at v2.6.26-rc2 4592 lines 129 kB view raw
1/* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17#include <linux/stddef.h> 18#include <linux/mm.h> 19#include <linux/swap.h> 20#include <linux/interrupt.h> 21#include <linux/pagemap.h> 22#include <linux/jiffies.h> 23#include <linux/bootmem.h> 24#include <linux/compiler.h> 25#include <linux/kernel.h> 26#include <linux/module.h> 27#include <linux/suspend.h> 28#include <linux/pagevec.h> 29#include <linux/blkdev.h> 30#include <linux/slab.h> 31#include <linux/oom.h> 32#include <linux/notifier.h> 33#include <linux/topology.h> 34#include <linux/sysctl.h> 35#include <linux/cpu.h> 36#include <linux/cpuset.h> 37#include <linux/memory_hotplug.h> 38#include <linux/nodemask.h> 39#include <linux/vmalloc.h> 40#include <linux/mempolicy.h> 41#include <linux/stop_machine.h> 42#include <linux/sort.h> 43#include <linux/pfn.h> 44#include <linux/backing-dev.h> 45#include <linux/fault-inject.h> 46#include <linux/page-isolation.h> 47#include <linux/memcontrol.h> 48#include <linux/debugobjects.h> 49 50#include <asm/tlbflush.h> 51#include <asm/div64.h> 52#include "internal.h" 53 54/* 55 * Array of node states. 56 */ 57nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 58 [N_POSSIBLE] = NODE_MASK_ALL, 59 [N_ONLINE] = { { [0] = 1UL } }, 60#ifndef CONFIG_NUMA 61 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 62#ifdef CONFIG_HIGHMEM 63 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 64#endif 65 [N_CPU] = { { [0] = 1UL } }, 66#endif /* NUMA */ 67}; 68EXPORT_SYMBOL(node_states); 69 70unsigned long totalram_pages __read_mostly; 71unsigned long totalreserve_pages __read_mostly; 72long nr_swap_pages; 73int percpu_pagelist_fraction; 74 75#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 76int pageblock_order __read_mostly; 77#endif 78 79static void __free_pages_ok(struct page *page, unsigned int order); 80 81/* 82 * results with 256, 32 in the lowmem_reserve sysctl: 83 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 84 * 1G machine -> (16M dma, 784M normal, 224M high) 85 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 86 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 87 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 88 * 89 * TBD: should special case ZONE_DMA32 machines here - in those we normally 90 * don't need any ZONE_NORMAL reservation 91 */ 92int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 93#ifdef CONFIG_ZONE_DMA 94 256, 95#endif 96#ifdef CONFIG_ZONE_DMA32 97 256, 98#endif 99#ifdef CONFIG_HIGHMEM 100 32, 101#endif 102 32, 103}; 104 105EXPORT_SYMBOL(totalram_pages); 106 107static char * const zone_names[MAX_NR_ZONES] = { 108#ifdef CONFIG_ZONE_DMA 109 "DMA", 110#endif 111#ifdef CONFIG_ZONE_DMA32 112 "DMA32", 113#endif 114 "Normal", 115#ifdef CONFIG_HIGHMEM 116 "HighMem", 117#endif 118 "Movable", 119}; 120 121int min_free_kbytes = 1024; 122 123unsigned long __meminitdata nr_kernel_pages; 124unsigned long __meminitdata nr_all_pages; 125static unsigned long __meminitdata dma_reserve; 126 127#ifdef CONFIG_ARCH_POPULATES_NODE_MAP 128 /* 129 * MAX_ACTIVE_REGIONS determines the maximum number of distinct 130 * ranges of memory (RAM) that may be registered with add_active_range(). 131 * Ranges passed to add_active_range() will be merged if possible 132 * so the number of times add_active_range() can be called is 133 * related to the number of nodes and the number of holes 134 */ 135 #ifdef CONFIG_MAX_ACTIVE_REGIONS 136 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */ 137 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS 138 #else 139 #if MAX_NUMNODES >= 32 140 /* If there can be many nodes, allow up to 50 holes per node */ 141 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50) 142 #else 143 /* By default, allow up to 256 distinct regions */ 144 #define MAX_ACTIVE_REGIONS 256 145 #endif 146 #endif 147 148 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS]; 149 static int __meminitdata nr_nodemap_entries; 150 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 151 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 152#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE 153 static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES]; 154 static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES]; 155#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */ 156 unsigned long __initdata required_kernelcore; 157 static unsigned long __initdata required_movablecore; 158 unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 159 160 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 161 int movable_zone; 162 EXPORT_SYMBOL(movable_zone); 163#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 164 165#if MAX_NUMNODES > 1 166int nr_node_ids __read_mostly = MAX_NUMNODES; 167EXPORT_SYMBOL(nr_node_ids); 168#endif 169 170int page_group_by_mobility_disabled __read_mostly; 171 172static void set_pageblock_migratetype(struct page *page, int migratetype) 173{ 174 set_pageblock_flags_group(page, (unsigned long)migratetype, 175 PB_migrate, PB_migrate_end); 176} 177 178#ifdef CONFIG_DEBUG_VM 179static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 180{ 181 int ret = 0; 182 unsigned seq; 183 unsigned long pfn = page_to_pfn(page); 184 185 do { 186 seq = zone_span_seqbegin(zone); 187 if (pfn >= zone->zone_start_pfn + zone->spanned_pages) 188 ret = 1; 189 else if (pfn < zone->zone_start_pfn) 190 ret = 1; 191 } while (zone_span_seqretry(zone, seq)); 192 193 return ret; 194} 195 196static int page_is_consistent(struct zone *zone, struct page *page) 197{ 198 if (!pfn_valid_within(page_to_pfn(page))) 199 return 0; 200 if (zone != page_zone(page)) 201 return 0; 202 203 return 1; 204} 205/* 206 * Temporary debugging check for pages not lying within a given zone. 207 */ 208static int bad_range(struct zone *zone, struct page *page) 209{ 210 if (page_outside_zone_boundaries(zone, page)) 211 return 1; 212 if (!page_is_consistent(zone, page)) 213 return 1; 214 215 return 0; 216} 217#else 218static inline int bad_range(struct zone *zone, struct page *page) 219{ 220 return 0; 221} 222#endif 223 224static void bad_page(struct page *page) 225{ 226 void *pc = page_get_page_cgroup(page); 227 228 printk(KERN_EMERG "Bad page state in process '%s'\n" KERN_EMERG 229 "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n", 230 current->comm, page, (int)(2*sizeof(unsigned long)), 231 (unsigned long)page->flags, page->mapping, 232 page_mapcount(page), page_count(page)); 233 if (pc) { 234 printk(KERN_EMERG "cgroup:%p\n", pc); 235 page_reset_bad_cgroup(page); 236 } 237 printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n" 238 KERN_EMERG "Backtrace:\n"); 239 dump_stack(); 240 page->flags &= ~(1 << PG_lru | 241 1 << PG_private | 242 1 << PG_locked | 243 1 << PG_active | 244 1 << PG_dirty | 245 1 << PG_reclaim | 246 1 << PG_slab | 247 1 << PG_swapcache | 248 1 << PG_writeback | 249 1 << PG_buddy ); 250 set_page_count(page, 0); 251 reset_page_mapcount(page); 252 page->mapping = NULL; 253 add_taint(TAINT_BAD_PAGE); 254} 255 256/* 257 * Higher-order pages are called "compound pages". They are structured thusly: 258 * 259 * The first PAGE_SIZE page is called the "head page". 260 * 261 * The remaining PAGE_SIZE pages are called "tail pages". 262 * 263 * All pages have PG_compound set. All pages have their ->private pointing at 264 * the head page (even the head page has this). 265 * 266 * The first tail page's ->lru.next holds the address of the compound page's 267 * put_page() function. Its ->lru.prev holds the order of allocation. 268 * This usage means that zero-order pages may not be compound. 269 */ 270 271static void free_compound_page(struct page *page) 272{ 273 __free_pages_ok(page, compound_order(page)); 274} 275 276static void prep_compound_page(struct page *page, unsigned long order) 277{ 278 int i; 279 int nr_pages = 1 << order; 280 281 set_compound_page_dtor(page, free_compound_page); 282 set_compound_order(page, order); 283 __SetPageHead(page); 284 for (i = 1; i < nr_pages; i++) { 285 struct page *p = page + i; 286 287 __SetPageTail(p); 288 p->first_page = page; 289 } 290} 291 292static void destroy_compound_page(struct page *page, unsigned long order) 293{ 294 int i; 295 int nr_pages = 1 << order; 296 297 if (unlikely(compound_order(page) != order)) 298 bad_page(page); 299 300 if (unlikely(!PageHead(page))) 301 bad_page(page); 302 __ClearPageHead(page); 303 for (i = 1; i < nr_pages; i++) { 304 struct page *p = page + i; 305 306 if (unlikely(!PageTail(p) | 307 (p->first_page != page))) 308 bad_page(page); 309 __ClearPageTail(p); 310 } 311} 312 313static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) 314{ 315 int i; 316 317 /* 318 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 319 * and __GFP_HIGHMEM from hard or soft interrupt context. 320 */ 321 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 322 for (i = 0; i < (1 << order); i++) 323 clear_highpage(page + i); 324} 325 326static inline void set_page_order(struct page *page, int order) 327{ 328 set_page_private(page, order); 329 __SetPageBuddy(page); 330} 331 332static inline void rmv_page_order(struct page *page) 333{ 334 __ClearPageBuddy(page); 335 set_page_private(page, 0); 336} 337 338/* 339 * Locate the struct page for both the matching buddy in our 340 * pair (buddy1) and the combined O(n+1) page they form (page). 341 * 342 * 1) Any buddy B1 will have an order O twin B2 which satisfies 343 * the following equation: 344 * B2 = B1 ^ (1 << O) 345 * For example, if the starting buddy (buddy2) is #8 its order 346 * 1 buddy is #10: 347 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 348 * 349 * 2) Any buddy B will have an order O+1 parent P which 350 * satisfies the following equation: 351 * P = B & ~(1 << O) 352 * 353 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 354 */ 355static inline struct page * 356__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order) 357{ 358 unsigned long buddy_idx = page_idx ^ (1 << order); 359 360 return page + (buddy_idx - page_idx); 361} 362 363static inline unsigned long 364__find_combined_index(unsigned long page_idx, unsigned int order) 365{ 366 return (page_idx & ~(1 << order)); 367} 368 369/* 370 * This function checks whether a page is free && is the buddy 371 * we can do coalesce a page and its buddy if 372 * (a) the buddy is not in a hole && 373 * (b) the buddy is in the buddy system && 374 * (c) a page and its buddy have the same order && 375 * (d) a page and its buddy are in the same zone. 376 * 377 * For recording whether a page is in the buddy system, we use PG_buddy. 378 * Setting, clearing, and testing PG_buddy is serialized by zone->lock. 379 * 380 * For recording page's order, we use page_private(page). 381 */ 382static inline int page_is_buddy(struct page *page, struct page *buddy, 383 int order) 384{ 385 if (!pfn_valid_within(page_to_pfn(buddy))) 386 return 0; 387 388 if (page_zone_id(page) != page_zone_id(buddy)) 389 return 0; 390 391 if (PageBuddy(buddy) && page_order(buddy) == order) { 392 BUG_ON(page_count(buddy) != 0); 393 return 1; 394 } 395 return 0; 396} 397 398/* 399 * Freeing function for a buddy system allocator. 400 * 401 * The concept of a buddy system is to maintain direct-mapped table 402 * (containing bit values) for memory blocks of various "orders". 403 * The bottom level table contains the map for the smallest allocatable 404 * units of memory (here, pages), and each level above it describes 405 * pairs of units from the levels below, hence, "buddies". 406 * At a high level, all that happens here is marking the table entry 407 * at the bottom level available, and propagating the changes upward 408 * as necessary, plus some accounting needed to play nicely with other 409 * parts of the VM system. 410 * At each level, we keep a list of pages, which are heads of continuous 411 * free pages of length of (1 << order) and marked with PG_buddy. Page's 412 * order is recorded in page_private(page) field. 413 * So when we are allocating or freeing one, we can derive the state of the 414 * other. That is, if we allocate a small block, and both were 415 * free, the remainder of the region must be split into blocks. 416 * If a block is freed, and its buddy is also free, then this 417 * triggers coalescing into a block of larger size. 418 * 419 * -- wli 420 */ 421 422static inline void __free_one_page(struct page *page, 423 struct zone *zone, unsigned int order) 424{ 425 unsigned long page_idx; 426 int order_size = 1 << order; 427 int migratetype = get_pageblock_migratetype(page); 428 429 if (unlikely(PageCompound(page))) 430 destroy_compound_page(page, order); 431 432 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); 433 434 VM_BUG_ON(page_idx & (order_size - 1)); 435 VM_BUG_ON(bad_range(zone, page)); 436 437 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size); 438 while (order < MAX_ORDER-1) { 439 unsigned long combined_idx; 440 struct page *buddy; 441 442 buddy = __page_find_buddy(page, page_idx, order); 443 if (!page_is_buddy(page, buddy, order)) 444 break; /* Move the buddy up one level. */ 445 446 list_del(&buddy->lru); 447 zone->free_area[order].nr_free--; 448 rmv_page_order(buddy); 449 combined_idx = __find_combined_index(page_idx, order); 450 page = page + (combined_idx - page_idx); 451 page_idx = combined_idx; 452 order++; 453 } 454 set_page_order(page, order); 455 list_add(&page->lru, 456 &zone->free_area[order].free_list[migratetype]); 457 zone->free_area[order].nr_free++; 458} 459 460static inline int free_pages_check(struct page *page) 461{ 462 if (unlikely(page_mapcount(page) | 463 (page->mapping != NULL) | 464 (page_get_page_cgroup(page) != NULL) | 465 (page_count(page) != 0) | 466 (page->flags & ( 467 1 << PG_lru | 468 1 << PG_private | 469 1 << PG_locked | 470 1 << PG_active | 471 1 << PG_slab | 472 1 << PG_swapcache | 473 1 << PG_writeback | 474 1 << PG_reserved | 475 1 << PG_buddy )))) 476 bad_page(page); 477 if (PageDirty(page)) 478 __ClearPageDirty(page); 479 /* 480 * For now, we report if PG_reserved was found set, but do not 481 * clear it, and do not free the page. But we shall soon need 482 * to do more, for when the ZERO_PAGE count wraps negative. 483 */ 484 return PageReserved(page); 485} 486 487/* 488 * Frees a list of pages. 489 * Assumes all pages on list are in same zone, and of same order. 490 * count is the number of pages to free. 491 * 492 * If the zone was previously in an "all pages pinned" state then look to 493 * see if this freeing clears that state. 494 * 495 * And clear the zone's pages_scanned counter, to hold off the "all pages are 496 * pinned" detection logic. 497 */ 498static void free_pages_bulk(struct zone *zone, int count, 499 struct list_head *list, int order) 500{ 501 spin_lock(&zone->lock); 502 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE); 503 zone->pages_scanned = 0; 504 while (count--) { 505 struct page *page; 506 507 VM_BUG_ON(list_empty(list)); 508 page = list_entry(list->prev, struct page, lru); 509 /* have to delete it as __free_one_page list manipulates */ 510 list_del(&page->lru); 511 __free_one_page(page, zone, order); 512 } 513 spin_unlock(&zone->lock); 514} 515 516static void free_one_page(struct zone *zone, struct page *page, int order) 517{ 518 spin_lock(&zone->lock); 519 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE); 520 zone->pages_scanned = 0; 521 __free_one_page(page, zone, order); 522 spin_unlock(&zone->lock); 523} 524 525static void __free_pages_ok(struct page *page, unsigned int order) 526{ 527 unsigned long flags; 528 int i; 529 int reserved = 0; 530 531 for (i = 0 ; i < (1 << order) ; ++i) 532 reserved += free_pages_check(page + i); 533 if (reserved) 534 return; 535 536 if (!PageHighMem(page)) { 537 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order); 538 debug_check_no_obj_freed(page_address(page), 539 PAGE_SIZE << order); 540 } 541 arch_free_page(page, order); 542 kernel_map_pages(page, 1 << order, 0); 543 544 local_irq_save(flags); 545 __count_vm_events(PGFREE, 1 << order); 546 free_one_page(page_zone(page), page, order); 547 local_irq_restore(flags); 548} 549 550/* 551 * permit the bootmem allocator to evade page validation on high-order frees 552 */ 553void __free_pages_bootmem(struct page *page, unsigned int order) 554{ 555 if (order == 0) { 556 __ClearPageReserved(page); 557 set_page_count(page, 0); 558 set_page_refcounted(page); 559 __free_page(page); 560 } else { 561 int loop; 562 563 prefetchw(page); 564 for (loop = 0; loop < BITS_PER_LONG; loop++) { 565 struct page *p = &page[loop]; 566 567 if (loop + 1 < BITS_PER_LONG) 568 prefetchw(p + 1); 569 __ClearPageReserved(p); 570 set_page_count(p, 0); 571 } 572 573 set_page_refcounted(page); 574 __free_pages(page, order); 575 } 576} 577 578 579/* 580 * The order of subdivision here is critical for the IO subsystem. 581 * Please do not alter this order without good reasons and regression 582 * testing. Specifically, as large blocks of memory are subdivided, 583 * the order in which smaller blocks are delivered depends on the order 584 * they're subdivided in this function. This is the primary factor 585 * influencing the order in which pages are delivered to the IO 586 * subsystem according to empirical testing, and this is also justified 587 * by considering the behavior of a buddy system containing a single 588 * large block of memory acted on by a series of small allocations. 589 * This behavior is a critical factor in sglist merging's success. 