLAN receive filtering */ 1795 rctl = er32(RCTL); 1796 rctl |= E1000_RCTL_VFE; 1797 rctl &= ~E1000_RCTL_CFIEN; 1798 ew32(RCTL, rctl); 1799 e1000_update_mng_vlan(adapter); 1800 } 1801 } else { 1802 /* disable VLAN tag insert/strip */ 1803 ctrl = er32(CTRL); 1804 ctrl &= ~E1000_CTRL_VME; 1805 ew32(CTRL, ctrl); 1806 1807 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { 1808 /* disable VLAN filtering */ 1809 rctl = er32(RCTL); 1810 rctl &= ~E1000_RCTL_VFE; 1811 ew32(RCTL, rctl); 1812 if (adapter->mng_vlan_id != 1813 (u16)E1000_MNG_VLAN_NONE) { 1814 e1000_vlan_rx_kill_vid(netdev, 1815 adapter->mng_vlan_id); 1816 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; 1817 } 1818 } 1819 } 1820 1821 if (!test_bit(__E1000_DOWN, &adapter->state)) 1822 e1000_irq_enable(adapter); 1823} 1824 1825static void e1000_restore_vlan(struct e1000_adapter *adapter) 1826{ 1827 u16 vid; 1828 1829 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp); 1830 1831 if (!adapter->vlgrp) 1832 return; 1833 1834 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) { 1835 if (!vlan_group_get_device(adapter->vlgrp, vid)) 1836 continue; 1837 e1000_vlan_rx_add_vid(adapter->netdev, vid); 1838 } 1839} 1840 1841static void e1000_init_manageability(struct e1000_adapter *adapter) 1842{ 1843 struct e1000_hw *hw = &adapter->hw; 1844 u32 manc, manc2h; 1845 1846 if (!(adapter->flags & FLAG_MNG_PT_ENABLED)) 1847 return; 1848 1849 manc = er32(MANC); 1850 1851 /* 1852 * enable receiving management packets to the host. this will probably 1853 * generate destination unreachable messages from the host OS, but 1854 * the packets will be handled on SMBUS 1855 */ 1856 manc |= E1000_MANC_EN_MNG2HOST; 1857 manc2h = er32(MANC2H); 1858#define E1000_MNG2HOST_PORT_623 (1 << 5) 1859#define E1000_MNG2HOST_PORT_664 (1 << 6) 1860 manc2h |= E1000_MNG2HOST_PORT_623; 1861 manc2h |= E1000_MNG2HOST_PORT_664; 1862 ew32(MANC2H, manc2h); 1863 ew32(MANC, manc); 1864} 1865 1866/** 1867 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset 1868 * @adapter: board private structure 1869 * 1870 * Configure the Tx unit of the MAC after a reset. 1871 **/ 1872static void e1000_configure_tx(struct e1000_adapter *adapter) 1873{ 1874 struct e1000_hw *hw = &adapter->hw; 1875 struct e1000_ring *tx_ring = adapter->tx_ring; 1876 u64 tdba; 1877 u32 tdlen, tctl, tipg, tarc; 1878 u32 ipgr1, ipgr2; 1879 1880 /* Setup the HW Tx Head and Tail descriptor pointers */ 1881 tdba = tx_ring->dma; 1882 tdlen = tx_ring->count * sizeof(struct e1000_tx_desc); 1883 ew32(TDBAL, (tdba & DMA_32BIT_MASK)); 1884 ew32(TDBAH, (tdba >> 32)); 1885 ew32(TDLEN, tdlen); 1886 ew32(TDH, 0); 1887 ew32(TDT, 0); 1888 tx_ring->head = E1000_TDH; 1889 tx_ring->tail = E1000_TDT; 1890 1891 /* Set the default values for the Tx Inter Packet Gap timer */ 1892 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; /* 8 */ 1893 ipgr1 = DEFAULT_82543_TIPG_IPGR1; /* 8 */ 1894 ipgr2 = DEFAULT_82543_TIPG_IPGR2; /* 6 */ 1895 1896 if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN) 1897 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /* 7 */ 1898 1899 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT; 1900 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT; 1901 ew32(TIPG, tipg); 1902 1903 /* Set the Tx Interrupt Delay register */ 1904 ew32(TIDV, adapter->tx_int_delay); 1905 /* Tx irq moderation */ 1906 ew32(TADV, adapter->tx_abs_int_delay); 1907 1908 /* Program the Transmit Control Register */ 1909 tctl = er32(TCTL); 1910 tctl &= ~E1000_TCTL_CT; 1911 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | 1912 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); 1913 1914 if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) { 1915 tarc = er32(TARC(0)); 1916 /* 1917 * set the speed mode bit, we'll clear it if we're not at 1918 * gigabit link later 1919 */ 1920#define SPEED_MODE_BIT (1 << 21) 1921 tarc |= SPEED_MODE_BIT; 1922 ew32(TARC(0), tarc); 1923 } 1924 1925 /* errata: program both queues to unweighted RR */ 1926 if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) { 1927 tarc = er32(TARC(0)); 1928 tarc |= 1; 1929 ew32(TARC(0), tarc); 1930 tarc = er32(TARC(1)); 1931 tarc |= 1; 1932 ew32(TARC(1), tarc); 1933 } 1934 1935 e1000e_config_collision_dist(hw); 1936 1937 /* Setup Transmit Descriptor Settings for eop descriptor */ 1938 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS; 1939 1940 /* only set IDE if we are delaying interrupts using the timers */ 1941 if (adapter->tx_int_delay) 1942 adapter->txd_cmd |= E1000_TXD_CMD_IDE; 1943 1944 /* enable Report Status bit */ 1945 adapter->txd_cmd |= E1000_TXD_CMD_RS; 1946 1947 ew32(TCTL, tctl); 1948 1949 adapter->tx_queue_len = adapter->netdev->tx_queue_len; 1950} 1951 1952/** 1953 * e1000_setup_rctl - configure the receive control registers 1954 * @adapter: Board private structure 1955 **/ 1956#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \ 1957 (((S) & (PAGE_SIZE - 1)) ? 1 : 0)) 1958static void e1000_setup_rctl(struct e1000_adapter *adapter) 1959{ 1960 struct e1000_hw *hw = &adapter->hw; 1961 u32 rctl, rfctl; 1962 u32 psrctl = 0; 1963 u32 pages = 0; 1964 1965 /* Program MC offset vector base */ 1966 rctl = er32(RCTL); 1967 rctl &= ~(3 << E1000_RCTL_MO_SHIFT); 1968 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | 1969 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | 1970 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT); 1971 1972 /* Do not Store bad packets */ 1973 rctl &= ~E1000_RCTL_SBP; 1974 1975 /* Enable Long Packet receive */ 1976 if (adapter->netdev->mtu <= ETH_DATA_LEN) 1977 rctl &= ~E1000_RCTL_LPE; 1978 else 1979 rctl |= E1000_RCTL_LPE; 1980 1981 /* Enable hardware CRC frame stripping */ 1982 rctl |= E1000_RCTL_SECRC; 1983 1984 /* Setup buffer sizes */ 1985 rctl &= ~E1000_RCTL_SZ_4096; 1986 rctl |= E1000_RCTL_BSEX; 1987 switch (adapter->rx_buffer_len) { 1988 case 256: 1989 rctl |= E1000_RCTL_SZ_256; 1990 rctl &= ~E1000_RCTL_BSEX; 1991 break; 1992 case 512: 1993 rctl |= E1000_RCTL_SZ_512; 1994 rctl &= ~E1000_RCTL_BSEX; 1995 break; 1996 case 1024: 1997 rctl |= E1000_RCTL_SZ_1024; 1998 rctl &= ~E1000_RCTL_BSEX; 1999 break; 2000 case 2048: 2001 default: 2002 rctl |= E1000_RCTL_SZ_2048; 2003 rctl &= ~E1000_RCTL_BSEX; 2004 break; 2005 case 4096: 2006 rctl |= E1000_RCTL_SZ_4096; 2007 break; 2008 case 8192: 2009 rctl |= E1000_RCTL_SZ_8192; 2010 break; 2011 case 16384: 2012 rctl |= E1000_RCTL_SZ_16384; 2013 break; 2014 } 2015 2016 /* 2017 * 82571 and greater support packet-split where the protocol 2018 * header is placed in skb->data and the packet data is 2019 * placed in pages hanging off of skb_shinfo(skb)->nr_frags. 2020 * In the case of a non-split, skb->data is linearly filled, 2021 * followed by the page buffers. Therefore, skb->data is 2022 * sized to hold the largest protocol header. 2023 * 2024 * allocations using alloc_page take too long for regular MTU 2025 * so only enable packet split for jumbo frames 2026 * 2027 * Using pages when the page size is greater than 16k wastes 2028 * a lot of memory, since we allocate 3 pages at all times 2029 * per packet. 2030 */ 2031 pages = PAGE_USE_COUNT(adapter->netdev->mtu); 2032 if (!(adapter->flags & FLAG_IS_ICH) && (pages <= 3) && 2033 (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE)) 2034 adapter->rx_ps_pages = pages; 2035 else 2036 adapter->rx_ps_pages = 0; 2037 2038 if (adapter->rx_ps_pages) { 2039 /* Configure extra packet-split registers */ 2040 rfctl = er32(RFCTL); 2041 rfctl |= E1000_RFCTL_EXTEN; 2042 /* 2043 * disable packet split support for IPv6 extension headers, 2044 * because some malformed IPv6 headers can hang the Rx 2045 */ 2046 rfctl |= (E1000_RFCTL_IPV6_EX_DIS | 2047 E1000_RFCTL_NEW_IPV6_EXT_DIS); 2048 2049 ew32(RFCTL, rfctl); 2050 2051 /* Enable Packet split descriptors */ 2052 rctl |= E1000_RCTL_DTYP_PS; 2053 2054 psrctl |= adapter->rx_ps_bsize0 >> 2055 E1000_PSRCTL_BSIZE0_SHIFT; 2056 2057 switch (adapter->rx_ps_pages) { 2058 case 3: 2059 psrctl |= PAGE_SIZE << 2060 E1000_PSRCTL_BSIZE3_SHIFT; 2061 case 2: 2062 psrctl |= PAGE_SIZE << 2063 E1000_PSRCTL_BSIZE2_SHIFT; 2064 case 1: 2065 psrctl |= PAGE_SIZE >> 2066 E1000_PSRCTL_BSIZE1_SHIFT; 2067 break; 2068 } 2069 2070 ew32(PSRCTL, psrctl); 2071 } 2072 2073 ew32(RCTL, rctl); 2074 /* just started the receive unit, no need to restart */ 2075 adapter->flags &= ~FLAG_RX_RESTART_NOW; 2076} 2077 2078/** 2079 * e1000_configure_rx - Configure Receive Unit after Reset 2080 * @adapter: board private structure 2081 * 2082 * Configure the Rx unit of the MAC after a reset. 2083 **/ 2084static void e1000_configure_rx(struct e1000_adapter *adapter) 2085{ 2086 struct e1000_hw *hw = &adapter->hw; 2087 struct e1000_ring *rx_ring = adapter->rx_ring; 2088 u64 rdba; 2089 u32 rdlen, rctl, rxcsum, ctrl_ext; 2090 2091 if (adapter->rx_ps_pages) { 2092 /* this is a 32 byte descriptor */ 2093 rdlen = rx_ring->count * 2094 sizeof(union e1000_rx_desc_packet_split); 2095 adapter->clean_rx = e1000_clean_rx_irq_ps; 2096 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps; 2097 } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) { 2098 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc); 2099 adapter->clean_rx = e1000_clean_jumbo_rx_irq; 2100 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers; 2101 } else { 2102 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc); 2103 adapter->clean_rx = e1000_clean_rx_irq; 2104 adapter->alloc_rx_buf = e1000_alloc_rx_buffers; 2105 } 2106 2107 /* disable receives while setting up the descriptors */ 2108 rctl = er32(RCTL); 2109 ew32(RCTL, rctl & ~E1000_RCTL_EN); 2110 e1e_flush(); 2111 msleep(10); 2112 2113 /* set the Receive Delay Timer Register */ 2114 ew32(RDTR, adapter->rx_int_delay); 2115 2116 /* irq moderation */ 2117 ew32(RADV, adapter->rx_abs_int_delay); 2118 if (adapter->itr_setting != 0) 2119 ew32(ITR, 1000000000 / (adapter->itr * 256)); 2120 2121 ctrl_ext = er32(CTRL_EXT); 2122 /* Reset delay timers after every interrupt */ 2123 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR; 2124 /* Auto-Mask interrupts upon ICR access */ 2125 ctrl_ext |= E1000_CTRL_EXT_IAME; 2126 ew32(IAM, 0xffffffff); 2127 ew32(CTRL_EXT, ctrl_ext); 2128 e1e_flush(); 2129 2130 /* 2131 * Setup the HW Rx Head and Tail Descriptor Pointers and 2132 * the Base and Length of the Rx Descriptor Ring 2133 */ 2134 rdba = rx_ring->dma; 2135 ew32(RDBAL, (rdba & DMA_32BIT_MASK)); 2136 ew32(RDBAH, (rdba >> 32)); 2137 ew32(RDLEN, rdlen); 2138 ew32(RDH, 0); 2139 ew32(RDT, 0); 2140 rx_ring->head = E1000_RDH; 2141 rx_ring->tail = E1000_RDT; 2142 2143 /* Enable Receive Checksum Offload for TCP and UDP */ 2144 rxcsum = er32(RXCSUM); 2145 if (adapter->flags & FLAG_RX_CSUM_ENABLED) { 2146 rxcsum |= E1000_RXCSUM_TUOFL; 2147 2148 /* 2149 * IPv4 payload checksum for UDP fragments must be 2150 * used in conjunction with packet-split. 