at v2.6.26-rc3 1730 lines 40 kB view raw
1/* 2 * "splice": joining two ropes together by interweaving their strands. 3 * 4 * This is the "extended pipe" functionality, where a pipe is used as 5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel 6 * buffer that you can use to transfer data from one end to the other. 7 * 8 * The traditional unix read/write is extended with a "splice()" operation 9 * that transfers data buffers to or from a pipe buffer. 10 * 11 * Named by Larry McVoy, original implementation from Linus, extended by 12 * Jens to support splicing to files, network, direct splicing, etc and 13 * fixing lots of bugs. 14 * 15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk> 16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org> 17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu> 18 * 19 */ 20#include <linux/fs.h> 21#include <linux/file.h> 22#include <linux/pagemap.h> 23#include <linux/splice.h> 24#include <linux/mm_inline.h> 25#include <linux/swap.h> 26#include <linux/writeback.h> 27#include <linux/buffer_head.h> 28#include <linux/module.h> 29#include <linux/syscalls.h> 30#include <linux/uio.h> 31#include <linux/security.h> 32 33/* 34 * Attempt to steal a page from a pipe buffer. This should perhaps go into 35 * a vm helper function, it's already simplified quite a bit by the 36 * addition of remove_mapping(). If success is returned, the caller may 37 * attempt to reuse this page for another destination. 38 */ 39static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe, 40 struct pipe_buffer *buf) 41{ 42 struct page *page = buf->page; 43 struct address_space *mapping; 44 45 lock_page(page); 46 47 mapping = page_mapping(page); 48 if (mapping) { 49 WARN_ON(!PageUptodate(page)); 50 51 /* 52 * At least for ext2 with nobh option, we need to wait on 53 * writeback completing on this page, since we'll remove it 54 * from the pagecache. Otherwise truncate wont wait on the 55 * page, allowing the disk blocks to be reused by someone else 56 * before we actually wrote our data to them. fs corruption 57 * ensues. 58 */ 59 wait_on_page_writeback(page); 60 61 if (PagePrivate(page)) 62 try_to_release_page(page, GFP_KERNEL); 63 64 /* 65 * If we succeeded in removing the mapping, set LRU flag 66 * and return good. 67 */ 68 if (remove_mapping(mapping, page)) { 69 buf->flags |= PIPE_BUF_FLAG_LRU; 70 return 0; 71 } 72 } 73 74 /* 75 * Raced with truncate or failed to remove page from current 76 * address space, unlock and return failure. 77 */ 78 unlock_page(page); 79 return 1; 80} 81 82static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe, 83 struct pipe_buffer *buf) 84{ 85 page_cache_release(buf->page); 86 buf->flags &= ~PIPE_BUF_FLAG_LRU; 87} 88 89/* 90 * Check whether the contents of buf is OK to access. Since the content 91 * is a page cache page, IO may be in flight. 92 */ 93static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe, 94 struct pipe_buffer *buf) 95{ 96 struct page *page = buf->page; 97 int err; 98 99 if (!PageUptodate(page)) { 100 lock_page(page); 101 102 /* 103 * Page got truncated/unhashed. This will cause a 0-byte 104 * splice, if this is the first page. 105 */ 106 if (!page->mapping) { 107 err = -ENODATA; 108 goto error; 109 } 110 111 /* 112 * Uh oh, read-error from disk. 113 */ 114 if (!PageUptodate(page)) { 115 err = -EIO; 116 goto error; 117 } 118 119 /* 120 * Page is ok afterall, we are done. 121 */ 122 unlock_page(page); 123 } 124 125 return 0; 126error: 127 unlock_page(page); 128 return err; 129} 130 131static const struct pipe_buf_operations page_cache_pipe_buf_ops = { 132 .can_merge = 0, 133 .map = generic_pipe_buf_map, 134 .unmap = generic_pipe_buf_unmap, 135 .confirm = page_cache_pipe_buf_confirm, 136 .release = page_cache_pipe_buf_release, 137 .steal = page_cache_pipe_buf_steal, 138 .get = generic_pipe_buf_get, 139}; 140 141static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe, 142 struct pipe_buffer *buf) 143{ 144 if (!(buf->flags & PIPE_BUF_FLAG_GIFT)) 145 return 1; 146 147 buf->flags |= PIPE_BUF_FLAG_LRU; 148 return generic_pipe_buf_steal(pipe, buf); 149} 150 151static const struct pipe_buf_operations user_page_pipe_buf_ops = { 152 .can_merge = 0, 153 .map = generic_pipe_buf_map, 154 .unmap = generic_pipe_buf_unmap, 155 .confirm = generic_pipe_buf_confirm, 156 .release = page_cache_pipe_buf_release, 157 .steal = user_page_pipe_buf_steal, 158 .get = generic_pipe_buf_get, 159}; 160 161/** 162 * splice_to_pipe - fill passed data into a pipe 163 * @pipe: pipe to fill 164 * @spd: data to fill 165 * 166 * Description: 167 * @spd contains a map of pages and len/offset tuples, along with 168 * the struct pipe_buf_operations associated with these pages. This 169 * function will link that data to the pipe. 170 * 171 */ 172ssize_t splice_to_pipe(struct pipe_inode_info *pipe, 173 struct splice_pipe_desc *spd) 174{ 175 unsigned int spd_pages = spd->nr_pages; 176 int ret, do_wakeup, page_nr; 177 178 ret = 0; 179 do_wakeup = 0; 180 page_nr = 0; 181 182 if (pipe->inode) 183 mutex_lock(&pipe->inode->i_mutex); 184 185 for (;;) { 186 if (!pipe->readers) { 187 send_sig(SIGPIPE, current, 0); 188 if (!ret) 189 ret = -EPIPE; 190 break; 191 } 192 193 if (pipe->nrbufs < PIPE_BUFFERS) { 194 int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1); 195 struct pipe_buffer *buf = pipe->bufs + newbuf; 196 197 buf->page = spd->pages[page_nr]; 198 buf->offset = spd->partial[page_nr].offset; 199 buf->len = spd->partial[page_nr].len; 200 buf->private = spd->partial[page_nr].private; 201 buf->ops = spd->ops; 202 if (spd->flags & SPLICE_F_GIFT) 203 buf->flags |= PIPE_BUF_FLAG_GIFT; 204 205 pipe->nrbufs++; 206 page_nr++; 207 ret += buf->len; 208 209 if (pipe->inode) 210 do_wakeup = 1; 211 212 if (!