at v2.6.26-rc2 2812 lines 77 kB view raw
1/* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7/* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12/* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23/* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31/* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41#include <linux/kernel_stat.h> 42#include <linux/mm.h> 43#include <linux/hugetlb.h> 44#include <linux/mman.h> 45#include <linux/swap.h> 46#include <linux/highmem.h> 47#include <linux/pagemap.h> 48#include <linux/rmap.h> 49#include <linux/module.h> 50#include <linux/delayacct.h> 51#include <linux/init.h> 52#include <linux/writeback.h> 53#include <linux/memcontrol.h> 54 55#include <asm/pgalloc.h> 56#include <asm/uaccess.h> 57#include <asm/tlb.h> 58#include <asm/tlbflush.h> 59#include <asm/pgtable.h> 60 61#include <linux/swapops.h> 62#include <linux/elf.h> 63 64#ifndef CONFIG_NEED_MULTIPLE_NODES 65/* use the per-pgdat data instead for discontigmem - mbligh */ 66unsigned long max_mapnr; 67struct page *mem_map; 68 69EXPORT_SYMBOL(max_mapnr); 70EXPORT_SYMBOL(mem_map); 71#endif 72 73unsigned long num_physpages; 74/* 75 * A number of key systems in x86 including ioremap() rely on the assumption 76 * that high_memory defines the upper bound on direct map memory, then end 77 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 78 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 79 * and ZONE_HIGHMEM. 80 */ 81void * high_memory; 82 83EXPORT_SYMBOL(num_physpages); 84EXPORT_SYMBOL(high_memory); 85 86/* 87 * Randomize the address space (stacks, mmaps, brk, etc.). 88 * 89 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 90 * as ancient (libc5 based) binaries can segfault. ) 91 */ 92int randomize_va_space __read_mostly = 93#ifdef CONFIG_COMPAT_BRK 94 1; 95#else 96 2; 97#endif 98 99static int __init disable_randmaps(char *s) 100{ 101 randomize_va_space = 0; 102 return 1; 103} 104__setup("norandmaps", disable_randmaps); 105 106 107/* 108 * If a p?d_bad entry is found while walking page tables, report 109 * the error, before resetting entry to p?d_none. Usually (but 110 * very seldom) called out from the p?d_none_or_clear_bad macros. 111 */ 112 113void pgd_clear_bad(pgd_t *pgd) 114{ 115 pgd_ERROR(*pgd); 116 pgd_clear(pgd); 117} 118 119void pud_clear_bad(pud_t *pud) 120{ 121 pud_ERROR(*pud); 122 pud_clear(pud); 123} 124 125void pmd_clear_bad(pmd_t *pmd) 126{ 127 pmd_ERROR(*pmd); 128 pmd_clear(pmd); 129} 130 131/* 132 * Note: this doesn't free the actual pages themselves. That 133 * has been handled earlier when unmapping all the memory regions. 134 */ 135static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd) 136{ 137 pgtable_t token = pmd_pgtable(*pmd); 138 pmd_clear(pmd); 139 pte_free_tlb(tlb, token); 140 tlb->mm->nr_ptes--; 141} 142 143static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 144 unsigned long addr, unsigned long end, 145 unsigned long floor, unsigned long ceiling) 146{ 147 pmd_t *pmd; 148 unsigned long next; 149 unsigned long start; 150 151 start = addr; 152 pmd = pmd_offset(pud, addr); 153 do { 154 next = pmd_addr_end(addr, end); 155 if (pmd_none_or_clear_bad(pmd)) 156 continue; 157 free_pte_range(tlb, pmd); 158 } while (pmd++, addr = next, addr != end); 159 160 start &= PUD_MASK; 161 if (start < floor) 162 return; 163 if (ceiling) { 164 ceiling &= PUD_MASK; 165 if (!ceiling) 166 return; 167 } 168 if (end - 1 > ceiling - 1) 169 return; 170 171 pmd = pmd_offset(pud, start); 172 pud_clear(pud); 173 pmd_free_tlb(tlb, pmd); 174} 175 176static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 177 unsigned long addr, unsigned long end, 178 unsigned long floor, unsigned long ceiling) 179{ 180 pud_t *pud; 181 unsigned long next; 182 unsigned long start; 183 184 start = addr; 185 pud = pud_offset(pgd, addr); 186 do { 187 next = pud_addr_end(addr, end); 188 if (pud_none_or_clear_bad(pud)) 189 continue; 190 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 191 } while (pud++, addr = next, addr != end); 192 193 start &= PGDIR_MASK; 194 if (start < floor) 195 return; 196 if (ceiling) { 197 ceiling &= PGDIR_MASK; 198 if (!ceiling) 199 return; 200 } 201 if (end - 1 > ceiling - 1) 202 return; 203 204 pud = pud_offset(pgd, start); 205 pgd_clear(pgd); 206 pud_free_tlb(tlb, pud); 207} 208 209/* 210 * This function frees user-level page tables of a process. 