2151 */ 2152 if (adapter->rx_ps_pages) 2153 rxcsum |= E1000_RXCSUM_IPPCSE; 2154 } else { 2155 rxcsum &= ~E1000_RXCSUM_TUOFL; 2156 /* no need to clear IPPCSE as it defaults to 0 */ 2157 } 2158 ew32(RXCSUM, rxcsum); 2159 2160 /* 2161 * Enable early receives on supported devices, only takes effect when 2162 * packet size is equal or larger than the specified value (in 8 byte 2163 * units), e.g. using jumbo frames when setting to E1000_ERT_2048 2164 */ 2165 if ((adapter->flags & FLAG_HAS_ERT) && 2166 (adapter->netdev->mtu > ETH_DATA_LEN)) { 2167 u32 rxdctl = er32(RXDCTL(0)); 2168 ew32(RXDCTL(0), rxdctl | 0x3); 2169 ew32(ERT, E1000_ERT_2048 | (1 << 13)); 2170 /* 2171 * With jumbo frames and early-receive enabled, excessive 2172 * C4->C2 latencies result in dropped transactions. 2173 */ 2174 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY, 2175 e1000e_driver_name, 55); 2176 } else { 2177 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY, 2178 e1000e_driver_name, 2179 PM_QOS_DEFAULT_VALUE); 2180 } 2181 2182 /* Enable Receives */ 2183 ew32(RCTL, rctl); 2184} 2185 2186/** 2187 * e1000_update_mc_addr_list - Update Multicast addresses 2188 * @hw: pointer to the HW structure 2189 * @mc_addr_list: array of multicast addresses to program 2190 * @mc_addr_count: number of multicast addresses to program 2191 * @rar_used_count: the first RAR register free to program 2192 * @rar_count: total number of supported Receive Address Registers 2193 * 2194 * Updates the Receive Address Registers and Multicast Table Array. 2195 * The caller must have a packed mc_addr_list of multicast addresses. 2196 * The parameter rar_count will usually be hw->mac.rar_entry_count 2197 * unless there are workarounds that change this. Currently no func pointer 2198 * exists and all implementations are handled in the generic version of this 2199 * function. 2200 **/ 2201static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list, 2202 u32 mc_addr_count, u32 rar_used_count, 2203 u32 rar_count) 2204{ 2205 hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count, 2206 rar_used_count, rar_count); 2207} 2208 2209/** 2210 * e1000_set_multi - Multicast and Promiscuous mode set 2211 * @netdev: network interface device structure 2212 * 2213 * The set_multi entry point is called whenever the multicast address 2214 * list or the network interface flags are updated. This routine is 2215 * responsible for configuring the hardware for proper multicast, 2216 * promiscuous mode, and all-multi behavior. 2217 **/ 2218static void e1000_set_multi(struct net_device *netdev) 2219{ 2220 struct e1000_adapter *adapter = netdev_priv(netdev); 2221 struct e1000_hw *hw = &adapter->hw; 2222 struct e1000_mac_info *mac = &hw->mac; 2223 struct dev_mc_list *mc_ptr; 2224 u8 *mta_list; 2225 u32 rctl; 2226 int i; 2227 2228 /* Check for Promiscuous and All Multicast modes */ 2229 2230 rctl = er32(RCTL); 2231 2232 if (netdev->flags & IFF_PROMISC) { 2233 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); 2234 } else if (netdev->flags & IFF_ALLMULTI) { 2235 rctl |= E1000_RCTL_MPE; 2236 rctl &= ~E1000_RCTL_UPE; 2237 } else { 2238 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE); 2239 } 2240 2241 ew32(RCTL, rctl); 2242 2243 if (netdev->mc_count) { 2244 mta_list = kmalloc(netdev->mc_count * 6, GFP_ATOMIC); 2245 if (!mta_list) 2246 return; 2247 2248 /* prepare a packed array of only addresses. */ 2249 mc_ptr = netdev->mc_list; 2250 2251 for (i = 0; i < netdev->mc_count; i++) { 2252 if (!mc_ptr) 2253 break; 2254 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, 2255 ETH_ALEN); 2256 mc_ptr = mc_ptr->next; 2257 } 2258 2259 e1000_update_mc_addr_list(hw, mta_list, i, 1, 2260 mac->rar_entry_count); 2261 kfree(mta_list); 2262 } else { 2263 /* 2264 * if we're called from probe, we might not have 2265 * anything to do here, so clear out the list 2266 */ 2267 e1000_update_mc_addr_list(hw, NULL, 0, 1, mac->rar_entry_count); 2268 } 2269} 2270 2271/** 2272 * e1000_configure - configure the hardware for Rx and Tx 2273 * @adapter: private board structure 2274 **/ 2275static void e1000_configure(struct e1000_adapter *adapter) 2276{ 2277 e1000_set_multi(adapter->netdev); 2278 2279 e1000_restore_vlan(adapter); 2280 e1000_init_manageability(adapter); 2281 2282 e1000_configure_tx(adapter); 2283 e1000_setup_rctl(adapter); 2284 e1000_configure_rx(adapter); 2285 adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring)); 2286} 2287 2288/** 2289 * e1000e_power_up_phy - restore link in case the phy was powered down 2290 * @adapter: address of board private structure 2291 * 2292 * The phy may be powered down to save power and turn off link when the 2293 * driver is unloaded and wake on lan is not enabled (among others) 2294 * *** this routine MUST be followed by a call to e1000e_reset *** 2295 **/ 2296void e1000e_power_up_phy(struct e1000_adapter *adapter) 2297{ 2298 u16 mii_reg = 0; 2299 2300 /* Just clear the power down bit to wake the phy back up */ 2301 if (adapter->hw.phy.media_type == e1000_media_type_copper) { 2302 /* 2303 * According to the manual, the phy will retain its 2304 * settings across a power-down/up cycle 2305 */ 2306 e1e_rphy(&adapter->hw, PHY_CONTROL, &mii_reg); 2307 mii_reg &= ~MII_CR_POWER_DOWN; 2308 e1e_wphy(&adapter->hw, PHY_CONTROL, mii_reg); 2309 } 2310 2311 adapter->hw.mac.ops.setup_link(&adapter->hw); 2312} 2313 2314/** 2315 * e1000_power_down_phy - Power down the PHY 2316 * 2317 * Power down the PHY so no link is implied when interface is down 2318 * The PHY cannot be powered down is management or WoL is active 2319 */ 2320static void e1000_power_down_phy(struct e1000_adapter *adapter) 2321{ 2322 struct e1000_hw *hw = &adapter->hw; 2323 u16 mii_reg; 2324 2325 /* WoL is enabled */ 2326 if (adapter->wol) 2327 return; 2328 2329 /* non-copper PHY? */ 2330 if (adapter->hw.phy.media_type != e1000_media_type_copper) 2331 return; 2332 2333 /* reset is blocked because of a SoL/IDER session */ 2334 if (e1000e_check_mng_mode(hw) || e1000_check_reset_block(hw)) 2335 return; 2336 2337 /* manageability (AMT) is enabled */ 2338 if (er32(MANC) & E1000_MANC_SMBUS_EN) 2339 return; 2340 2341 /* power down the PHY */ 2342 e1e_rphy(hw, PHY_CONTROL, &mii_reg); 2343 mii_reg |= MII_CR_POWER_DOWN; 2344 e1e_wphy(hw, PHY_CONTROL, mii_reg); 2345 mdelay(1); 2346} 2347 2348/** 2349 * e1000e_reset - bring the hardware into a known good state 2350 * 2351 * This function boots the hardware and enables some settings that 2352 * require a configuration cycle of the hardware - those cannot be 2353 * set/changed during runtime. After reset the device needs to be 2354 * properly configured for Rx, Tx etc. 2355 */ 2356void e1000e_reset(struct e1000_adapter *adapter) 2357{ 2358 struct e1000_mac_info *mac = &adapter->hw.mac; 2359 struct e1000_fc_info *fc = &adapter->hw.fc; 2360 struct e1000_hw *hw = &adapter->hw; 2361 u32 tx_space, min_tx_space, min_rx_space; 2362 u32 pba = adapter->pba; 2363 u16 hwm; 2364 2365 /* reset Packet Buffer Allocation to default */ 2366 ew32(PBA, pba); 2367 2368 if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) { 2369 /* 2370 * To maintain wire speed transmits, the Tx FIFO should be 2371 * large enough to accommodate two full transmit packets, 2372 * rounded up to the next 1KB and expressed in KB. Likewise, 2373 * the Rx FIFO should be large enough to accommodate at least 2374 * one full receive packet and is similarly rounded up and 2375 * expressed in KB. 2376 */ 2377 pba = er32(PBA); 2378 /* upper 16 bits has Tx packet buffer allocation size in KB */ 2379 tx_space = pba >> 16; 2380 /* lower 16 bits has Rx packet buffer allocation size in KB */ 2381 pba &= 0xffff; 2382 /* 2383 * the Tx fifo also stores 16 bytes of information about the tx 2384 * but don't include ethernet FCS because hardware appends it 2385 */ 2386 min_tx_space = (adapter->max_frame_size + 2387 sizeof(struct e1000_tx_desc) - 2388 ETH_FCS_LEN) * 2; 2389 min_tx_space = ALIGN(min_tx_space, 1024); 2390 min_tx_space >>= 10; 2391 /* software strips receive CRC, so leave room for it */ 2392 min_rx_space = adapter->max_frame_size; 2393 min_rx_space = ALIGN(min_rx_space, 1024); 2394 min_rx_space >>= 10; 2395 2396 /* 2397 * If current Tx allocation is less than the min Tx FIFO size, 2398 * and the min Tx FIFO size is less than the current Rx FIFO 2399 * allocation, take space away from current Rx allocation 2400 */ 2401 if ((tx_space < min_tx_space) && 2402 ((min_tx_space - tx_space) < pba)) { 2403 pba -= min_tx_space - tx_space; 2404 2405 /* 2406 * if short on Rx space, Rx wins and must trump tx 2407 * adjustment or use Early Receive if available 2408 */ 2409 if ((pba < min_rx_space) && 2410 (!(adapter->flags & FLAG_HAS_ERT))) 2411 /* ERT enabled in e1000_configure_rx */ 2412 pba = min_rx_space; 2413 } 2414 2415 ew32(PBA, pba); 2416 } 2417 2418 2419 /* 2420 * flow control settings 2421 * 2422 * The high water mark must be low enough to fit one full frame 2423 * (or the size used for early receive) above it in the Rx FIFO. 2424 * Set it to the lower of: 2425 * - 90% of the Rx FIFO size, and 2426 * - the full Rx FIFO size minus the early receive size (for parts 2427 * with ERT support assuming ERT set to E1000_ERT_2048), or 2428 * - the full Rx FIFO size minus one full frame 2429 */ 2430 if (adapter->flags & FLAG_HAS_ERT) 2431 hwm = min(((pba << 10) * 9 / 10), 2432 ((pba << 10) - (E1000_ERT_2048 << 3))); 2433 else 2434 hwm = min(((pba << 10) * 9 / 10), 2435 ((pba << 10) - adapter->max_frame_size)); 2436 2437 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */ 2438 fc->low_water = fc->high_water - 8; 2439 2440 if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME) 2441 fc->pause_time = 0xFFFF; 2442 else 2443 fc->pause_time = E1000_FC_PAUSE_TIME; 2444 fc->send_xon = 1; 2445 fc->type = fc->original_type; 2446 2447 /* Allow time for pending master requests to run */ 2448 mac->ops.reset_hw(hw); 2449 2450 /* 2451 * For parts with AMT enabled, let the firmware know 2452 * that the network interface is in control 2453 */ 2454 if ((adapter->flags & FLAG_HAS_AMT) && e1000e_check_mng_mode(hw)) 2455 e1000_get_hw_control(adapter); 2456 2457 ew32(WUC, 0); 2458 2459 if (mac->ops.init_hw(hw)) 2460 ndev_err(adapter->netdev, "Hardware Error\n"); 2461 2462 e1000_update_mng_vlan(adapter); 2463 2464 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ 2465 ew32(VET, ETH_P_8021Q); 2466 2467 e1000e_reset_adaptive(hw); 2468 e1000_get_phy_info(hw); 2469 2470 if (!