--spd->nr_pages) 213 break; 214 if (pipe->nrbufs < PIPE_BUFFERS) 215 continue; 216 217 break; 218 } 219 220 if (spd->flags & SPLICE_F_NONBLOCK) { 221 if (!ret) 222 ret = -EAGAIN; 223 break; 224 } 225 226 if (signal_pending(current)) { 227 if (!ret) 228 ret = -ERESTARTSYS; 229 break; 230 } 231 232 if (do_wakeup) { 233 smp_mb(); 234 if (waitqueue_active(&pipe->wait)) 235 wake_up_interruptible_sync(&pipe->wait); 236 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 237 do_wakeup = 0; 238 } 239 240 pipe->waiting_writers++; 241 pipe_wait(pipe); 242 pipe->waiting_writers--; 243 } 244 245 if (pipe->inode) { 246 mutex_unlock(&pipe->inode->i_mutex); 247 248 if (do_wakeup) { 249 smp_mb(); 250 if (waitqueue_active(&pipe->wait)) 251 wake_up_interruptible(&pipe->wait); 252 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 253 } 254 } 255 256 while (page_nr < spd_pages) 257 spd->spd_release(spd, page_nr++); 258 259 return ret; 260} 261 262static void spd_release_page(struct splice_pipe_desc *spd, unsigned int i) 263{ 264 page_cache_release(spd->pages[i]); 265} 266 267static int 268__generic_file_splice_read(struct file *in, loff_t *ppos, 269 struct pipe_inode_info *pipe, size_t len, 270 unsigned int flags) 271{ 272 struct address_space *mapping = in->f_mapping; 273 unsigned int loff, nr_pages, req_pages; 274 struct page *pages[PIPE_BUFFERS]; 275 struct partial_page partial[PIPE_BUFFERS]; 276 struct page *page; 277 pgoff_t index, end_index; 278 loff_t isize; 279 int error, page_nr; 280 struct splice_pipe_desc spd = { 281 .pages = pages, 282 .partial = partial, 283 .flags = flags, 284 .ops = &page_cache_pipe_buf_ops, 285 .spd_release = spd_release_page, 286 }; 287 288 index = *ppos >> PAGE_CACHE_SHIFT; 289 loff = *ppos & ~PAGE_CACHE_MASK; 290 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 291 nr_pages = min(req_pages, (unsigned)PIPE_BUFFERS); 292 293 /* 294 * Lookup the (hopefully) full range of pages we need. 295 */ 296 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages); 297 index += spd.nr_pages; 298 299 /* 300 * If find_get_pages_contig() returned fewer pages than we needed, 301 * readahead/allocate the rest and fill in the holes. 302 */ 303 if (spd.nr_pages < nr_pages) 304 page_cache_sync_readahead(mapping, &in->f_ra, in, 305 index, req_pages - spd.nr_pages); 306 307 error = 0; 308 while (spd.nr_pages < nr_pages) { 309 /* 310 * Page could be there, find_get_pages_contig() breaks on 311 * the first hole. 312 */ 313 page = find_get_page(mapping, index); 314 if (!page) { 315 /* 316 * page didn't exist, allocate one. 317 */ 318 page = page_cache_alloc_cold(mapping); 319 if (!page) 320 break; 321 322 error = add_to_page_cache_lru(page, mapping, index, 323 mapping_gfp_mask(mapping)); 324 if (unlikely(error)) { 325 page_cache_release(page); 326 if (error == -EEXIST) 327 continue; 328 break; 329 } 330 /* 331 * add_to_page_cache() locks the page, unlock it 332 * to avoid convoluting the logic below even more. 333 */ 334 unlock_page(page); 335 } 336 337 pages[spd.nr_pages++] = page; 338 index++; 339 } 340 341 /* 342 * Now loop over the map and see if we need to start IO on any 343 * pages, fill in the partial map, etc. 344 */ 345 index = *ppos >> PAGE_CACHE_SHIFT; 346 nr_pages = spd.nr_pages; 347 spd.nr_pages = 0; 348 for (page_nr = 0; page_nr < nr_pages; page_nr++) { 349 unsigned int this_len; 350 351 if (!len) 352 break; 353 354 /* 355 * this_len is the max we'll use from this page 356 */ 357 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff); 358 page = pages[page_nr]; 359 360 if (PageReadahead(page)) 361 page_cache_async_readahead(mapping, &in->f_ra, in, 362 page, index, req_pages - page_nr); 363 364 /* 365 * If the page isn't uptodate, we may need to start io on it 366 */ 367 if (!PageUptodate(page)) { 368 /* 369 * If in nonblock mode then dont block on waiting 370 * for an in-flight io page 371 */ 372 if (flags & SPLICE_F_NONBLOCK) { 373 if (TestSetPageLocked(page)) { 374 error = -EAGAIN; 375 break; 376 } 377 } else 378 lock_page(page); 379 380 /* 381 * page was truncated, stop here. if this isn't the 382 * first page, we'll just complete what we already 383 * added 384 */ 385 if (!page->mapping) { 386 unlock_page(page); 387 break; 388 } 389 /* 390 * page was already under io and is now done, great 391 */ 392 if (PageUptodate(page)) { 393 unlock_page(page); 394 goto fill_it; 395 } 396 397 /* 398 * need to read in the page 399 */ 400 error = mapping->a_ops->readpage(in, page); 401 if (unlikely(error)) { 402 /* 403 * We really should re-lookup the page here, 404 * but it complicates things a lot. Instead 405 * lets just do what we already stored, and 406 * we'll get it the next time we are called. 407 */ 408 if (error == AOP_TRUNCATED_PAGE) 409 error = 0; 410 411 break; 412 } 413 } 414fill_it: 415 /* 416 * i_size must be checked after PageUptodate. 417 */ 418 isize = i_size_read(mapping->host); 419 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 420 if (unlikely(!isize || index > end_index)) 421 break; 422 423 /* 424 * if this is the last page, see if we need to shrink 425 * the length and stop 426 */ 427 if (end_index == index) { 428 unsigned int plen; 429 430 /* 431 * max good bytes in this page 432 */ 433 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 434 if (plen <= loff) 435 break; 436 437 /* 438 * force quit after adding this page 439 */ 440 this_len = min(this_len, plen - loff); 441 len = this_len; 442 } 443 444 partial[page_nr].offset = loff; 445 partial[page_nr].len = this_len; 446 len -= this_len; 447 loff = 0; 448 spd.nr_pages++; 449 index++; 450 } 451 452 /* 453 * Release any pages at the end, if we quit early. 