590 * 591 * -- wli 592 */ 593static inline void expand(struct zone *zone, struct page *page, 594 int low, int high, struct free_area *area, 595 int migratetype) 596{ 597 unsigned long size = 1 << high; 598 599 while (high > low) { 600 area--; 601 high--; 602 size >>= 1; 603 VM_BUG_ON(bad_range(zone, &page[size])); 604 list_add(&page[size].lru, &area->free_list[migratetype]); 605 area->nr_free++; 606 set_page_order(&page[size], high); 607 } 608} 609 610/* 611 * This page is about to be returned from the page allocator 612 */ 613static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) 614{ 615 if (unlikely(page_mapcount(page) | 616 (page->mapping != NULL) | 617 (page_get_page_cgroup(page) != NULL) | 618 (page_count(page) != 0) | 619 (page->flags & ( 620 1 << PG_lru | 621 1 << PG_private | 622 1 << PG_locked | 623 1 << PG_active | 624 1 << PG_dirty | 625 1 << PG_slab | 626 1 << PG_swapcache | 627 1 << PG_writeback | 628 1 << PG_reserved | 629 1 << PG_buddy )))) 630 bad_page(page); 631 632 /* 633 * For now, we report if PG_reserved was found set, but do not 634 * clear it, and do not allocate the page: as a safety net. 635 */ 636 if (PageReserved(page)) 637 return 1; 638 639 page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_reclaim | 640 1 << PG_referenced | 1 << PG_arch_1 | 641 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk); 642 set_page_private(page, 0); 643 set_page_refcounted(page); 644 645 arch_alloc_page(page, order); 646 kernel_map_pages(page, 1 << order, 1); 647 648 if (gfp_flags & __GFP_ZERO) 649 prep_zero_page(page, order, gfp_flags); 650 651 if (order && (gfp_flags & __GFP_COMP)) 652 prep_compound_page(page, order); 653 654 return 0; 655} 656 657/* 658 * Go through the free lists for the given migratetype and remove 659 * the smallest available page from the freelists 660 */ 661static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 662 int migratetype) 663{ 664 unsigned int current_order; 665 struct free_area * area; 666 struct page *page; 667 668 /* Find a page of the appropriate size in the preferred list */ 669 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 670 area = &(zone->free_area[current_order]); 671 if (list_empty(&area->free_list[migratetype])) 672 continue; 673 674 page = list_entry(area->free_list[migratetype].next, 675 struct page, lru); 676 list_del(&page->lru); 677 rmv_page_order(page); 678 area->nr_free--; 679 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order)); 680 expand(zone, page, order, current_order, area, migratetype); 681 return page; 682 } 683 684 return NULL; 685} 686 687 688/* 689 * This array describes the order lists are fallen back to when 690 * the free lists for the desirable migrate type are depleted 691 */ 692static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = { 693 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 694 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 695 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 696 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */ 697}; 698 699/* 700 * Move the free pages in a range to the free lists of the requested type. 701 * Note that start_page and end_pages are not aligned on a pageblock 702 * boundary. If alignment is required, use move_freepages_block() 703 */ 704int move_freepages(struct zone *zone, 705 struct page *start_page, struct page *end_page, 706 int migratetype) 707{ 708 struct page *page; 709 unsigned long order; 710 int pages_moved = 0; 711 712#ifndef CONFIG_HOLES_IN_ZONE 713 /* 714 * page_zone is not safe to call in this context when 715 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 716 * anyway as we check zone boundaries in move_freepages_block(). 717 * Remove at a later date when no bug reports exist related to 718 * grouping pages by mobility 719 */ 720 BUG_ON(page_zone(start_page) != page_zone(end_page)); 721#endif 722 723 for (page = start_page; page <= end_page;) { 724 if (!pfn_valid_within(page_to_pfn(page))) { 725 page++; 726 continue; 727 } 728 729 if (!PageBuddy(page)) { 730 page++; 731 continue; 732 } 733 734 order = page_order(page); 735 list_del(&page->lru); 736 list_add(&page->lru, 737 &zone->free_area[order].free_list[migratetype]); 738 page += 1 << order; 739 pages_moved += 1 << order; 740 } 741 742 return pages_moved; 743} 744 745int move_freepages_block(struct zone *zone, struct page *page, int migratetype) 746{ 747 unsigned long start_pfn, end_pfn; 748 struct page *start_page, *end_page; 749 750 start_pfn = page_to_pfn(page); 751 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 752 start_page = pfn_to_page(start_pfn); 753 end_page = start_page + pageblock_nr_pages - 1; 754 end_pfn = start_pfn + pageblock_nr_pages - 1; 755 756 /* Do not cross zone boundaries */ 757 if (start_pfn < zone->zone_start_pfn) 758 start_page = page; 759 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages) 760 return 0; 761 762 return move_freepages(zone, start_page, end_page, migratetype); 763} 764 765/* Remove an element from the buddy allocator from the fallback list */ 766static struct page *__rmqueue_fallback(struct zone *zone, int order, 767 int start_migratetype) 768{ 769 struct free_area * area; 770 int current_order; 771 struct page *page; 772 int migratetype, i; 773 774 /* Find the largest possible block of pages in the other list */ 775 for (current_order = MAX_ORDER-1; current_order >= order; 776 --current_order) { 777 for (i = 0; i < MIGRATE_TYPES - 1; i++) { 778 migratetype = fallbacks[start_migratetype][i]; 779 780 /* MIGRATE_RESERVE handled later if necessary */ 781 if (migratetype == MIGRATE_RESERVE) 782 continue; 783 784 area = &(zone->free_area[current_order]); 785 if (list_empty(&area->free_list[migratetype])) 786 continue; 787 788 page = list_entry(area->free_list[migratetype].next, 789 struct page, lru); 790 area->nr_free--; 791 792 /* 793 * If breaking a large block of pages, move all free 794 * pages to the preferred allocation list. If falling 795 * back for a reclaimable kernel allocation, be more 796 * agressive about taking ownership of free pages 797 */ 798 if (unlikely(current_order >= (pageblock_order >> 1)) || 799 start_migratetype == MIGRATE_RECLAIMABLE) { 800 unsigned long pages; 801 pages = move_freepages_block(zone, page, 802 start_migratetype); 803 804 /* Claim the whole block if over half of it is free */ 805 if (pages >= (1 << (pageblock_order-1))) 806 set_pageblock_migratetype(page, 807 start_migratetype); 808 809 migratetype = start_migratetype; 810 } 811 812 /* Remove the page from the freelists */ 813 list_del(&page->lru); 814 rmv_page_order(page); 815 __mod_zone_page_state(zone, NR_FREE_PAGES, 816 -(1UL << order)); 817 818 if (current_order == pageblock_order) 819 set_pageblock_migratetype(page, 820 start_migratetype); 821 822 expand(zone, page, order, current_order, area, migratetype); 823 return page; 824 } 825 } 826 827 /* Use MIGRATE_RESERVE rather than fail an allocation */ 828 return __rmqueue_smallest(zone, order, MIGRATE_RESERVE); 829} 830 831/* 832 * Do the hard work of removing an element from the buddy allocator. 833 * Call me with the zone->lock already held. 834 */ 835static struct page *__rmqueue(struct zone *zone, unsigned int order, 836 int migratetype) 837{ 838 struct page *page; 839 840 page = __rmqueue_smallest(zone, order, migratetype); 841 842 if (unlikely(!page)) 843 page = __rmqueue_fallback(zone, order, migratetype); 844 845 return page; 846} 847 848/* 849 * Obtain a specified number of elements from the buddy allocator, all under 850 * a single hold of the lock, for efficiency. Add them to the supplied list. 851 * Returns the number of new pages which were placed at *list. 852 */ 853static int rmqueue_bulk(struct zone *zone, unsigned int order, 854 unsigned long count, struct list_head *list, 855 int migratetype) 856{ 857 int i; 858 859 spin_lock(&zone->lock); 860 for (i = 0; i < count; ++i) { 861 struct page *page = __rmqueue(zone, order, migratetype); 862 if (unlikely(page == NULL)) 863 break; 864 865 /* 866 * Split buddy pages returned by expand() are received here 867 * in physical page order. The page is added to the callers and 868 * list and the list head then moves forward. From the callers 869 * perspective, the linked list is ordered by page number in 870 * some conditions. This is useful for IO devices that can 871 * merge IO requests if the physical pages are ordered 872 * properly. 873 */ 874 list_add(&page->lru, list); 875 set_page_private(page, migratetype); 876 list = &page->lru; 877 } 878 spin_unlock(&zone->lock); 879 return i; 880} 881 882#ifdef CONFIG_NUMA 883/* 884 * Called from the vmstat counter updater to drain pagesets of this 885 * currently executing processor on remote nodes after they have 886 * expired. 887 * 888 * Note that this function must be called with the thread pinned to 889 * a single processor. 890 */ 891void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 892{ 893 unsigned long flags; 894 int to_drain; 895 896 local_irq_save(flags); 897 if (pcp->count >= pcp->batch) 898 to_drain = pcp->batch; 899 else 900 to_drain = pcp->count; 901 free_pages_bulk(zone, to_drain, &pcp->list, 0); 902 pcp->count -= to_drain; 903 local_irq_restore(flags); 904} 905#endif 906 907/* 908 * Drain pages of the indicated processor. 909 * 910 * The processor must either be the current processor and the 911 * thread pinned to the current processor or a processor that 912 * is not online. 913 */ 914static void drain_pages(unsigned int cpu) 915{ 916 unsigned long flags; 917 struct zone *zone; 918 919 for_each_zone(zone) { 920 struct per_cpu_pageset *pset; 921 struct per_cpu_pages *pcp; 922 923 if (!populated_zone(zone)) 924 continue; 925 926 pset = zone_pcp(zone, cpu); 927 928 pcp = &pset->pcp; 929 local_irq_save(flags); 930 free_pages_bulk(zone, pcp->count, &pcp->list, 0); 931 pcp->count = 0; 932 local_irq_restore(flags); 933 } 934} 935 936/* 937 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 938 */ 939void drain_local_pages(void *arg) 940{ 941 drain_pages(smp_processor_id()); 942} 943 944/* 945 * Spill all the per-cpu pages from all CPUs back into the buddy allocator 946 */ 947void drain_all_pages(void) 948{ 949 on_each_cpu(drain_local_pages, NULL, 0, 1); 950} 951 952#ifdef CONFIG_HIBERNATION 953 954void mark_free_pages(struct zone *zone) 955{ 956 unsigned long pfn, max_zone_pfn; 957 unsigned long flags; 958 int order, t; 959 struct list_head *curr; 960 961 if (!zone->spanned_pages) 962 return; 963 964 spin_lock_irqsave(&zone->lock, flags); 965 966 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 967 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 968 if (pfn_valid(pfn)) { 969 struct page *page = pfn_to_page(pfn); 970 971 if (!swsusp_page_is_forbidden(page)) 972 swsusp_unset_page_free(page); 973 } 974 975 for_each_migratetype_order(order, t) { 976 list_for_each(curr, &zone->free_area[order].free_list[t]) { 977 unsigned long i; 978 979 pfn = page_to_pfn(list_entry(curr, struct page, lru)); 980 for (i = 0; i < (1UL << order); i++) 981 swsusp_set_page_free(pfn_to_page(pfn + i)); 982 } 983 } 984 spin_unlock_irqrestore(&zone->lock, flags); 985} 986#endif /* CONFIG_PM */ 987 988/* 989 * Free a 0-order page 990 */ 991static void free_hot_cold_page(struct page *page, int cold) 992{ 993 struct zone *zone = page_zone(page); 994 struct per_cpu_pages *pcp; 995 unsigned long flags; 996 997 if (PageAnon(page)) 998 page->mapping = NULL; 999 if (free_pages_check(page)) 1000 return; 1001 1002 if (!PageHighMem(page)) { 1003 debug_check_no_locks_freed(page_address(page), PAGE_SIZE); 1004 debug_check_no_obj_freed(page_address(page), PAGE_SIZE); 1005 } 1006 arch_free_page(page, 0); 1007 kernel_map_pages(page, 1, 0); 1008 1009 pcp = &zone_pcp(zone, get_cpu())->pcp; 1010 local_irq_save(flags); 1011 __count_vm_event(PGFREE); 1012 if (cold) 1013 list_add_tail(&page->lru, &pcp->list); 1014 else 1015 list_add(&page->lru, &pcp->list); 1016 set_page_private(page, get_pageblock_migratetype(page)); 1017 pcp->count++; 1018 if (pcp->count >= pcp->high) { 1019 free_pages_bulk(zone, pcp->batch, &pcp->list, 0); 1020 pcp->count -= pcp->batch; 1021 } 1022 local_irq_restore(flags); 1023 put_cpu(); 1024} 1025 1026void free_hot_page(struct page *page) 1027{ 1028 free_hot_cold_page(page, 0); 1029} 1030 1031void free_cold_page(struct page *page) 1032{ 1033 free_hot_cold_page(page, 1); 1034} 1035 1036/* 1037 * split_page takes a non-compound higher-order page, and splits it into 1038 * n (1<<order) sub-pages: page[0..n] 1039 * Each sub-page must be freed individually. 1040 * 1041 * Note: this is probably too low level an operation for use in drivers. 1042 * Please consult with lkml before using this in your driver. 1043 */ 1044void split_page(struct page *page, unsigned int order) 1045{ 1046 int i; 1047 1048 VM_BUG_ON(PageCompound(page)); 1049 VM_BUG_ON(!page_count(page)); 1050 for (i = 1; i < (1 << order); i++) 1051 set_page_refcounted(page + i); 1052} 1053 1054/* 1055 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 1056 * we cheat by calling it from here, in the order > 0 path. Saves a branch 1057 * or two. 1058 */ 1059static struct page *buffered_rmqueue(struct zone *preferred_zone, 1060 struct zone *zone, int order, gfp_t gfp_flags) 1061{ 1062 unsigned long flags; 1063 struct page *page; 1064 int cold = !!(gfp_flags & __GFP_COLD); 1065 int cpu; 1066 int migratetype = allocflags_to_migratetype(gfp_flags); 1067 1068again: 1069 cpu = get_cpu(); 1070 if (likely(order == 0)) { 1071 struct per_cpu_pages *pcp; 1072 1073 pcp = &zone_pcp(zone, cpu)->pcp; 1074 local_irq_save(flags); 1075 if (!pcp->count) { 1076 pcp->count = rmqueue_bulk(zone, 0, 1077 pcp->batch, &pcp->list, migratetype); 1078 if (unlikely(!pcp->count)) 1079 goto failed; 1080 } 1081 1082 /* Find a page of the appropriate migrate type */ 1083 if (cold) { 1084 list_for_each_entry_reverse(page, &pcp->list, lru) 1085 if (page_private(page) == migratetype) 1086 break; 1087 } else { 1088 list_for_each_entry(page, &pcp->list, lru) 1089 if (page_private(page) == migratetype) 1090 break; 1091 } 1092 1093 /* Allocate more to the pcp list if necessary */ 1094 if (unlikely(&page->lru == &pcp->list)) { 1095 pcp->count += rmqueue_bulk(zone, 0, 1096 pcp->batch, &pcp->list, migratetype); 1097 page = list_entry(pcp->list.next, struct page, lru); 1098 } 1099 1100 list_del(&page->lru); 1101 pcp->count--; 1102 } else { 1103 spin_lock_irqsave(&zone->lock, flags); 1104 page = __rmqueue(zone, order, migratetype); 1105 spin_unlock(&zone->lock); 1106 if (!page) 1107 goto failed; 1108 } 1109 1110 __count_zone_vm_events(PGALLOC, zone, 1 << order); 1111 zone_statistics(preferred_zone, zone); 1112 local_irq_restore(flags); 1113 put_cpu(); 1114 1115 VM_BUG_ON(bad_range(zone, page)); 1116 if (prep_new_page(page, order, gfp_flags)) 1117 goto again; 1118 return page; 1119 1120failed: 1121 local_irq_restore(flags); 1122 put_cpu(); 1123 return NULL; 1124} 1125 1126#define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */ 1127#define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */ 1128#define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */ 1129#define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */ 1130#define ALLOC_HARDER 0x10 /* try to alloc harder */ 1131#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ 1132#define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 1133 1134#ifdef CONFIG_FAIL_PAGE_ALLOC 1135 1136static struct fail_page_alloc_attr { 1137 struct fault_attr attr; 1138 1139 u32 ignore_gfp_highmem; 1140 u32 ignore_gfp_wait; 1141 u32 min_order; 1142 1143#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1144 1145 struct dentry *ignore_gfp_highmem_file; 1146 struct dentry *ignore_gfp_wait_file; 1147 struct dentry *min_order_file; 1148 1149#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1150 1151} fail_page_alloc = { 1152 .attr = FAULT_ATTR_INITIALIZER, 1153 .ignore_gfp_wait = 1, 1154 .ignore_gfp_highmem = 1, 1155 .min_order = 1, 1156}; 1157 1158static int __init setup_fail_page_alloc(char *str) 1159{ 1160 return setup_fault_attr(&fail_page_alloc.attr, str); 1161} 1162__setup("fail_page_alloc=", setup_fail_page_alloc); 1163 1164static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1165{ 1166 if (order < fail_page_alloc.min_order) 1167 return 0; 1168 if (gfp_mask & __GFP_NOFAIL) 1169 return 0; 1170 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 1171 return 0; 1172 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) 1173 return 0; 1174 1175 return should_fail(&fail_page_alloc.attr, 1 << order); 1176} 1177 1178#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1179 1180static int __init fail_page_alloc_debugfs(void) 1181{ 1182 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 1183 struct dentry *dir; 1184 int err; 1185 1186 err = init_fault_attr_dentries(&fail_page_alloc.attr, 1187 "fail_page_alloc"); 1188 if (err) 1189 return err; 1190 dir = fail_page_alloc.attr.dentries.dir; 1191 1192 fail_page_alloc.ignore_gfp_wait_file = 1193 debugfs_create_bool("ignore-gfp-wait", mode, dir, 1194 &fail_page_alloc.ignore_gfp_wait); 1195 1196 fail_page_alloc.ignore_gfp_highmem_file = 1197 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 1198 &fail_page_alloc.ignore_gfp_highmem); 1199 fail_page_alloc.min_order_file = 1200 debugfs_create_u32("min-order", mode, dir, 1201 &fail_page_alloc.min_order); 1202 1203 if (!fail_page_alloc.ignore_gfp_wait_file || 1204 !fail_page_alloc.ignore_gfp_highmem_file || 1205 !fail_page_alloc.min_order_file) { 1206 err = -ENOMEM; 1207 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file); 1208 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file); 1209 debugfs_remove(fail_page_alloc.min_order_file); 1210 cleanup_fault_attr_dentries(&fail_page_alloc.attr); 1211 } 1212 1213 return err; 1214} 1215 1216late_initcall(fail_page_alloc_debugfs); 1217 1218#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1219 1220#else /* CONFIG_FAIL_PAGE_ALLOC */ 1221 1222static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1223{ 1224 return 0; 1225} 1226 1227#endif /* CONFIG_FAIL_PAGE_ALLOC */ 1228 1229/* 1230 * Return 1 if free pages are above 'mark'. This takes into account the order 1231 * of the allocation. 