(adapter->flags & FLAG_SMART_POWER_DOWN)) { 2471 u16 phy_data = 0; 2472 /* 2473 * speed up time to link by disabling smart power down, ignore 2474 * the return value of this function because there is nothing 2475 * different we would do if it failed 2476 */ 2477 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); 2478 phy_data &= ~IGP02E1000_PM_SPD; 2479 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); 2480 } 2481} 2482 2483int e1000e_up(struct e1000_adapter *adapter) 2484{ 2485 struct e1000_hw *hw = &adapter->hw; 2486 2487 /* hardware has been reset, we need to reload some things */ 2488 e1000_configure(adapter); 2489 2490 clear_bit(__E1000_DOWN, &adapter->state); 2491 2492 napi_enable(&adapter->napi); 2493 e1000_irq_enable(adapter); 2494 2495 /* fire a link change interrupt to start the watchdog */ 2496 ew32(ICS, E1000_ICS_LSC); 2497 return 0; 2498} 2499 2500void e1000e_down(struct e1000_adapter *adapter) 2501{ 2502 struct net_device *netdev = adapter->netdev; 2503 struct e1000_hw *hw = &adapter->hw; 2504 u32 tctl, rctl; 2505 2506 /* 2507 * signal that we're down so the interrupt handler does not 2508 * reschedule our watchdog timer 2509 */ 2510 set_bit(__E1000_DOWN, &adapter->state); 2511 2512 /* disable receives in the hardware */ 2513 rctl = er32(RCTL); 2514 ew32(RCTL, rctl & ~E1000_RCTL_EN); 2515 /* flush and sleep below */ 2516 2517 netif_stop_queue(netdev); 2518 2519 /* disable transmits in the hardware */ 2520 tctl = er32(TCTL); 2521 tctl &= ~E1000_TCTL_EN; 2522 ew32(TCTL, tctl); 2523 /* flush both disables and wait for them to finish */ 2524 e1e_flush(); 2525 msleep(10); 2526 2527 napi_disable(&adapter->napi); 2528 e1000_irq_disable(adapter); 2529 2530 del_timer_sync(&adapter->watchdog_timer); 2531 del_timer_sync(&adapter->phy_info_timer); 2532 2533 netdev->tx_queue_len = adapter->tx_queue_len; 2534 netif_carrier_off(netdev); 2535 adapter->link_speed = 0; 2536 adapter->link_duplex = 0; 2537 2538 e1000e_reset(adapter); 2539 e1000_clean_tx_ring(adapter); 2540 e1000_clean_rx_ring(adapter); 2541 2542 /* 2543 * TODO: for power management, we could drop the link and 2544 * pci_disable_device here. 2545 */ 2546} 2547 2548void e1000e_reinit_locked(struct e1000_adapter *adapter) 2549{ 2550 might_sleep(); 2551 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 2552 msleep(1); 2553 e1000e_down(adapter); 2554 e1000e_up(adapter); 2555 clear_bit(__E1000_RESETTING, &adapter->state); 2556} 2557 2558/** 2559 * e1000_sw_init - Initialize general software structures (struct e1000_adapter) 2560 * @adapter: board private structure to initialize 2561 * 2562 * e1000_sw_init initializes the Adapter private data structure. 2563 * Fields are initialized based on PCI device information and 2564 * OS network device settings (MTU size). 2565 **/ 2566static int __devinit e1000_sw_init(struct e1000_adapter *adapter) 2567{ 2568 struct net_device *netdev = adapter->netdev; 2569 2570 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN; 2571 adapter->rx_ps_bsize0 = 128; 2572 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN; 2573 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; 2574 2575 adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL); 2576 if (!adapter->tx_ring) 2577 goto err; 2578 2579 adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL); 2580 if (!adapter->rx_ring) 2581 goto err; 2582 2583 spin_lock_init(&adapter->tx_queue_lock); 2584 2585 /* Explicitly disable IRQ since the NIC can be in any state. */ 2586 e1000_irq_disable(adapter); 2587 2588 spin_lock_init(&adapter->stats_lock); 2589 2590 set_bit(__E1000_DOWN, &adapter->state); 2591 return 0; 2592 2593err: 2594 ndev_err(netdev, "Unable to allocate memory for queues\n"); 2595 kfree(adapter->rx_ring); 2596 kfree(adapter->tx_ring); 2597 return -ENOMEM; 2598} 2599 2600/** 2601 * e1000_open - Called when a network interface is made active 2602 * @netdev: network interface device structure 2603 * 2604 * Returns 0 on success, negative value on failure 2605 * 2606 * The open entry point is called when a network interface is made 2607 * active by the system (IFF_UP). At this point all resources needed 2608 * for transmit and receive operations are allocated, the interrupt 2609 * handler is registered with the OS, the watchdog timer is started, 2610 * and the stack is notified that the interface is ready. 2611 **/ 2612static int e1000_open(struct net_device *netdev) 2613{ 2614 struct e1000_adapter *adapter = netdev_priv(netdev); 2615 struct e1000_hw *hw = &adapter->hw; 2616 int err; 2617 2618 /* disallow open during test */ 2619 if (test_bit(__E1000_TESTING, &adapter->state)) 2620 return -EBUSY; 2621 2622 /* allocate transmit descriptors */ 2623 err = e1000e_setup_tx_resources(adapter); 2624 if (err) 2625 goto err_setup_tx; 2626 2627 /* allocate receive descriptors */ 2628 err = e1000e_setup_rx_resources(adapter); 2629 if (err) 2630 goto err_setup_rx; 2631 2632 e1000e_power_up_phy(adapter); 2633 2634 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; 2635 if ((adapter->hw.mng_cookie.status & 2636 E1000_MNG_DHCP_COOKIE_STATUS_VLAN)) 2637 e1000_update_mng_vlan(adapter); 2638 2639 /* 2640 * If AMT is enabled, let the firmware know that the network 2641 * interface is now open 2642 */ 2643 if ((adapter->flags & FLAG_HAS_AMT) && 2644 e1000e_check_mng_mode(&adapter->hw)) 2645 e1000_get_hw_control(adapter); 2646 2647 /* 2648 * before we allocate an interrupt, we must be ready to handle it. 2649 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt 2650 * as soon as we call pci_request_irq, so we have to setup our 2651 * clean_rx handler before we do so. 2652 */ 2653 e1000_configure(adapter); 2654 2655 err = e1000_request_irq(adapter); 2656 if (err) 2657 goto err_req_irq; 2658 2659 /* From here on the code is the same as e1000e_up() */ 2660 clear_bit(__E1000_DOWN, &adapter->state); 2661 2662 napi_enable(&adapter->napi); 2663 2664 e1000_irq_enable(adapter); 2665 2666 /* fire a link status change interrupt to start the watchdog */ 2667 ew32(ICS, E1000_ICS_LSC); 2668 2669 return 0; 2670 2671err_req_irq: 2672 e1000_release_hw_control(adapter); 2673 e1000_power_down_phy(adapter); 2674 e1000e_free_rx_resources(adapter); 2675err_setup_rx: 2676 e1000e_free_tx_resources(adapter); 2677err_setup_tx: 2678 e1000e_reset(adapter); 2679 2680 return err; 2681} 2682 2683/** 2684 * e1000_close - Disables a network interface 2685 * @netdev: network interface device structure 2686 * 2687 * Returns 0, this is not allowed to fail 2688 * 2689 * The close entry point is called when an interface is de-activated 2690 * by the OS. The hardware is still under the drivers control, but 2691 * needs to be disabled. A global MAC reset is issued to stop the 2692 * hardware, and all transmit and receive resources are freed. 2693 **/ 2694static int e1000_close(struct net_device *netdev) 2695{ 2696 struct e1000_adapter *adapter = netdev_priv(netdev); 2697 2698 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state)); 2699 e1000e_down(adapter); 2700 e1000_power_down_phy(adapter); 2701 e1000_free_irq(adapter); 2702 2703 e1000e_free_tx_resources(adapter); 2704 e1000e_free_rx_resources(adapter); 2705 2706 /* 2707 * kill manageability vlan ID if supported, but not if a vlan with 2708 * the same ID is registered on the host OS (let 8021q kill it) 2709 */ 2710 if ((adapter->hw.mng_cookie.status & 2711 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && 2712 !(adapter->vlgrp && 2713 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) 2714 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id); 2715 2716 /* 2717 * If AMT is enabled, let the firmware know that the network 2718 * interface is now closed 2719 */ 2720 if ((adapter->flags & FLAG_HAS_AMT) && 2721 e1000e_check_mng_mode(&adapter->hw)) 2722 e1000_release_hw_control(adapter); 2723 2724 return 0; 2725} 2726/** 2727 * e1000_set_mac - Change the Ethernet Address of the NIC 2728 * @netdev: network interface device structure 2729 * @p: pointer to an address structure 2730 * 2731 * Returns 0 on success, negative on failure 2732 **/ 2733static int e1000_set_mac(struct net_device *netdev, void *p) 2734{ 2735 struct e1000_adapter *adapter = netdev_priv(netdev); 2736 struct sockaddr *addr = p; 2737 2738 if (!is_valid_ether_addr(addr->sa_data)) 2739 return -EADDRNOTAVAIL; 2740 2741 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); 2742 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len); 2743 2744 e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0); 2745 2746 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) { 2747 /* activate the work around */ 2748 e1000e_set_laa_state_82571(&adapter->hw, 1); 2749 2750 /* 2751 * Hold a copy of the LAA in RAR[14] This is done so that 2752 * between the time RAR[0] gets clobbered and the time it 2753 * gets fixed (in e1000_watchdog), the actual LAA is in one 2754 * of the RARs and no incoming packets directed to this port 2755 * are dropped. Eventually the LAA will be in RAR[0] and 2756 * RAR[14] 2757 */ 2758 e1000e_rar_set(&adapter->hw, 2759 adapter->hw.mac.addr, 2760 adapter->hw.mac.rar_entry_count - 1); 2761 } 2762 2763 return 0; 2764} 2765 2766/* 2767 * Need to wait a few seconds after link up to get diagnostic information from 2768 * the phy 2769 */ 2770static void e1000_update_phy_info(unsigned long data) 2771{ 2772 struct e1000_adapter *adapter = (struct e1000_adapter *) data; 2773 e1000_get_phy_info(&adapter->hw); 2774} 2775 2776/** 2777 * e1000e_update_stats - Update the board statistics counters 2778 * @adapter: board private structure 2779 **/ 2780void e1000e_update_stats(struct e1000_adapter *adapter) 2781{ 2782 struct e1000_hw *hw = &adapter->hw; 2783 struct pci_dev *pdev = adapter->pdev; 2784 unsigned long irq_flags; 2785 u16 phy_tmp; 2786 2787#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF 2788 2789 /* 2790 * Prevent stats update while adapter is being reset, or if the pci 2791 * connection is down. 2792 */ 2793 if (adapter->link_speed == 0) 2794 return; 2795 if (pci_channel_offline(pdev)) 2796 return; 2797 2798 spin_lock_irqsave(&adapter->stats_lock, irq_flags); 2799 2800 /* 2801 * these counters are modified from e1000_adjust_tbi_stats, 2802 * called from the interrupt context, so they must only 2803 * be written while holding adapter->stats_lock 2804 */ 2805 2806 adapter->stats.crcerrs += er32(CRCERRS); 2807 adapter->stats.gprc += er32(GPRC); 2808 adapter->stats.gorc += er32(GORCL); 2809 er32(GORCH); /* Clear gorc */ 2810 adapter->stats.bprc += er32(BPRC); 2811 adapter->stats.mprc += er32(MPRC); 2812 adapter->stats.roc += er32(ROC); 2813 2814 adapter->stats.mpc += er32(MPC); 2815 adapter->stats.scc += er32(SCC); 2816 adapter->stats.ecol += er32(ECOL); 2817 adapter->stats.mcc += er32(MCC); 2818 adapter->stats.latecol += er32(LATECOL); 2819 adapter->stats.dc += er32(DC); 2820 adapter->stats.xonrxc += er32(XONRXC); 2821 adapter->stats.xontxc += er32(XONTXC); 2822 adapter->stats.xoffrxc += er32(XOFFRXC); 2823 adapter->stats.xofftxc += er32(XOFFTXC); 2824 adapter->stats.gptc += er32(GPTC); 2825 adapter->stats.gotc += er32(GOTCL); 2826 er32(GOTCH); /* Clear gotc */ 2827 adapter->stats.rnbc += er32(RNBC); 2828 adapter->stats.ruc += er32(RUC); 2829 2830 adapter->stats.mptc += er32(MPTC); 2831 adapter->stats.bptc += er32(BPTC); 2832 2833 /* used for adaptive IFS */ 2834 2835 hw->mac.tx_packet_delta = er32(TPT); 2836 adapter->stats.tpt += hw->mac.tx_packet_delta; 2837 hw->mac.collision_delta = er32(COLC); 2838 adapter->stats.colc += hw->mac.collision_delta; 2839 2840 adapter->stats.algnerrc += er32(ALGNERRC); 2841 adapter->stats.rxerrc += er32(RXERRC); 2842 adapter->stats.tncrs += er32(TNCRS); 2843 adapter->stats.cexterr += er32(CEXTERR); 2844 adapter->stats.tsctc += er32(TSCTC); 2845 adapter->stats.tsctfc += er32(TSCTFC); 2846 2847 /* Fill out the OS statistics structure */ 2848 adapter->net_stats.multicast = adapter->stats.mprc; 2849 adapter->net_stats.collisions = adapter->stats.colc; 2850 2851 /* Rx Errors */ 2852 2853 /* 2854 * RLEC on some newer hardware can be incorrect so build 2855 * our own version based on RUC and ROC 2856 */ 2857 adapter->net_stats.rx_errors = adapter->stats.rxerrc + 2858 adapter->stats.crcerrs + adapter->stats.algnerrc + 2859 adapter->stats.ruc + adapter->stats.roc + 2860 adapter->stats.cexterr; 2861 adapter->net_stats.rx_length_errors = adapter->stats.ruc + 2862 adapter->stats.roc; 2863 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs; 2864 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc; 2865 adapter->net_stats.rx_missed_errors = adapter->stats.mpc; 2866 2867 /* Tx Errors */ 2868 adapter->net_stats.tx_errors = adapter->stats.ecol + 2869 adapter->stats.latecol; 2870 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol; 2871 adapter->net_stats.tx_window_errors = adapter->stats.latecol; 2872 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs; 2873 2874 /* Tx Dropped needs to be maintained elsewhere */ 2875 2876 /* Phy Stats */ 2877 if (hw->phy.media_type == e1000_media_type_copper) { 2878 if ((adapter->link_speed == SPEED_1000) && 2879 (!e1e_rphy(hw, PHY_1000T_STATUS, &phy_tmp))) { 2880 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK; 2881 adapter->phy_stats.idle_errors += phy_tmp; 2882 } 2883 } 2884 2885 /* Management Stats */ 2886 adapter->stats.mgptc += er32(MGTPTC); 2887 adapter->stats.mgprc += er32(MGTPRC); 2888 adapter->stats.mgpdc += er32(MGTPDC); 2889 2890 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags); 2891} 2892 2893/** 2894 * e1000_phy_read_status - Update the PHY register status snapshot 2895 * @adapter: board private structure 2896 **/ 2897static void e1000_phy_read_status(struct e1000_adapter *adapter) 2898{ 2899 struct e1000_hw *hw = &adapter->hw; 2900 struct e1000_phy_regs *phy = &adapter->phy_regs; 2901 int ret_val; 2902 unsigned long irq_flags; 2903 2904 2905 spin_lock_irqsave(&adapter->stats_lock, irq_flags); 2906 2907 if ((er32(STATUS) & E1000_STATUS_LU) && 2908 (adapter->hw.phy.media_type == e1000_media_type_copper)) { 2909 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr); 2910 ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr); 2911 ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise); 2912 ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa); 2913 ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion); 2914 ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000); 2915 ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000); 2916 ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus); 2917 if (ret_val) 2918 ndev_warn(adapter->netdev, 2919 "Error reading PHY register\n"); 2920 } else { 2921 /* 2922 * Do not read PHY registers if link is not up 2923 * Set values to typical power-on defaults 2924 */ 2925 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX); 2926 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL | 2927 BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE | 2928 BMSR_ERCAP); 2929 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP | 2930 ADVERTISE_ALL | ADVERTISE_CSMA); 2931 phy->lpa = 0; 2932 phy->expansion = EXPANSION_ENABLENPAGE; 2933 phy->ctrl1000 = ADVERTISE_1000FULL; 2934 phy->stat1000 = 0; 2935 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF); 2936 } 2937 2938 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags); 2939} 2940 2941static void e1000_print_link_info(struct e1000_adapter *adapter) 2942{ 2943 struct e1000_hw *hw = &adapter->hw; 2944 struct net_device *netdev = adapter->netdev; 2945 u32 ctrl = er32(CTRL); 2946 2947 ndev_info(netdev, 2948 "Link is Up %d Mbps %s, Flow Control: %s\n", 2949 adapter->link_speed, 2950 (adapter->link_duplex == FULL_DUPLEX) ? 2951 "Full Duplex" : "Half Duplex", 2952 ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ? 2953 "RX/TX" : 2954 ((ctrl & E1000_CTRL_RFCE) ? "RX" : 2955 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" ))); 2956} 2957 2958static bool e1000_has_link(struct e1000_adapter *adapter) 2959{ 2960 struct e1000_hw *hw = &adapter->hw; 2961 bool link_active = 0; 2962 s32 ret_val = 0; 2963 2964 /* 2965 * get_link_status is set on LSC (link status) interrupt or 2966 * Rx sequence error interrupt. get_link_status will stay 2967 * false until the check_for_link establishes link 2968 * for copper adapters ONLY 2969 */ 2970 switch (hw->phy.media_type) { 2971 case e1000_media_type_copper: 2972 if (hw->mac.get_link_status) { 2973 ret_val = hw->mac.ops.check_for_link(hw); 2974 link_active = !hw->mac.get_link_status; 2975 } else { 2976 link_active = 1; 2977 } 2978 break; 2979 case e1000_media_type_fiber: 2980 ret_val = hw->mac.ops.check_for_link(hw); 2981 link_active = !!(er32(STATUS) & E1000_STATUS_LU); 2982 break; 2983 case e1000_media_type_internal_serdes: 2984 ret_val = hw->mac.ops.check_for_link(hw); 2985 link_active = adapter->hw.mac.serdes_has_link; 2986 break; 2987 default: 2988 case e1000_media_type_unknown: 2989 break; 2990 } 2991 2992 if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) && 2993 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) { 2994 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */ 2995 ndev_info(adapter->netdev, 2996 "Gigabit has been disabled, downgrading speed\n"); 2997 } 2998 2999 return link_active; 3000} 3001 3002static void e1000e_enable_receives(struct e1000_adapter *adapter) 3003{ 3004 /* make sure the receive unit is started */ 3005 if ((adapter->flags & FLAG_RX_NEEDS_RESTART) && 3006 (adapter->flags & FLAG_RX_RESTART_NOW)) { 3007 struct e1000_hw *hw = &adapter->hw; 3008 u32 rctl = er32(RCTL); 3009 ew32(RCTL, rctl | E1000_RCTL_EN); 3010 adapter->flags &= ~FLAG_RX_RESTART_NOW; 3011 } 3012} 3013 3014/** 3015 * e1000_watchdog - Timer Call-back 3016 * @data: pointer to adapter cast into an unsigned long 3017 **/ 3018static void e1000_watchdog(unsigned long data) 3019{ 3020 struct e1000_adapter *adapter = (struct e1000_adapter *) data; 3021 3022 /* Do the rest outside of interrupt context */ 3023 schedule_work(&adapter->watchdog_task); 3024 3025 /* TODO: make this use queue_delayed_work() */ 3026} 3027 3028static void e1000_watchdog_task(struct work_struct *work) 3029{ 3030 struct e1000_adapter *adapter = container_of(work, 3031 struct e1000_adapter, watchdog_task); 3032 struct net_device *netdev = adapter->netdev; 3033 struct e1000_mac_info *mac = &adapter->hw.mac; 3034 struct e1000_ring *tx_ring = adapter->tx_ring; 3035 struct e1000_hw *hw = &adapter->hw; 3036 u32 link, tctl; 3037 int tx_pending = 0; 3038 3039 link = e1000_has_link(adapter); 3040 if ((netif_carrier_ok(netdev)) && link) { 3041 e1000e_enable_receives(adapter); 3042 goto link_up; 3043 } 3044 3045 if ((e1000e_enable_tx_pkt_filtering(hw)) && 3046 (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)) 3047 e1000_update_mng_vlan(adapter); 3048 3049 if (link) { 3050 if (!netif_carrier_ok(netdev)) { 3051 bool txb2b = 1; 3052 /* update snapshot of PHY registers on LSC */ 3053 e1000_phy_read_status(adapter); 3054 mac->ops.get_link_up_info(&adapter->hw, 3055 &adapter->link_speed, 3056 &adapter->link_duplex); 3057 e1000_print_link_info(adapter); 3058 /* 3059 * tweak tx_queue_len according to speed/duplex 3060 * and adjust the timeout factor 3061 */ 3062 netdev->tx_queue_len = adapter->tx_queue_len; 3063 adapter->tx_timeout_factor = 1; 3064 switch (adapter->link_speed) { 3065 case SPEED_10: 3066 txb2b = 0; 3067 netdev->tx_queue_len = 10; 3068 adapter->tx_timeout_factor = 14; 3069 break; 3070 case SPEED_100: 3071 txb2b = 0; 3072 netdev->tx_queue_len = 100; 3073 /* maybe add some timeout factor ? */ 3074 break; 3075 } 3076 3077 /* 3078 * workaround: re-program speed mode bit after 3079 * link-up event 3080 */ 3081 if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) && 3082 !txb2b) { 3083 u32 tarc0; 3084 tarc0 = er32(TARC(0)); 3085 tarc0 &= ~SPEED_MODE_BIT; 3086 ew32(TARC(0), tarc0); 3087 } 3088 3089 /* 3090 * disable TSO for pcie and 10/100 speeds, to avoid 3091 * some hardware issues 3092 */ 3093 if (!(adapter->flags & FLAG_TSO_FORCE)) { 3094 switch (adapter->link_speed) { 3095 case SPEED_10: 3096 case SPEED_100: 3097 ndev_info(netdev, 3098 "10/100 speed: disabling TSO\n"); 3099 netdev->features &= ~NETIF_F_TSO; 3100 netdev->features &= ~NETIF_F_TSO6; 3101 break; 3102 case SPEED_1000: 3103 netdev->features |= NETIF_F_TSO; 3104 netdev->features |= NETIF_F_TSO6; 3105 break; 3106 default: 3107 /* oops */ 3108 break; 3109 } 3110 } 3111 3112 /* 3113 * enable transmits in the hardware, need to do this 3114 * after setting TARC(0) 3115 */ 3116 tctl = er32(TCTL); 3117 tctl |= E1000_TCTL_EN; 3118 ew32(TCTL, tctl); 3119 3120 netif_carrier_on(netdev); 3121 netif_wake_queue(netdev); 3122 3123 if (!test_bit(__E1000_DOWN, &adapter->state)) 3124 mod_timer(&adapter->phy_info_timer, 3125 round_jiffies(jiffies + 2 * HZ)); 3126 } 3127 } else { 3128 if (netif_carrier_ok(netdev)) { 3129 adapter->link_speed = 0; 3130 adapter->link_duplex = 0; 3131 ndev_info(netdev, "Link is Down\n"); 3132 netif_carrier_off(netdev); 3133 netif_stop_queue(netdev); 3134 if (!test_bit(__E1000_DOWN, &adapter->state)) 3135 mod_timer(&adapter->phy_info_timer, 3136 round_jiffies(jiffies + 2 * HZ)); 3137 3138 if (adapter->flags & FLAG_RX_NEEDS_RESTART) 3139 schedule_work(&adapter->reset_task); 3140 } 3141 } 3142 3143link_up: 3144 e1000e_update_stats(adapter); 3145 3146 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old; 3147 adapter->tpt_old = adapter->stats.tpt; 3148 mac->collision_delta = adapter->stats.colc - adapter->colc_old; 3149 adapter->colc_old = adapter->stats.colc; 3150 3151 adapter->gorc = adapter->stats.gorc - adapter->gorc_old; 3152 adapter->gorc_old = adapter->stats.gorc; 3153 adapter->gotc = adapter->stats.gotc - adapter->gotc_old; 3154 adapter->gotc_old = adapter->stats.gotc; 3155 3156 e1000e_update_adaptive(&adapter->hw); 3157 3158 if (!netif_carrier_ok(netdev)) { 3159 tx_pending = (e1000_desc_unused(tx_ring) + 1 < 3160 tx_ring->count); 3161 if (tx_pending) { 3162 /* 3163 * We've lost link, so the controller stops DMA, 3164 * but we've got queued Tx work that's never going 3165 * to get done, so reset controller to flush Tx. 3166 * (Do the reset outside of interrupt context). 