'page_nr' is how far 454 * we got, 'nr_pages' is how many pages are in the map. 455 */ 456 while (page_nr < nr_pages) 457 page_cache_release(pages[page_nr++]); 458 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT; 459 460 if (spd.nr_pages) 461 return splice_to_pipe(pipe, &spd); 462 463 return error; 464} 465 466/** 467 * generic_file_splice_read - splice data from file to a pipe 468 * @in: file to splice from 469 * @ppos: position in @in 470 * @pipe: pipe to splice to 471 * @len: number of bytes to splice 472 * @flags: splice modifier flags 473 * 474 * Description: 475 * Will read pages from given file and fill them into a pipe. Can be 476 * used as long as the address_space operations for the source implements 477 * a readpage() hook. 478 * 479 */ 480ssize_t generic_file_splice_read(struct file *in, loff_t *ppos, 481 struct pipe_inode_info *pipe, size_t len, 482 unsigned int flags) 483{ 484 loff_t isize, left; 485 int ret; 486 487 isize = i_size_read(in->f_mapping->host); 488 if (unlikely(*ppos >= isize)) 489 return 0; 490 491 left = isize - *ppos; 492 if (unlikely(left < len)) 493 len = left; 494 495 ret = __generic_file_splice_read(in, ppos, pipe, len, flags); 496 if (ret > 0) 497 *ppos += ret; 498 499 return ret; 500} 501 502EXPORT_SYMBOL(generic_file_splice_read); 503 504/* 505 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos' 506 * using sendpage(). Return the number of bytes sent. 507 */ 508static int pipe_to_sendpage(struct pipe_inode_info *pipe, 509 struct pipe_buffer *buf, struct splice_desc *sd) 510{ 511 struct file *file = sd->u.file; 512 loff_t pos = sd->pos; 513 int ret, more; 514 515 ret = buf->ops->confirm(pipe, buf); 516 if (!ret) { 517 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len; 518 519 ret = file->f_op->sendpage(file, buf->page, buf->offset, 520 sd->len, &pos, more); 521 } 522 523 return ret; 524} 525 526/* 527 * This is a little more tricky than the file -> pipe splicing. There are 528 * basically three cases: 529 * 530 * - Destination page already exists in the address space and there 531 * are users of it. For that case we have no other option that 532 * copying the data. Tough luck. 533 * - Destination page already exists in the address space, but there 534 * are no users of it. Make sure it's uptodate, then drop it. Fall 535 * through to last case. 536 * - Destination page does not exist, we can add the pipe page to 537 * the page cache and avoid the copy. 538 * 539 * If asked to move pages to the output file (SPLICE_F_MOVE is set in 540 * sd->flags), we attempt to migrate pages from the pipe to the output 541 * file address space page cache. This is possible if no one else has 542 * the pipe page referenced outside of the pipe and page cache. If 543 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create 544 * a new page in the output file page cache and fill/dirty that. 545 */ 546static int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 547 struct splice_desc *sd) 548{ 549 struct file *file = sd->u.file; 550 struct address_space *mapping = file->f_mapping; 551 unsigned int offset, this_len; 552 struct page *page; 553 void *fsdata; 554 int ret; 555 556 /* 557 * make sure the data in this buffer is uptodate 558 */ 559 ret = buf->ops->confirm(pipe, buf); 560 if (unlikely(ret)) 561 return ret; 562 563 offset = sd->pos & ~PAGE_CACHE_MASK; 564 565 this_len = sd->len; 566 if (this_len + offset > PAGE_CACHE_SIZE) 567 this_len = PAGE_CACHE_SIZE - offset; 568 569 ret = pagecache_write_begin(file, mapping, sd->pos, this_len, 570 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata); 571 if (unlikely(ret)) 572 goto out; 573 574 if (buf->page != page) { 575 /* 576 * Careful, ->map() uses KM_USER0! 577 */ 578 char *src = buf->ops->map(pipe, buf, 1); 579 char *dst = kmap_atomic(page, KM_USER1); 580 581 memcpy(dst + offset, src + buf->offset, this_len); 582 flush_dcache_page(page); 583 kunmap_atomic(dst, KM_USER1); 584 buf->ops->unmap(pipe, buf, src); 585 } 586 ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len, 587 page, fsdata); 588out: 589 return ret; 590} 591 592/** 593 * __splice_from_pipe - splice data from a pipe to given actor 594 * @pipe: pipe to splice from 595 * @sd: information to @actor 596 * @actor: handler that splices the data 597 * 598 * Description: 599 * This function does little more than loop over the pipe and call 600 * @actor to do the actual moving of a single struct pipe_buffer to 601 * the desired destination. See pipe_to_file, pipe_to_sendpage, or 602 * pipe_to_user. 603 * 604 */ 605ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd, 606 splice_actor *actor) 607{ 608 int ret, do_wakeup, err; 609 610 ret = 0; 611 do_wakeup = 0; 612 613 for (;;) { 614 if (pipe->nrbufs) { 615 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf; 616 const struct pipe_buf_operations *ops = buf->ops; 617 618 sd->len = buf->len; 619 if (sd->len > sd->total_len) 620 sd->len = sd->total_len; 621 622 err = actor(pipe, buf, sd); 623 if (err <= 0) { 624 if (!ret && err != -ENODATA) 625 ret = err; 626 627 break; 628 } 629 630 ret += err; 631 buf->offset += err; 632 buf->len -= err; 633 634 sd->len -= err; 635 sd->pos += err; 636 sd->total_len -= err; 637 if (sd->len) 638 continue; 639 640 if (!buf->len) { 