1232 */ 1233int zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1234 int classzone_idx, int alloc_flags) 1235{ 1236 /* free_pages my go negative - that's OK */ 1237 long min = mark; 1238 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1; 1239 int o; 1240 1241 if (alloc_flags & ALLOC_HIGH) 1242 min -= min / 2; 1243 if (alloc_flags & ALLOC_HARDER) 1244 min -= min / 4; 1245 1246 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 1247 return 0; 1248 for (o = 0; o < order; o++) { 1249 /* At the next order, this order's pages become unavailable */ 1250 free_pages -= z->free_area[o].nr_free << o; 1251 1252 /* Require fewer higher order pages to be free */ 1253 min >>= 1; 1254 1255 if (free_pages <= min) 1256 return 0; 1257 } 1258 return 1; 1259} 1260 1261#ifdef CONFIG_NUMA 1262/* 1263 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to 1264 * skip over zones that are not allowed by the cpuset, or that have 1265 * been recently (in last second) found to be nearly full. See further 1266 * comments in mmzone.h. Reduces cache footprint of zonelist scans 1267 * that have to skip over a lot of full or unallowed zones. 1268 * 1269 * If the zonelist cache is present in the passed in zonelist, then 1270 * returns a pointer to the allowed node mask (either the current 1271 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].) 1272 * 1273 * If the zonelist cache is not available for this zonelist, does 1274 * nothing and returns NULL. 1275 * 1276 * If the fullzones BITMAP in the zonelist cache is stale (more than 1277 * a second since last zap'd) then we zap it out (clear its bits.) 1278 * 1279 * We hold off even calling zlc_setup, until after we've checked the 1280 * first zone in the zonelist, on the theory that most allocations will 1281 * be satisfied from that first zone, so best to examine that zone as 1282 * quickly as we can. 1283 */ 1284static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1285{ 1286 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1287 nodemask_t *allowednodes; /* zonelist_cache approximation */ 1288 1289 zlc = zonelist->zlcache_ptr; 1290 if (!zlc) 1291 return NULL; 1292 1293 if (time_after(jiffies, zlc->last_full_zap + HZ)) { 1294 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1295 zlc->last_full_zap = jiffies; 1296 } 1297 1298 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? 1299 &cpuset_current_mems_allowed : 1300 &node_states[N_HIGH_MEMORY]; 1301 return allowednodes; 1302} 1303 1304/* 1305 * Given 'z' scanning a zonelist, run a couple of quick checks to see 1306 * if it is worth looking at further for free memory: 1307 * 1) Check that the zone isn't thought to be full (doesn't have its 1308 * bit set in the zonelist_cache fullzones BITMAP). 1309 * 2) Check that the zones node (obtained from the zonelist_cache 1310 * z_to_n[] mapping) is allowed in the passed in allowednodes mask. 1311 * Return true (non-zero) if zone is worth looking at further, or 1312 * else return false (zero) if it is not. 1313 * 1314 * This check -ignores- the distinction between various watermarks, 1315 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is 1316 * found to be full for any variation of these watermarks, it will 1317 * be considered full for up to one second by all requests, unless 1318 * we are so low on memory on all allowed nodes that we are forced 1319 * into the second scan of the zonelist. 1320 * 1321 * In the second scan we ignore this zonelist cache and exactly 1322 * apply the watermarks to all zones, even it is slower to do so. 1323 * We are low on memory in the second scan, and should leave no stone 1324 * unturned looking for a free page. 1325 */ 1326static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1327 nodemask_t *allowednodes) 1328{ 1329 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1330 int i; /* index of *z in zonelist zones */ 1331 int n; /* node that zone *z is on */ 1332 1333 zlc = zonelist->zlcache_ptr; 1334 if (!zlc) 1335 return 1; 1336 1337 i = z - zonelist->_zonerefs; 1338 n = zlc->z_to_n[i]; 1339 1340 /* This zone is worth trying if it is allowed but not full */ 1341 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); 1342} 1343 1344/* 1345 * Given 'z' scanning a zonelist, set the corresponding bit in 1346 * zlc->fullzones, so that subsequent attempts to allocate a page 1347 * from that zone don't waste time re-examining it. 1348 */ 1349static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1350{ 1351 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1352 int i; /* index of *z in zonelist zones */ 1353 1354 zlc = zonelist->zlcache_ptr; 1355 if (!zlc) 1356 return; 1357 1358 i = z - zonelist->_zonerefs; 1359 1360 set_bit(i, zlc->fullzones); 1361} 1362 1363#else /* CONFIG_NUMA */ 1364 1365static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1366{ 1367 return NULL; 1368} 1369 1370static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1371 nodemask_t *allowednodes) 1372{ 1373 return 1; 1374} 1375 1376static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1377{ 1378} 1379#endif /* CONFIG_NUMA */ 1380 1381/* 1382 * get_page_from_freelist goes through the zonelist trying to allocate 1383 * a page. 1384 */ 1385static struct page * 1386get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order, 1387 struct zonelist *zonelist, int high_zoneidx, int alloc_flags) 1388{ 1389 struct zoneref *z; 1390 struct page *page = NULL; 1391 int classzone_idx; 1392 struct zone *zone, *preferred_zone; 1393 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ 1394 int zlc_active = 0; /* set if using zonelist_cache */ 1395 int did_zlc_setup = 0; /* just call zlc_setup() one time */ 1396 1397 (void)first_zones_zonelist(zonelist, high_zoneidx, nodemask, 1398 &preferred_zone); 1399 classzone_idx = zone_idx(preferred_zone); 1400 1401zonelist_scan: 1402 /* 1403 * Scan zonelist, looking for a zone with enough free. 1404 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1405 */ 1406 for_each_zone_zonelist_nodemask(zone, z, zonelist, 1407 high_zoneidx, nodemask) { 1408 if (NUMA_BUILD && zlc_active && 1409 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1410 continue; 1411 if ((alloc_flags & ALLOC_CPUSET) && 1412 !cpuset_zone_allowed_softwall(zone, gfp_mask)) 1413 goto try_next_zone; 1414 1415 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { 1416 unsigned long mark; 1417 if (alloc_flags & ALLOC_WMARK_MIN) 1418 mark = zone->pages_min; 1419 else if (alloc_flags & ALLOC_WMARK_LOW) 1420 mark = zone->pages_low; 1421 else 1422 mark = zone->pages_high; 1423 if (!zone_watermark_ok(zone, order, mark, 1424 classzone_idx, alloc_flags)) { 1425 if (!zone_reclaim_mode || 1426 !zone_reclaim(zone, gfp_mask, order)) 1427 goto this_zone_full; 1428 } 1429 } 1430 1431 page = buffered_rmqueue(preferred_zone, zone, order, gfp_mask); 1432 if (page) 1433 break; 1434this_zone_full: 1435 if (NUMA_BUILD) 1436 zlc_mark_zone_full(zonelist, z); 1437try_next_zone: 1438 if (NUMA_BUILD && !did_zlc_setup) { 1439 /* we do zlc_setup after the first zone is tried */ 1440 allowednodes = zlc_setup(zonelist, alloc_flags); 1441 zlc_active = 1; 1442 did_zlc_setup = 1; 1443 } 1444 } 1445 1446 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) { 1447 /* Disable zlc cache for second zonelist scan */ 1448 zlc_active = 0; 1449 goto zonelist_scan; 1450 } 1451 return page; 1452} 1453 1454/* 1455 * This is the 'heart' of the zoned buddy allocator. 1456 */ 1457static struct page * 1458__alloc_pages_internal(gfp_t gfp_mask, unsigned int order, 1459 struct zonelist *zonelist, nodemask_t *nodemask) 1460{ 1461 const gfp_t wait = gfp_mask & __GFP_WAIT; 1462 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 1463 struct zoneref *z; 1464 struct zone *zone; 1465 struct page *page; 1466 struct reclaim_state reclaim_state; 1467 struct task_struct *p = current; 1468 int do_retry; 1469 int alloc_flags; 1470 unsigned long did_some_progress; 1471 unsigned long pages_reclaimed = 0; 1472 1473 might_sleep_if(wait); 1474 1475 if (should_fail_alloc_page(gfp_mask, order)) 1476 return NULL; 1477 1478restart: 1479 z = zonelist->_zonerefs; /* the list of zones suitable for gfp_mask */ 1480 1481 if (unlikely(!z->zone)) { 1482 /* 1483 * Happens if we have an empty zonelist as a result of 1484 * GFP_THISNODE being used on a memoryless node 1485 */ 1486 return NULL; 1487 } 1488 1489 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order, 1490 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET); 1491 if (page) 1492 goto got_pg; 1493 1494 /* 1495 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and 1496 * __GFP_NOWARN set) should not cause reclaim since the subsystem 1497 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim 1498 * using a larger set of nodes after it has established that the 1499 * allowed per node queues are empty and that nodes are 1500 * over allocated. 1501 */ 1502 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE) 1503 goto nopage; 1504 1505 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) 1506 wakeup_kswapd(zone, order); 1507 1508 /* 1509 * OK, we're below the kswapd watermark and have kicked background 1510 * reclaim. Now things get more complex, so set up alloc_flags according 1511 * to how we want to proceed. 1512 * 1513 * The caller may dip into page reserves a bit more if the caller 1514 * cannot run direct reclaim, or if the caller has realtime scheduling 1515 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 1516 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). 1517 */ 1518 alloc_flags = ALLOC_WMARK_MIN; 1519 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait) 1520 alloc_flags |= ALLOC_HARDER; 1521 if (gfp_mask & __GFP_HIGH) 1522 alloc_flags |= ALLOC_HIGH; 1523 if (wait) 1524 alloc_flags |= ALLOC_CPUSET; 1525 1526 /* 1527 * Go through the zonelist again. Let __GFP_HIGH and allocations 1528 * coming from realtime tasks go deeper into reserves. 1529 * 1530 * This is the last chance, in general, before the goto nopage. 1531 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 1532 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1533 */ 1534 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist, 1535 high_zoneidx, alloc_flags); 1536 if (page) 1537 goto got_pg; 1538 1539 /* This allocation should allow future memory freeing. */ 1540 1541rebalance: 1542 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE))) 1543 && !in_interrupt()) { 1544 if (!(gfp_mask & __GFP_NOMEMALLOC)) { 1545nofail_alloc: 1546 /* go through the zonelist yet again, ignoring mins */ 1547 page = get_page_from_freelist(gfp_mask, nodemask, order, 1548 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS); 1549 if (page) 1550 goto got_pg; 1551 if (gfp_mask & __GFP_NOFAIL) { 1552 congestion_wait(WRITE, HZ/50); 1553 goto nofail_alloc; 1554 } 1555 } 1556 goto nopage; 1557 } 1558 1559 /* Atomic allocations - we can't balance anything */ 1560 if (!wait) 1561 goto nopage; 1562 1563 cond_resched(); 1564 1565 /* We now go into synchronous reclaim */ 1566 cpuset_memory_pressure_bump(); 1567 p->flags |= PF_MEMALLOC; 1568 reclaim_state.reclaimed_slab = 0; 1569 p->reclaim_state = &reclaim_state; 1570 1571 did_some_progress = try_to_free_pages(zonelist, order, gfp_mask); 1572 1573 p->reclaim_state = NULL; 1574 p->flags &= ~PF_MEMALLOC; 1575 1576 cond_resched(); 1577 1578 if (order != 0) 1579 drain_all_pages(); 1580 1581 if (likely(did_some_progress)) { 1582 page = get_page_from_freelist(gfp_mask, nodemask, order, 1583 zonelist, high_zoneidx, alloc_flags); 1584 if (page) 1585 goto got_pg; 1586 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { 1587 if (!try_set_zone_oom(zonelist, gfp_mask)) { 1588 schedule_timeout_uninterruptible(1); 1589 goto restart; 1590 } 1591 1592 /* 1593 * Go through the zonelist yet one more time, keep 1594 * very high watermark here, this is only to catch 1595 * a parallel oom killing, we must fail if we're still 1596 * under heavy pressure. 1597 */ 1598 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, 1599 order, zonelist, high_zoneidx, 1600 ALLOC_WMARK_HIGH|ALLOC_CPUSET); 1601 if (page) { 1602 clear_zonelist_oom(zonelist, gfp_mask); 1603 goto got_pg; 1604 } 1605 1606 /* The OOM killer will not help higher order allocs so fail */ 1607 if (order > PAGE_ALLOC_COSTLY_ORDER) { 1608 clear_zonelist_oom(zonelist, gfp_mask); 1609 goto nopage; 1610 } 1611 1612 out_of_memory(zonelist, gfp_mask, order); 1613 clear_zonelist_oom(zonelist, gfp_mask); 1614 goto restart; 1615 } 1616 1617 /* 1618 * Don't let big-order allocations loop unless the caller explicitly 1619 * requests that. Wait for some write requests to complete then retry. 1620 * 1621 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER 1622 * means __GFP_NOFAIL, but that may not be true in other 1623 * implementations. 1624 * 1625 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is 1626 * specified, then we retry until we no longer reclaim any pages 1627 * (above), or we've reclaimed an order of pages at least as 1628 * large as the allocation's order. In both cases, if the 1629 * allocation still fails, we stop retrying. 1630 */ 1631 pages_reclaimed += did_some_progress; 1632 do_retry = 0; 1633 if (!(gfp_mask & __GFP_NORETRY)) { 1634 if (order <= PAGE_ALLOC_COSTLY_ORDER) { 1635 do_retry = 1; 1636 } else { 1637 if (gfp_mask & __GFP_REPEAT && 1638 pages_reclaimed < (1 << order)) 1639 do_retry = 1; 1640 } 1641 if (gfp_mask & __GFP_NOFAIL) 1642 do_retry = 1; 1643 } 1644 if (do_retry) { 1645 congestion_wait(WRITE, HZ/50); 1646 goto rebalance; 1647 } 1648 1649nopage: 1650 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) { 1651 printk(KERN_WARNING "%s: page allocation failure." 1652 " order:%d, mode:0x%x\n", 1653 p->comm, order, gfp_mask); 1654 dump_stack(); 1655 show_mem(); 1656 } 1657got_pg: 1658 return page; 1659} 1660 1661struct page * 1662__alloc_pages(gfp_t gfp_mask, unsigned int order, 1663 struct zonelist *zonelist) 1664{ 1665 return __alloc_pages_internal(gfp_mask, order, zonelist, NULL); 1666} 1667 1668struct page * 1669__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, 1670 struct zonelist *zonelist, nodemask_t *nodemask) 1671{ 1672 return __alloc_pages_internal(gfp_mask, order, zonelist, nodemask); 1673} 1674 1675EXPORT_SYMBOL(__alloc_pages); 1676 1677/* 1678 * Common helper functions. 