211 * 212 * Must be called with pagetable lock held. 213 */ 214void free_pgd_range(struct mmu_gather **tlb, 215 unsigned long addr, unsigned long end, 216 unsigned long floor, unsigned long ceiling) 217{ 218 pgd_t *pgd; 219 unsigned long next; 220 unsigned long start; 221 222 /* 223 * The next few lines have given us lots of grief... 224 * 225 * Why are we testing PMD* at this top level? Because often 226 * there will be no work to do at all, and we'd prefer not to 227 * go all the way down to the bottom just to discover that. 228 * 229 * Why all these "- 1"s? Because 0 represents both the bottom 230 * of the address space and the top of it (using -1 for the 231 * top wouldn't help much: the masks would do the wrong thing). 232 * The rule is that addr 0 and floor 0 refer to the bottom of 233 * the address space, but end 0 and ceiling 0 refer to the top 234 * Comparisons need to use "end - 1" and "ceiling - 1" (though 235 * that end 0 case should be mythical). 236 * 237 * Wherever addr is brought up or ceiling brought down, we must 238 * be careful to reject "the opposite 0" before it confuses the 239 * subsequent tests. But what about where end is brought down 240 * by PMD_SIZE below? no, end can't go down to 0 there. 241 * 242 * Whereas we round start (addr) and ceiling down, by different 243 * masks at different levels, in order to test whether a table 244 * now has no other vmas using it, so can be freed, we don't 245 * bother to round floor or end up - the tests don't need that. 246 */ 247 248 addr &= PMD_MASK; 249 if (addr < floor) { 250 addr += PMD_SIZE; 251 if (!addr) 252 return; 253 } 254 if (ceiling) { 255 ceiling &= PMD_MASK; 256 if (!ceiling) 257 return; 258 } 259 if (end - 1 > ceiling - 1) 260 end -= PMD_SIZE; 261 if (addr > end - 1) 262 return; 263 264 start = addr; 265 pgd = pgd_offset((*tlb)->mm, addr); 266 do { 267 next = pgd_addr_end(addr, end); 268 if (pgd_none_or_clear_bad(pgd)) 269 continue; 270 free_pud_range(*tlb, pgd, addr, next, floor, ceiling); 271 } while (pgd++, addr = next, addr != end); 272} 273 274void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma, 275 unsigned long floor, unsigned long ceiling) 276{ 277 while (vma) { 278 struct vm_area_struct *next = vma->vm_next; 279 unsigned long addr = vma->vm_start; 280 281 /* 282 * Hide vma from rmap and vmtruncate before freeing pgtables 283 */ 284 anon_vma_unlink(vma); 285 unlink_file_vma(vma); 286 287 if (is_vm_hugetlb_page(vma)) { 288 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 289 floor, next? next->vm_start: ceiling); 290 } else { 291 /* 292 * Optimization: gather nearby vmas into one call down 293 */ 294 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 295 && !is_vm_hugetlb_page(next)) { 296 vma = next; 297 next = vma->vm_next; 298 anon_vma_unlink(vma); 299 unlink_file_vma(vma); 300 } 301 free_pgd_range(tlb, addr, vma->vm_end, 302 floor, next? next->vm_start: ceiling); 303 } 304 vma = next; 305 } 306} 307 308int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address) 309{ 310 pgtable_t new = pte_alloc_one(mm, address); 311 if (!new) 312 return -ENOMEM; 313 314 spin_lock(&mm->page_table_lock); 315 if (!pmd_present(*pmd)) { /* Has another populated it ? */ 316 mm->nr_ptes++; 317 pmd_populate(mm, pmd, new); 318 new = NULL; 319 } 320 spin_unlock(&mm->page_table_lock); 321 if (new) 322 pte_free(mm, new); 323 return 0; 324} 325 326int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) 327{ 328 pte_t *new = pte_alloc_one_kernel(&init_mm, address); 329 if (!new) 330 return -ENOMEM; 331 332 spin_lock(&init_mm.page_table_lock); 333 if (!pmd_present(*pmd)) { /* Has another populated it ? */ 334 pmd_populate_kernel(&init_mm, pmd, new); 335 new = NULL; 336 } 337 spin_unlock(&init_mm.page_table_lock); 338 if (new) 339 pte_free_kernel(&init_mm, new); 340 return 0; 341} 342 343static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss) 344{ 345 if (file_rss) 346 add_mm_counter(mm, file_rss, file_rss); 347 if (anon_rss) 348 add_mm_counter(mm, anon_rss, anon_rss); 349} 350 351/* 352 * This function is called to print an error when a bad pte 353 * is found. For example, we might have a PFN-mapped pte in 354 * a region that doesn't allow it. 355 * 356 * The calling function must still handle the error. 