3167 */ 3168 adapter->tx_timeout_count++; 3169 schedule_work(&adapter->reset_task); 3170 } 3171 } 3172 3173 /* Cause software interrupt to ensure Rx ring is cleaned */ 3174 ew32(ICS, E1000_ICS_RXDMT0); 3175 3176 /* Force detection of hung controller every watchdog period */ 3177 adapter->detect_tx_hung = 1; 3178 3179 /* 3180 * With 82571 controllers, LAA may be overwritten due to controller 3181 * reset from the other port. Set the appropriate LAA in RAR[0] 3182 */ 3183 if (e1000e_get_laa_state_82571(hw)) 3184 e1000e_rar_set(hw, adapter->hw.mac.addr, 0); 3185 3186 /* Reset the timer */ 3187 if (!test_bit(__E1000_DOWN, &adapter->state)) 3188 mod_timer(&adapter->watchdog_timer, 3189 round_jiffies(jiffies + 2 * HZ)); 3190} 3191 3192#define E1000_TX_FLAGS_CSUM 0x00000001 3193#define E1000_TX_FLAGS_VLAN 0x00000002 3194#define E1000_TX_FLAGS_TSO 0x00000004 3195#define E1000_TX_FLAGS_IPV4 0x00000008 3196#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000 3197#define E1000_TX_FLAGS_VLAN_SHIFT 16 3198 3199static int e1000_tso(struct e1000_adapter *adapter, 3200 struct sk_buff *skb) 3201{ 3202 struct e1000_ring *tx_ring = adapter->tx_ring; 3203 struct e1000_context_desc *context_desc; 3204 struct e1000_buffer *buffer_info; 3205 unsigned int i; 3206 u32 cmd_length = 0; 3207 u16 ipcse = 0, tucse, mss; 3208 u8 ipcss, ipcso, tucss, tucso, hdr_len; 3209 int err; 3210 3211 if (skb_is_gso(skb)) { 3212 if (skb_header_cloned(skb)) { 3213 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3214 if (err) 3215 return err; 3216 } 3217 3218 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 3219 mss = skb_shinfo(skb)->gso_size; 3220 if (skb->protocol == htons(ETH_P_IP)) { 3221 struct iphdr *iph = ip_hdr(skb); 3222 iph->tot_len = 0; 3223 iph->check = 0; 3224 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, 3225 iph->daddr, 0, 3226 IPPROTO_TCP, 3227 0); 3228 cmd_length = E1000_TXD_CMD_IP; 3229 ipcse = skb_transport_offset(skb) - 1; 3230 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) { 3231 ipv6_hdr(skb)->payload_len = 0; 3232 tcp_hdr(skb)->check = 3233 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 3234 &ipv6_hdr(skb)->daddr, 3235 0, IPPROTO_TCP, 0); 3236 ipcse = 0; 3237 } 3238 ipcss = skb_network_offset(skb); 3239 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data; 3240 tucss = skb_transport_offset(skb); 3241 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data; 3242 tucse = 0; 3243 3244 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE | 3245 E1000_TXD_CMD_TCP | (skb->len - (hdr_len))); 3246 3247 i = tx_ring->next_to_use; 3248 context_desc = E1000_CONTEXT_DESC(*tx_ring, i); 3249 buffer_info = &tx_ring->buffer_info[i]; 3250 3251 context_desc->lower_setup.ip_fields.ipcss = ipcss; 3252 context_desc->lower_setup.ip_fields.ipcso = ipcso; 3253 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse); 3254 context_desc->upper_setup.tcp_fields.tucss = tucss; 3255 context_desc->upper_setup.tcp_fields.tucso = tucso; 3256 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse); 3257 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss); 3258 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len; 3259 context_desc->cmd_and_length = cpu_to_le32(cmd_length); 3260 3261 buffer_info->time_stamp = jiffies; 3262 buffer_info->next_to_watch = i; 3263 3264 i++; 3265 if (i == tx_ring->count) 3266 i = 0; 3267 tx_ring->next_to_use = i; 3268 3269 return 1; 3270 } 3271 3272 return 0; 3273} 3274 3275static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb) 3276{ 3277 struct e1000_ring *tx_ring = adapter->tx_ring; 3278 struct e1000_context_desc *context_desc; 3279 struct e1000_buffer *buffer_info; 3280 unsigned int i; 3281 u8 css; 3282 3283 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3284 css = skb_transport_offset(skb); 3285 3286 i = tx_ring->next_to_use; 3287 buffer_info = &tx_ring->buffer_info[i]; 3288 context_desc = E1000_CONTEXT_DESC(*tx_ring, i); 3289 3290 context_desc->lower_setup.ip_config = 0; 3291 context_desc->upper_setup.tcp_fields.tucss = css; 3292 context_desc->upper_setup.tcp_fields.tucso = 3293 css + skb->csum_offset; 3294 context_desc->upper_setup.tcp_fields.tucse = 0; 3295 context_desc->tcp_seg_setup.data = 0; 3296 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT); 3297 3298 buffer_info->time_stamp = jiffies; 3299 buffer_info->next_to_watch = i; 3300 3301 i++; 3302 if (i == tx_ring->count) 3303 i = 0; 3304 tx_ring->next_to_use = i; 3305 3306 return 1; 3307 } 3308 3309 return 0; 3310} 3311 3312#define E1000_MAX_PER_TXD 8192 3313#define E1000_MAX_TXD_PWR 12 3314 3315static int e1000_tx_map(struct e1000_adapter *adapter, 3316 struct sk_buff *skb, unsigned int first, 3317 unsigned int max_per_txd, unsigned int nr_frags, 3318 unsigned int mss) 3319{ 3320 struct e1000_ring *tx_ring = adapter->tx_ring; 3321 struct e1000_buffer *buffer_info; 3322 unsigned int len = skb->len - skb->data_len; 3323 unsigned int offset = 0, size, count = 0, i; 3324 unsigned int f; 3325 3326 i = tx_ring->next_to_use; 3327 3328 while (len) { 3329 buffer_info = &tx_ring->buffer_info[i]; 3330 size = min(len, max_per_txd); 3331 3332 /* Workaround for premature desc write-backs 3333 * in TSO mode. Append 4-byte sentinel desc */ 3334 if (mss && !nr_frags && size == len && size > 8) 3335 size -= 4; 3336 3337 buffer_info->length = size; 3338 /* set time_stamp *before* dma to help avoid a possible race */ 3339 buffer_info->time_stamp = jiffies; 3340 buffer_info->dma = 3341 pci_map_single(adapter->pdev, 3342 skb->data + offset, 3343 size, 3344 PCI_DMA_TODEVICE); 3345 if (pci_dma_mapping_error(buffer_info->dma)) { 3346 dev_err(&adapter->pdev->dev, "TX DMA map failed\n"); 3347 adapter->tx_dma_failed++; 3348 return -1; 3349 } 3350 buffer_info->next_to_watch = i; 3351 3352 len -= size; 3353 offset += size; 3354 count++; 3355 i++; 3356 if (i == tx_ring->count) 3357 i = 0; 3358 } 3359 3360 for (f = 0; f < nr_frags; f++) { 3361 struct skb_frag_struct *frag; 3362 3363 frag = &skb_shinfo(skb)->frags[f]; 3364 len = frag->size; 3365 offset = frag->page_offset; 3366 3367 while (len) { 3368 buffer_info = &tx_ring->buffer_info[i]; 3369 size = min(len, max_per_txd); 3370 /* Workaround for premature desc write-backs 3371 * in TSO mode. Append 4-byte sentinel desc */ 3372 if (mss && f == (nr_frags-1) && size == len && size > 8) 3373 size -= 4; 3374 3375 buffer_info->length = size; 3376 buffer_info->time_stamp = jiffies; 3377 buffer_info->dma = 3378 pci_map_page(adapter->pdev, 3379 frag->page, 3380 offset, 3381 size, 3382 PCI_DMA_TODEVICE); 3383 if (pci_dma_mapping_error(buffer_info->dma)) { 3384 dev_err(&adapter->pdev->dev, 3385 "TX DMA page map failed\n"); 3386 adapter->tx_dma_failed++; 3387 return -1; 3388 } 3389 3390 buffer_info->next_to_watch = i; 3391 3392 len -= size; 3393 offset += size; 3394 count++; 3395 3396 i++; 3397 if (i == tx_ring->count) 3398 i = 0; 3399 } 3400 } 3401 3402 if (i == 0) 3403 i = tx_ring->count - 1; 3404 else 3405 i--; 3406 3407 tx_ring->buffer_info[i].skb = skb; 3408 tx_ring->buffer_info[first].next_to_watch = i; 3409 3410 return count; 3411} 3412 3413static void e1000_tx_queue(struct e1000_adapter *adapter, 3414 int tx_flags, int count) 3415{ 3416 struct e1000_ring *tx_ring = adapter->tx_ring; 3417 struct e1000_tx_desc *tx_desc = NULL; 3418 struct e1000_buffer *buffer_info; 3419 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS; 3420 unsigned int i; 3421 3422 if (tx_flags & E1000_TX_FLAGS_TSO) { 3423 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | 3424 E1000_TXD_CMD_TSE; 3425 txd_upper |= E1000_TXD_POPTS_TXSM << 8; 3426 3427 if (tx_flags & E1000_TX_FLAGS_IPV4) 3428 txd_upper |= E1000_TXD_POPTS_IXSM << 8; 3429 } 3430 3431 if (tx_flags & E1000_TX_FLAGS_CSUM) { 3432 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; 3433 txd_upper |= E1000_TXD_POPTS_TXSM << 8; 3434 } 3435 3436 if (tx_flags & E1000_TX_FLAGS_VLAN) { 3437 txd_lower |= E1000_TXD_CMD_VLE; 3438 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK); 3439 } 3440 3441 i = tx_ring->next_to_use; 3442 3443 while (count--) { 3444 buffer_info = &tx_ring->buffer_info[i]; 3445 tx_desc = E1000_TX_DESC(*tx_ring, i); 3446 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); 3447 tx_desc->lower.data = 3448 cpu_to_le32(txd_lower | buffer_info->length); 3449 tx_desc->upper.data = cpu_to_le32(txd_upper); 3450 3451 i++; 3452 if (i == tx_ring->count) 3453 i = 0; 3454 } 3455 3456 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd); 3457 3458 /* 3459 * Force memory writes to complete before letting h/w 3460 * know there are new descriptors to fetch. (Only 3461 * applicable for weak-ordered memory model archs, 3462 * such as IA-64). 3463 */ 3464 wmb(); 3465 3466 tx_ring->next_to_use = i; 3467 writel(i, adapter->hw.hw_addr + tx_ring->tail); 3468 /* 3469 * we need this if more than one processor can write to our tail 3470 * at a time, it synchronizes IO on IA64/Altix systems 3471 */ 3472 mmiowb(); 3473} 3474 3475#define MINIMUM_DHCP_PACKET_SIZE 282 3476static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter, 3477 struct sk_buff *skb) 3478{ 3479 struct e1000_hw *hw = &adapter->hw; 3480 u16 length, offset; 3481 3482 if (vlan_tx_tag_present(skb)) { 3483 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) 3484 && (adapter->hw.mng_cookie.status & 3485 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))) 3486 return 0; 3487 } 3488 3489 if (skb->len <= MINIMUM_DHCP_PACKET_SIZE) 3490 return 0; 3491 3492 if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP)) 3493 return 0; 3494 3495 { 3496 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14); 3497 struct udphdr *udp; 3498 3499 if (ip->protocol != IPPROTO_UDP) 3500 return 0; 3501 3502 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2)); 3503 if (ntohs(udp->dest) != 67) 3504 return 0; 3505 3506 offset = (u8 *)udp + 8 - skb->data; 3507 length = skb->len - offset; 3508 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length); 3509 } 3510 3511 return 0; 3512} 3513 3514static int __e1000_maybe_stop_tx(struct net_device *netdev, int size) 3515{ 3516 struct e1000_adapter *adapter = netdev_priv(netdev); 3517 3518 netif_stop_queue(netdev); 3519 /* 3520 * Herbert's original patch had: 3521 * smp_mb__after_netif_stop_queue(); 3522 * but since that doesn't exist yet, just open code it. 3523 */ 3524 smp_mb(); 3525 3526 /* 3527 * We need to check again in a case another CPU has just 3528 * made room available. 3529 */ 3530 if (e1000_desc_unused(adapter->tx_ring) < size) 3531 return -EBUSY; 3532 3533 /* A reprieve! */ 3534 netif_start_queue(netdev); 3535 ++adapter->restart_queue; 3536 return 0; 3537} 3538 3539static int e1000_maybe_stop_tx(struct net_device *netdev, int size) 3540{ 3541 struct e1000_adapter *adapter = netdev_priv(netdev); 3542 3543 if (e1000_desc_unused(adapter->tx_ring) >= size) 3544 return 0; 3545 return __e1000_maybe_stop_tx(netdev, size); 3546} 3547 3548#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 ) 3549static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev) 3550{ 3551 struct e1000_adapter *adapter = netdev_priv(netdev); 3552 struct e1000_ring *tx_ring = adapter->tx_ring; 3553 unsigned int first; 3554 unsigned int max_per_txd = E1000_MAX_PER_TXD; 3555 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR; 3556 unsigned int tx_flags = 0; 3557 unsigned int len = skb->len - skb->data_len; 3558 unsigned long irq_flags; 3559 unsigned int nr_frags; 3560 unsigned int mss; 3561 int count = 0; 3562 int tso; 3563 unsigned int f; 3564 3565 if (test_bit(__E1000_DOWN, &adapter->state)) { 3566 dev_kfree_skb_any(skb); 3567 return NETDEV_TX_OK; 3568 } 3569 3570 if (skb->len <= 0) { 3571 dev_kfree_skb_any(skb); 3572 return NETDEV_TX_OK; 3573 } 3574 3575 mss = skb_shinfo(skb)->gso_size; 3576 /* 3577 * The controller does a simple calculation to 3578 * make sure there is enough room in the FIFO before 3579 * initiating the DMA for each buffer. The calc is: 3580 * 4 = ceil(buffer len/mss). To make sure we don't 3581 * overrun the FIFO, adjust the max buffer len if mss 3582 * drops. 3583 */ 3584 if (mss) { 3585 u8 hdr_len; 3586 max_per_txd = min(mss << 2, max_per_txd); 3587 max_txd_pwr = fls(max_per_txd) - 1; 3588 3589 /* 3590 * TSO Workaround for 82571/2/3 Controllers -- if skb->data 3591 * points to just header, pull a few bytes of payload from 3592 * frags into skb->data 3593 */ 3594 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 3595 /* 3596 * we do this workaround for ES2LAN, but it is un-necessary, 3597 * avoiding it could save a lot of cycles 3598 */ 3599 if (skb->data_len && (hdr_len == len)) { 3600 unsigned int pull_size; 3601 3602 pull_size = min((unsigned int)4, skb->data_len); 3603 if (!