at v2.6.26-rc3 606 lines 18 kB view raw
1/* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 1994, 1995 Waldorf GmbH 7 * Copyright (C) 1994 - 2000, 06 Ralf Baechle 8 * Copyright (C) 1999, 2000 Silicon Graphics, Inc. 9 * Copyright (C) 2004, 2005 MIPS Technologies, Inc. All rights reserved. 10 * Author: Maciej W. Rozycki <macro@mips.com> 11 */ 12#ifndef _ASM_IO_H 13#define _ASM_IO_H 14 15#include <linux/compiler.h> 16#include <linux/kernel.h> 17#include <linux/types.h> 18 19#include <asm/addrspace.h> 20#include <asm/byteorder.h> 21#include <asm/cpu.h> 22#include <asm/cpu-features.h> 23#include <asm-generic/iomap.h> 24#include <asm/page.h> 25#include <asm/pgtable-bits.h> 26#include <asm/processor.h> 27#include <asm/string.h> 28 29#include <ioremap.h> 30#include <mangle-port.h> 31 32/* 33 * Slowdown I/O port space accesses for antique hardware. 34 */ 35#undef CONF_SLOWDOWN_IO 36 37/* 38 * Raw operations are never swapped in software. OTOH values that raw 39 * operations are working on may or may not have been swapped by the bus 40 * hardware. An example use would be for flash memory that's used for 41 * execute in place. 42 */ 43# define __raw_ioswabb(a, x) (x) 44# define __raw_ioswabw(a, x) (x) 45# define __raw_ioswabl(a, x) (x) 46# define __raw_ioswabq(a, x) (x) 47# define ____raw_ioswabq(a, x) (x) 48 49/* ioswab[bwlq], __mem_ioswab[bwlq] are defined in mangle-port.h */ 50 51#define IO_SPACE_LIMIT 0xffff 52 53/* 54 * On MIPS I/O ports are memory mapped, so we access them using normal 55 * load/store instructions. mips_io_port_base is the virtual address to 56 * which all ports are being mapped. For sake of efficiency some code 57 * assumes that this is an address that can be loaded with a single lui 58 * instruction, so the lower 16 bits must be zero. Should be true on 59 * on any sane architecture; generic code does not use this assumption. 60 */ 61extern const unsigned long mips_io_port_base; 62 63/* 64 * Gcc will generate code to load the value of mips_io_port_base after each 65 * function call which may be fairly wasteful in some cases. So we don't 66 * play quite by the book. We tell gcc mips_io_port_base is a long variable 67 * which solves the code generation issue. Now we need to violate the 68 * aliasing rules a little to make initialization possible and finally we 69 * will need the barrier() to fight side effects of the aliasing chat. 70 * This trickery will eventually collapse under gcc's optimizer. Oh well. 71 */ 72static inline void set_io_port_base(unsigned long base) 73{ 74 * (unsigned long *) &mips_io_port_base = base; 75 barrier(); 76} 77 78/* 79 * Thanks to James van Artsdalen for a better timing-fix than 80 * the two short jumps: using outb's to a nonexistent port seems 81 * to guarantee better timings even on fast machines. 82 * 83 * On the other hand, I'd like to be sure of a non-existent port: 84 * I feel a bit unsafe about using 0x80 (should be safe, though) 85 * 86 * Linus 87 * 88 */ 89 90#define __SLOW_DOWN_IO \ 91 __asm__ __volatile__( \ 92 "sb\t$0,0x80(%0)" \ 93 : : "r" (mips_io_port_base)); 94 95#ifdef CONF_SLOWDOWN_IO 96#ifdef REALLY_SLOW_IO 97#define SLOW_DOWN_IO { __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; } 98#else 99#define SLOW_DOWN_IO __SLOW_DOWN_IO 100#endif 101#else 102#define SLOW_DOWN_IO 103#endif 104 105/* 106 * virt_to_phys - map virtual addresses to physical 107 * @address: address to remap 108 * 109 * The returned physical address is the physical (CPU) mapping for 110 * the memory address given. It is only valid to use this function on 111 * addresses directly mapped or allocated via kmalloc. 