1679 */ 1680unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 1681{ 1682 struct page * page; 1683 page = alloc_pages(gfp_mask, order); 1684 if (!page) 1685 return 0; 1686 return (unsigned long) page_address(page); 1687} 1688 1689EXPORT_SYMBOL(__get_free_pages); 1690 1691unsigned long get_zeroed_page(gfp_t gfp_mask) 1692{ 1693 struct page * page; 1694 1695 /* 1696 * get_zeroed_page() returns a 32-bit address, which cannot represent 1697 * a highmem page 1698 */ 1699 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 1700 1701 page = alloc_pages(gfp_mask | __GFP_ZERO, 0); 1702 if (page) 1703 return (unsigned long) page_address(page); 1704 return 0; 1705} 1706 1707EXPORT_SYMBOL(get_zeroed_page); 1708 1709void __pagevec_free(struct pagevec *pvec) 1710{ 1711 int i = pagevec_count(pvec); 1712 1713 while (--i >= 0) 1714 free_hot_cold_page(pvec->pages[i], pvec->cold); 1715} 1716 1717void __free_pages(struct page *page, unsigned int order) 1718{ 1719 if (put_page_testzero(page)) { 1720 if (order == 0) 1721 free_hot_page(page); 1722 else 1723 __free_pages_ok(page, order); 1724 } 1725} 1726 1727EXPORT_SYMBOL(__free_pages); 1728 1729void free_pages(unsigned long addr, unsigned int order) 1730{ 1731 if (addr != 0) { 1732 VM_BUG_ON(!virt_addr_valid((void *)addr)); 1733 __free_pages(virt_to_page((void *)addr), order); 1734 } 1735} 1736 1737EXPORT_SYMBOL(free_pages); 1738 1739static unsigned int nr_free_zone_pages(int offset) 1740{ 1741 struct zoneref *z; 1742 struct zone *zone; 1743 1744 /* Just pick one node, since fallback list is circular */ 1745 unsigned int sum = 0; 1746 1747 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 1748 1749 for_each_zone_zonelist(zone, z, zonelist, offset) { 1750 unsigned long size = zone->present_pages; 1751 unsigned long high = zone->pages_high; 1752 if (size > high) 1753 sum += size - high; 1754 } 1755 1756 return sum; 1757} 1758 1759/* 1760 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL 1761 */ 1762unsigned int nr_free_buffer_pages(void) 1763{ 1764 return nr_free_zone_pages(gfp_zone(GFP_USER)); 1765} 1766EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 1767 1768/* 1769 * Amount of free RAM allocatable within all zones 1770 */ 1771unsigned int nr_free_pagecache_pages(void) 1772{ 1773 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 1774} 1775 1776static inline void show_node(struct zone *zone) 1777{ 1778 if (NUMA_BUILD) 1779 printk("Node %d ", zone_to_nid(zone)); 1780} 1781 1782void si_meminfo(struct sysinfo *val) 1783{ 1784 val->totalram = totalram_pages; 1785 val->sharedram = 0; 1786 val->freeram = global_page_state(NR_FREE_PAGES); 1787 val->bufferram = nr_blockdev_pages(); 1788 val->totalhigh = totalhigh_pages; 1789 val->freehigh = nr_free_highpages(); 1790 val->mem_unit = PAGE_SIZE; 1791} 1792 1793EXPORT_SYMBOL(si_meminfo); 1794 1795#ifdef CONFIG_NUMA 1796void si_meminfo_node(struct sysinfo *val, int nid) 1797{ 1798 pg_data_t *pgdat = NODE_DATA(nid); 1799 1800 val->totalram = pgdat->node_present_pages; 1801 val->freeram = node_page_state(nid, NR_FREE_PAGES); 1802#ifdef CONFIG_HIGHMEM 1803 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; 1804 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], 1805 NR_FREE_PAGES); 1806#else 1807 val->totalhigh = 0; 1808 val->freehigh = 0; 1809#endif 1810 val->mem_unit = PAGE_SIZE; 1811} 1812#endif 1813 1814#define K(x) ((x) << (PAGE_SHIFT-10)) 1815 1816/* 1817 * Show free area list (used inside shift_scroll-lock stuff) 1818 * We also calculate the percentage fragmentation. We do this by counting the 1819 * memory on each free list with the exception of the first item on the list. 1820 */ 1821void show_free_areas(void) 1822{ 1823 int cpu; 1824 struct zone *zone; 1825 1826 for_each_zone(zone) { 1827 if (!populated_zone(zone)) 1828 continue; 1829 1830 show_node(zone); 1831 printk("%s per-cpu:\n", zone->name); 1832 1833 for_each_online_cpu(cpu) { 1834 struct per_cpu_pageset *pageset; 1835 1836 pageset = zone_pcp(zone, cpu); 1837 1838 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n", 1839 cpu, pageset->pcp.high, 1840 pageset->pcp.batch, pageset->pcp.count); 1841 } 1842 } 1843 1844 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n" 1845 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n", 1846 global_page_state(NR_ACTIVE), 1847 global_page_state(NR_INACTIVE), 1848 global_page_state(NR_FILE_DIRTY), 1849 global_page_state(NR_WRITEBACK), 1850 global_page_state(NR_UNSTABLE_NFS), 1851 global_page_state(NR_FREE_PAGES), 1852 global_page_state(NR_SLAB_RECLAIMABLE) + 1853 global_page_state(NR_SLAB_UNRECLAIMABLE), 1854 global_page_state(NR_FILE_MAPPED), 1855 global_page_state(NR_PAGETABLE), 1856 global_page_state(NR_BOUNCE)); 1857 1858 for_each_zone(zone) { 1859 int i; 1860 1861 if (!populated_zone(zone)) 1862 continue; 1863 1864 show_node(zone); 1865 printk("%s" 1866 " free:%lukB" 1867 " min:%lukB" 1868 " low:%lukB" 1869 " high:%lukB" 1870 " active:%lukB" 1871 " inactive:%lukB" 1872 " present:%lukB" 1873 " pages_scanned:%lu" 1874 " all_unreclaimable? %s" 1875 "\n", 1876 zone->name, 1877 K(zone_page_state(zone, NR_FREE_PAGES)), 1878 K(zone->pages_min), 1879 K(zone->pages_low), 1880 K(zone->pages_high), 1881 K(zone_page_state(zone, NR_ACTIVE)), 1882 K(zone_page_state(zone, NR_INACTIVE)), 1883 K(zone->present_pages), 1884 zone->pages_scanned, 1885 (zone_is_all_unreclaimable(zone) ? "yes" : "no") 1886 ); 1887 printk("lowmem_reserve[]:"); 1888 for (i = 0; i < MAX_NR_ZONES; i++) 1889 printk(" %lu", zone->lowmem_reserve[i]); 1890 printk("\n"); 1891 } 1892 1893 for_each_zone(zone) { 1894 unsigned long nr[MAX_ORDER], flags, order, total = 0; 1895 1896 if (!populated_zone(zone)) 1897 continue; 1898 1899 show_node(zone); 1900 printk("%s: ", zone->name); 1901 1902 spin_lock_irqsave(&zone->lock, flags); 1903 for (order = 0; order < MAX_ORDER; order++) { 1904 nr[order] = zone->free_area[order].nr_free; 1905 total += nr[order] << order; 1906 } 1907 spin_unlock_irqrestore(&zone->lock, flags); 1908 for (order = 0; order < MAX_ORDER; order++) 1909 printk("%lu*%lukB ", nr[order], K(1UL) << order); 1910 printk("= %lukB\n", K(total)); 1911 } 1912 1913 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); 1914 1915 show_swap_cache_info(); 1916} 1917 1918static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 1919{ 1920 zoneref->zone = zone; 1921 zoneref->zone_idx = zone_idx(zone); 1922} 1923 1924/* 1925 * Builds allocation fallback zone lists. 1926 * 1927 * Add all populated zones of a node to the zonelist. 1928 */ 1929static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 1930 int nr_zones, enum zone_type zone_type) 1931{ 1932 struct zone *zone; 1933 1934 BUG_ON(zone_type >= MAX_NR_ZONES); 1935 zone_type++; 1936 1937 do { 1938 zone_type--; 1939 zone = pgdat->node_zones + zone_type; 1940 if (populated_zone(zone)) { 1941 zoneref_set_zone(zone, 1942 &zonelist->_zonerefs[nr_zones++]); 1943 check_highest_zone(zone_type); 1944 } 1945 1946 } while (zone_type); 1947 return nr_zones; 1948} 1949 1950 1951/* 1952 * zonelist_order: 1953 * 0 = automatic detection of better ordering. 1954 * 1 = order by ([node] distance, -zonetype) 1955 * 2 = order by (-zonetype, [node] distance) 1956 * 1957 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 1958 * the same zonelist. So only NUMA can configure this param. 1959 */ 1960#define ZONELIST_ORDER_DEFAULT 0 1961#define ZONELIST_ORDER_NODE 1 1962#define ZONELIST_ORDER_ZONE 2 1963 1964/* zonelist order in the kernel. 1965 * set_zonelist_order() will set this to NODE or ZONE. 1966 */ 1967static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 1968static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 1969 1970 1971#ifdef CONFIG_NUMA 1972/* The value user specified ....changed by config */ 1973static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 1974/* string for sysctl */ 1975#define NUMA_ZONELIST_ORDER_LEN 16 1976char numa_zonelist_order[16] = "default"; 1977 1978/* 1979 * interface for configure zonelist ordering. 1980 * command line option "numa_zonelist_order" 1981 * = "[dD]efault - default, automatic configuration. 1982 * = "[nN]ode - order by node locality, then by zone within node 1983 * = "[zZ]one - order by zone, then by locality within zone 1984 */ 1985 1986static int __parse_numa_zonelist_order(char *s) 1987{ 1988 if (*s == 'd' || *s == 'D') { 1989 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 1990 } else if (*s == 'n' || *s == 'N') { 1991 user_zonelist_order = ZONELIST_ORDER_NODE; 1992 } else if (*s == 'z' || *s == 'Z') { 1993 user_zonelist_order = ZONELIST_ORDER_ZONE; 1994 } else { 1995 printk(KERN_WARNING 1996 "Ignoring invalid numa_zonelist_order value: " 1997 "%s\n", s); 1998 return -EINVAL; 1999 } 2000 return 0; 2001} 2002 2003static __init int setup_numa_zonelist_order(char *s) 2004{ 2005 if (s) 2006 return __parse_numa_zonelist_order(s); 2007 return 0; 2008} 2009early_param("numa_zonelist_order", setup_numa_zonelist_order); 2010 2011/* 2012 * sysctl handler for numa_zonelist_order 2013 */ 2014int numa_zonelist_order_handler(ctl_table *table, int write, 2015 struct file *file, void __user *buffer, size_t *length, 2016 loff_t *ppos) 2017{ 2018 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 2019 int ret; 2020 2021 if (write) 2022 strncpy(saved_string, (char*)table->data, 2023 NUMA_ZONELIST_ORDER_LEN); 2024 ret = proc_dostring(table, write, file, buffer, length, ppos); 2025 if (ret) 2026 return ret; 2027 if (write) { 2028 int oldval = user_zonelist_order; 2029 if (__parse_numa_zonelist_order((char*)table->data)) { 2030 /* 2031 * bogus value. restore saved string 2032 */ 2033 strncpy((char*)table->data, saved_string, 2034 NUMA_ZONELIST_ORDER_LEN); 2035 user_zonelist_order = oldval; 2036 } else if (oldval != user_zonelist_order) 2037 build_all_zonelists(); 2038 } 2039 return 0; 2040} 2041 2042 2043#define MAX_NODE_LOAD (num_online_nodes()) 2044static int node_load[MAX_NUMNODES]; 2045 2046/** 2047 * find_next_best_node - find the next node that should appear in a given node's fallback list 2048 * @node: node whose fallback list we're appending 2049 * @used_node_mask: nodemask_t of already used nodes 2050 * 2051 * We use a number of factors to determine which is the next node that should 2052 * appear on a given node's fallback list. The node should not have appeared 2053 * already in @node's fallback list, and it should be the next closest node 2054 * according to the distance array (which contains arbitrary distance values 2055 * from each node to each node in the system), and should also prefer nodes 2056 * with no CPUs, since presumably they'll have very little allocation pressure 2057 * on them otherwise. 2058 * It returns -1 if no node is found. 2059 */ 2060static int find_next_best_node(int node, nodemask_t *used_node_mask) 2061{ 2062 int n, val; 2063 int min_val = INT_MAX; 2064 int best_node = -1; 2065 node_to_cpumask_ptr(tmp, 0); 2066 2067 /* Use the local node if we haven't already */ 2068 if (!node_isset(node, *used_node_mask)) { 2069 node_set(node, *used_node_mask); 2070 return node; 2071 } 2072 2073 for_each_node_state(n, N_HIGH_MEMORY) { 2074 2075 /* Don't want a node to appear more than once */ 2076 if (node_isset(n, *used_node_mask)) 2077 continue; 2078 2079 /* Use the distance array to find the distance */ 2080 val = node_distance(node, n); 2081 2082 /* Penalize nodes under us ("prefer the next node") */ 2083 val += (n < node); 2084 2085 /* Give preference to headless and unused nodes */ 2086 node_to_cpumask_ptr_next(tmp, n); 2087 if (!cpus_empty(*tmp)) 2088 val += PENALTY_FOR_NODE_WITH_CPUS; 2089 2090 /* Slight preference for less loaded node */ 2091 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 2092 val += node_load[n]; 2093 2094 if (val < min_val) { 2095 min_val = val; 2096 best_node = n; 2097 } 2098 } 2099 2100 if (best_node >= 0) 2101 node_set(best_node, *used_node_mask); 2102 2103 return best_node; 2104} 2105 2106 2107/* 2108 * Build zonelists ordered by node and zones within node. 2109 * This results in maximum locality--normal zone overflows into local 2110 * DMA zone, if any--but risks exhausting DMA zone. 2111 */ 2112static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 2113{ 2114 int j; 2115 struct zonelist *zonelist; 2116 2117 zonelist = &pgdat->node_zonelists[0]; 2118 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 2119 ; 2120 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2121 MAX_NR_ZONES - 1); 2122 zonelist->_zonerefs[j].zone = NULL; 2123 zonelist->_zonerefs[j].zone_idx = 0; 2124} 2125 2126/* 2127 * Build gfp_thisnode zonelists 2128 */ 2129static void build_thisnode_zonelists(pg_data_t *pgdat) 2130{ 2131 int j; 2132 struct zonelist *zonelist; 2133 2134 zonelist = &pgdat->node_zonelists[1]; 2135 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 2136 zonelist->_zonerefs[j].zone = NULL; 2137 zonelist->_zonerefs[j].zone_idx = 0; 2138} 2139 2140/* 2141 * Build zonelists ordered by zone and nodes within zones. 2142 * This results in conserving DMA zone[s] until all Normal memory is 2143 * exhausted, but results in overflowing to remote node while memory 2144 * may still exist in local DMA zone. 2145 */ 2146static int node_order[MAX_NUMNODES]; 2147 2148static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 2149{ 2150 int pos, j, node; 2151 int zone_type; /* needs to be signed */ 2152 struct zone *z; 2153 struct zonelist *zonelist; 2154 2155 zonelist = &pgdat->node_zonelists[0]; 2156 pos = 0; 2157 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 2158 for (j = 0; j < nr_nodes; j++) { 2159 node = node_order[j]; 2160 z = &NODE_DATA(node)->node_zones[zone_type]; 2161 if (populated_zone(z)) { 2162 zoneref_set_zone(z, 2163 &zonelist->_zonerefs[pos++]); 2164 check_highest_zone(zone_type); 2165 } 2166 } 2167 } 2168 zonelist->_zonerefs[pos].zone = NULL; 2169 zonelist->_zonerefs[pos].zone_idx = 0; 2170} 2171 2172static int default_zonelist_order(void) 2173{ 2174 int nid, zone_type; 2175 unsigned long low_kmem_size,total_size; 2176 struct zone *z; 2177 int average_size; 2178 /* 2179 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem. 2180 * If they are really small and used heavily, the system can fall 2181 * into OOM very easily. 2182 * This function detect ZONE_DMA/DMA32 size and confgigures zone order. 2183 */ 2184 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */ 2185 low_kmem_size = 0; 2186 total_size = 0; 2187 for_each_online_node(nid) { 2188 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 2189 z = &NODE_DATA(nid)->node_zones[zone_type]; 2190 if (populated_zone(z)) { 2191 if (zone_type < ZONE_NORMAL) 2192 low_kmem_size += z->present_pages; 2193 total_size += z->present_pages; 2194 } 2195 } 2196 } 2197 if (!low_kmem_size || /* there are no DMA area. */ 2198 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */ 2199 return ZONELIST_ORDER_NODE; 2200 /* 2201 * look into each node's config. 2202 * If there is a node whose DMA/DMA32 memory is very big area on 2203 * local memory, NODE_ORDER may be suitable. 2204 */ 2205 average_size = total_size / 2206 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1); 2207 for_each_online_node(nid) { 2208 low_kmem_size = 0; 2209 total_size = 0; 2210 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 2211 z = &NODE_DATA(nid)->node_zones[zone_type]; 2212 if (populated_zone(z)) { 2213 if (zone_type < ZONE_NORMAL) 2214 low_kmem_size += z->present_pages; 2215 total_size += z->present_pages; 2216 } 2217 } 2218 if (low_kmem_size && 2219 total_size > average_size && /* ignore small node */ 2220 low_kmem_size > total_size * 70/100) 2221 return ZONELIST_ORDER_NODE; 2222 } 2223 return ZONELIST_ORDER_ZONE; 2224} 2225 2226static void set_zonelist_order(void) 2227{ 2228 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 2229 current_zonelist_order = default_zonelist_order(); 2230 else 2231 current_zonelist_order = user_zonelist_order; 2232} 2233 2234static void build_zonelists(pg_data_t *pgdat) 2235{ 2236 int j, node, load; 2237 enum zone_type i; 2238 nodemask_t used_mask; 2239 int local_node, prev_node; 2240 struct zonelist *zonelist; 2241 int order = current_zonelist_order; 2242 2243 /* initialize zonelists */ 2244 for (i = 0; i < MAX_ZONELISTS; i++) { 2245 zonelist = pgdat->node_zonelists + i; 2246 zonelist->_zonerefs[0].zone = NULL; 2247 zonelist->_zonerefs[0].zone_idx = 0; 2248 } 2249 2250 /* NUMA-aware ordering of nodes */ 2251 local_node = pgdat->node_id; 2252 load = num_online_nodes(); 2253 prev_node = local_node; 2254 nodes_clear(used_mask); 2255 2256 memset(node_load, 0, sizeof(node_load)); 2257 memset(node_order, 0, sizeof(node_order)); 2258 j = 0; 2259 2260 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 2261 int distance = node_distance(local_node, node); 2262 2263 /* 2264 * If another node is sufficiently far away then it is better 2265 * to reclaim pages in a zone before going off node. 2266 */ 2267 if (distance > RECLAIM_DISTANCE) 2268 zone_reclaim_mode = 1; 2269 2270 /* 2271 * We don't want to pressure a particular node. 2272 * So adding penalty to the first node in same 2273 * distance group to make it round-robin. 2274 */ 2275 if (distance != node_distance(local_node, prev_node)) 2276 node_load[node] = load; 2277 2278 prev_node = node; 2279 load--; 2280 if (order == ZONELIST_ORDER_NODE) 2281 build_zonelists_in_node_order(pgdat, node); 2282 else 2283 node_order[j++] = node; /* remember order */ 2284 } 2285 2286 if (order == ZONELIST_ORDER_ZONE) { 2287 /* calculate node order -- i.e., DMA last! */ 2288 build_zonelists_in_zone_order(pgdat, j); 2289 } 2290 2291 build_thisnode_zonelists(pgdat); 2292} 2293 2294/* Construct the zonelist performance cache - see further mmzone.h */ 2295static void build_zonelist_cache(pg_data_t *pgdat) 2296{ 2297 struct zonelist *zonelist; 2298 struct zonelist_cache *zlc; 2299 struct zoneref *z; 2300 2301 zonelist = &pgdat->node_zonelists[0]; 2302 zonelist->zlcache_ptr = zlc = &zonelist->zlcache; 2303 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 2304 for (z = zonelist->_zonerefs; z->zone; z++) 2305 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); 2306} 2307 2308 2309#else /* CONFIG_NUMA */ 2310 2311static void set_zonelist_order(void) 2312{ 2313 current_zonelist_order = ZONELIST_ORDER_ZONE; 2314} 2315 2316static void build_zonelists(pg_data_t *pgdat) 2317{ 2318 int node, local_node; 2319 enum zone_type j; 2320 struct zonelist *zonelist; 2321 2322 local_node = pgdat->node_id; 2323 2324 zonelist = &pgdat->node_zonelists[0]; 2325 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 2326 2327 /* 2328 * Now we build the zonelist so that it contains the zones 2329 * of all the other nodes. 2330 * We don't want to pressure a particular node, so when 2331 * building the zones for node N, we make sure that the 2332 * zones coming right after the local ones are those from 2333 * node N+1 (modulo N) 2334 */ 2335 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 2336 if (!node_online(node)) 2337 continue; 2338 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2339 MAX_NR_ZONES - 1); 2340 } 2341 for (node = 0; node < local_node; node++) { 2342 if (!node_online(node)) 2343 continue; 2344 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2345 MAX_NR_ZONES - 1); 2346 } 2347 2348 zonelist->_zonerefs[j].zone = NULL; 2349 zonelist->_zonerefs[j].zone_idx = 0; 2350} 2351 2352/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ 2353static void build_zonelist_cache(pg_data_t *pgdat) 2354{ 2355 pgdat->node_zonelists[0].zlcache_ptr = NULL; 2356 pgdat->node_zonelists[1].zlcache_ptr = NULL; 2357} 2358 2359#endif /* CONFIG_NUMA */ 2360 2361/* return values int ....just for stop_machine_run() */ 2362static int __build_all_zonelists(void *dummy) 2363{ 2364 int nid; 2365 2366 for_each_online_node(nid) { 2367 pg_data_t *pgdat = NODE_DATA(nid); 2368 2369 build_zonelists(pgdat); 2370 build_zonelist_cache(pgdat); 2371 } 2372 return 0; 2373} 2374 2375void build_all_zonelists(void) 2376{ 2377 set_zonelist_order(); 2378 2379 if (system_state == SYSTEM_BOOTING) { 2380 __build_all_zonelists(NULL); 2381 cpuset_init_current_mems_allowed(); 2382 } else { 2383 /* we have to stop all cpus to guarantee there is no user 2384 of zonelist */ 2385 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS); 2386 /* cpuset refresh routine should be here */ 2387 } 2388 vm_total_pages = nr_free_pagecache_pages(); 2389 /* 2390 * Disable grouping by mobility if the number of pages in the 2391 * system is too low to allow the mechanism to work. It would be 2392 * more accurate, but expensive to check per-zone. This check is 2393 * made on memory-hotadd so a system can start with mobility 2394 * disabled and enable it later 2395 */ 2396 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 2397 page_group_by_mobility_disabled = 1; 2398 else 2399 page_group_by_mobility_disabled = 0; 2400 2401 printk("Built %i zonelists in %s order, mobility grouping %s. " 2402 "Total pages: %ld\n", 2403 num_online_nodes(), 2404 zonelist_order_name[current_zonelist_order], 2405 page_group_by_mobility_disabled ? "off" : "on", 2406 vm_total_pages); 2407#ifdef CONFIG_NUMA 2408 printk("Policy zone: %s\n", zone_names[policy_zone]); 2409#endif 2410} 2411 2412/* 2413 * Helper functions to size the waitqueue hash table. 