__pskb_pull_tail(skb, pull_size)) { 3604 ndev_err(netdev, 3605 "__pskb_pull_tail failed.\n"); 3606 dev_kfree_skb_any(skb); 3607 return NETDEV_TX_OK; 3608 } 3609 len = skb->len - skb->data_len; 3610 } 3611 } 3612 3613 /* reserve a descriptor for the offload context */ 3614 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL)) 3615 count++; 3616 count++; 3617 3618 count += TXD_USE_COUNT(len, max_txd_pwr); 3619 3620 nr_frags = skb_shinfo(skb)->nr_frags; 3621 for (f = 0; f < nr_frags; f++) 3622 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size, 3623 max_txd_pwr); 3624 3625 if (adapter->hw.mac.tx_pkt_filtering) 3626 e1000_transfer_dhcp_info(adapter, skb); 3627 3628 if (!spin_trylock_irqsave(&adapter->tx_queue_lock, irq_flags)) 3629 /* Collision - tell upper layer to requeue */ 3630 return NETDEV_TX_LOCKED; 3631 3632 /* 3633 * need: count + 2 desc gap to keep tail from touching 3634 * head, otherwise try next time 3635 */ 3636 if (e1000_maybe_stop_tx(netdev, count + 2)) { 3637 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags); 3638 return NETDEV_TX_BUSY; 3639 } 3640 3641 if (adapter->vlgrp && vlan_tx_tag_present(skb)) { 3642 tx_flags |= E1000_TX_FLAGS_VLAN; 3643 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT); 3644 } 3645 3646 first = tx_ring->next_to_use; 3647 3648 tso = e1000_tso(adapter, skb); 3649 if (tso < 0) { 3650 dev_kfree_skb_any(skb); 3651 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags); 3652 return NETDEV_TX_OK; 3653 } 3654 3655 if (tso) 3656 tx_flags |= E1000_TX_FLAGS_TSO; 3657 else if (e1000_tx_csum(adapter, skb)) 3658 tx_flags |= E1000_TX_FLAGS_CSUM; 3659 3660 /* 3661 * Old method was to assume IPv4 packet by default if TSO was enabled. 3662 * 82571 hardware supports TSO capabilities for IPv6 as well... 3663 * no longer assume, we must. 3664 */ 3665 if (skb->protocol == htons(ETH_P_IP)) 3666 tx_flags |= E1000_TX_FLAGS_IPV4; 3667 3668 count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss); 3669 if (count < 0) { 3670 /* handle pci_map_single() error in e1000_tx_map */ 3671 dev_kfree_skb_any(skb); 3672 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags); 3673 return NETDEV_TX_OK; 3674 } 3675 3676 e1000_tx_queue(adapter, tx_flags, count); 3677 3678 netdev->trans_start = jiffies; 3679 3680 /* Make sure there is space in the ring for the next send. */ 3681 e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2); 3682 3683 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags); 3684 return NETDEV_TX_OK; 3685} 3686 3687/** 3688 * e1000_tx_timeout - Respond to a Tx Hang 3689 * @netdev: network interface device structure 3690 **/ 3691static void e1000_tx_timeout(struct net_device *netdev) 3692{ 3693 struct e1000_adapter *adapter = netdev_priv(netdev); 3694 3695 /* Do the reset outside of interrupt context */ 3696 adapter->tx_timeout_count++; 3697 schedule_work(&adapter->reset_task); 3698} 3699 3700static void e1000_reset_task(struct work_struct *work) 3701{ 3702 struct e1000_adapter *adapter; 3703 adapter = container_of(work, struct e1000_adapter, reset_task); 3704 3705 e1000e_reinit_locked(adapter); 3706} 3707 3708/** 3709 * e1000_get_stats - Get System Network Statistics 3710 * @netdev: network interface device structure 3711 * 3712 * Returns the address of the device statistics structure. 3713 * The statistics are actually updated from the timer callback. 3714 **/ 3715static struct net_device_stats *e1000_get_stats(struct net_device *netdev) 3716{ 3717 struct e1000_adapter *adapter = netdev_priv(netdev); 3718 3719 /* only return the current stats */ 3720 return &adapter->net_stats; 3721} 3722 3723/** 3724 * e1000_change_mtu - Change the Maximum Transfer Unit 3725 * @netdev: network interface device structure 3726 * @new_mtu: new value for maximum frame size 3727 * 3728 * Returns 0 on success, negative on failure 3729 **/ 3730static int e1000_change_mtu(struct net_device *netdev, int new_mtu) 3731{ 3732 struct e1000_adapter *adapter = netdev_priv(netdev); 3733 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; 3734 3735 if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) || 3736 (max_frame > MAX_JUMBO_FRAME_SIZE)) { 3737 ndev_err(netdev, "Invalid MTU setting\n"); 3738 return -EINVAL; 3739 } 3740 3741 /* Jumbo frame size limits */ 3742 if (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) { 3743 if (!(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) { 3744 ndev_err(netdev, "Jumbo Frames not supported.\n"); 3745 return -EINVAL; 3746 } 3747 if (adapter->hw.phy.type == e1000_phy_ife) { 3748 ndev_err(netdev, "Jumbo Frames not supported.\n"); 3749 return -EINVAL; 3750 } 3751 } 3752 3753#define MAX_STD_JUMBO_FRAME_SIZE 9234 3754 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) { 3755 ndev_err(netdev, "MTU > 9216 not supported.\n"); 3756 return -EINVAL; 3757 } 3758 3759 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 3760 msleep(1); 3761 /* e1000e_down has a dependency on max_frame_size */ 3762 adapter->max_frame_size = max_frame; 3763 if (netif_running(netdev)) 3764 e1000e_down(adapter); 3765 3766 /* 3767 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN 3768 * means we reserve 2 more, this pushes us to allocate from the next 3769 * larger slab size. 3770 * i.e. RXBUFFER_2048 --> size-4096 slab 3771 * However with the new *_jumbo_rx* routines, jumbo receives will use 3772 * fragmented skbs 3773 */ 3774 3775 if (max_frame <= 256) 3776 adapter->rx_buffer_len = 256; 3777 else if (max_frame <= 512) 3778 adapter->rx_buffer_len = 512; 3779 else if (max_frame <= 1024) 3780 adapter->rx_buffer_len = 1024; 3781 else if (max_frame <= 2048) 3782 adapter->rx_buffer_len = 2048; 3783 else 3784 adapter->rx_buffer_len = 4096; 3785 3786 /* adjust allocation if LPE protects us, and we aren't using SBP */ 3787 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) || 3788 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN)) 3789 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN 3790 + ETH_FCS_LEN; 3791 3792 ndev_info(netdev, "changing MTU from %d to %d\n", 3793 netdev->mtu, new_mtu); 3794 netdev->mtu = new_mtu; 3795 3796 if (netif_running(netdev)) 3797 e1000e_up(adapter); 3798 else 3799 e1000e_reset(adapter); 3800 3801 clear_bit(__E1000_RESETTING, &adapter->state); 3802 3803 return 0; 3804} 3805 3806static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, 3807 int cmd) 3808{ 3809 struct e1000_adapter *adapter = netdev_priv(netdev); 3810 struct mii_ioctl_data *data = if_mii(ifr); 3811 3812 if (adapter->hw.phy.media_type != e1000_media_type_copper) 3813 return -EOPNOTSUPP; 3814 3815 switch (cmd) { 3816 case SIOCGMIIPHY: 3817 data->phy_id = adapter->hw.phy.addr; 3818 break; 3819 case SIOCGMIIREG: 3820 if (!capable(CAP_NET_ADMIN)) 3821 return -EPERM; 3822 switch (data->reg_num & 0x1F) { 3823 case MII_BMCR: 3824 data->val_out = adapter->phy_regs.bmcr; 3825 break; 3826 case MII_BMSR: 3827 data->val_out = adapter->phy_regs.bmsr; 3828 break; 3829 case MII_PHYSID1: 3830 data->val_out = (adapter->hw.phy.id >> 16); 3831 break; 3832 case MII_PHYSID2: 3833 data->val_out = (adapter->hw.phy.id & 0xFFFF); 3834 break; 3835 case MII_ADVERTISE: 3836 data->val_out = adapter->phy_regs.advertise; 3837 break; 3838 case MII_LPA: 3839 data->val_out = adapter->phy_regs.lpa; 3840 break; 3841 case MII_EXPANSION: 3842 data->val_out = adapter->phy_regs.expansion; 3843 break; 3844 case MII_CTRL1000: 3845 data->val_out = adapter->phy_regs.ctrl1000; 3846 break; 3847 case MII_STAT1000: 3848 data->val_out = adapter->phy_regs.stat1000; 3849 break; 3850 case MII_ESTATUS: 3851 data->val_out = adapter->phy_regs.estatus; 3852 break; 3853 default: 3854 return -EIO; 3855 } 3856 break; 3857 case SIOCSMIIREG: 3858 default: 3859 return -EOPNOTSUPP; 3860 } 3861 return 0; 3862} 3863 3864static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 3865{ 3866 switch (cmd) { 3867 case SIOCGMIIPHY: 3868 case SIOCGMIIREG: 3869 case SIOCSMIIREG: 3870 return e1000_mii_ioctl(netdev, ifr, cmd); 3871 default: 3872 return -EOPNOTSUPP; 3873 } 3874} 3875 3876static int e1000_suspend(struct pci_dev *pdev, pm_message_t state) 3877{ 3878 struct net_device *netdev = pci_get_drvdata(pdev); 3879 struct e1000_adapter *adapter = netdev_priv(netdev); 3880 struct e1000_hw *hw = &adapter->hw; 3881 u32 ctrl, ctrl_ext, rctl, status; 3882 u32 wufc = adapter->wol; 3883 int retval = 0; 3884 3885 netif_device_detach(netdev); 3886 3887 if (netif_running(netdev)) { 3888 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state)); 3889 e1000e_down(adapter); 3890 e1000_free_irq(adapter); 3891 } 3892 3893 retval = pci_save_state(pdev); 3894 if (retval) 3895 return retval; 3896 3897 status = er32(STATUS); 3898 if (status & E1000_STATUS_LU) 3899 wufc &= ~E1000_WUFC_LNKC; 3900 3901 if (wufc) { 3902 e1000_setup_rctl(adapter); 3903 e1000_set_multi(netdev); 3904 3905 /* turn on all-multi mode if wake on multicast is enabled */ 3906 if (wufc & E1000_WUFC_MC) { 3907 rctl = er32(RCTL); 3908 rctl |= E1000_RCTL_MPE; 3909 ew32(RCTL, rctl); 3910 } 3911 3912 ctrl = er32(CTRL); 3913 /* advertise wake from D3Cold */ 3914 #define E1000_CTRL_ADVD3WUC 0x00100000 3915 /* phy power management enable */ 3916 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 3917 ctrl |= E1000_CTRL_ADVD3WUC | 3918 E1000_CTRL_EN_PHY_PWR_MGMT; 3919 ew32(CTRL, ctrl); 3920 3921 if (adapter->hw.phy.media_type == e1000_media_type_fiber || 3922 adapter->hw.phy.media_type == 3923 e1000_media_type_internal_serdes) { 3924 /* keep the laser running in D3 */ 3925 ctrl_ext = er32(CTRL_EXT); 3926 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA; 3927 ew32(CTRL_EXT, ctrl_ext); 3928 } 3929 3930 if (adapter->flags & FLAG_IS_ICH) 3931 e1000e_disable_gig_wol_ich8lan(&adapter->hw); 3932 3933 /* Allow time for pending master requests to run */ 3934 e1000e_disable_pcie_master(&adapter->hw); 3935 3936 ew32(WUC, E1000_WUC_PME_EN); 3937 ew32(WUFC, wufc); 3938 pci_enable_wake(pdev, PCI_D3hot, 1); 3939 pci_enable_wake(pdev, PCI_D3cold, 1); 3940 } else { 3941 ew32(WUC, 0); 3942 ew32(WUFC, 0); 3943 pci_enable_wake(pdev, PCI_D3hot, 0); 3944 pci_enable_wake(pdev, PCI_D3cold, 0); 3945 } 3946 3947 /* make sure adapter isn't asleep if manageability is enabled */ 3948 if (adapter->flags & FLAG_MNG_PT_ENABLED) { 3949 pci_enable_wake(pdev, PCI_D3hot, 1); 3950 pci_enable_wake(pdev, PCI_D3cold, 1); 3951 } 3952 3953 if (adapter->hw.phy.type == e1000_phy_igp_3) 3954 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw); 3955 3956 /* 3957 * Release control of h/w to f/w. If f/w is AMT enabled, this 3958 * would have already happened in close and is redundant. 3959 */ 3960 e1000_release_hw_control(adapter); 3961 3962 pci_disable_device(pdev); 3963 3964 pci_set_power_state(pdev, pci_choose_state(pdev, state)); 3965 3966 return 0; 3967} 3968 3969static void e1000e_disable_l1aspm(struct pci_dev *pdev) 3970{ 3971 int pos; 3972 u16 val; 3973 3974 /* 3975 * 82573 workaround - disable L1 ASPM on mobile chipsets 3976 * 3977 * L1 ASPM on various mobile (ich7) chipsets do not behave properly 3978 * resulting in lost data or garbage information on the pci-e link 3979 * level. This could result in (false) bad EEPROM checksum errors, 3980 * long ping times (up to 2s) or even a system freeze/hang. 3981 * 3982 * Unfortunately this feature saves about 1W power consumption when 3983 * active. 