641 buf->ops = NULL; 642 ops->release(pipe, buf); 643 pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1); 644 pipe->nrbufs--; 645 if (pipe->inode) 646 do_wakeup = 1; 647 } 648 649 if (!sd->total_len) 650 break; 651 } 652 653 if (pipe->nrbufs) 654 continue; 655 if (!pipe->writers) 656 break; 657 if (!pipe->waiting_writers) { 658 if (ret) 659 break; 660 } 661 662 if (sd->flags & SPLICE_F_NONBLOCK) { 663 if (!ret) 664 ret = -EAGAIN; 665 break; 666 } 667 668 if (signal_pending(current)) { 669 if (!ret) 670 ret = -ERESTARTSYS; 671 break; 672 } 673 674 if (do_wakeup) { 675 smp_mb(); 676 if (waitqueue_active(&pipe->wait)) 677 wake_up_interruptible_sync(&pipe->wait); 678 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 679 do_wakeup = 0; 680 } 681 682 pipe_wait(pipe); 683 } 684 685 if (do_wakeup) { 686 smp_mb(); 687 if (waitqueue_active(&pipe->wait)) 688 wake_up_interruptible(&pipe->wait); 689 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 690 } 691 692 return ret; 693} 694EXPORT_SYMBOL(__splice_from_pipe); 695 696/** 697 * splice_from_pipe - splice data from a pipe to a file 698 * @pipe: pipe to splice from 699 * @out: file to splice to 700 * @ppos: position in @out 701 * @len: how many bytes to splice 702 * @flags: splice modifier flags 703 * @actor: handler that splices the data 704 * 705 * Description: 706 * See __splice_from_pipe. This function locks the input and output inodes, 707 * otherwise it's identical to __splice_from_pipe(). 708 * 709 */ 710ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out, 711 loff_t *ppos, size_t len, unsigned int flags, 712 splice_actor *actor) 713{ 714 ssize_t ret; 715 struct inode *inode = out->f_mapping->host; 716 struct splice_desc sd = { 717 .total_len = len, 718 .flags = flags, 719 .pos = *ppos, 720 .u.file = out, 721 }; 722 723 /* 724 * The actor worker might be calling ->prepare_write and 725 * ->commit_write. Most of the time, these expect i_mutex to 726 * be held. Since this may result in an ABBA deadlock with 727 * pipe->inode, we have to order lock acquiry here. 728 */ 729 inode_double_lock(inode, pipe->inode); 730 ret = __splice_from_pipe(pipe, &sd, actor); 731 inode_double_unlock(inode, pipe->inode); 732 733 return ret; 734} 735 736/** 737 * generic_file_splice_write_nolock - generic_file_splice_write without mutexes 738 * @pipe: pipe info 739 * @out: file to write to 740 * @ppos: position in @out 741 * @len: number of bytes to splice 742 * @flags: splice modifier flags 743 * 744 * Description: 745 * Will either move or copy pages (determined by @flags options) from 746 * the given pipe inode to the given file. The caller is responsible 747 * for acquiring i_mutex on both inodes. 748 * 749 */ 750ssize_t 751generic_file_splice_write_nolock(struct pipe_inode_info *pipe, struct file *out, 752 loff_t *ppos, size_t len, unsigned int flags) 753{ 754 struct address_space *mapping = out->f_mapping; 755 struct inode *inode = mapping->host; 756 struct splice_desc sd = { 757 .total_len = len, 758 .flags = flags, 759 .pos = *ppos, 760 .u.file = out, 761 }; 762 ssize_t ret; 763 int err; 764 765 err = remove_suid(out->f_path.dentry); 766 if (unlikely(err)) 767 return err; 768 769 ret = __splice_from_pipe(pipe, &sd, pipe_to_file); 770 if (ret > 0) { 771 unsigned long nr_pages; 772 773 *ppos += ret; 774 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 775 776 /* 777 * If file or inode is SYNC and we actually wrote some data, 778 * sync it. 779 */ 780 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) { 781 err = generic_osync_inode(inode, mapping, 782 OSYNC_METADATA|OSYNC_DATA); 783 784 if (err) 785 ret = err; 786 } 787 balance_dirty_pages_ratelimited_nr(mapping, nr_pages); 788 } 789 790 return ret; 791} 792 793EXPORT_SYMBOL(generic_file_splice_write_nolock); 794 795/** 796 * generic_file_splice_write - splice data from a pipe to a file 797 * @pipe: pipe info 798 * @out: file to write to 799 * @ppos: position in @out 800 * @len: number of bytes to splice 801 * @flags: splice modifier flags 802 * 803 * Description: 804 * Will either move or copy pages (determined by @flags options) from 805 * the given pipe inode to the given file. 806 * 807 */ 808ssize_t 809generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out, 810 loff_t *ppos, size_t len, unsigned int flags) 811{ 812 struct address_space *mapping = out->f_mapping; 813 struct inode *inode = mapping->host; 814 struct splice_desc sd = { 815 .total_len = len, 816 .flags = flags, 817 .pos = *ppos, 818 .u.file = out, 819 }; 820 ssize_t ret; 821 822 inode_double_lock(inode, pipe->inode); 823 ret = remove_suid(out->f_path.dentry); 824 if (likely(!ret)) 825 ret = __splice_from_pipe(pipe, &sd, pipe_to_file); 826 inode_double_unlock(inode, pipe->inode); 827 if (ret > 0) { 828 unsigned long nr_pages; 829 830 *ppos += ret; 831 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 832 833 /* 834 * If file or inode is SYNC and we actually wrote some data, 835 * sync it. 836 */ 837 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) { 838 int err; 839 840 mutex_lock(&inode->i_mutex); 841 err = generic_osync_inode(inode, mapping, 842 OSYNC_METADATA|OSYNC_DATA); 843 mutex_unlock(&inode->i_mutex); 844 845 if (err) 846 ret = err; 847 } 848 balance_dirty_pages_ratelimited_nr(mapping, nr_pages); 849 } 850 851 return ret; 852} 853 854EXPORT_SYMBOL(generic_file_splice_write); 855 856/** 857 * generic_splice_sendpage - splice data from a pipe to a socket 858 * @pipe: pipe to splice from 859 * @out: socket to write to 860 * @ppos: position in @out 861 * @len: number of bytes to splice 862 * @flags: splice modifier flags 863 * 864 * Description: 865 * Will send @len bytes from the pipe to a network socket. No data copying 866 * is involved. 