357 */ 358void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr) 359{ 360 printk(KERN_ERR "Bad pte = %08llx, process = %s, " 361 "vm_flags = %lx, vaddr = %lx\n", 362 (long long)pte_val(pte), 363 (vma->vm_mm == current->mm ? current->comm : "???"), 364 vma->vm_flags, vaddr); 365 dump_stack(); 366} 367 368static inline int is_cow_mapping(unsigned int flags) 369{ 370 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 371} 372 373/* 374 * vm_normal_page -- This function gets the "struct page" associated with a pte. 375 * 376 * "Special" mappings do not wish to be associated with a "struct page" (either 377 * it doesn't exist, or it exists but they don't want to touch it). In this 378 * case, NULL is returned here. "Normal" mappings do have a struct page. 379 * 380 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 381 * pte bit, in which case this function is trivial. Secondly, an architecture 382 * may not have a spare pte bit, which requires a more complicated scheme, 383 * described below. 384 * 385 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 386 * special mapping (even if there are underlying and valid "struct pages"). 387 * COWed pages of a VM_PFNMAP are always normal. 388 * 389 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 390 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 391 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 392 * mapping will always honor the rule 393 * 394 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 395 * 396 * And for normal mappings this is false. 397 * 398 * This restricts such mappings to be a linear translation from virtual address 399 * to pfn. To get around this restriction, we allow arbitrary mappings so long 400 * as the vma is not a COW mapping; in that case, we know that all ptes are 401 * special (because none can have been COWed). 402 * 403 * 404 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 405 * 406 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 407 * page" backing, however the difference is that _all_ pages with a struct 408 * page (that is, those where pfn_valid is true) are refcounted and considered 409 * normal pages by the VM. The disadvantage is that pages are refcounted 410 * (which can be slower and simply not an option for some PFNMAP users). The 411 * advantage is that we don't have to follow the strict linearity rule of 412 * PFNMAP mappings in order to support COWable mappings. 413 * 414 */ 415#ifdef __HAVE_ARCH_PTE_SPECIAL 416# define HAVE_PTE_SPECIAL 1 417#else 418# define HAVE_PTE_SPECIAL 0 419#endif 420struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 421 pte_t pte) 422{ 423 unsigned long pfn; 424 425 if (HAVE_PTE_SPECIAL) { 426 if (likely(!pte_special(pte))) { 427 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 428 return pte_page(pte); 429 } 430 VM_BUG_ON(!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 431 return NULL; 432 } 433 434 /* !HAVE_PTE_SPECIAL case follows: */ 435 436 pfn = pte_pfn(pte); 437 438 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 439 if (vma->vm_flags & VM_MIXEDMAP) { 440 if (!pfn_valid(pfn)) 441 return NULL; 442 goto out; 443 } else { 444 unsigned long off; 445 off = (addr - vma->vm_start) >> PAGE_SHIFT; 446 if (pfn == vma->vm_pgoff + off) 447 return NULL; 448 if (!is_cow_mapping(vma->vm_flags)) 449 return NULL; 450 } 451 } 452 453 VM_BUG_ON(!pfn_valid(pfn)); 454 455 /* 456 * NOTE! We still have PageReserved() pages in the page tables. 