2414 * Essentially these want to choose hash table sizes sufficiently 2415 * large so that collisions trying to wait on pages are rare. 2416 * But in fact, the number of active page waitqueues on typical 2417 * systems is ridiculously low, less than 200. So this is even 2418 * conservative, even though it seems large. 2419 * 2420 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 2421 * waitqueues, i.e. the size of the waitq table given the number of pages. 2422 */ 2423#define PAGES_PER_WAITQUEUE 256 2424 2425#ifndef CONFIG_MEMORY_HOTPLUG 2426static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 2427{ 2428 unsigned long size = 1; 2429 2430 pages /= PAGES_PER_WAITQUEUE; 2431 2432 while (size < pages) 2433 size <<= 1; 2434 2435 /* 2436 * Once we have dozens or even hundreds of threads sleeping 2437 * on IO we've got bigger problems than wait queue collision. 2438 * Limit the size of the wait table to a reasonable size. 2439 */ 2440 size = min(size, 4096UL); 2441 2442 return max(size, 4UL); 2443} 2444#else 2445/* 2446 * A zone's size might be changed by hot-add, so it is not possible to determine 2447 * a suitable size for its wait_table. So we use the maximum size now. 2448 * 2449 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 2450 * 2451 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 2452 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 2453 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 2454 * 2455 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 2456 * or more by the traditional way. (See above). It equals: 2457 * 2458 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 2459 * ia64(16K page size) : = ( 8G + 4M)byte. 2460 * powerpc (64K page size) : = (32G +16M)byte. 2461 */ 2462static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 2463{ 2464 return 4096UL; 2465} 2466#endif 2467 2468/* 2469 * This is an integer logarithm so that shifts can be used later 2470 * to extract the more random high bits from the multiplicative 2471 * hash function before the remainder is taken. 2472 */ 2473static inline unsigned long wait_table_bits(unsigned long size) 2474{ 2475 return ffz(~size); 2476} 2477 2478#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) 2479 2480/* 2481 * Mark a number of pageblocks as MIGRATE_RESERVE. The number 2482 * of blocks reserved is based on zone->pages_min. The memory within the 2483 * reserve will tend to store contiguous free pages. Setting min_free_kbytes 2484 * higher will lead to a bigger reserve which will get freed as contiguous 2485 * blocks as reclaim kicks in 2486 */ 2487static void setup_zone_migrate_reserve(struct zone *zone) 2488{ 2489 unsigned long start_pfn, pfn, end_pfn; 2490 struct page *page; 2491 unsigned long reserve, block_migratetype; 2492 2493 /* Get the start pfn, end pfn and the number of blocks to reserve */ 2494 start_pfn = zone->zone_start_pfn; 2495 end_pfn = start_pfn + zone->spanned_pages; 2496 reserve = roundup(zone->pages_min, pageblock_nr_pages) >> 2497 pageblock_order; 2498 2499 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 2500 if (!pfn_valid(pfn)) 2501 continue; 2502 page = pfn_to_page(pfn); 2503 2504 /* Blocks with reserved pages will never free, skip them. */ 2505 if (PageReserved(page)) 2506 continue; 2507 2508 block_migratetype = get_pageblock_migratetype(page); 2509 2510 /* If this block is reserved, account for it */ 2511 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) { 2512 reserve--; 2513 continue; 2514 } 2515 2516 /* Suitable for reserving if this block is movable */ 2517 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) { 2518 set_pageblock_migratetype(page, MIGRATE_RESERVE); 2519 move_freepages_block(zone, page, MIGRATE_RESERVE); 2520 reserve--; 2521 continue; 2522 } 2523 2524 /* 2525 * If the reserve is met and this is a previous reserved block, 2526 * take it back 2527 */ 2528 if (block_migratetype == MIGRATE_RESERVE) { 2529 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 2530 move_freepages_block(zone, page, MIGRATE_MOVABLE); 2531 } 2532 } 2533} 2534 2535/* 2536 * Initially all pages are reserved - free ones are freed 2537 * up by free_all_bootmem() once the early boot process is 2538 * done. Non-atomic initialization, single-pass. 2539 */ 2540void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 2541 unsigned long start_pfn, enum memmap_context context) 2542{ 2543 struct page *page; 2544 unsigned long end_pfn = start_pfn + size; 2545 unsigned long pfn; 2546 struct zone *z; 2547 2548 z = &NODE_DATA(nid)->node_zones[zone]; 2549 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 2550 /* 2551 * There can be holes in boot-time mem_map[]s 2552 * handed to this function. They do not 2553 * exist on hotplugged memory. 2554 */ 2555 if (context == MEMMAP_EARLY) { 2556 if (!early_pfn_valid(pfn)) 2557 continue; 2558 if (!early_pfn_in_nid(pfn, nid)) 2559 continue; 2560 } 2561 page = pfn_to_page(pfn); 2562 set_page_links(page, zone, nid, pfn); 2563 init_page_count(page); 2564 reset_page_mapcount(page); 2565 SetPageReserved(page); 2566 /* 2567 * Mark the block movable so that blocks are reserved for 2568 * movable at startup. This will force kernel allocations 2569 * to reserve their blocks rather than leaking throughout 2570 * the address space during boot when many long-lived 2571 * kernel allocations are made. Later some blocks near 2572 * the start are marked MIGRATE_RESERVE by 2573 * setup_zone_migrate_reserve() 2574 * 2575 * bitmap is created for zone's valid pfn range. but memmap 2576 * can be created for invalid pages (for alignment) 2577 * check here not to call set_pageblock_migratetype() against 2578 * pfn out of zone. 2579 */ 2580 if ((z->zone_start_pfn <= pfn) 2581 && (pfn < z->zone_start_pfn + z->spanned_pages) 2582 && !(pfn & (pageblock_nr_pages - 1))) 2583 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 2584 2585 INIT_LIST_HEAD(&page->lru); 2586#ifdef WANT_PAGE_VIRTUAL 2587 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 2588 if (!is_highmem_idx(zone)) 2589 set_page_address(page, __va(pfn << PAGE_SHIFT)); 2590#endif 2591 } 2592} 2593 2594static void __meminit zone_init_free_lists(struct zone *zone) 2595{ 2596 int order, t; 2597 for_each_migratetype_order(order, t) { 2598 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 2599 zone->free_area[order].nr_free = 0; 2600 } 2601} 2602 2603#ifndef __HAVE_ARCH_MEMMAP_INIT 2604#define memmap_init(size, nid, zone, start_pfn) \ 2605 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 2606#endif 2607 2608static int zone_batchsize(struct zone *zone) 2609{ 2610 int batch; 2611 2612 /* 2613 * The per-cpu-pages pools are set to around 1000th of the 2614 * size of the zone. But no more than 1/2 of a meg. 2615 * 2616 * OK, so we don't know how big the cache is. So guess. 2617 */ 2618 batch = zone->present_pages / 1024; 2619 if (batch * PAGE_SIZE > 512 * 1024) 2620 batch = (512 * 1024) / PAGE_SIZE; 2621 batch /= 4; /* We effectively *= 4 below */ 2622 if (batch < 1) 2623 batch = 1; 2624 2625 /* 2626 * Clamp the batch to a 2^n - 1 value. Having a power 2627 * of 2 value was found to be more likely to have 2628 * suboptimal cache aliasing properties in some cases. 2629 * 2630 * For example if 2 tasks are alternately allocating 2631 * batches of pages, one task can end up with a lot 2632 * of pages of one half of the possible page colors 2633 * and the other with pages of the other colors. 2634 */ 2635 batch = (1 << (fls(batch + batch/2)-1)) - 1; 2636 2637 return batch; 2638} 2639 2640inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 2641{ 2642 struct per_cpu_pages *pcp; 2643 2644 memset(p, 0, sizeof(*p)); 2645 2646 pcp = &p->pcp; 2647 pcp->count = 0; 2648 pcp->high = 6 * batch; 2649 pcp->batch = max(1UL, 1 * batch); 2650 INIT_LIST_HEAD(&pcp->list); 2651} 2652 2653/* 2654 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist 2655 * to the value high for the pageset p. 2656 */ 2657 2658static void setup_pagelist_highmark(struct per_cpu_pageset *p, 2659 unsigned long high) 2660{ 2661 struct per_cpu_pages *pcp; 2662 2663 pcp = &p->pcp; 2664 pcp->high = high; 2665 pcp->batch = max(1UL, high/4); 2666 if ((high/4) > (PAGE_SHIFT * 8)) 2667 pcp->batch = PAGE_SHIFT * 8; 2668} 2669 2670 2671#ifdef CONFIG_NUMA 2672/* 2673 * Boot pageset table. One per cpu which is going to be used for all 2674 * zones and all nodes. The parameters will be set in such a way 2675 * that an item put on a list will immediately be handed over to 2676 * the buddy list. This is safe since pageset manipulation is done 2677 * with interrupts disabled. 2678 * 2679 * Some NUMA counter updates may also be caught by the boot pagesets. 2680 * 2681 * The boot_pagesets must be kept even after bootup is complete for 2682 * unused processors and/or zones. They do play a role for bootstrapping 2683 * hotplugged processors. 2684 * 2685 * zoneinfo_show() and maybe other functions do 2686 * not check if the processor is online before following the pageset pointer. 2687 * Other parts of the kernel may not check if the zone is available. 2688 */ 2689static struct per_cpu_pageset boot_pageset[NR_CPUS]; 2690 2691/* 2692 * Dynamically allocate memory for the 2693 * per cpu pageset array in struct zone. 2694 */ 2695static int __cpuinit process_zones(int cpu) 2696{ 2697 struct zone *zone, *dzone; 2698 int node = cpu_to_node(cpu); 2699 2700 node_set_state(node, N_CPU); /* this node has a cpu */ 2701 2702 for_each_zone(zone) { 2703 2704 if (!populated_zone(zone)) 2705 continue; 2706 2707 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset), 2708 GFP_KERNEL, node); 2709 if (!zone_pcp(zone, cpu)) 2710 goto bad; 2711 2712 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone)); 2713 2714 if (percpu_pagelist_fraction) 2715 setup_pagelist_highmark(zone_pcp(zone, cpu), 2716 (zone->present_pages / percpu_pagelist_fraction)); 2717 } 2718 2719 return 0; 2720bad: 2721 for_each_zone(dzone) { 2722 if (!populated_zone(dzone)) 2723 continue; 2724 if (dzone == zone) 2725 break; 2726 kfree(zone_pcp(dzone, cpu)); 2727 zone_pcp(dzone, cpu) = NULL; 2728 } 2729 return -ENOMEM; 2730} 2731 2732static inline void free_zone_pagesets(int cpu) 2733{ 2734 struct zone *zone; 2735 2736 for_each_zone(zone) { 2737 struct per_cpu_pageset *pset = zone_pcp(zone, cpu); 2738 2739 /* Free per_cpu_pageset if it is slab allocated */ 2740 if (pset != &boot_pageset[cpu]) 2741 kfree(pset); 2742 zone_pcp(zone, cpu) = NULL; 2743 } 2744} 2745 2746static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb, 2747 unsigned long action, 2748 void *hcpu) 2749{ 2750 int cpu = (long)hcpu; 2751 int ret = NOTIFY_OK; 2752 2753 switch (action) { 2754 case CPU_UP_PREPARE: 2755 case CPU_UP_PREPARE_FROZEN: 2756 if (process_zones(cpu)) 2757 ret = NOTIFY_BAD; 2758 break; 2759 case CPU_UP_CANCELED: 2760 case CPU_UP_CANCELED_FROZEN: 2761 case CPU_DEAD: 2762 case CPU_DEAD_FROZEN: 2763 free_zone_pagesets(cpu); 2764 break; 2765 default: 2766 break; 2767 } 2768 return ret; 2769} 2770 2771static struct notifier_block __cpuinitdata pageset_notifier = 2772 { &pageset_cpuup_callback, NULL, 0 }; 2773 2774void __init setup_per_cpu_pageset(void) 2775{ 2776 int err; 2777 2778 /* Initialize per_cpu_pageset for cpu 0. 2779 * A cpuup callback will do this for every cpu 2780 * as it comes online 2781 */ 2782 err = process_zones(smp_processor_id()); 2783 BUG_ON(err); 2784 register_cpu_notifier(&pageset_notifier); 2785} 2786 2787#endif 2788 2789static noinline __init_refok 2790int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 2791{ 2792 int i; 2793 struct pglist_data *pgdat = zone->zone_pgdat; 2794 size_t alloc_size; 2795 2796 /* 2797 * The per-page waitqueue mechanism uses hashed waitqueues 2798 * per zone. 2799 */ 2800 zone->wait_table_hash_nr_entries = 2801 wait_table_hash_nr_entries(zone_size_pages); 2802 zone->wait_table_bits = 2803 wait_table_bits(zone->wait_table_hash_nr_entries); 2804 alloc_size = zone->wait_table_hash_nr_entries 2805 * sizeof(wait_queue_head_t); 2806 2807 if (system_state == SYSTEM_BOOTING) { 2808 zone->wait_table = (wait_queue_head_t *) 2809 alloc_bootmem_node(pgdat, alloc_size); 2810 } else { 2811 /* 2812 * This case means that a zone whose size was 0 gets new memory 2813 * via memory hot-add. 2814 * But it may be the case that a new node was hot-added. In 2815 * this case vmalloc() will not be able to use this new node's 2816 * memory - this wait_table must be initialized to use this new 2817 * node itself as well. 2818 * To use this new node's memory, further consideration will be 2819 * necessary. 2820 */ 2821 zone->wait_table = vmalloc(alloc_size); 2822 } 2823 if (!zone->wait_table) 2824 return -ENOMEM; 2825 2826 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i) 2827 init_waitqueue_head(zone->wait_table + i); 2828 2829 return 0; 2830} 2831 2832static __meminit void zone_pcp_init(struct zone *zone) 2833{ 2834 int cpu; 2835 unsigned long batch = zone_batchsize(zone); 2836 2837 for (cpu = 0; cpu < NR_CPUS; cpu++) { 2838#ifdef CONFIG_NUMA 2839 /* Early boot. Slab allocator not functional yet */ 2840 zone_pcp(zone, cpu) = &boot_pageset[cpu]; 2841 setup_pageset(&boot_pageset[cpu],0); 2842#else 2843 setup_pageset(zone_pcp(zone,cpu), batch); 2844#endif 2845 } 2846 if (zone->present_pages) 2847 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n", 2848 zone->name, zone->present_pages, batch); 2849} 2850 2851__meminit int init_currently_empty_zone(struct zone *zone, 2852 unsigned long zone_start_pfn, 2853 unsigned long size, 2854 enum memmap_context context) 2855{ 2856 struct pglist_data *pgdat = zone->zone_pgdat; 2857 int ret; 2858 ret = zone_wait_table_init(zone, size); 2859 if (ret) 2860 return ret; 2861 pgdat->nr_zones = zone_idx(zone) + 1; 2862 2863 zone->zone_start_pfn = zone_start_pfn; 2864 2865 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn); 2866 2867 zone_init_free_lists(zone); 2868 2869 return 0; 2870} 2871 2872#ifdef CONFIG_ARCH_POPULATES_NODE_MAP 2873/* 2874 * Basic iterator support. Return the first range of PFNs for a node 2875 * Note: nid == MAX_NUMNODES returns first region regardless of node 2876 */ 2877static int __meminit first_active_region_index_in_nid(int nid) 2878{ 2879 int i; 2880 2881 for (i = 0; i < nr_nodemap_entries; i++) 2882 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid) 2883 return i; 2884 2885 return -1; 2886} 2887 2888/* 2889 * Basic iterator support. Return the next active range of PFNs for a node 2890 * Note: nid == MAX_NUMNODES returns next region regardless of node 2891 */ 2892static int __meminit next_active_region_index_in_nid(int index, int nid) 2893{ 2894 for (index = index + 1; index < nr_nodemap_entries; index++) 2895 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid) 2896 return index; 2897 2898 return -1; 2899} 2900 2901#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 2902/* 2903 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 2904 * Architectures may implement their own version but if add_active_range() 2905 * was used and there are no special requirements, this is a convenient 2906 * alternative 2907 */ 2908int __meminit early_pfn_to_nid(unsigned long pfn) 2909{ 2910 int i; 2911 2912 for (i = 0; i < nr_nodemap_entries; i++) { 2913 unsigned long start_pfn = early_node_map[i].start_pfn; 2914 unsigned long end_pfn = early_node_map[i].end_pfn; 2915 2916 if (start_pfn <= pfn && pfn < end_pfn) 2917 return early_node_map[i].nid; 2918 } 2919 2920 return 0; 2921} 2922#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 2923 2924/* Basic iterator support to walk early_node_map[] */ 2925#define for_each_active_range_index_in_nid(i, nid) \ 2926 for (i = first_active_region_index_in_nid(nid); i != -1; \ 2927 i = next_active_region_index_in_nid(i, nid)) 2928 2929/** 2930 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range 2931 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 2932 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node 2933 * 2934 * If an architecture guarantees that all ranges registered with 2935 * add_active_ranges() contain no holes and may be freed, this 2936 * this function may be used instead of calling free_bootmem() manually. 