112 * 113 * This function does not give bus mappings for DMA transfers. In 114 * almost all conceivable cases a device driver should not be using 115 * this function 116 */ 117static inline unsigned long virt_to_phys(volatile const void *address) 118{ 119 return (unsigned long)address - PAGE_OFFSET + PHYS_OFFSET; 120} 121 122/* 123 * phys_to_virt - map physical address to virtual 124 * @address: address to remap 125 * 126 * The returned virtual address is a current CPU mapping for 127 * the memory address given. It is only valid to use this function on 128 * addresses that have a kernel mapping 129 * 130 * This function does not handle bus mappings for DMA transfers. In 131 * almost all conceivable cases a device driver should not be using 132 * this function 133 */ 134static inline void * phys_to_virt(unsigned long address) 135{ 136 return (void *)(address + PAGE_OFFSET - PHYS_OFFSET); 137} 138 139/* 140 * ISA I/O bus memory addresses are 1:1 with the physical address. 141 */ 142static inline unsigned long isa_virt_to_bus(volatile void * address) 143{ 144 return (unsigned long)address - PAGE_OFFSET; 145} 146 147static inline void * isa_bus_to_virt(unsigned long address) 148{ 149 return (void *)(address + PAGE_OFFSET); 150} 151 152#define isa_page_to_bus page_to_phys 153 154/* 155 * However PCI ones are not necessarily 1:1 and therefore these interfaces 156 * are forbidden in portable PCI drivers. 157 * 158 * Allow them for x86 for legacy drivers, though. 159 */ 160#define virt_to_bus virt_to_phys 161#define bus_to_virt phys_to_virt 162 163/* 164 * isa_slot_offset is the address where E(ISA) busaddress 0 is mapped 165 * for the processor. This implies the assumption that there is only 166 * one of these busses. 167 */ 168extern unsigned long isa_slot_offset; 169 170/* 171 * Change "struct page" to physical address. 172 */ 173#define page_to_phys(page) ((dma_addr_t)page_to_pfn(page) << PAGE_SHIFT) 174 175extern void __iomem * __ioremap(phys_t offset, phys_t size, unsigned long flags); 176extern void __iounmap(const volatile void __iomem *addr); 177 178static inline void __iomem * __ioremap_mode(phys_t offset, unsigned long size, 179 unsigned long flags) 180{ 181 void __iomem *addr = plat_ioremap(offset, size, flags); 182 183 if (addr) 184 return addr; 185 186#define __IS_LOW512(addr) (!((phys_t)(addr) & (phys_t) ~0x1fffffffULL)) 187 188 if (cpu_has_64bit_addresses) { 189 u64 base = UNCAC_BASE; 190 191 /* 192 * R10000 supports a 2 bit uncached attribute therefore 193 * UNCAC_BASE may not equal IO_BASE. 194 */ 195 if (flags == _CACHE_UNCACHED) 196 base = (u64) IO_BASE; 197 return (void __iomem *) (unsigned long) (base + offset); 198 } else if (__builtin_constant_p(offset) && 199 __builtin_constant_p(size) && __builtin_constant_p(flags)) { 200 phys_t phys_addr, last_addr; 201 202 phys_addr = fixup_bigphys_addr(offset, size); 203 204 /* Don't allow wraparound or zero size. */ 205 last_addr = phys_addr + size - 1; 206 if (!size || last_addr < phys_addr) 207 return NULL; 208 209 /* 210 * Map uncached objects in the low 512MB of address 211 * space using KSEG1. 212 */ 213 if (__IS_LOW512(phys_addr) && __IS_LOW512(last_addr) && 214 flags == _CACHE_UNCACHED) 215 return (void __iomem *) 216 (unsigned long)CKSEG1ADDR(phys_addr); 217 } 218 219 return __ioremap(offset, size, flags); 220 221#undef __IS_LOW512 222} 223 224/* 225 * ioremap - map bus memory into CPU space 226 * @offset: bus address of the memory 227 * @size: size of the resource to map 228 * 229 * ioremap performs a platform specific sequence of operations to 230 * make bus memory CPU accessible via the readb/readw/readl/writeb/ 231 * writew/writel functions and the other mmio helpers. The returned 232 * address is not guaranteed to be usable directly as a virtual 233 * address. 