457 * 458 * eg. VDSO mappings can cause them to exist. 459 */ 460out: 461 return pfn_to_page(pfn); 462} 463 464/* 465 * copy one vm_area from one task to the other. Assumes the page tables 466 * already present in the new task to be cleared in the whole range 467 * covered by this vma. 468 */ 469 470static inline void 471copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 472 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 473 unsigned long addr, int *rss) 474{ 475 unsigned long vm_flags = vma->vm_flags; 476 pte_t pte = *src_pte; 477 struct page *page; 478 479 /* pte contains position in swap or file, so copy. */ 480 if (unlikely(!pte_present(pte))) { 481 if (!pte_file(pte)) { 482 swp_entry_t entry = pte_to_swp_entry(pte); 483 484 swap_duplicate(entry); 485 /* make sure dst_mm is on swapoff's mmlist. */ 486 if (unlikely(list_empty(&dst_mm->mmlist))) { 487 spin_lock(&mmlist_lock); 488 if (list_empty(&dst_mm->mmlist)) 489 list_add(&dst_mm->mmlist, 490 &src_mm->mmlist); 491 spin_unlock(&mmlist_lock); 492 } 493 if (is_write_migration_entry(entry) && 494 is_cow_mapping(vm_flags)) { 495 /* 496 * COW mappings require pages in both parent 497 * and child to be set to read. 498 */ 499 make_migration_entry_read(&entry); 500 pte = swp_entry_to_pte(entry); 501 set_pte_at(src_mm, addr, src_pte, pte); 502 } 503 } 504 goto out_set_pte; 505 } 506 507 /* 508 * If it's a COW mapping, write protect it both 509 * in the parent and the child 510 */ 511 if (is_cow_mapping(vm_flags)) { 512 ptep_set_wrprotect(src_mm, addr, src_pte); 513 pte = pte_wrprotect(pte); 514 } 515 516 /* 517 * If it's a shared mapping, mark it clean in 518 * the child 519 */ 520 if (vm_flags & VM_SHARED) 521 pte = pte_mkclean(pte); 522 pte = pte_mkold(pte); 523 524 page = vm_normal_page(vma, addr, pte); 525 if (page) { 526 get_page(page); 527 page_dup_rmap(page, vma, addr); 528 rss[!!PageAnon(page)]++; 529 } 530 531out_set_pte: 532 set_pte_at(dst_mm, addr, dst_pte, pte); 533} 534 535static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 536 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 537 unsigned long addr, unsigned long end) 538{ 539 pte_t *src_pte, *dst_pte; 540 spinlock_t *src_ptl, *dst_ptl; 541 int progress = 0; 542 int rss[2]; 543 544again: 545 rss[1] = rss[0] = 0; 546 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 547 if (!dst_pte) 548 return -ENOMEM; 549 src_pte = pte_offset_map_nested(src_pmd, addr); 550 src_ptl = pte_lockptr(src_mm, src_pmd); 551 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 552 arch_enter_lazy_mmu_mode(); 553 554 do { 555 /* 556 * We are holding two locks at this point - either of them 557 * could generate latencies in another task on another CPU. 558 */ 559 if (progress >= 32) { 560 progress = 0; 561 if (need_resched() || 562 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 563 break; 564 } 565 if (pte_none(*src_pte)) { 566 progress++; 567 continue; 568 } 569 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss); 570 progress += 8; 571 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 572 573 arch_leave_lazy_mmu_mode(); 574 spin_unlock(src_ptl); 575 pte_unmap_nested(src_pte - 1); 576 add_mm_rss(dst_mm, rss[0], rss[1]); 577 pte_unmap_unlock(dst_pte - 1, dst_ptl); 578 cond_resched(); 579 if (addr != end) 580 goto again; 581 return 0; 582} 583 584static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 585 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 586 unsigned long addr, unsigned long end) 587{ 588 pmd_t *src_pmd, *dst_pmd; 589 unsigned long next; 590 591 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 592 if (!dst_pmd) 593 return -ENOMEM; 594 src_pmd = pmd_offset(src_pud, addr); 595 do { 596 next = pmd_addr_end(addr, end); 597 if (pmd_none_or_clear_bad(src_pmd)) 598 continue; 599 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 600 vma, addr, next)) 601 return -ENOMEM; 602 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 603 return 0; 604} 605 606static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 