2937 */ 2938void __init free_bootmem_with_active_regions(int nid, 2939 unsigned long max_low_pfn) 2940{ 2941 int i; 2942 2943 for_each_active_range_index_in_nid(i, nid) { 2944 unsigned long size_pages = 0; 2945 unsigned long end_pfn = early_node_map[i].end_pfn; 2946 2947 if (early_node_map[i].start_pfn >= max_low_pfn) 2948 continue; 2949 2950 if (end_pfn > max_low_pfn) 2951 end_pfn = max_low_pfn; 2952 2953 size_pages = end_pfn - early_node_map[i].start_pfn; 2954 free_bootmem_node(NODE_DATA(early_node_map[i].nid), 2955 PFN_PHYS(early_node_map[i].start_pfn), 2956 size_pages << PAGE_SHIFT); 2957 } 2958} 2959 2960/** 2961 * sparse_memory_present_with_active_regions - Call memory_present for each active range 2962 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 2963 * 2964 * If an architecture guarantees that all ranges registered with 2965 * add_active_ranges() contain no holes and may be freed, this 2966 * function may be used instead of calling memory_present() manually. 2967 */ 2968void __init sparse_memory_present_with_active_regions(int nid) 2969{ 2970 int i; 2971 2972 for_each_active_range_index_in_nid(i, nid) 2973 memory_present(early_node_map[i].nid, 2974 early_node_map[i].start_pfn, 2975 early_node_map[i].end_pfn); 2976} 2977 2978/** 2979 * push_node_boundaries - Push node boundaries to at least the requested boundary 2980 * @nid: The nid of the node to push the boundary for 2981 * @start_pfn: The start pfn of the node 2982 * @end_pfn: The end pfn of the node 2983 * 2984 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd 2985 * time. Specifically, on x86_64, SRAT will report ranges that can potentially 2986 * be hotplugged even though no physical memory exists. This function allows 2987 * an arch to push out the node boundaries so mem_map is allocated that can 2988 * be used later. 2989 */ 2990#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE 2991void __init push_node_boundaries(unsigned int nid, 2992 unsigned long start_pfn, unsigned long end_pfn) 2993{ 2994 printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n", 2995 nid, start_pfn, end_pfn); 2996 2997 /* Initialise the boundary for this node if necessary */ 2998 if (node_boundary_end_pfn[nid] == 0) 2999 node_boundary_start_pfn[nid] = -1UL; 3000 3001 /* Update the boundaries */ 3002 if (node_boundary_start_pfn[nid] > start_pfn) 3003 node_boundary_start_pfn[nid] = start_pfn; 3004 if (node_boundary_end_pfn[nid] < end_pfn) 3005 node_boundary_end_pfn[nid] = end_pfn; 3006} 3007 3008/* If necessary, push the node boundary out for reserve hotadd */ 3009static void __meminit account_node_boundary(unsigned int nid, 3010 unsigned long *start_pfn, unsigned long *end_pfn) 3011{ 3012 printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n", 3013 nid, *start_pfn, *end_pfn); 3014 3015 /* Return if boundary information has not been provided */ 3016 if (node_boundary_end_pfn[nid] == 0) 3017 return; 3018 3019 /* Check the boundaries and update if necessary */ 3020 if (node_boundary_start_pfn[nid] < *start_pfn) 3021 *start_pfn = node_boundary_start_pfn[nid]; 3022 if (node_boundary_end_pfn[nid] > *end_pfn) 3023 *end_pfn = node_boundary_end_pfn[nid]; 3024} 3025#else 3026void __init push_node_boundaries(unsigned int nid, 3027 unsigned long start_pfn, unsigned long end_pfn) {} 3028 3029static void __meminit account_node_boundary(unsigned int nid, 3030 unsigned long *start_pfn, unsigned long *end_pfn) {} 3031#endif 3032 3033 3034/** 3035 * get_pfn_range_for_nid - Return the start and end page frames for a node 3036 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 3037 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 3038 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 3039 * 3040 * It returns the start and end page frame of a node based on information 3041 * provided by an arch calling add_active_range(). If called for a node 3042 * with no available memory, a warning is printed and the start and end 3043 * PFNs will be 0. 3044 */ 3045void __meminit get_pfn_range_for_nid(unsigned int nid, 3046 unsigned long *start_pfn, unsigned long *end_pfn) 3047{ 3048 int i; 3049 *start_pfn = -1UL; 3050 *end_pfn = 0; 3051 3052 for_each_active_range_index_in_nid(i, nid) { 3053 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn); 3054 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn); 3055 } 3056 3057 if (*start_pfn == -1UL) 3058 *start_pfn = 0; 3059 3060 /* Push the node boundaries out if requested */ 3061 account_node_boundary(nid, start_pfn, end_pfn); 3062} 3063 3064/* 3065 * This finds a zone that can be used for ZONE_MOVABLE pages. The 3066 * assumption is made that zones within a node are ordered in monotonic 3067 * increasing memory addresses so that the "highest" populated zone is used 3068 */ 3069void __init find_usable_zone_for_movable(void) 3070{ 3071 int zone_index; 3072 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 3073 if (zone_index == ZONE_MOVABLE) 3074 continue; 3075 3076 if (arch_zone_highest_possible_pfn[zone_index] > 3077 arch_zone_lowest_possible_pfn[zone_index]) 3078 break; 3079 } 3080 3081 VM_BUG_ON(zone_index == -1); 3082 movable_zone = zone_index; 3083} 3084 3085/* 3086 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 3087 * because it is sized independant of architecture. Unlike the other zones, 3088 * the starting point for ZONE_MOVABLE is not fixed. It may be different 3089 * in each node depending on the size of each node and how evenly kernelcore 3090 * is distributed. This helper function adjusts the zone ranges 3091 * provided by the architecture for a given node by using the end of the 3092 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 3093 * zones within a node are in order of monotonic increases memory addresses 3094 */ 3095void __meminit adjust_zone_range_for_zone_movable(int nid, 3096 unsigned long zone_type, 3097 unsigned long node_start_pfn, 3098 unsigned long node_end_pfn, 3099 unsigned long *zone_start_pfn, 3100 unsigned long *zone_end_pfn) 3101{ 3102 /* Only adjust if ZONE_MOVABLE is on this node */ 3103 if (zone_movable_pfn[nid]) { 3104 /* Size ZONE_MOVABLE */ 3105 if (zone_type == ZONE_MOVABLE) { 3106 *zone_start_pfn = zone_movable_pfn[nid]; 3107 *zone_end_pfn = min(node_end_pfn, 3108 arch_zone_highest_possible_pfn[movable_zone]); 3109 3110 /* Adjust for ZONE_MOVABLE starting within this range */ 3111 } else if (*zone_start_pfn < zone_movable_pfn[nid] && 3112 *zone_end_pfn > zone_movable_pfn[nid]) { 3113 *zone_end_pfn = zone_movable_pfn[nid]; 3114 3115 /* Check if this whole range is within ZONE_MOVABLE */ 3116 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 3117 *zone_start_pfn = *zone_end_pfn; 3118 } 3119} 3120 3121/* 3122 * Return the number of pages a zone spans in a node, including holes 3123 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 3124 */ 3125static unsigned long __meminit zone_spanned_pages_in_node(int nid, 3126 unsigned long zone_type, 3127 unsigned long *ignored) 3128{ 3129 unsigned long node_start_pfn, node_end_pfn; 3130 unsigned long zone_start_pfn, zone_end_pfn; 3131 3132 /* Get the start and end of the node and zone */ 3133 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 3134 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 3135 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 3136 adjust_zone_range_for_zone_movable(nid, zone_type, 3137 node_start_pfn, node_end_pfn, 3138 &zone_start_pfn, &zone_end_pfn); 3139 3140 /* Check that this node has pages within the zone's required range */ 3141 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) 3142 return 0; 3143 3144 /* Move the zone boundaries inside the node if necessary */ 3145 zone_end_pfn = min(zone_end_pfn, node_end_pfn); 3146 zone_start_pfn = max(zone_start_pfn, node_start_pfn); 3147 3148 /* Return the spanned pages */ 3149 return zone_end_pfn - zone_start_pfn; 3150} 3151 3152/* 3153 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 3154 * then all holes in the requested range will be accounted for. 3155 */ 3156unsigned long __meminit __absent_pages_in_range(int nid, 3157 unsigned long range_start_pfn, 3158 unsigned long range_end_pfn) 3159{ 3160 int i = 0; 3161 unsigned long prev_end_pfn = 0, hole_pages = 0; 3162 unsigned long start_pfn; 3163 3164 /* Find the end_pfn of the first active range of pfns in the node */ 3165 i = first_active_region_index_in_nid(nid); 3166 if (i == -1) 3167 return 0; 3168 3169 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn); 3170 3171 /* Account for ranges before physical memory on this node */ 3172 if (early_node_map[i].start_pfn > range_start_pfn) 3173 hole_pages = prev_end_pfn - range_start_pfn; 3174 3175 /* Find all holes for the zone within the node */ 3176 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) { 3177 3178 /* No need to continue if prev_end_pfn is outside the zone */ 3179 if (prev_end_pfn >= range_end_pfn) 3180 break; 3181 3182 /* Make sure the end of the zone is not within the hole */ 3183 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn); 3184 prev_end_pfn = max(prev_end_pfn, range_start_pfn); 3185 3186 /* Update the hole size cound and move on */ 3187 if (start_pfn > range_start_pfn) { 3188 BUG_ON(prev_end_pfn > start_pfn); 3189 hole_pages += start_pfn - prev_end_pfn; 3190 } 3191 prev_end_pfn = early_node_map[i].end_pfn; 3192 } 3193 3194 /* Account for ranges past physical memory on this node */ 3195 if (range_end_pfn > prev_end_pfn) 3196 hole_pages += range_end_pfn - 3197 max(range_start_pfn, prev_end_pfn); 3198 3199 return hole_pages; 3200} 3201 3202/** 3203 * absent_pages_in_range - Return number of page frames in holes within a range 3204 * @start_pfn: The start PFN to start searching for holes 3205 * @end_pfn: The end PFN to stop searching for holes 3206 * 3207 * It returns the number of pages frames in memory holes within a range. 3208 */ 3209unsigned long __init absent_pages_in_range(unsigned long start_pfn, 3210 unsigned long end_pfn) 3211{ 3212 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 3213} 3214 3215/* Return the number of page frames in holes in a zone on a node */ 3216static unsigned long __meminit zone_absent_pages_in_node(int nid, 3217 unsigned long zone_type, 3218 unsigned long *ignored) 3219{ 3220 unsigned long node_start_pfn, node_end_pfn; 3221 unsigned long zone_start_pfn, zone_end_pfn; 3222 3223 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 3224 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type], 3225 node_start_pfn); 3226 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type], 3227 node_end_pfn); 3228 3229 adjust_zone_range_for_zone_movable(nid, zone_type, 3230 node_start_pfn, node_end_pfn, 3231 &zone_start_pfn, &zone_end_pfn); 3232 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 3233} 3234 3235#else 3236static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 3237 unsigned long zone_type, 3238 unsigned long *zones_size) 3239{ 3240 return zones_size[zone_type]; 3241} 3242 3243static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 3244 unsigned long zone_type, 3245 unsigned long *zholes_size) 3246{ 3247 if (!zholes_size) 3248 return 0; 3249 3250 return zholes_size[zone_type]; 3251} 3252 3253#endif 3254 3255static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 3256 unsigned long *zones_size, unsigned long *zholes_size) 3257{ 3258 unsigned long realtotalpages, totalpages = 0; 3259 enum zone_type i; 3260 3261 for (i = 0; i < MAX_NR_ZONES; i++) 3262 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, 3263 zones_size); 3264 pgdat->node_spanned_pages = totalpages; 3265 3266 realtotalpages = totalpages; 3267 for (i = 0; i < MAX_NR_ZONES; i++) 3268 realtotalpages -= 3269 zone_absent_pages_in_node(pgdat->node_id, i, 3270 zholes_size); 3271 pgdat->node_present_pages = realtotalpages; 3272 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 3273 realtotalpages); 3274} 3275 3276#ifndef CONFIG_SPARSEMEM 3277/* 3278 * Calculate the size of the zone->blockflags rounded to an unsigned long 3279 * Start by making sure zonesize is a multiple of pageblock_order by rounding 3280 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 3281 * round what is now in bits to nearest long in bits, then return it in 3282 * bytes. 3283 */ 3284static unsigned long __init usemap_size(unsigned long zonesize) 3285{ 3286 unsigned long usemapsize; 3287 3288 usemapsize = roundup(zonesize, pageblock_nr_pages); 3289 usemapsize = usemapsize >> pageblock_order; 3290 usemapsize *= NR_PAGEBLOCK_BITS; 3291 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 3292 3293 return usemapsize / 8; 3294} 3295 3296static void __init setup_usemap(struct pglist_data *pgdat, 3297 struct zone *zone, unsigned long zonesize) 3298{ 3299 unsigned long usemapsize = usemap_size(zonesize); 3300 zone->pageblock_flags = NULL; 3301 if (usemapsize) { 3302 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize); 3303 memset(zone->pageblock_flags, 0, usemapsize); 3304 } 3305} 3306#else 3307static void inline setup_usemap(struct pglist_data *pgdat, 3308 struct zone *zone, unsigned long zonesize) {} 3309#endif /* CONFIG_SPARSEMEM */ 3310 3311#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 3312 3313/* Return a sensible default order for the pageblock size. */ 3314static inline int pageblock_default_order(void) 3315{ 3316 if (HPAGE_SHIFT > PAGE_SHIFT) 3317 return HUGETLB_PAGE_ORDER; 3318 3319 return MAX_ORDER-1; 3320} 3321 3322/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 3323static inline void __init set_pageblock_order(unsigned int order) 3324{ 3325 /* Check that pageblock_nr_pages has not already been setup */ 3326 if (pageblock_order) 3327 return; 3328 3329 /* 3330 * Assume the largest contiguous order of interest is a huge page. 3331 * This value may be variable depending on boot parameters on IA64 3332 */ 3333 pageblock_order = order; 3334} 3335#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 3336 3337/* 3338 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 3339 * and pageblock_default_order() are unused as pageblock_order is set 3340 * at compile-time. See include/linux/pageblock-flags.h for the values of 3341 * pageblock_order based on the kernel config 3342 */ 3343static inline int pageblock_default_order(unsigned int order) 3344{ 3345 return MAX_ORDER-1; 3346} 3347#define set_pageblock_order(x) do {} while (0) 3348 3349#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 3350 3351/* 3352 * Set up the zone data structures: 3353 * - mark all pages reserved 3354 * - mark all memory queues empty 3355 * - clear the memory bitmaps 3356 */ 3357static void __paginginit free_area_init_core(struct pglist_data *pgdat, 3358 unsigned long *zones_size, unsigned long *zholes_size) 3359{ 3360 enum zone_type j; 3361 int nid = pgdat->node_id; 3362 unsigned long zone_start_pfn = pgdat->node_start_pfn; 3363 int ret; 3364 3365 pgdat_resize_init(pgdat); 3366 pgdat->nr_zones = 0; 3367 init_waitqueue_head(&pgdat->kswapd_wait); 3368 pgdat->kswapd_max_order = 0; 3369 3370 for (j = 0; j < MAX_NR_ZONES; j++) { 3371 struct zone *zone = pgdat->node_zones + j; 3372 unsigned long size, realsize, memmap_pages; 3373 3374 size = zone_spanned_pages_in_node(nid, j, zones_size); 3375 realsize = size - zone_absent_pages_in_node(nid, j, 3376 zholes_size); 3377 3378 /* 3379 * Adjust realsize so that it accounts for how much memory 3380 * is used by this zone for memmap. This affects the watermark 3381 * and per-cpu initialisations 3382 */ 3383 memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT; 3384 if (realsize >= memmap_pages) { 3385 realsize -= memmap_pages; 3386 printk(KERN_DEBUG 3387 " %s zone: %lu pages used for memmap\n", 3388 zone_names[j], memmap_pages); 3389 } else 3390 printk(KERN_WARNING 3391 " %s zone: %lu pages exceeds realsize %lu\n", 3392 zone_names[j], memmap_pages, realsize); 3393 3394 /* Account for reserved pages */ 3395 if (j == 0 && realsize > dma_reserve) { 3396 realsize -= dma_reserve; 3397 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 3398 zone_names[0], dma_reserve); 3399 } 3400 3401 if (!is_highmem_idx(j)) 3402 nr_kernel_pages += realsize; 3403 nr_all_pages += realsize; 3404 3405 zone->spanned_pages = size; 3406 zone->present_pages = realsize; 3407#ifdef CONFIG_NUMA 3408 zone->node = nid; 3409 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio) 3410 / 100; 3411 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100; 3412#endif 3413 zone->name = zone_names[j]; 3414 spin_lock_init(&zone->lock); 3415 spin_lock_init(&zone->lru_lock); 3416 zone_seqlock_init(zone); 3417 zone->zone_pgdat = pgdat; 3418 3419 zone->prev_priority = DEF_PRIORITY; 3420 3421 zone_pcp_init(zone); 3422 INIT_LIST_HEAD(&zone->active_list); 3423 INIT_LIST_HEAD(&zone->inactive_list); 3424 zone->nr_scan_active = 0; 3425 zone->nr_scan_inactive = 0; 3426 zap_zone_vm_stats(zone); 3427 zone->flags = 0; 3428 if (!size) 3429 continue; 3430 3431 set_pageblock_order(pageblock_default_order()); 3432 setup_usemap(pgdat, zone, size); 3433 ret = init_currently_empty_zone(zone, zone_start_pfn, 3434 size, MEMMAP_EARLY); 3435 BUG_ON(ret); 3436 zone_start_pfn += size; 3437 } 3438} 3439 3440static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) 3441{ 3442 /* Skip empty nodes */ 3443 if (!pgdat->node_spanned_pages) 3444 return; 3445 3446#ifdef CONFIG_FLAT_NODE_MEM_MAP 3447 /* ia64 gets its own node_mem_map, before this, without bootmem */ 3448 if (!pgdat->node_mem_map) { 3449 unsigned long size, start, end; 3450 struct page *map; 3451 3452 /* 3453 * The zone's endpoints aren't required to be MAX_ORDER 3454 * aligned but the node_mem_map endpoints must be in order 3455 * for the buddy allocator to function correctly. 