234 */ 235#define ioremap(offset, size) \ 236 __ioremap_mode((offset), (size), _CACHE_UNCACHED) 237 238/* 239 * ioremap_nocache - map bus memory into CPU space 240 * @offset: bus address of the memory 241 * @size: size of the resource to map 242 * 243 * ioremap_nocache performs a platform specific sequence of operations to 244 * make bus memory CPU accessible via the readb/readw/readl/writeb/ 245 * writew/writel functions and the other mmio helpers. The returned 246 * address is not guaranteed to be usable directly as a virtual 247 * address. 248 * 249 * This version of ioremap ensures that the memory is marked uncachable 250 * on the CPU as well as honouring existing caching rules from things like 251 * the PCI bus. Note that there are other caches and buffers on many 252 * busses. In paticular driver authors should read up on PCI writes 253 * 254 * It's useful if some control registers are in such an area and 255 * write combining or read caching is not desirable: 256 */ 257#define ioremap_nocache(offset, size) \ 258 __ioremap_mode((offset), (size), _CACHE_UNCACHED) 259 260/* 261 * ioremap_cachable - map bus memory into CPU space 262 * @offset: bus address of the memory 263 * @size: size of the resource to map 264 * 265 * ioremap_nocache performs a platform specific sequence of operations to 266 * make bus memory CPU accessible via the readb/readw/readl/writeb/ 267 * writew/writel functions and the other mmio helpers. The returned 268 * address is not guaranteed to be usable directly as a virtual 269 * address. 270 * 271 * This version of ioremap ensures that the memory is marked cachable by 272 * the CPU. Also enables full write-combining. Useful for some 273 * memory-like regions on I/O busses. 274 */ 275#define ioremap_cachable(offset, size) \ 276 __ioremap_mode((offset), (size), _page_cachable_default) 277 278/* 279 * These two are MIPS specific ioremap variant. ioremap_cacheable_cow 280 * requests a cachable mapping, ioremap_uncached_accelerated requests a 281 * mapping using the uncached accelerated mode which isn't supported on 282 * all processors. 283 */ 284#define ioremap_cacheable_cow(offset, size) \ 285 __ioremap_mode((offset), (size), _CACHE_CACHABLE_COW) 286#define ioremap_uncached_accelerated(offset, size) \ 287 __ioremap_mode((offset), (size), _CACHE_UNCACHED_ACCELERATED) 288 289static inline void iounmap(const volatile void __iomem *addr) 290{ 291 if (plat_iounmap(addr)) 292 return; 293 294#define __IS_KSEG1(addr) (((unsigned long)(addr) & ~0x1fffffffUL) == CKSEG1) 295 296 if (cpu_has_64bit_addresses || 297 (__builtin_constant_p(addr) && __IS_KSEG1(addr))) 298 return; 299 300 __iounmap(addr); 301 302#undef __IS_KSEG1 303} 304 305#define __BUILD_MEMORY_SINGLE(pfx, bwlq, type, irq) \ 306 \ 307static inline void pfx##write##bwlq(type val, \ 308 volatile void __iomem *mem) \ 309{ \ 310 volatile type *__mem; \ 311 type __val; \ 312 \ 313 __mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem)); \ 314 \ 315 __val = pfx##ioswab##bwlq(__mem, val); \ 316 \ 317 if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \ 318 *__mem = __val; \ 319 else if (cpu_has_64bits) { \ 320 unsigned long __flags; \ 321 type __tmp; \ 322 \ 323 if (irq) \ 324 local_irq_save(__flags); \ 325 __asm__ __volatile__( \ 326 ".set mips3" "\t\t# __writeq""\n\t" \ 327 "dsll32 %L0, %L0, 0" "\n\t" \ 328 "dsrl32 %L0, %L0, 0" "\n\t" \ 329 "dsll32 %M0, %M0, 0" "\n\t" \ 330 "or %L0, %L0, %M0" "\n\t" \ 331 "sd %L0, %2" "\n\t" \ 332 ".set mips0" "\n" \ 333 : "=r" (__tmp) \ 334 : "0" (__val), "m" (*__mem)); \ 335 if (irq) \ 336 local_irq_restore(__flags); \ 337 } else \ 338 BUG(); \ 339} \ 340 \ 341static inline type pfx##read##bwlq(const volatile void __iomem *mem) \ 342{ \ 343 volatile type *__mem; \ 344 type __val; \ 345 \ 346 __mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem)); \ 347 \ 348 if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \ 349 __val = *__mem; \ 