867 * 868 */ 869ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out, 870 loff_t *ppos, size_t len, unsigned int flags) 871{ 872 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage); 873} 874 875EXPORT_SYMBOL(generic_splice_sendpage); 876 877/* 878 * Attempt to initiate a splice from pipe to file. 879 */ 880static long do_splice_from(struct pipe_inode_info *pipe, struct file *out, 881 loff_t *ppos, size_t len, unsigned int flags) 882{ 883 int ret; 884 885 if (unlikely(!out->f_op || !out->f_op->splice_write)) 886 return -EINVAL; 887 888 if (unlikely(!(out->f_mode & FMODE_WRITE))) 889 return -EBADF; 890 891 ret = rw_verify_area(WRITE, out, ppos, len); 892 if (unlikely(ret < 0)) 893 return ret; 894 895 return out->f_op->splice_write(pipe, out, ppos, len, flags); 896} 897 898/* 899 * Attempt to initiate a splice from a file to a pipe. 900 */ 901static long do_splice_to(struct file *in, loff_t *ppos, 902 struct pipe_inode_info *pipe, size_t len, 903 unsigned int flags) 904{ 905 int ret; 906 907 if (unlikely(!in->f_op || !in->f_op->splice_read)) 908 return -EINVAL; 909 910 if (unlikely(!(in->f_mode & FMODE_READ))) 911 return -EBADF; 912 913 ret = rw_verify_area(READ, in, ppos, len); 914 if (unlikely(ret < 0)) 915 return ret; 916 917 return in->f_op->splice_read(in, ppos, pipe, len, flags); 918} 919 920/** 921 * splice_direct_to_actor - splices data directly between two non-pipes 922 * @in: file to splice from 923 * @sd: actor information on where to splice to 924 * @actor: handles the data splicing 925 * 926 * Description: 927 * This is a special case helper to splice directly between two 928 * points, without requiring an explicit pipe. Internally an allocated 929 * pipe is cached in the process, and reused during the lifetime of 930 * that process. 931 * 932 */ 933ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd, 934 splice_direct_actor *actor) 935{ 936 struct pipe_inode_info *pipe; 937 long ret, bytes; 938 umode_t i_mode; 939 size_t len; 940 int i, flags; 941 942 /* 943 * We require the input being a regular file, as we don't want to 944 * randomly drop data for eg socket -> socket splicing. Use the 945 * piped splicing for that! 946 */ 947 i_mode = in->f_path.dentry->d_inode->i_mode; 948 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode))) 949 return -EINVAL; 950 951 /* 952 * neither in nor out is a pipe, setup an internal pipe attached to 953 * 'out' and transfer the wanted data from 'in' to 'out' through that 954 */ 955 pipe = current->splice_pipe; 956 if (unlikely(!pipe)) { 957 pipe = alloc_pipe_info(NULL); 958 if (!pipe) 959 return -ENOMEM; 960 961 /* 962 * We don't have an immediate reader, but we'll read the stuff 963 * out of the pipe right after the splice_to_pipe(). So set 964 * PIPE_READERS appropriately. 965 */ 966 pipe->readers = 1; 967 968 current->splice_pipe = pipe; 969 } 970 971 /* 972 * Do the splice. 973 */ 974 ret = 0; 975 bytes = 0; 976 len = sd->total_len; 977 flags = sd->flags; 978 979 /* 980 * Don't block on output, we have to drain the direct pipe. 981 */ 982 sd->flags &= ~SPLICE_F_NONBLOCK; 983 984 while (len) { 985 size_t read_len; 986 loff_t pos = sd->pos; 987 988 ret = do_splice_to(in, &pos, pipe, len, flags); 989 if (unlikely(ret <= 0)) 990 goto out_release; 991 992 read_len = ret; 993 sd->total_len = read_len; 994 995 /* 996 * NOTE: nonblocking mode only applies to the input. We 997 * must not do the output in nonblocking mode as then we 998 * could get stuck data in the internal pipe: 999 */ 1000 ret = actor(pipe, sd); 1001 if (unlikely(ret <= 0)) 1002 goto out_release; 1003 1004 bytes += ret; 1005 len -= ret; 1006 sd->pos = pos; 1007 1008 if (ret < read_len) 1009 goto out_release; 1010 } 1011 1012done: 1013 pipe->nrbufs = pipe->curbuf = 0; 1014 file_accessed(in); 1015 return bytes; 1016 1017out_release: 1018 /* 1019 * If we did an incomplete transfer we must release 1020 * the pipe buffers in question: 1021 */ 1022 for (i = 0; i < PIPE_BUFFERS; i++) { 1023 struct pipe_buffer *buf = pipe->bufs + i; 1024 1025 if (buf->ops) { 1026 buf->ops->release(pipe, buf); 1027 buf->ops = NULL; 1028 } 1029 } 1030 1031 if (!bytes) 1032 bytes = ret; 1033 1034 goto done; 1035} 1036EXPORT_SYMBOL(splice_direct_to_actor); 1037 1038static int direct_splice_actor(struct pipe_inode_info *pipe, 1039 struct splice_desc *sd) 1040{ 1041 struct file *file = sd->u.file; 1042 1043 return do_splice_from(pipe, file, &sd->pos, sd->total_len, sd->flags); 1044} 1045 1046/** 1047 * do_splice_direct - splices data directly between two files 1048 * @in: file to splice from 1049 * @ppos: input file offset 1050 * @out: file to splice to 1051 * @len: number of bytes to splice 1052 * @flags: splice modifier flags 1053 * 1054 * Description: 1055 * For use by do_sendfile(). splice can easily emulate sendfile, but 1056 * doing it in the application would incur an extra system call 1057 * (splice in + splice out, as compared to just sendfile()). So this helper 1058 * can splice directly through a process-private pipe. 1059 * 1060 */ 1061long do_splice_direct(struct file *in, loff_t *ppos, struct file *out, 1062 size_t len, unsigned int flags) 1063{ 1064 struct splice_desc sd = { 1065 .len = len, 1066 .total_len = len, 1067 .flags = flags, 1068 .pos = *ppos, 1069 .u.file = out, 1070 }; 1071 long ret; 1072 1073 ret = splice_direct_to_actor(in, &sd, direct_splice_actor); 