3984 */ 3985 pos = pci_find_capability(pdev, PCI_CAP_ID_EXP); 3986 pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &val); 3987 if (val & 0x2) { 3988 dev_warn(&pdev->dev, "Disabling L1 ASPM\n"); 3989 val &= ~0x2; 3990 pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, val); 3991 } 3992} 3993 3994#ifdef CONFIG_PM 3995static int e1000_resume(struct pci_dev *pdev) 3996{ 3997 struct net_device *netdev = pci_get_drvdata(pdev); 3998 struct e1000_adapter *adapter = netdev_priv(netdev); 3999 struct e1000_hw *hw = &adapter->hw; 4000 u32 err; 4001 4002 pci_set_power_state(pdev, PCI_D0); 4003 pci_restore_state(pdev); 4004 e1000e_disable_l1aspm(pdev); 4005 err = pci_enable_device(pdev); 4006 if (err) { 4007 dev_err(&pdev->dev, 4008 "Cannot enable PCI device from suspend\n"); 4009 return err; 4010 } 4011 4012 pci_set_master(pdev); 4013 4014 pci_enable_wake(pdev, PCI_D3hot, 0); 4015 pci_enable_wake(pdev, PCI_D3cold, 0); 4016 4017 if (netif_running(netdev)) { 4018 err = e1000_request_irq(adapter); 4019 if (err) 4020 return err; 4021 } 4022 4023 e1000e_power_up_phy(adapter); 4024 e1000e_reset(adapter); 4025 ew32(WUS, ~0); 4026 4027 e1000_init_manageability(adapter); 4028 4029 if (netif_running(netdev)) 4030 e1000e_up(adapter); 4031 4032 netif_device_attach(netdev); 4033 4034 /* 4035 * If the controller has AMT, do not set DRV_LOAD until the interface 4036 * is up. For all other cases, let the f/w know that the h/w is now 4037 * under the control of the driver. 4038 */ 4039 if (!(adapter->flags & FLAG_HAS_AMT) || !e1000e_check_mng_mode(&adapter->hw)) 4040 e1000_get_hw_control(adapter); 4041 4042 return 0; 4043} 4044#endif 4045 4046static void e1000_shutdown(struct pci_dev *pdev) 4047{ 4048 e1000_suspend(pdev, PMSG_SUSPEND); 4049} 4050 4051#ifdef CONFIG_NET_POLL_CONTROLLER 4052/* 4053 * Polling 'interrupt' - used by things like netconsole to send skbs 4054 * without having to re-enable interrupts. It's not called while 4055 * the interrupt routine is executing. 4056 */ 4057static void e1000_netpoll(struct net_device *netdev) 4058{ 4059 struct e1000_adapter *adapter = netdev_priv(netdev); 4060 4061 disable_irq(adapter->pdev->irq); 4062 e1000_intr(adapter->pdev->irq, netdev); 4063 4064 e1000_clean_tx_irq(adapter); 4065 4066 enable_irq(adapter->pdev->irq); 4067} 4068#endif 4069 4070/** 4071 * e1000_io_error_detected - called when PCI error is detected 4072 * @pdev: Pointer to PCI device 4073 * @state: The current pci connection state 4074 * 4075 * This function is called after a PCI bus error affecting 4076 * this device has been detected. 4077 */ 4078static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, 4079 pci_channel_state_t state) 4080{ 4081 struct net_device *netdev = pci_get_drvdata(pdev); 4082 struct e1000_adapter *adapter = netdev_priv(netdev); 4083 4084 netif_device_detach(netdev); 4085 4086 if (netif_running(netdev)) 4087 e1000e_down(adapter); 4088 pci_disable_device(pdev); 4089 4090 /* Request a slot slot reset. */ 4091 return PCI_ERS_RESULT_NEED_RESET; 4092} 4093 4094/** 4095 * e1000_io_slot_reset - called after the pci bus has been reset. 4096 * @pdev: Pointer to PCI device 4097 * 4098 * Restart the card from scratch, as if from a cold-boot. Implementation 4099 * resembles the first-half of the e1000_resume routine. 4100 */ 4101static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev) 4102{ 4103 struct net_device *netdev = pci_get_drvdata(pdev); 4104 struct e1000_adapter *adapter = netdev_priv(netdev); 4105 struct e1000_hw *hw = &adapter->hw; 4106 4107 e1000e_disable_l1aspm(pdev); 4108 if (pci_enable_device(pdev)) { 4109 dev_err(&pdev->dev, 4110 "Cannot re-enable PCI device after reset.\n"); 4111 return PCI_ERS_RESULT_DISCONNECT; 4112 } 4113 pci_set_master(pdev); 4114 pci_restore_state(pdev); 4115 4116 pci_enable_wake(pdev, PCI_D3hot, 0); 4117 pci_enable_wake(pdev, PCI_D3cold, 0); 4118 4119 e1000e_reset(adapter); 4120 ew32(WUS, ~0); 4121 4122 return PCI_ERS_RESULT_RECOVERED; 4123} 4124 4125/** 4126 * e1000_io_resume - called when traffic can start flowing again. 4127 * @pdev: Pointer to PCI device 4128 * 4129 * This callback is called when the error recovery driver tells us that 4130 * its OK to resume normal operation. Implementation resembles the 4131 * second-half of the e1000_resume routine. 4132 */ 4133static void e1000_io_resume(struct pci_dev *pdev) 4134{ 4135 struct net_device *netdev = pci_get_drvdata(pdev); 4136 struct e1000_adapter *adapter = netdev_priv(netdev); 4137 4138 e1000_init_manageability(adapter); 4139 4140 if (netif_running(netdev)) { 4141 if (e1000e_up(adapter)) { 4142 dev_err(&pdev->dev, 4143 "can't bring device back up after reset\n"); 4144 return; 4145 } 4146 } 4147 4148 netif_device_attach(netdev); 4149 4150 /* 4151 * If the controller has AMT, do not set DRV_LOAD until the interface 4152 * is up. For all other cases, let the f/w know that the h/w is now 4153 * under the control of the driver. 4154 */ 4155 if (!(adapter->flags & FLAG_HAS_AMT) || 4156 !e1000e_check_mng_mode(&adapter->hw)) 4157 e1000_get_hw_control(adapter); 4158 4159} 4160 4161static void e1000_print_device_info(struct e1000_adapter *adapter) 4162{ 4163 struct e1000_hw *hw = &adapter->hw; 4164 struct net_device *netdev = adapter->netdev; 4165 u32 pba_num; 4166 4167 /* print bus type/speed/width info */ 4168 ndev_info(netdev, "(PCI Express:2.5GB/s:%s) " 4169 "%02x:%02x:%02x:%02x:%02x:%02x\n", 4170 /* bus width */ 4171 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" : 4172 "Width x1"), 4173 /* MAC address */ 4174 netdev->dev_addr[0], netdev->dev_addr[1], 4175 netdev->dev_addr[2], netdev->dev_addr[3], 4176 netdev->dev_addr[4], netdev->dev_addr[5]); 4177 ndev_info(netdev, "Intel(R) PRO/%s Network Connection\n", 4178 (hw->phy.type == e1000_phy_ife) 4179 ? "10/100" : "1000"); 4180 e1000e_read_pba_num(hw, &pba_num); 4181 ndev_info(netdev, "MAC: %d, PHY: %d, PBA No: %06x-%03x\n", 4182 hw->mac.type, hw->phy.type, 4183 (pba_num >> 8), (pba_num & 0xff)); 4184} 4185 4186/** 4187 * e1000_probe - Device Initialization Routine 4188 * @pdev: PCI device information struct 4189 * @ent: entry in e1000_pci_tbl 4190 * 4191 * Returns 0 on success, negative on failure 4192 * 4193 * e1000_probe initializes an adapter identified by a pci_dev structure. 4194 * The OS initialization, configuring of the adapter private structure, 4195 * and a hardware reset occur. 4196 **/ 4197static int __devinit e1000_probe(struct pci_dev *pdev, 4198 const struct pci_device_id *ent) 4199{ 4200 struct net_device *netdev; 4201 struct e1000_adapter *adapter; 4202 struct e1000_hw *hw; 4203 const struct e1000_info *ei = e1000_info_tbl[ent->driver_data]; 4204 resource_size_t mmio_start, mmio_len; 4205 resource_size_t flash_start, flash_len; 4206 4207 static int cards_found; 4208 int i, err, pci_using_dac; 4209 u16 eeprom_data = 0; 4210 u16 eeprom_apme_mask = E1000_EEPROM_APME; 4211 4212 e1000e_disable_l1aspm(pdev); 4213 err = pci_enable_device(pdev); 4214 if (err) 4215 return err; 4216 4217 pci_using_dac = 0; 4218 err = pci_set_dma_mask(pdev, DMA_64BIT_MASK); 4219 if (!err) { 4220 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK); 4221 if (!err) 4222 pci_using_dac = 1; 4223 } else { 4224 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK); 4225 if (err) { 4226 err = pci_set_consistent_dma_mask(pdev, 4227 DMA_32BIT_MASK); 4228 if (err) { 4229 dev_err(&pdev->dev, "No usable DMA " 4230 "configuration, aborting\n"); 4231 goto err_dma; 4232 } 4233 } 4234 } 4235 4236 err = pci_request_regions(pdev, e1000e_driver_name); 4237 if (err) 4238 goto err_pci_reg; 4239 4240 pci_set_master(pdev); 4241 pci_save_state(pdev); 4242 4243 err = -ENOMEM; 4244 netdev = alloc_etherdev(sizeof(struct e1000_adapter)); 4245 if (!netdev) 4246 goto err_alloc_etherdev; 4247 4248 SET_NETDEV_DEV(netdev, &pdev->dev); 4249 4250 pci_set_drvdata(pdev, netdev); 4251 adapter = netdev_priv(netdev); 4252 hw = &adapter->hw; 4253 adapter->netdev = netdev; 4254 adapter->pdev = pdev; 4255 adapter->ei = ei; 4256 adapter->pba = ei->pba; 4257 adapter->flags = ei->flags; 4258 adapter->hw.adapter = adapter; 4259 adapter->hw.mac.type = ei->mac; 4260 adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1; 4261 4262 mmio_start = pci_resource_start(pdev, 0); 4263 mmio_len = pci_resource_len(pdev, 0); 4264 4265 err = -EIO; 4266 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len); 4267 if (!adapter->hw.hw_addr) 4268 goto err_ioremap; 4269 4270 if ((adapter->flags & FLAG_HAS_FLASH) && 4271 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) { 4272 flash_start = pci_resource_start(pdev, 1); 4273 flash_len = pci_resource_len(pdev, 1); 4274 adapter->hw.flash_address = ioremap(flash_start, flash_len); 4275 if (!adapter->hw.flash_address) 4276 goto err_flashmap; 4277 } 4278 4279 /* construct the net_device struct */ 4280 netdev->open = &e1000_open; 4281 netdev->stop = &e1000_close; 4282 netdev->hard_start_xmit = &e1000_xmit_frame; 4283 netdev->get_stats = &e1000_get_stats; 4284 netdev->set_multicast_list = &e1000_set_multi; 4285 netdev->set_mac_address = &e1000_set_mac; 4286 netdev->change_mtu = &e1000_change_mtu; 4287 netdev->do_ioctl = &e1000_ioctl; 4288 e1000e_set_ethtool_ops(netdev); 4289 netdev->tx_timeout = &e1000_tx_timeout; 4290 netdev->watchdog_timeo = 5 * HZ; 4291 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64); 4292 netdev->vlan_rx_register = e1000_vlan_rx_register; 4293 netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid; 4294 netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid; 4295#ifdef CONFIG_NET_POLL_CONTROLLER 4296 netdev->poll_controller = e1000_netpoll; 4297#endif 4298 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); 4299 4300 netdev->mem_start = mmio_start; 4301 netdev->mem_end = mmio_start + mmio_len; 4302 4303 adapter->bd_number = cards_found++; 4304 4305 /* setup adapter struct */ 4306 err = e1000_sw_init(adapter); 4307 if (err) 4308 goto err_sw_init; 4309 4310 err = -EIO; 4311 4312 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops)); 4313 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops)); 4314 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops)); 4315 4316 err = ei->get_variants(adapter); 4317 if (err) 4318 goto err_hw_init; 4319 4320 hw->mac.ops.get_bus_info(&adapter->hw); 4321 4322 adapter->hw.phy.autoneg_wait_to_complete = 0; 4323 4324 /* Copper options */ 4325 if (adapter->hw.phy.media_type == e1000_media_type_copper) { 4326 adapter->hw.phy.mdix = AUTO_ALL_MODES; 4327 adapter->hw.phy.disable_polarity_correction = 0; 4328 adapter->hw.phy.ms_type = e1000_ms_hw_default; 4329 } 4330 4331 if (e1000_check_reset_block(&adapter->hw)) 4332 ndev_info(netdev, 4333 "PHY reset is blocked due to SOL/IDER session.