350 else if (cpu_has_64bits) { \ 351 unsigned long __flags; \ 352 \ 353 if (irq) \ 354 local_irq_save(__flags); \ 355 __asm__ __volatile__( \ 356 ".set mips3" "\t\t# __readq" "\n\t" \ 357 "ld %L0, %1" "\n\t" \ 358 "dsra32 %M0, %L0, 0" "\n\t" \ 359 "sll %L0, %L0, 0" "\n\t" \ 360 ".set mips0" "\n" \ 361 : "=r" (__val) \ 362 : "m" (*__mem)); \ 363 if (irq) \ 364 local_irq_restore(__flags); \ 365 } else { \ 366 __val = 0; \ 367 BUG(); \ 368 } \ 369 \ 370 return pfx##ioswab##bwlq(__mem, __val); \ 371} 372 373#define __BUILD_IOPORT_SINGLE(pfx, bwlq, type, p, slow) \ 374 \ 375static inline void pfx##out##bwlq##p(type val, unsigned long port) \ 376{ \ 377 volatile type *__addr; \ 378 type __val; \ 379 \ 380 __addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \ 381 \ 382 __val = pfx##ioswab##bwlq(__addr, val); \ 383 \ 384 /* Really, we want this to be atomic */ \ 385 BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \ 386 \ 387 *__addr = __val; \ 388 slow; \ 389} \ 390 \ 391static inline type pfx##in##bwlq##p(unsigned long port) \ 392{ \ 393 volatile type *__addr; \ 394 type __val; \ 395 \ 396 __addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \ 397 \ 398 BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \ 399 \ 400 __val = *__addr; \ 401 slow; \ 402 \ 403 return pfx##ioswab##bwlq(__addr, __val); \ 404} 405 406#define __BUILD_MEMORY_PFX(bus, bwlq, type) \ 407 \ 408__BUILD_MEMORY_SINGLE(bus, bwlq, type, 1) 409 410#define BUILDIO_MEM(bwlq, type) \ 411 \ 412__BUILD_MEMORY_PFX(__raw_, bwlq, type) \ 413__BUILD_MEMORY_PFX(, bwlq, type) \ 414__BUILD_MEMORY_PFX(__mem_, bwlq, type) \ 415 416BUILDIO_MEM(b, u8) 417BUILDIO_MEM(w, u16) 418BUILDIO_MEM(l, u32) 419BUILDIO_MEM(q, u64) 420 421#define __BUILD_IOPORT_PFX(bus, bwlq, type) \ 422 __BUILD_IOPORT_SINGLE(bus, bwlq, type, ,) \ 423 __BUILD_IOPORT_SINGLE(bus, bwlq, type, _p, SLOW_DOWN_IO) 424 425#define BUILDIO_IOPORT(bwlq, type) \ 426 __BUILD_IOPORT_PFX(, bwlq, type) \ 427 __BUILD_IOPORT_PFX(__mem_, bwlq, type) 428 429BUILDIO_IOPORT(b, u8) 430BUILDIO_IOPORT(w, u16) 431BUILDIO_IOPORT(l, u32) 432#ifdef CONFIG_64BIT 433BUILDIO_IOPORT(q, u64) 434#endif 435 436#define __BUILDIO(bwlq, type) \ 437 \ 438__BUILD_MEMORY_SINGLE(____raw_, bwlq, type, 0) 439 440__BUILDIO(q, u64) 441 442#define readb_relaxed readb 443#define readw_relaxed readw 444#define readl_relaxed readl 445#define readq_relaxed readq 446 447/* 448 * Some code tests for these symbols 449 */ 450#define readq readq 451#define writeq writeq 452 453#define __BUILD_MEMORY_STRING(bwlq, type) \ 454 \ 455static inline void writes##bwlq(volatile void __iomem *mem, \ 456 const void *addr, unsigned int count) \ 457{ \ 458 const volatile type *__addr = addr; \ 459 \ 460 while (count--) { \ 461 __mem_write##bwlq(*__addr, mem); \ 462 __addr++; \ 463 } \ 464} \ 465 \ 466static inline void reads##bwlq(volatile void __iomem *mem, void *addr, \ 467 unsigned int count) \ 468{ \ 469 volatile type *__addr = addr; \ 470 \ 471 while (count--) { \ 472 *__addr = __mem_read##bwlq(mem); \ 473 __addr++; \ 474 } \ 475} 476 477#define __BUILD_IOPORT_STRING(bwlq, type) \ 478 \ 479static inline void outs##bwlq(unsigned long port, const void *addr, \ 480 unsigned int count) \ 481{ \ 482 const volatile type *__addr = addr; \ 483 \ 484 while (count--) { \ 485 __mem_out##bwlq(*__addr, port); \ 486 __addr++; \ 487 } \ 488} \ 489 \ 490static inline void ins##bwlq(unsigned long port, void *addr, \ 491 unsigned int count) \ 492{ \ 493 volatile type *__addr = addr; \ 494 \ 495 while (count--) { \ 496 *__addr = __mem_in##bwlq(port); \ 497 __addr++; \ 498 } \ 499} 500 501#define BUILDSTRING(bwlq, type) \ 502 \ 503__BUILD_MEMORY_STRING(bwlq, type) \ 504__BUILD_IOPORT_STRING(bwlq, type) 505 506BUILDSTRING(b, u8) 507BUILDSTRING(w, u16) 508BUILDSTRING(l, u32) 