1074 if (ret > 0) 1075 *ppos += ret; 1076 1077 return ret; 1078} 1079 1080/* 1081 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same 1082 * location, so checking ->i_pipe is not enough to verify that this is a 1083 * pipe. 1084 */ 1085static inline struct pipe_inode_info *pipe_info(struct inode *inode) 1086{ 1087 if (S_ISFIFO(inode->i_mode)) 1088 return inode->i_pipe; 1089 1090 return NULL; 1091} 1092 1093/* 1094 * Determine where to splice to/from. 1095 */ 1096static long do_splice(struct file *in, loff_t __user *off_in, 1097 struct file *out, loff_t __user *off_out, 1098 size_t len, unsigned int flags) 1099{ 1100 struct pipe_inode_info *pipe; 1101 loff_t offset, *off; 1102 long ret; 1103 1104 pipe = pipe_info(in->f_path.dentry->d_inode); 1105 if (pipe) { 1106 if (off_in) 1107 return -ESPIPE; 1108 if (off_out) { 1109 if (out->f_op->llseek == no_llseek) 1110 return -EINVAL; 1111 if (copy_from_user(&offset, off_out, sizeof(loff_t))) 1112 return -EFAULT; 1113 off = &offset; 1114 } else 1115 off = &out->f_pos; 1116 1117 ret = do_splice_from(pipe, out, off, len, flags); 1118 1119 if (off_out && copy_to_user(off_out, off, sizeof(loff_t))) 1120 ret = -EFAULT; 1121 1122 return ret; 1123 } 1124 1125 pipe = pipe_info(out->f_path.dentry->d_inode); 1126 if (pipe) { 1127 if (off_out) 1128 return -ESPIPE; 1129 if (off_in) { 1130 if (in->f_op->llseek == no_llseek) 1131 return -EINVAL; 1132 if (copy_from_user(&offset, off_in, sizeof(loff_t))) 1133 return -EFAULT; 1134 off = &offset; 1135 } else 1136 off = &in->f_pos; 1137 1138 ret = do_splice_to(in, off, pipe, len, flags); 1139 1140 if (off_in && copy_to_user(off_in, off, sizeof(loff_t))) 1141 ret = -EFAULT; 1142 1143 return ret; 1144 } 1145 1146 return -EINVAL; 1147} 1148 1149/* 1150 * Do a copy-from-user while holding the mmap_semaphore for reading, in a 1151 * manner safe from deadlocking with simultaneous mmap() (grabbing mmap_sem 1152 * for writing) and page faulting on the user memory pointed to by src. 1153 * This assumes that we will very rarely hit the partial != 0 path, or this 1154 * will not be a win. 1155 */ 1156static int copy_from_user_mmap_sem(void *dst, const void __user *src, size_t n) 1157{ 1158 int partial; 1159 1160 if (!access_ok(VERIFY_READ, src, n)) 1161 return -EFAULT; 1162 1163 pagefault_disable(); 1164 partial = __copy_from_user_inatomic(dst, src, n); 1165 pagefault_enable(); 1166 1167 /* 1168 * Didn't copy everything, drop the mmap_sem and do a faulting copy 1169 */ 1170 if (unlikely(partial)) { 1171 up_read(&current->mm->mmap_sem); 1172 partial = copy_from_user(dst, src, n); 1173 down_read(&current->mm->mmap_sem); 1174 } 1175 1176 return partial; 1177} 1178 1179/* 1180 * Map an iov into an array of pages and offset/length tupples. With the 1181 * partial_page structure, we can map several non-contiguous ranges into 1182 * our ones pages[] map instead of splitting that operation into pieces. 1183 * Could easily be exported as a generic helper for other users, in which 1184 * case one would probably want to add a 'max_nr_pages' parameter as well. 1185 */ 1186static int get_iovec_page_array(const struct iovec __user *iov, 1187 unsigned int nr_vecs, struct page **pages, 1188 struct partial_page *partial, int aligned) 1189{ 1190 int buffers = 0, error = 0; 1191 1192 down_read(&current->mm->mmap_sem); 1193 1194 while (nr_vecs) { 1195 unsigned long off, npages; 1196 struct iovec entry; 1197 void __user *base; 1198 size_t len; 1199 int i; 1200 1201 error = -EFAULT; 1202 if (copy_from_user_mmap_sem(&entry, iov, sizeof(entry))) 1203 break; 1204 1205 base = entry.iov_base; 1206 len = entry.iov_len; 1207 1208 /* 1209 * Sanity check this iovec. 0 read succeeds. 1210 */ 1211 error = 0; 1212 if (unlikely(!len)) 1213 break; 1214 error = -EFAULT; 1215 if (!access_ok(VERIFY_READ, base, len)) 1216 break; 1217 1218 /* 1219 * Get this base offset and number of pages, then map 1220 * in the user pages. 1221 */ 1222 off = (unsigned long) base & ~PAGE_MASK; 1223 1224 /* 1225 * If asked for alignment, the offset must be zero and the 1226 * length a multiple of the PAGE_SIZE. 1227 */ 1228 error = -EINVAL; 1229 if (aligned && (off || len & ~PAGE_MASK)) 1230 break; 1231 1232 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1233 if (npages > PIPE_BUFFERS - buffers) 1234 npages = PIPE_BUFFERS - buffers; 1235 1236 error = get_user_pages(current, current->mm, 1237 (unsigned long) base, npages, 0, 0, 1238 &pages[buffers], NULL); 1239 1240 if (unlikely(error <= 0)) 1241 break; 1242 1243 /* 1244 * Fill this contiguous range into the partial page map. 1245 */ 1246 for (i = 0; i < error; i++) { 1247 const int plen = min_t(size_t, len, PAGE_SIZE - off); 1248 1249 partial[buffers].offset = off; 1250 partial[buffers].len = plen; 1251 1252 off = 0; 1253 len -= plen; 1254 buffers++; 1255 } 1256 1257 /* 1258 * We didn't complete this iov, stop here since it probably 1259 * means we have to move some of this into a pipe to 1260 * be able to continue. 