\n"); 4334 4335 netdev->features = NETIF_F_SG | 4336 NETIF_F_HW_CSUM | 4337 NETIF_F_HW_VLAN_TX | 4338 NETIF_F_HW_VLAN_RX; 4339 4340 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) 4341 netdev->features |= NETIF_F_HW_VLAN_FILTER; 4342 4343 netdev->features |= NETIF_F_TSO; 4344 netdev->features |= NETIF_F_TSO6; 4345 4346 if (pci_using_dac) 4347 netdev->features |= NETIF_F_HIGHDMA; 4348 4349 /* 4350 * We should not be using LLTX anymore, but we are still Tx faster with 4351 * it. 4352 */ 4353 netdev->features |= NETIF_F_LLTX; 4354 4355 if (e1000e_enable_mng_pass_thru(&adapter->hw)) 4356 adapter->flags |= FLAG_MNG_PT_ENABLED; 4357 4358 /* 4359 * before reading the NVM, reset the controller to 4360 * put the device in a known good starting state 4361 */ 4362 adapter->hw.mac.ops.reset_hw(&adapter->hw); 4363 4364 /* 4365 * systems with ASPM and others may see the checksum fail on the first 4366 * attempt. Let's give it a few tries 4367 */ 4368 for (i = 0;; i++) { 4369 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0) 4370 break; 4371 if (i == 2) { 4372 ndev_err(netdev, "The NVM Checksum Is Not Valid\n"); 4373 err = -EIO; 4374 goto err_eeprom; 4375 } 4376 } 4377 4378 /* copy the MAC address out of the NVM */ 4379 if (e1000e_read_mac_addr(&adapter->hw)) 4380 ndev_err(netdev, "NVM Read Error while reading MAC address\n"); 4381 4382 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len); 4383 memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len); 4384 4385 if (!is_valid_ether_addr(netdev->perm_addr)) { 4386 ndev_err(netdev, "Invalid MAC Address: " 4387 "%02x:%02x:%02x:%02x:%02x:%02x\n", 4388 netdev->perm_addr[0], netdev->perm_addr[1], 4389 netdev->perm_addr[2], netdev->perm_addr[3], 4390 netdev->perm_addr[4], netdev->perm_addr[5]); 4391 err = -EIO; 4392 goto err_eeprom; 4393 } 4394 4395 init_timer(&adapter->watchdog_timer); 4396 adapter->watchdog_timer.function = &e1000_watchdog; 4397 adapter->watchdog_timer.data = (unsigned long) adapter; 4398 4399 init_timer(&adapter->phy_info_timer); 4400 adapter->phy_info_timer.function = &e1000_update_phy_info; 4401 adapter->phy_info_timer.data = (unsigned long) adapter; 4402 4403 INIT_WORK(&adapter->reset_task, e1000_reset_task); 4404 INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task); 4405 4406 e1000e_check_options(adapter); 4407 4408 /* Initialize link parameters. User can change them with ethtool */ 4409 adapter->hw.mac.autoneg = 1; 4410 adapter->fc_autoneg = 1; 4411 adapter->hw.fc.original_type = e1000_fc_default; 4412 adapter->hw.fc.type = e1000_fc_default; 4413 adapter->hw.phy.autoneg_advertised = 0x2f; 4414 4415 /* ring size defaults */ 4416 adapter->rx_ring->count = 256; 4417 adapter->tx_ring->count = 256; 4418 4419 /* 4420 * Initial Wake on LAN setting - If APM wake is enabled in 4421 * the EEPROM, enable the ACPI Magic Packet filter 4422 */ 4423 if (adapter->flags & FLAG_APME_IN_WUC) { 4424 /* APME bit in EEPROM is mapped to WUC.APME */ 4425 eeprom_data = er32(WUC); 4426 eeprom_apme_mask = E1000_WUC_APME; 4427 } else if (adapter->flags & FLAG_APME_IN_CTRL3) { 4428 if (adapter->flags & FLAG_APME_CHECK_PORT_B && 4429 (adapter->hw.bus.func == 1)) 4430 e1000_read_nvm(&adapter->hw, 4431 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); 4432 else 4433 e1000_read_nvm(&adapter->hw, 4434 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); 4435 } 4436 4437 /* fetch WoL from EEPROM */ 4438 if (eeprom_data & eeprom_apme_mask) 4439 adapter->eeprom_wol |= E1000_WUFC_MAG; 4440 4441 /* 4442 * now that we have the eeprom settings, apply the special cases 4443 * where the eeprom may be wrong or the board simply won't support 4444 * wake on lan on a particular port 4445 */ 4446 if (!(adapter->flags & FLAG_HAS_WOL)) 4447 adapter->eeprom_wol = 0; 4448 4449 /* initialize the wol settings based on the eeprom settings */ 4450 adapter->wol = adapter->eeprom_wol; 4451 4452 /* reset the hardware with the new settings */ 4453 e1000e_reset(adapter); 4454 4455 /* 4456 * If the controller has AMT, do not set DRV_LOAD until the interface 4457 * is up. For all other cases, let the f/w know that the h/w is now 4458 * under the control of the driver. 4459 */ 4460 if (!(adapter->flags & FLAG_HAS_AMT) || 4461 !e1000e_check_mng_mode(&adapter->hw)) 4462 e1000_get_hw_control(adapter); 4463 4464 /* tell the stack to leave us alone until e1000_open() is called */ 4465 netif_carrier_off(netdev); 4466 netif_stop_queue(netdev); 4467 4468 strcpy(netdev->name, "eth%d"); 4469 err = register_netdev(netdev); 4470 if (err) 4471 goto err_register; 4472 4473 e1000_print_device_info(adapter); 4474 4475 return 0; 4476 4477err_register: 4478err_hw_init: 4479 e1000_release_hw_control(adapter); 4480err_eeprom: 4481 if (!e1000_check_reset_block(&adapter->hw)) 4482 e1000_phy_hw_reset(&adapter->hw); 4483 4484 if (adapter->hw.flash_address) 4485 iounmap(adapter->hw.flash_address); 4486 4487err_flashmap: 4488 kfree(adapter->tx_ring); 4489 kfree(adapter->rx_ring); 4490err_sw_init: 4491 iounmap(adapter->hw.hw_addr); 4492err_ioremap: 4493 free_netdev(netdev); 4494err_alloc_etherdev: 4495 pci_release_regions(pdev); 4496err_pci_reg: 4497err_dma: 4498 pci_disable_device(pdev); 4499 return err; 4500} 4501 4502/** 4503 * e1000_remove - Device Removal Routine 4504 * @pdev: PCI device information struct 4505 * 4506 * e1000_remove is called by the PCI subsystem to alert the driver 4507 * that it should release a PCI device. The could be caused by a 4508 * Hot-Plug event, or because the driver is going to be removed from 4509 * memory. 4510 **/ 4511static void __devexit e1000_remove(struct pci_dev *pdev) 4512{ 4513 struct net_device *netdev = pci_get_drvdata(pdev); 4514 struct e1000_adapter *adapter = netdev_priv(netdev); 4515 4516 /* 4517 * flush_scheduled work may reschedule our watchdog task, so 4518 * explicitly disable watchdog tasks from being rescheduled 4519 */ 4520 set_bit(__E1000_DOWN, &adapter->state); 4521 del_timer_sync(&adapter->watchdog_timer); 4522 del_timer_sync(&adapter->phy_info_timer); 4523 4524 flush_scheduled_work(); 4525 4526 /* 4527 * Release control of h/w to f/w. If f/w is AMT enabled, this 4528 * would have already happened in close and is redundant. 4529 */ 4530 e1000_release_hw_control(adapter); 4531 4532 unregister_netdev(netdev); 4533 4534 if (!e1000_check_reset_block(&adapter->hw)) 4535 e1000_phy_hw_reset(&adapter->hw); 4536 4537 kfree(adapter->tx_ring); 4538 kfree(adapter->rx_ring); 4539 4540 iounmap(adapter->hw.hw_addr); 4541 if (adapter->hw.flash_address) 4542 iounmap(adapter->hw.flash_address); 4543 pci_release_regions(pdev); 4544 4545 free_netdev(netdev); 4546 4547 pci_disable_device(pdev); 4548} 4549 4550/* PCI Error Recovery (ERS) */ 4551static struct pci_error_handlers e1000_err_handler = { 4552 .error_detected = e1000_io_error_detected, 4553 .slot_reset = e1000_io_slot_reset, 4554 .resume = e1000_io_resume, 4555}; 4556 4557static struct pci_device_id e1000_pci_tbl[] = { 4558 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 }, 4559 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 }, 4560 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 }, 4561 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 }, 4562 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 }, 4563 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 }, 4564 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 }, 4565 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 }, 4566 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 }, 4567 4568 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 }, 4569 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 }, 4570 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 }, 4571 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 }, 4572 4573 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 }, 4574 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 }, 4575 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 }, 4576 4577 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT), 4578 board_80003es2lan }, 4579 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT), 4580 board_80003es2lan }, 4581 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT), 4582 board_80003es2lan }, 4583 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT), 4584 board_80003es2lan }, 4585 4586 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan }, 4587 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan }, 4588 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan }, 4589 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan }, 4590 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan }, 4591 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan }, 4592 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan }, 4593 4594 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan }, 4595 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan }, 4596 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan }, 4597 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan }, 4598 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan }, 4599 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan }, 4600 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan }, 4601 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan }, 4602 4603 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan }, 4604 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan }, 4605 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan }, 4606 4607 { } /* terminate list */ 4608}; 4609MODULE_DEVICE_TABLE(pci, e1000_pci_tbl); 4610 4611/* PCI Device API Driver */ 4612static struct pci_driver e1000_driver = { 4613 .name = e1000e_driver_name, 4614 .id_table = e1000_pci_tbl, 4615 .probe = e1000_probe, 4616 .remove = __devexit_p(e1000_remove), 4617#ifdef CONFIG_PM 4618 /* Power Management Hooks */ 4619 .suspend = e1000_suspend, 4620 .resume = e1000_resume, 4621#endif 4622 .shutdown = e1000_shutdown, 4623 .err_handler = &e1000_err_handler 4624}; 4625 4626/** 4627 * e1000_init_module - Driver Registration Routine 4628 * 4629 * e1000_init_module is the first routine called when the driver is 4630 * loaded. All it does is register with the PCI subsystem. 4631 **/ 4632static int __init e1000_init_module(void) 4633{ 4634 int ret; 4635 printk(KERN_INFO "%s: Intel(R) PRO/1000 Network Driver - %s\n", 4636 e1000e_driver_name, e1000e_driver_version); 4637 printk(KERN_INFO "%s: Copyright (c) 1999-2008 Intel Corporation.\n", 4638 e1000e_driver_name); 4639 ret = pci_register_driver(&e1000_driver); 4640 pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY, e1000e_driver_name, 4641 PM_QOS_DEFAULT_VALUE); 4642 4643 return ret; 4644} 4645module_init(e1000_init_module); 4646 4647/** 4648 * e1000_exit_module - Driver Exit Cleanup Routine 4649 * 4650 * e1000_exit_module is called just before the driver is removed 4651 * from memory. 4652 **/ 4653static void __exit e1000_exit_module(void) 4654{ 4655 pci_unregister_driver(&e1000_driver); 4656 pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY, e1000e_driver_name); 4657} 4658module_exit(e1000_exit_module); 4659 4660 4661MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 4662MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver"); 4663MODULE_LICENSE("GPL"); 4664MODULE_VERSION(DRV_VERSION); 4665 4666/* e1000_main.c */