3456 */ 3457 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 3458 end = pgdat->node_start_pfn + pgdat->node_spanned_pages; 3459 end = ALIGN(end, MAX_ORDER_NR_PAGES); 3460 size = (end - start) * sizeof(struct page); 3461 map = alloc_remap(pgdat->node_id, size); 3462 if (!map) 3463 map = alloc_bootmem_node(pgdat, size); 3464 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 3465 } 3466#ifndef CONFIG_NEED_MULTIPLE_NODES 3467 /* 3468 * With no DISCONTIG, the global mem_map is just set as node 0's 3469 */ 3470 if (pgdat == NODE_DATA(0)) { 3471 mem_map = NODE_DATA(0)->node_mem_map; 3472#ifdef CONFIG_ARCH_POPULATES_NODE_MAP 3473 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 3474 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); 3475#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 3476 } 3477#endif 3478#endif /* CONFIG_FLAT_NODE_MEM_MAP */ 3479} 3480 3481void __paginginit free_area_init_node(int nid, struct pglist_data *pgdat, 3482 unsigned long *zones_size, unsigned long node_start_pfn, 3483 unsigned long *zholes_size) 3484{ 3485 pgdat->node_id = nid; 3486 pgdat->node_start_pfn = node_start_pfn; 3487 calculate_node_totalpages(pgdat, zones_size, zholes_size); 3488 3489 alloc_node_mem_map(pgdat); 3490 3491 free_area_init_core(pgdat, zones_size, zholes_size); 3492} 3493 3494#ifdef CONFIG_ARCH_POPULATES_NODE_MAP 3495 3496#if MAX_NUMNODES > 1 3497/* 3498 * Figure out the number of possible node ids. 3499 */ 3500static void __init setup_nr_node_ids(void) 3501{ 3502 unsigned int node; 3503 unsigned int highest = 0; 3504 3505 for_each_node_mask(node, node_possible_map) 3506 highest = node; 3507 nr_node_ids = highest + 1; 3508} 3509#else 3510static inline void setup_nr_node_ids(void) 3511{ 3512} 3513#endif 3514 3515/** 3516 * add_active_range - Register a range of PFNs backed by physical memory 3517 * @nid: The node ID the range resides on 3518 * @start_pfn: The start PFN of the available physical memory 3519 * @end_pfn: The end PFN of the available physical memory 3520 * 3521 * These ranges are stored in an early_node_map[] and later used by 3522 * free_area_init_nodes() to calculate zone sizes and holes. If the 3523 * range spans a memory hole, it is up to the architecture to ensure 3524 * the memory is not freed by the bootmem allocator. If possible 3525 * the range being registered will be merged with existing ranges. 3526 */ 3527void __init add_active_range(unsigned int nid, unsigned long start_pfn, 3528 unsigned long end_pfn) 3529{ 3530 int i; 3531 3532 printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) " 3533 "%d entries of %d used\n", 3534 nid, start_pfn, end_pfn, 3535 nr_nodemap_entries, MAX_ACTIVE_REGIONS); 3536 3537 /* Merge with existing active regions if possible */ 3538 for (i = 0; i < nr_nodemap_entries; i++) { 3539 if (early_node_map[i].nid != nid) 3540 continue; 3541 3542 /* Skip if an existing region covers this new one */ 3543 if (start_pfn >= early_node_map[i].start_pfn && 3544 end_pfn <= early_node_map[i].end_pfn) 3545 return; 3546 3547 /* Merge forward if suitable */ 3548 if (start_pfn <= early_node_map[i].end_pfn && 3549 end_pfn > early_node_map[i].end_pfn) { 3550 early_node_map[i].end_pfn = end_pfn; 3551 return; 3552 } 3553 3554 /* Merge backward if suitable */ 3555 if (start_pfn < early_node_map[i].end_pfn && 3556 end_pfn >= early_node_map[i].start_pfn) { 3557 early_node_map[i].start_pfn = start_pfn; 3558 return; 3559 } 3560 } 3561 3562 /* Check that early_node_map is large enough */ 3563 if (i >= MAX_ACTIVE_REGIONS) { 3564 printk(KERN_CRIT "More than %d memory regions, truncating\n", 3565 MAX_ACTIVE_REGIONS); 3566 return; 3567 } 3568 3569 early_node_map[i].nid = nid; 3570 early_node_map[i].start_pfn = start_pfn; 3571 early_node_map[i].end_pfn = end_pfn; 3572 nr_nodemap_entries = i + 1; 3573} 3574 3575/** 3576 * shrink_active_range - Shrink an existing registered range of PFNs 3577 * @nid: The node id the range is on that should be shrunk 3578 * @old_end_pfn: The old end PFN of the range 3579 * @new_end_pfn: The new PFN of the range 3580 * 3581 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node. 3582 * The map is kept at the end physical page range that has already been 3583 * registered with add_active_range(). This function allows an arch to shrink 3584 * an existing registered range. 3585 */ 3586void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn, 3587 unsigned long new_end_pfn) 3588{ 3589 int i; 3590 3591 /* Find the old active region end and shrink */ 3592 for_each_active_range_index_in_nid(i, nid) 3593 if (early_node_map[i].end_pfn == old_end_pfn) { 3594 early_node_map[i].end_pfn = new_end_pfn; 3595 break; 3596 } 3597} 3598 3599/** 3600 * remove_all_active_ranges - Remove all currently registered regions 3601 * 3602 * During discovery, it may be found that a table like SRAT is invalid 3603 * and an alternative discovery method must be used. This function removes 3604 * all currently registered regions. 3605 */ 3606void __init remove_all_active_ranges(void) 3607{ 3608 memset(early_node_map, 0, sizeof(early_node_map)); 3609 nr_nodemap_entries = 0; 3610#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE 3611 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn)); 3612 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn)); 3613#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */ 3614} 3615 3616/* Compare two active node_active_regions */ 3617static int __init cmp_node_active_region(const void *a, const void *b) 3618{ 3619 struct node_active_region *arange = (struct node_active_region *)a; 3620 struct node_active_region *brange = (struct node_active_region *)b; 3621 3622 /* Done this way to avoid overflows */ 3623 if (arange->start_pfn > brange->start_pfn) 3624 return 1; 3625 if (arange->start_pfn < brange->start_pfn) 3626 return -1; 3627 3628 return 0; 3629} 3630 3631/* sort the node_map by start_pfn */ 3632static void __init sort_node_map(void) 3633{ 3634 sort(early_node_map, (size_t)nr_nodemap_entries, 3635 sizeof(struct node_active_region), 3636 cmp_node_active_region, NULL); 3637} 3638 3639/* Find the lowest pfn for a node */ 3640unsigned long __init find_min_pfn_for_node(unsigned long nid) 3641{ 3642 int i; 3643 unsigned long min_pfn = ULONG_MAX; 3644 3645 /* Assuming a sorted map, the first range found has the starting pfn */ 3646 for_each_active_range_index_in_nid(i, nid) 3647 min_pfn = min(min_pfn, early_node_map[i].start_pfn); 3648 3649 if (min_pfn == ULONG_MAX) { 3650 printk(KERN_WARNING 3651 "Could not find start_pfn for node %lu\n", nid); 3652 return 0; 3653 } 3654 3655 return min_pfn; 3656} 3657 3658/** 3659 * find_min_pfn_with_active_regions - Find the minimum PFN registered 3660 * 3661 * It returns the minimum PFN based on information provided via 3662 * add_active_range(). 3663 */ 3664unsigned long __init find_min_pfn_with_active_regions(void) 3665{ 3666 return find_min_pfn_for_node(MAX_NUMNODES); 3667} 3668 3669/** 3670 * find_max_pfn_with_active_regions - Find the maximum PFN registered 3671 * 3672 * It returns the maximum PFN based on information provided via 3673 * add_active_range(). 3674 */ 3675unsigned long __init find_max_pfn_with_active_regions(void) 3676{ 3677 int i; 3678 unsigned long max_pfn = 0; 3679 3680 for (i = 0; i < nr_nodemap_entries; i++) 3681 max_pfn = max(max_pfn, early_node_map[i].end_pfn); 3682 3683 return max_pfn; 3684} 3685 3686/* 3687 * early_calculate_totalpages() 3688 * Sum pages in active regions for movable zone. 3689 * Populate N_HIGH_MEMORY for calculating usable_nodes. 3690 */ 3691static unsigned long __init early_calculate_totalpages(void) 3692{ 3693 int i; 3694 unsigned long totalpages = 0; 3695 3696 for (i = 0; i < nr_nodemap_entries; i++) { 3697 unsigned long pages = early_node_map[i].end_pfn - 3698 early_node_map[i].start_pfn; 3699 totalpages += pages; 3700 if (pages) 3701 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY); 3702 } 3703 return totalpages; 3704} 3705 3706/* 3707 * Find the PFN the Movable zone begins in each node. Kernel memory 3708 * is spread evenly between nodes as long as the nodes have enough 3709 * memory. When they don't, some nodes will have more kernelcore than 3710 * others 3711 */ 3712void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn) 3713{ 3714 int i, nid; 3715 unsigned long usable_startpfn; 3716 unsigned long kernelcore_node, kernelcore_remaining; 3717 unsigned long totalpages = early_calculate_totalpages(); 3718 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]); 3719 3720 /* 3721 * If movablecore was specified, calculate what size of 3722 * kernelcore that corresponds so that memory usable for 3723 * any allocation type is evenly spread. If both kernelcore 3724 * and movablecore are specified, then the value of kernelcore 3725 * will be used for required_kernelcore if it's greater than 3726 * what movablecore would have allowed. 3727 */ 3728 if (required_movablecore) { 3729 unsigned long corepages; 3730 3731 /* 3732 * Round-up so that ZONE_MOVABLE is at least as large as what 3733 * was requested by the user 3734 */ 3735 required_movablecore = 3736 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 3737 corepages = totalpages - required_movablecore; 3738 3739 required_kernelcore = max(required_kernelcore, corepages); 3740 } 3741 3742 /* If kernelcore was not specified, there is no ZONE_MOVABLE */ 3743 if (!required_kernelcore) 3744 return; 3745 3746 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 3747 find_usable_zone_for_movable(); 3748 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 3749 3750restart: 3751 /* Spread kernelcore memory as evenly as possible throughout nodes */ 3752 kernelcore_node = required_kernelcore / usable_nodes; 3753 for_each_node_state(nid, N_HIGH_MEMORY) { 3754 /* 3755 * Recalculate kernelcore_node if the division per node 3756 * now exceeds what is necessary to satisfy the requested 3757 * amount of memory for the kernel 3758 */ 3759 if (required_kernelcore < kernelcore_node) 3760 kernelcore_node = required_kernelcore / usable_nodes; 3761 3762 /* 3763 * As the map is walked, we track how much memory is usable 3764 * by the kernel using kernelcore_remaining. When it is 3765 * 0, the rest of the node is usable by ZONE_MOVABLE 3766 */ 3767 kernelcore_remaining = kernelcore_node; 3768 3769 /* Go through each range of PFNs within this node */ 3770 for_each_active_range_index_in_nid(i, nid) { 3771 unsigned long start_pfn, end_pfn; 3772 unsigned long size_pages; 3773 3774 start_pfn = max(early_node_map[i].start_pfn, 3775 zone_movable_pfn[nid]); 3776 end_pfn = early_node_map[i].end_pfn; 3777 if (start_pfn >= end_pfn) 3778 continue; 3779 3780 /* Account for what is only usable for kernelcore */ 3781 if (start_pfn < usable_startpfn) { 3782 unsigned long kernel_pages; 3783 kernel_pages = min(end_pfn, usable_startpfn) 3784 - start_pfn; 3785 3786 kernelcore_remaining -= min(kernel_pages, 3787 kernelcore_remaining); 3788 required_kernelcore -= min(kernel_pages, 3789 required_kernelcore); 3790 3791 /* Continue if range is now fully accounted */ 3792 if (end_pfn <= usable_startpfn) { 3793 3794 /* 3795 * Push zone_movable_pfn to the end so 3796 * that if we have to rebalance 3797 * kernelcore across nodes, we will 3798 * not double account here 3799 */ 3800 zone_movable_pfn[nid] = end_pfn; 3801 continue; 3802 } 3803 start_pfn = usable_startpfn; 3804 } 3805 3806 /* 3807 * The usable PFN range for ZONE_MOVABLE is from 3808 * start_pfn->end_pfn. Calculate size_pages as the 3809 * number of pages used as kernelcore 3810 */ 3811 size_pages = end_pfn - start_pfn; 3812 if (size_pages > kernelcore_remaining) 3813 size_pages = kernelcore_remaining; 3814 zone_movable_pfn[nid] = start_pfn + size_pages; 3815 3816 /* 3817 * Some kernelcore has been met, update counts and 3818 * break if the kernelcore for this node has been 3819 * satisified 3820 */ 3821 required_kernelcore -= min(required_kernelcore, 3822 size_pages); 3823 kernelcore_remaining -= size_pages; 3824 if (!kernelcore_remaining) 3825 break; 3826 } 3827 } 3828 3829 /* 3830 * If there is still required_kernelcore, we do another pass with one 3831 * less node in the count. This will push zone_movable_pfn[nid] further 3832 * along on the nodes that still have memory until kernelcore is 3833 * satisified 3834 */ 3835 usable_nodes--; 3836 if (usable_nodes && required_kernelcore > usable_nodes) 3837 goto restart; 3838 3839 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 3840 for (nid = 0; nid < MAX_NUMNODES; nid++) 3841 zone_movable_pfn[nid] = 3842 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 3843} 3844 3845/* Any regular memory on that node ? */ 3846static void check_for_regular_memory(pg_data_t *pgdat) 3847{ 3848#ifdef CONFIG_HIGHMEM 3849 enum zone_type zone_type; 3850 3851 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) { 3852 struct zone *zone = &pgdat->node_zones[zone_type]; 3853 if (zone->present_pages) 3854 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY); 3855 } 3856#endif 3857} 3858 3859/** 3860 * free_area_init_nodes - Initialise all pg_data_t and zone data 3861 * @max_zone_pfn: an array of max PFNs for each zone 3862 * 3863 * This will call free_area_init_node() for each active node in the system. 3864 * Using the page ranges provided by add_active_range(), the size of each 3865 * zone in each node and their holes is calculated. If the maximum PFN 3866 * between two adjacent zones match, it is assumed that the zone is empty. 3867 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 3868 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 3869 * starts where the previous one ended. For example, ZONE_DMA32 starts 3870 * at arch_max_dma_pfn. 3871 */ 3872void __init free_area_init_nodes(unsigned long *max_zone_pfn) 3873{ 3874 unsigned long nid; 3875 enum zone_type i; 3876 3877 /* Sort early_node_map as initialisation assumes it is sorted */ 3878 sort_node_map(); 3879 3880 /* Record where the zone boundaries are */ 3881 memset(arch_zone_lowest_possible_pfn, 0, 3882 sizeof(arch_zone_lowest_possible_pfn)); 3883 memset(arch_zone_highest_possible_pfn, 0, 3884 sizeof(arch_zone_highest_possible_pfn)); 3885 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 3886 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 3887 for (i = 1; i < MAX_NR_ZONES; i++) { 3888 if (i == ZONE_MOVABLE) 3889 continue; 3890 arch_zone_lowest_possible_pfn[i] = 3891 arch_zone_highest_possible_pfn[i-1]; 3892 arch_zone_highest_possible_pfn[i] = 3893 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 3894 } 3895 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; 3896 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; 3897 3898 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 3899 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 3900 find_zone_movable_pfns_for_nodes(zone_movable_pfn); 3901 3902 /* Print out the zone ranges */ 3903 printk("Zone PFN ranges:\n"); 3904 for (i = 0; i < MAX_NR_ZONES; i++) { 3905 if (i == ZONE_MOVABLE) 3906 continue; 3907 printk(" %-8s %8lu -> %8lu\n", 3908 zone_names[i], 3909 arch_zone_lowest_possible_pfn[i], 3910 arch_zone_highest_possible_pfn[i]); 3911 } 3912 3913 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 3914 printk("Movable zone start PFN for each node\n"); 3915 for (i = 0; i < MAX_NUMNODES; i++) { 3916 if (zone_movable_pfn[i]) 3917 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]); 3918 } 3919 3920 /* Print out the early_node_map[] */ 3921 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries); 3922 for (i = 0; i < nr_nodemap_entries; i++) 3923 printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid, 3924 early_node_map[i].start_pfn, 3925 early_node_map[i].end_pfn); 3926 3927 /* Initialise every node */ 3928 setup_nr_node_ids(); 3929 for_each_online_node(nid) { 3930 pg_data_t *pgdat = NODE_DATA(nid); 3931 free_area_init_node(nid, pgdat, NULL, 3932 find_min_pfn_for_node(nid), NULL); 3933 3934 /* Any memory on that node */ 3935 if (pgdat->node_present_pages) 3936 node_set_state(nid, N_HIGH_MEMORY); 3937 check_for_regular_memory(pgdat); 3938 } 3939} 3940 3941static int __init cmdline_parse_core(char *p, unsigned long *core) 3942{ 3943 unsigned long long coremem; 3944 if (!p) 3945 return -EINVAL; 3946 3947 coremem = memparse(p, &p); 3948 *core = coremem >> PAGE_SHIFT; 3949 3950 /* Paranoid check that UL is enough for the coremem value */ 3951 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 3952 3953 return 0; 3954} 3955 3956/* 3957 * kernelcore=size sets the amount of memory for use for allocations that 3958 * cannot be reclaimed or migrated. 3959 */ 3960static int __init cmdline_parse_kernelcore(char *p) 3961{ 3962 return cmdline_parse_core(p, &required_kernelcore); 3963} 3964 3965/* 3966 * movablecore=size sets the amount of memory for use for allocations that 3967 * can be reclaimed or migrated. 3968 */ 3969static int __init cmdline_parse_movablecore(char *p) 3970{ 3971 return cmdline_parse_core(p, &required_movablecore); 3972} 3973 3974early_param("kernelcore", cmdline_parse_kernelcore); 3975early_param("movablecore", cmdline_parse_movablecore); 3976 3977#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 3978 3979/** 3980 * set_dma_reserve - set the specified number of pages reserved in the first zone 3981 * @new_dma_reserve: The number of pages to mark reserved 3982 * 3983 * The per-cpu batchsize and zone watermarks are determined by present_pages. 3984 * In the DMA zone, a significant percentage may be consumed by kernel image 3985 * and other unfreeable allocations which can skew the watermarks badly. This 3986 * function may optionally be used to account for unfreeable pages in the 3987 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 3988 * smaller per-cpu batchsize. 