1261 */ 1262 if (len) 1263 break; 1264 1265 /* 1266 * Don't continue if we mapped fewer pages than we asked for, 1267 * or if we mapped the max number of pages that we have 1268 * room for. 1269 */ 1270 if (error < npages || buffers == PIPE_BUFFERS) 1271 break; 1272 1273 nr_vecs--; 1274 iov++; 1275 } 1276 1277 up_read(&current->mm->mmap_sem); 1278 1279 if (buffers) 1280 return buffers; 1281 1282 return error; 1283} 1284 1285static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 1286 struct splice_desc *sd) 1287{ 1288 char *src; 1289 int ret; 1290 1291 ret = buf->ops->confirm(pipe, buf); 1292 if (unlikely(ret)) 1293 return ret; 1294 1295 /* 1296 * See if we can use the atomic maps, by prefaulting in the 1297 * pages and doing an atomic copy 1298 */ 1299 if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) { 1300 src = buf->ops->map(pipe, buf, 1); 1301 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset, 1302 sd->len); 1303 buf->ops->unmap(pipe, buf, src); 1304 if (!ret) { 1305 ret = sd->len; 1306 goto out; 1307 } 1308 } 1309 1310 /* 1311 * No dice, use slow non-atomic map and copy 1312 */ 1313 src = buf->ops->map(pipe, buf, 0); 1314 1315 ret = sd->len; 1316 if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len)) 1317 ret = -EFAULT; 1318 1319 buf->ops->unmap(pipe, buf, src); 1320out: 1321 if (ret > 0) 1322 sd->u.userptr += ret; 1323 return ret; 1324} 1325 1326/* 1327 * For lack of a better implementation, implement vmsplice() to userspace 1328 * as a simple copy of the pipes pages to the user iov. 1329 */ 1330static long vmsplice_to_user(struct file *file, const struct iovec __user *iov, 1331 unsigned long nr_segs, unsigned int flags) 1332{ 1333 struct pipe_inode_info *pipe; 1334 struct splice_desc sd; 1335 ssize_t size; 1336 int error; 1337 long ret; 1338 1339 pipe = pipe_info(file->f_path.dentry->d_inode); 1340 if (!pipe) 1341 return -EBADF; 1342 1343 if (pipe->inode) 1344 mutex_lock(&pipe->inode->i_mutex); 1345 1346 error = ret = 0; 1347 while (nr_segs) { 1348 void __user *base; 1349 size_t len; 1350 1351 /* 1352 * Get user address base and length for this iovec. 1353 */ 1354 error = get_user(base, &iov->iov_base); 1355 if (unlikely(error)) 1356 break; 1357 error = get_user(len, &iov->iov_len); 1358 if (unlikely(error)) 1359 break; 1360 1361 /* 1362 * Sanity check this iovec. 0 read succeeds. 1363 */ 1364 if (unlikely(!len)) 1365 break; 1366 if (unlikely(!base)) { 1367 error = -EFAULT; 1368 break; 1369 } 1370 1371 if (unlikely(!access_ok(VERIFY_WRITE, base, len))) { 1372 error = -EFAULT; 1373 break; 1374 } 1375 1376 sd.len = 0; 1377 sd.total_len = len; 1378 sd.flags = flags; 1379 sd.u.userptr = base; 1380 sd.pos = 0; 1381 1382 size = __splice_from_pipe(pipe, &sd, pipe_to_user); 1383 if (size < 0) { 1384 if (!ret) 1385 ret = size; 1386 1387 break; 1388 } 1389 1390 ret += size; 1391 1392 if (size < len) 1393 break; 1394 1395 nr_segs--; 1396 iov++; 1397 } 1398 1399 if (pipe->inode) 1400 mutex_unlock(&pipe->inode->i_mutex); 1401 1402 if (!ret) 1403 ret = error; 1404 1405 return ret; 1406} 1407 1408/* 1409 * vmsplice splices a user address range into a pipe. It can be thought of 1410 * as splice-from-memory, where the regular splice is splice-from-file (or 1411 * to file). In both cases the output is a pipe, naturally. 1412 */ 1413static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov, 1414 unsigned long nr_segs, unsigned int flags) 1415{ 1416 struct pipe_inode_info *pipe; 1417 struct page *pages[PIPE_BUFFERS]; 1418 struct partial_page partial[PIPE_BUFFERS]; 1419 struct splice_pipe_desc spd = { 1420 .pages = pages, 1421 .partial = partial, 1422 .flags = flags, 1423 .ops = &user_page_pipe_buf_ops, 1424 .spd_release = spd_release_page, 1425 }; 1426 1427 pipe = pipe_info(file->f_path.dentry->d_inode); 1428 if (!pipe) 1429 return -EBADF; 1430 1431 spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial, 1432 flags & SPLICE_F_GIFT); 1433 if (spd.nr_pages <= 0) 1434 return spd.nr_pages; 1435 1436 return splice_to_pipe(pipe, &spd); 1437} 1438 1439/* 1440 * Note that vmsplice only really supports true splicing _from_ user memory 1441 * to a pipe, not the other way around. Splicing from user memory is a simple 1442 * operation that can be supported without any funky alignment restrictions 1443 * or nasty vm tricks. We simply map in the user memory and fill them into 1444 * a pipe. The reverse isn't quite as easy, though. There are two possible 1445 * solutions for that: 1446 * 1447 * - memcpy() the data internally, at which point we might as well just 1448 * do a regular read() on the buffer anyway. 1449 * - Lots of nasty vm tricks, that are neither fast nor flexible (it 1450 * has restriction limitations on both ends of the pipe). 1451 * 1452 * Currently we punt and implement it as a normal copy, see pipe_to_user(). 1453 * 1454 */ 1455asmlinkage long sys_vmsplice(int fd, const struct iovec __user *iov, 1456 unsigned long nr_segs, unsigned int flags) 1457{ 1458 struct file *file; 1459 long error; 1460 int fput; 1461 1462 if (unlikely(nr_segs > UIO_MAXIOV)) 1463 return -EINVAL; 1464 else if (unlikely(!nr_segs)) 1465 return 0; 1466 1467 error = -EBADF; 1468 file = fget_light(fd, &fput); 1469 if (file) { 1470 if (file->f_mode & FMODE_WRITE) 1471 error = vmsplice_to_pipe(file, iov, nr_segs, flags); 1472 else if (file->f_mode & FMODE_READ) 1473 error = vmsplice_to_user(file, iov, nr_segs, flags); 1474 1475 fput_light(file, fput); 1476 } 1477 1478 return error; 1479} 1480 1481asmlinkage long sys_splice(int fd_in, loff_t __user *off_in, 1482 int fd_out, loff_t __user *off_out, 1483 size_t len, unsigned int flags) 1484{ 1485 long error; 1486 struct file *in, *out; 1487 int fput_in, fput_out; 1488 1489 if (unlikely(!len)) 1490 return 0; 1491 1492 error = -EBADF; 1493 in = fget_light(fd_in, &fput_in); 1494 if (in) { 1495 if (in->f_mode & FMODE_READ) { 1496 out = fget_light(fd_out, &fput_out); 1497 if (out) { 1498 if (out->f_mode & FMODE_WRITE) 1499 error = do_splice(in, off_in, 1500 out, off_out, 1501 len, flags); 1502 fput_light(out, fput_out); 1503 } 1504 } 1505 1506 fput_light(in, fput_in); 1507 } 1508 1509 return error; 1510} 1511 1512/* 1513 * Make sure there's data to read. Wait for input if we can, otherwise 1514 * return an appropriate error. 