509#ifdef CONFIG_64BIT 510BUILDSTRING(q, u64) 511#endif 512 513 514/* Depends on MIPS II instruction set */ 515#define mmiowb() asm volatile ("sync" ::: "memory") 516 517static inline void memset_io(volatile void __iomem *addr, unsigned char val, int count) 518{ 519 memset((void __force *) addr, val, count); 520} 521static inline void memcpy_fromio(void *dst, const volatile void __iomem *src, int count) 522{ 523 memcpy(dst, (void __force *) src, count); 524} 525static inline void memcpy_toio(volatile void __iomem *dst, const void *src, int count) 526{ 527 memcpy((void __force *) dst, src, count); 528} 529 530/* 531 * ISA space is 'always mapped' on currently supported MIPS systems, no need 532 * to explicitly ioremap() it. The fact that the ISA IO space is mapped 533 * to PAGE_OFFSET is pure coincidence - it does not mean ISA values 534 * are physical addresses. The following constant pointer can be 535 * used as the IO-area pointer (it can be iounmapped as well, so the 536 * analogy with PCI is quite large): 537 */ 538#define __ISA_IO_base ((char *)(isa_slot_offset)) 539 540/* 541 * The caches on some architectures aren't dma-coherent and have need to 542 * handle this in software. There are three types of operations that 543 * can be applied to dma buffers. 544 * 545 * - dma_cache_wback_inv(start, size) makes caches and coherent by 546 * writing the content of the caches back to memory, if necessary. 547 * The function also invalidates the affected part of the caches as 548 * necessary before DMA transfers from outside to memory. 549 * - dma_cache_wback(start, size) makes caches and coherent by 550 * writing the content of the caches back to memory, if necessary. 551 * The function also invalidates the affected part of the caches as 552 * necessary before DMA transfers from outside to memory. 553 * - dma_cache_inv(start, size) invalidates the affected parts of the 554 * caches. Dirty lines of the caches may be written back or simply 555 * be discarded. This operation is necessary before dma operations 556 * to the memory. 557 * 558 * This API used to be exported; it now is for arch code internal use only. 559 */ 560#ifdef CONFIG_DMA_NONCOHERENT 561 562extern void (*_dma_cache_wback_inv)(unsigned long start, unsigned long size); 563extern void (*_dma_cache_wback)(unsigned long start, unsigned long size); 564extern void (*_dma_cache_inv)(unsigned long start, unsigned long size); 565 566#define dma_cache_wback_inv(start, size) _dma_cache_wback_inv(start, size) 567#define dma_cache_wback(start, size) _dma_cache_wback(start, size) 568#define dma_cache_inv(start, size) _dma_cache_inv(start, size) 569 570#else /* Sane hardware */ 571 572#define dma_cache_wback_inv(start,size) \ 573 do { (void) (start); (void) (size); } while (0) 574#define dma_cache_wback(start,size) \ 575 do { (void) (start); (void) (size); } while (0) 576#define dma_cache_inv(start,size) \ 577 do { (void) (start); (void) (size); } while (0) 578 579#endif /* CONFIG_DMA_NONCOHERENT */ 580 581/* 582 * Read a 32-bit register that requires a 64-bit read cycle on the bus. 583 * Avoid interrupt mucking, just adjust the address for 4-byte access. 584 * Assume the addresses are 8-byte aligned. 585 */ 586#ifdef __MIPSEB__ 587#define __CSR_32_ADJUST 4 588#else 589#define __CSR_32_ADJUST 0 590#endif 591 592#define csr_out32(v, a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST) = (v)) 593#define csr_in32(a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST)) 594 595/* 596 * Convert a physical pointer to a virtual kernel pointer for /dev/mem 597 * access 598 */ 599#define xlate_dev_mem_ptr(p) __va(p) 600 601/* 602 * Convert a virtual cached pointer to an uncached pointer 603 */ 604#define xlate_dev_kmem_ptr(p) p 605 606#endif /* _ASM_IO_H */