3989 */ 3990void __init set_dma_reserve(unsigned long new_dma_reserve) 3991{ 3992 dma_reserve = new_dma_reserve; 3993} 3994 3995#ifndef CONFIG_NEED_MULTIPLE_NODES 3996static bootmem_data_t contig_bootmem_data; 3997struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data }; 3998 3999EXPORT_SYMBOL(contig_page_data); 4000#endif 4001 4002void __init free_area_init(unsigned long *zones_size) 4003{ 4004 free_area_init_node(0, NODE_DATA(0), zones_size, 4005 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 4006} 4007 4008static int page_alloc_cpu_notify(struct notifier_block *self, 4009 unsigned long action, void *hcpu) 4010{ 4011 int cpu = (unsigned long)hcpu; 4012 4013 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 4014 drain_pages(cpu); 4015 4016 /* 4017 * Spill the event counters of the dead processor 4018 * into the current processors event counters. 4019 * This artificially elevates the count of the current 4020 * processor. 4021 */ 4022 vm_events_fold_cpu(cpu); 4023 4024 /* 4025 * Zero the differential counters of the dead processor 4026 * so that the vm statistics are consistent. 4027 * 4028 * This is only okay since the processor is dead and cannot 4029 * race with what we are doing. 4030 */ 4031 refresh_cpu_vm_stats(cpu); 4032 } 4033 return NOTIFY_OK; 4034} 4035 4036void __init page_alloc_init(void) 4037{ 4038 hotcpu_notifier(page_alloc_cpu_notify, 0); 4039} 4040 4041/* 4042 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 4043 * or min_free_kbytes changes. 4044 */ 4045static void calculate_totalreserve_pages(void) 4046{ 4047 struct pglist_data *pgdat; 4048 unsigned long reserve_pages = 0; 4049 enum zone_type i, j; 4050 4051 for_each_online_pgdat(pgdat) { 4052 for (i = 0; i < MAX_NR_ZONES; i++) { 4053 struct zone *zone = pgdat->node_zones + i; 4054 unsigned long max = 0; 4055 4056 /* Find valid and maximum lowmem_reserve in the zone */ 4057 for (j = i; j < MAX_NR_ZONES; j++) { 4058 if (zone->lowmem_reserve[j] > max) 4059 max = zone->lowmem_reserve[j]; 4060 } 4061 4062 /* we treat pages_high as reserved pages. */ 4063 max += zone->pages_high; 4064 4065 if (max > zone->present_pages) 4066 max = zone->present_pages; 4067 reserve_pages += max; 4068 } 4069 } 4070 totalreserve_pages = reserve_pages; 4071} 4072 4073/* 4074 * setup_per_zone_lowmem_reserve - called whenever 4075 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 4076 * has a correct pages reserved value, so an adequate number of 4077 * pages are left in the zone after a successful __alloc_pages(). 4078 */ 4079static void setup_per_zone_lowmem_reserve(void) 4080{ 4081 struct pglist_data *pgdat; 4082 enum zone_type j, idx; 4083 4084 for_each_online_pgdat(pgdat) { 4085 for (j = 0; j < MAX_NR_ZONES; j++) { 4086 struct zone *zone = pgdat->node_zones + j; 4087 unsigned long present_pages = zone->present_pages; 4088 4089 zone->lowmem_reserve[j] = 0; 4090 4091 idx = j; 4092 while (idx) { 4093 struct zone *lower_zone; 4094 4095 idx--; 4096 4097 if (sysctl_lowmem_reserve_ratio[idx] < 1) 4098 sysctl_lowmem_reserve_ratio[idx] = 1; 4099 4100 lower_zone = pgdat->node_zones + idx; 4101 lower_zone->lowmem_reserve[j] = present_pages / 4102 sysctl_lowmem_reserve_ratio[idx]; 4103 present_pages += lower_zone->present_pages; 4104 } 4105 } 4106 } 4107 4108 /* update totalreserve_pages */ 4109 calculate_totalreserve_pages(); 4110} 4111 4112/** 4113 * setup_per_zone_pages_min - called when min_free_kbytes changes. 4114 * 4115 * Ensures that the pages_{min,low,high} values for each zone are set correctly 4116 * with respect to min_free_kbytes. 4117 */ 4118void setup_per_zone_pages_min(void) 4119{ 4120 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 4121 unsigned long lowmem_pages = 0; 4122 struct zone *zone; 4123 unsigned long flags; 4124 4125 /* Calculate total number of !ZONE_HIGHMEM pages */ 4126 for_each_zone(zone) { 4127 if (!is_highmem(zone)) 4128 lowmem_pages += zone->present_pages; 4129 } 4130 4131 for_each_zone(zone) { 4132 u64 tmp; 4133 4134 spin_lock_irqsave(&zone->lru_lock, flags); 4135 tmp = (u64)pages_min * zone->present_pages; 4136 do_div(tmp, lowmem_pages); 4137 if (is_highmem(zone)) { 4138 /* 4139 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 4140 * need highmem pages, so cap pages_min to a small 4141 * value here. 4142 * 4143 * The (pages_high-pages_low) and (pages_low-pages_min) 4144 * deltas controls asynch page reclaim, and so should 4145 * not be capped for highmem. 4146 */ 4147 int min_pages; 4148 4149 min_pages = zone->present_pages / 1024; 4150 if (min_pages < SWAP_CLUSTER_MAX) 4151 min_pages = SWAP_CLUSTER_MAX; 4152 if (min_pages > 128) 4153 min_pages = 128; 4154 zone->pages_min = min_pages; 4155 } else { 4156 /* 4157 * If it's a lowmem zone, reserve a number of pages 4158 * proportionate to the zone's size. 4159 */ 4160 zone->pages_min = tmp; 4161 } 4162 4163 zone->pages_low = zone->pages_min + (tmp >> 2); 4164 zone->pages_high = zone->pages_min + (tmp >> 1); 4165 setup_zone_migrate_reserve(zone); 4166 spin_unlock_irqrestore(&zone->lru_lock, flags); 4167 } 4168 4169 /* update totalreserve_pages */ 4170 calculate_totalreserve_pages(); 4171} 4172 4173/* 4174 * Initialise min_free_kbytes. 4175 * 4176 * For small machines we want it small (128k min). For large machines 4177 * we want it large (64MB max). But it is not linear, because network 4178 * bandwidth does not increase linearly with machine size. We use 4179 * 4180 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 4181 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 4182 * 4183 * which yields 4184 * 4185 * 16MB: 512k 4186 * 32MB: 724k 4187 * 64MB: 1024k 4188 * 128MB: 1448k 4189 * 256MB: 2048k 4190 * 512MB: 2896k 4191 * 1024MB: 4096k 4192 * 2048MB: 5792k 4193 * 4096MB: 8192k 4194 * 8192MB: 11584k 4195 * 16384MB: 16384k 4196 */ 4197static int __init init_per_zone_pages_min(void) 4198{ 4199 unsigned long lowmem_kbytes; 4200 4201 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 4202 4203 min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 4204 if (min_free_kbytes < 128) 4205 min_free_kbytes = 128; 4206 if (min_free_kbytes > 65536) 4207 min_free_kbytes = 65536; 4208 setup_per_zone_pages_min(); 4209 setup_per_zone_lowmem_reserve(); 4210 return 0; 4211} 4212module_init(init_per_zone_pages_min) 4213 4214/* 4215 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 4216 * that we can call two helper functions whenever min_free_kbytes 4217 * changes. 4218 */ 4219int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 4220 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 4221{ 4222 proc_dointvec(table, write, file, buffer, length, ppos); 4223 if (write) 4224 setup_per_zone_pages_min(); 4225 return 0; 4226} 4227 4228#ifdef CONFIG_NUMA 4229int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write, 4230 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 4231{ 4232 struct zone *zone; 4233 int rc; 4234 4235 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos); 4236 if (rc) 4237 return rc; 4238 4239 for_each_zone(zone) 4240 zone->min_unmapped_pages = (zone->present_pages * 4241 sysctl_min_unmapped_ratio) / 100; 4242 return 0; 4243} 4244 4245int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write, 4246 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 4247{ 4248 struct zone *zone; 4249 int rc; 4250 4251 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos); 4252 if (rc) 4253 return rc; 4254 4255 for_each_zone(zone) 4256 zone->min_slab_pages = (zone->present_pages * 4257 sysctl_min_slab_ratio) / 100; 4258 return 0; 4259} 4260#endif 4261 4262/* 4263 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 4264 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 4265 * whenever sysctl_lowmem_reserve_ratio changes. 4266 * 4267 * The reserve ratio obviously has absolutely no relation with the 4268 * pages_min watermarks. The lowmem reserve ratio can only make sense 4269 * if in function of the boot time zone sizes. 4270 */ 4271int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, 4272 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 4273{ 4274 proc_dointvec_minmax(table, write, file, buffer, length, ppos); 4275 setup_per_zone_lowmem_reserve(); 4276 return 0; 4277} 4278 4279/* 4280 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 4281 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist 4282 * can have before it gets flushed back to buddy allocator. 4283 */ 4284 4285int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, 4286 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 4287{ 4288 struct zone *zone; 4289 unsigned int cpu; 4290 int ret; 4291 4292 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos); 4293 if (!write || (ret == -EINVAL)) 4294 return ret; 4295 for_each_zone(zone) { 4296 for_each_online_cpu(cpu) { 4297 unsigned long high; 4298 high = zone->present_pages / percpu_pagelist_fraction; 4299 setup_pagelist_highmark(zone_pcp(zone, cpu), high); 4300 } 4301 } 4302 return 0; 4303} 4304 4305int hashdist = HASHDIST_DEFAULT; 4306 4307#ifdef CONFIG_NUMA 4308static int __init set_hashdist(char *str) 4309{ 4310 if (!str) 4311 return 0; 4312 hashdist = simple_strtoul(str, &str, 0); 4313 return 1; 4314} 4315__setup("hashdist=", set_hashdist); 4316#endif 4317 4318/* 4319 * allocate a large system hash table from bootmem 4320 * - it is assumed that the hash table must contain an exact power-of-2 4321 * quantity of entries 4322 * - limit is the number of hash buckets, not the total allocation size 4323 */ 4324void *__init alloc_large_system_hash(const char *tablename, 4325 unsigned long bucketsize, 4326 unsigned long numentries, 4327 int scale, 4328 int flags, 4329 unsigned int *_hash_shift, 4330 unsigned int *_hash_mask, 4331 unsigned long limit) 4332{ 4333 unsigned long long max = limit; 4334 unsigned long log2qty, size; 4335 void *table = NULL; 4336 4337 /* allow the kernel cmdline to have a say */ 4338 if (!numentries) { 4339 /* round applicable memory size up to nearest megabyte */ 4340 numentries = nr_kernel_pages; 4341 numentries += (1UL << (20 - PAGE_SHIFT)) - 1; 4342 numentries >>= 20 - PAGE_SHIFT; 4343 numentries <<= 20 - PAGE_SHIFT; 4344 4345 /* limit to 1 bucket per 2^scale bytes of low memory */ 4346 if (scale > PAGE_SHIFT) 4347 numentries >>= (scale - PAGE_SHIFT); 4348 else 4349 numentries <<= (PAGE_SHIFT - scale); 4350 4351 /* Make sure we've got at least a 0-order allocation.. */ 4352 if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 4353 numentries = PAGE_SIZE / bucketsize; 4354 } 4355 numentries = roundup_pow_of_two(numentries); 4356 4357 /* limit allocation size to 1/16 total memory by default */ 4358 if (max == 0) { 4359 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 4360 do_div(max, bucketsize); 4361 } 4362 4363 if (numentries > max) 4364 numentries = max; 4365 4366 log2qty = ilog2(numentries); 4367 4368 do { 4369 size = bucketsize << log2qty; 4370 if (flags & HASH_EARLY) 4371 table = alloc_bootmem(size); 4372 else if (hashdist) 4373 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 4374 else { 4375 unsigned long order = get_order(size); 4376 table = (void*) __get_free_pages(GFP_ATOMIC, order); 4377 /* 4378 * If bucketsize is not a power-of-two, we may free 4379 * some pages at the end of hash table. 4380 */ 4381 if (table) { 4382 unsigned long alloc_end = (unsigned long)table + 4383 (PAGE_SIZE << order); 4384 unsigned long used = (unsigned long)table + 4385 PAGE_ALIGN(size); 4386 split_page(virt_to_page(table), order); 4387 while (used < alloc_end) { 4388 free_page(used); 4389 used += PAGE_SIZE; 4390 } 4391 } 4392 } 4393 } while (!table && size > PAGE_SIZE && --log2qty); 4394 4395 if (!table) 4396 panic("Failed to allocate %s hash table\n", tablename); 4397 4398 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n", 4399 tablename, 4400 (1U << log2qty), 4401 ilog2(size) - PAGE_SHIFT, 4402 size); 4403 4404 if (_hash_shift) 4405 *_hash_shift = log2qty; 4406 if (_hash_mask) 4407 *_hash_mask = (1 << log2qty) - 1; 4408 4409 return table; 4410} 4411 4412#ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE 4413struct page *pfn_to_page(unsigned long pfn) 4414{ 4415 return __pfn_to_page(pfn); 4416} 4417unsigned long page_to_pfn(struct page *page) 4418{ 4419 return __page_to_pfn(page); 4420} 4421EXPORT_SYMBOL(pfn_to_page); 4422EXPORT_SYMBOL(page_to_pfn); 4423#endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */ 4424 4425/* Return a pointer to the bitmap storing bits affecting a block of pages */ 4426static inline unsigned long *get_pageblock_bitmap(struct zone *zone, 4427 unsigned long pfn) 4428{ 4429#ifdef CONFIG_SPARSEMEM 4430 return __pfn_to_section(pfn)->pageblock_flags; 4431#else 4432 return zone->pageblock_flags; 4433#endif /* CONFIG_SPARSEMEM */ 4434} 4435 4436static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) 4437{ 4438#ifdef CONFIG_SPARSEMEM 4439 pfn &= (PAGES_PER_SECTION-1); 4440 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 4441#else 4442 pfn = pfn - zone->zone_start_pfn; 4443 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 4444#endif /* CONFIG_SPARSEMEM */ 4445} 4446 4447/** 4448 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages 4449 * @page: The page within the block of interest 4450 * @start_bitidx: The first bit of interest to retrieve 4451 * @end_bitidx: The last bit of interest 4452 * returns pageblock_bits flags 4453 */ 4454unsigned long get_pageblock_flags_group(struct page *page, 4455 int start_bitidx, int end_bitidx) 4456{ 4457 struct zone *zone; 4458 unsigned long *bitmap; 4459 unsigned long pfn, bitidx; 4460 unsigned long flags = 0; 4461 unsigned long value = 1; 4462 4463 zone = page_zone(page); 4464 pfn = page_to_pfn(page); 4465 bitmap = get_pageblock_bitmap(zone, pfn); 4466 bitidx = pfn_to_bitidx(zone, pfn); 4467 4468 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 4469 if (test_bit(bitidx + start_bitidx, bitmap)) 4470 flags |= value; 4471 4472 return flags; 4473} 4474 4475/** 4476 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages 4477 * @page: The page within the block of interest 4478 * @start_bitidx: The first bit of interest 4479 * @end_bitidx: The last bit of interest 4480 * @flags: The flags to set 4481 */ 4482void set_pageblock_flags_group(struct page *page, unsigned long flags, 4483 int start_bitidx, int end_bitidx) 4484{ 4485 struct zone *zone; 4486 unsigned long *bitmap; 4487 unsigned long pfn, bitidx; 4488 unsigned long value = 1; 4489 4490 zone = page_zone(page); 4491 pfn = page_to_pfn(page); 4492 bitmap = get_pageblock_bitmap(zone, pfn); 4493 bitidx = pfn_to_bitidx(zone, pfn); 4494 VM_BUG_ON(pfn < zone->zone_start_pfn); 4495 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages); 4496 4497 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 4498 if (flags & value) 4499 __set_bit(bitidx + start_bitidx, bitmap); 4500 else 4501 __clear_bit(bitidx + start_bitidx, bitmap); 4502} 4503 4504/* 4505 * This is designed as sub function...plz see page_isolation.c also. 4506 * set/clear page block's type to be ISOLATE. 4507 * page allocater never alloc memory from ISOLATE block. 4508 */ 4509 4510int set_migratetype_isolate(struct page *page) 4511{ 4512 struct zone *zone; 4513 unsigned long flags; 4514 int ret = -EBUSY; 4515 4516 zone = page_zone(page); 4517 spin_lock_irqsave(&zone->lock, flags); 4518 /* 4519 * In future, more migrate types will be able to be isolation target. 4520 */ 4521 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE) 4522 goto out; 4523 set_pageblock_migratetype(page, MIGRATE_ISOLATE); 4524 move_freepages_block(zone, page, MIGRATE_ISOLATE); 4525 ret = 0; 4526out: 4527 spin_unlock_irqrestore(&zone->lock, flags); 4528 if (!ret) 4529 drain_all_pages(); 4530 return ret; 4531} 4532 4533void unset_migratetype_isolate(struct page *page) 4534{ 4535 struct zone *zone; 4536 unsigned long flags; 4537 zone = page_zone(page); 4538 spin_lock_irqsave(&zone->lock, flags); 4539 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE) 4540 goto out; 4541 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 4542 move_freepages_block(zone, page, MIGRATE_MOVABLE); 4543out: 4544 spin_unlock_irqrestore(&zone->lock, flags); 4545} 4546 4547#ifdef CONFIG_MEMORY_HOTREMOVE 4548/* 4549 * All pages in the range must be isolated before calling this. 4550 */ 4551void 4552__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 4553{ 4554 struct page *page; 4555 struct zone *zone; 4556 int order, i; 4557 unsigned long pfn; 4558 unsigned long flags; 4559 /* find the first valid pfn */ 4560 for (pfn = start_pfn; pfn < end_pfn; pfn++) 4561 if (pfn_valid(pfn)) 4562 break; 4563 if (pfn == end_pfn) 4564 return; 4565 zone = page_zone(pfn_to_page(pfn)); 4566 spin_lock_irqsave(&zone->lock, flags); 4567 pfn = start_pfn; 4568 while (pfn < end_pfn) { 4569 if (!pfn_valid(pfn)) { 4570 pfn++; 4571 continue; 4572 } 4573 page = pfn_to_page(pfn); 4574 BUG_ON(page_count(page)); 4575 BUG_ON(!PageBuddy(page)); 4576 order = page_order(page); 4577#ifdef CONFIG_DEBUG_VM 4578 printk(KERN_INFO "remove from free list %lx %d %lx\n", 4579 pfn, 1 << order, end_pfn); 4580#endif 4581 list_del(&page->lru); 4582 rmv_page_order(page); 4583 zone->free_area[order].nr_free--; 4584 __mod_zone_page_state(zone, NR_FREE_PAGES, 4585 - (1UL << order)); 4586 for (i = 0; i < (1 << order); i++) 4587 SetPageReserved((page+i)); 4588 pfn += (1 << order); 4589 } 4590 spin_unlock_irqrestore(&zone->lock, flags); 4591} 4592#endif