1515 */ 1516static int link_ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1517{ 1518 int ret; 1519 1520 /* 1521 * Check ->nrbufs without the inode lock first. This function 1522 * is speculative anyways, so missing one is ok. 1523 */ 1524 if (pipe->nrbufs) 1525 return 0; 1526 1527 ret = 0; 1528 mutex_lock(&pipe->inode->i_mutex); 1529 1530 while (!pipe->nrbufs) { 1531 if (signal_pending(current)) { 1532 ret = -ERESTARTSYS; 1533 break; 1534 } 1535 if (!pipe->writers) 1536 break; 1537 if (!pipe->waiting_writers) { 1538 if (flags & SPLICE_F_NONBLOCK) { 1539 ret = -EAGAIN; 1540 break; 1541 } 1542 } 1543 pipe_wait(pipe); 1544 } 1545 1546 mutex_unlock(&pipe->inode->i_mutex); 1547 return ret; 1548} 1549 1550/* 1551 * Make sure there's writeable room. Wait for room if we can, otherwise 1552 * return an appropriate error. 1553 */ 1554static int link_opipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1555{ 1556 int ret; 1557 1558 /* 1559 * Check ->nrbufs without the inode lock first. This function 1560 * is speculative anyways, so missing one is ok. 1561 */ 1562 if (pipe->nrbufs < PIPE_BUFFERS) 1563 return 0; 1564 1565 ret = 0; 1566 mutex_lock(&pipe->inode->i_mutex); 1567 1568 while (pipe->nrbufs >= PIPE_BUFFERS) { 1569 if (!pipe->readers) { 1570 send_sig(SIGPIPE, current, 0); 1571 ret = -EPIPE; 1572 break; 1573 } 1574 if (flags & SPLICE_F_NONBLOCK) { 1575 ret = -EAGAIN; 1576 break; 1577 } 1578 if (signal_pending(current)) { 1579 ret = -ERESTARTSYS; 1580 break; 1581 } 1582 pipe->waiting_writers++; 1583 pipe_wait(pipe); 1584 pipe->waiting_writers--; 1585 } 1586 1587 mutex_unlock(&pipe->inode->i_mutex); 1588 return ret; 1589} 1590 1591/* 1592 * Link contents of ipipe to opipe. 1593 */ 1594static int link_pipe(struct pipe_inode_info *ipipe, 1595 struct pipe_inode_info *opipe, 1596 size_t len, unsigned int flags) 1597{ 1598 struct pipe_buffer *ibuf, *obuf; 1599 int ret = 0, i = 0, nbuf; 1600 1601 /* 1602 * Potential ABBA deadlock, work around it by ordering lock 1603 * grabbing by inode address. Otherwise two different processes 1604 * could deadlock (one doing tee from A -> B, the other from B -> A). 1605 */ 1606 inode_double_lock(ipipe->inode, opipe->inode); 1607 1608 do { 1609 if (!opipe->readers) { 1610 send_sig(SIGPIPE, current, 0); 1611 if (!ret) 1612 ret = -EPIPE; 1613 break; 1614 } 1615 1616 /* 1617 * If we have iterated all input buffers or ran out of 1618 * output room, break. 1619 */ 1620 if (i >= ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS) 1621 break; 1622 1623 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1)); 1624 nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1); 1625 1626 /* 1627 * Get a reference to this pipe buffer, 1628 * so we can copy the contents over. 1629 */ 1630 ibuf->ops->get(ipipe, ibuf); 1631 1632 obuf = opipe->bufs + nbuf; 1633 *obuf = *ibuf; 1634 1635 /* 1636 * Don't inherit the gift flag, we need to 1637 * prevent multiple steals of this page. 1638 */ 1639 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1640 1641 if (obuf->len > len) 1642 obuf->len = len; 1643 1644 opipe->nrbufs++; 1645 ret += obuf->len; 1646 len -= obuf->len; 1647 i++; 1648 } while (len); 1649 1650 /* 1651 * return EAGAIN if we have the potential of some data in the 1652 * future, otherwise just return 0 1653 */ 1654 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK)) 1655 ret = -EAGAIN; 1656 1657 inode_double_unlock(ipipe->inode, opipe->inode); 1658 1659 /* 1660 * If we put data in the output pipe, wakeup any potential readers. 1661 */ 1662 if (ret > 0) { 1663 smp_mb(); 1664 if (waitqueue_active(&opipe->wait)) 1665 wake_up_interruptible(&opipe->wait); 1666 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN); 1667 } 1668 1669 return ret; 1670} 1671 1672/* 1673 * This is a tee(1) implementation that works on pipes. It doesn't copy 1674 * any data, it simply references the 'in' pages on the 'out' pipe. 1675 * The 'flags' used are the SPLICE_F_* variants, currently the only 1676 * applicable one is SPLICE_F_NONBLOCK. 1677 */ 1678static long do_tee(struct file *in, struct file *out, size_t len, 1679 unsigned int flags) 1680{ 1681 struct pipe_inode_info *ipipe = pipe_info(in->f_path.dentry->d_inode); 1682 struct pipe_inode_info *opipe = pipe_info(out->f_path.dentry->d_inode); 1683 int ret = -EINVAL; 1684 1685 /* 1686 * Duplicate the contents of ipipe to opipe without actually 1687 * copying the data. 1688 */ 1689 if (ipipe && opipe && ipipe != opipe) { 1690 /* 1691 * Keep going, unless we encounter an error. The ipipe/opipe 1692 * ordering doesn't really matter. 1693 */ 1694 ret = link_ipipe_prep(ipipe, flags); 1695 if (!ret) { 1696 ret = link_opipe_prep(opipe, flags); 1697 if (!ret) 1698 ret = link_pipe(ipipe, opipe, len, flags); 1699 } 1700 } 1701 1702 return ret; 1703} 1704 1705asmlinkage long sys_tee(int fdin, int fdout, size_t len, unsigned int flags) 1706{ 1707 struct file *in; 1708 int error, fput_in; 1709 1710 if (unlikely(!len)) 1711 return 0; 1712 1713 error = -EBADF; 1714 in = fget_light(fdin, &fput_in); 1715 if (in) { 1716 if (in->f_mode & FMODE_READ) { 1717 int fput_out; 1718 struct file *out = fget_light(fdout, &fput_out); 1719 1720 if (out) { 1721 if (out->f_mode & FMODE_WRITE) 1722 error = do_tee(in, out, len, flags); 1723 fput_light(out, fput_out); 1724 } 1725 } 1726 fput_light(in, fput_in); 1727 } 1728 1729 return error; 1730}