607 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 608 unsigned long addr, unsigned long end) 609{ 610 pud_t *src_pud, *dst_pud; 611 unsigned long next; 612 613 dst_pud = pud_alloc(dst_mm, dst_pgd, addr); 614 if (!dst_pud) 615 return -ENOMEM; 616 src_pud = pud_offset(src_pgd, addr); 617 do { 618 next = pud_addr_end(addr, end); 619 if (pud_none_or_clear_bad(src_pud)) 620 continue; 621 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 622 vma, addr, next)) 623 return -ENOMEM; 624 } while (dst_pud++, src_pud++, addr = next, addr != end); 625 return 0; 626} 627 628int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 629 struct vm_area_struct *vma) 630{ 631 pgd_t *src_pgd, *dst_pgd; 632 unsigned long next; 633 unsigned long addr = vma->vm_start; 634 unsigned long end = vma->vm_end; 635 636 /* 637 * Don't copy ptes where a page fault will fill them correctly. 638 * Fork becomes much lighter when there are big shared or private 639 * readonly mappings. The tradeoff is that copy_page_range is more 640 * efficient than faulting. 641 */ 642 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) { 643 if (!vma->anon_vma) 644 return 0; 645 } 646 647 if (is_vm_hugetlb_page(vma)) 648 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 649 650 dst_pgd = pgd_offset(dst_mm, addr); 651 src_pgd = pgd_offset(src_mm, addr); 652 do { 653 next = pgd_addr_end(addr, end); 654 if (pgd_none_or_clear_bad(src_pgd)) 655 continue; 656 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, 657 vma, addr, next)) 658 return -ENOMEM; 659 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 660 return 0; 661} 662 663static unsigned long zap_pte_range(struct mmu_gather *tlb, 664 struct vm_area_struct *vma, pmd_t *pmd, 665 unsigned long addr, unsigned long end, 666 long *zap_work, struct zap_details *details) 667{ 668 struct mm_struct *mm = tlb->mm; 669 pte_t *pte; 670 spinlock_t *ptl; 671 int file_rss = 0; 672 int anon_rss = 0; 673 674 pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 675 arch_enter_lazy_mmu_mode(); 676 do { 677 pte_t ptent = *pte; 678 if (pte_none(ptent)) { 679 (*zap_work)--; 680 continue; 681 } 682 683 (*zap_work) -= PAGE_SIZE; 684 685 if (pte_present(ptent)) { 686 struct page *page; 687 688 page = vm_normal_page(vma, addr, ptent); 689 if (unlikely(details) && page) { 690 /* 691 * unmap_shared_mapping_pages() wants to 692 * invalidate cache without truncating: 693 * unmap shared but keep private pages. 694 */ 695 if (details->check_mapping && 696 details->check_mapping != page->mapping) 697 continue; 698 /* 699 * Each page->index must be checked when 700 * invalidating or truncating nonlinear. 701 */ 702 if (details->nonlinear_vma && 703 (page->index < details->first_index || 704 page->index > details->last_index)) 705 continue; 706 } 707 ptent = ptep_get_and_clear_full(mm, addr, pte, 708 tlb->fullmm); 709 tlb_remove_tlb_entry(tlb, pte, addr); 710 if (unlikely(!page)) 711 continue; 712 if (unlikely(details) && details->nonlinear_vma 713 && linear_page_index(details->nonlinear_vma, 714 addr) != page->index) 715 set_pte_at(mm, addr, pte, 716 pgoff_to_pte(page->index)); 717 if (PageAnon(page)) 718 anon_rss--; 719 else { 720 if (pte_dirty(ptent)) 721 set_page_dirty(page); 722 if (pte_young(ptent)) 723 SetPageReferenced(page); 724 file_rss--; 725 } 726 page_remove_rmap(page, vma); 727 tlb_remove_page(tlb, page); 728 continue; 729 } 730 /* 731 * If details->check_mapping, we leave swap entries; 732 * if details->nonlinear_vma, we leave file entries. 733 */ 734 if (unlikely(details)) 735 continue; 736 if (!pte_file(ptent)) 737 free_swap_and_cache(pte_to_swp_entry(ptent)); 738 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 739 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0)); 740 741 add_mm_rss(mm, file_rss, anon_rss); 742 arch_leave_lazy_mmu_mode(); 743 pte_unmap_unlock(pte - 1, ptl); 744 745 return addr; 746} 747 748static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 749 struct vm_area_struct *vma, pud_t *pud, 750 unsigned long addr, unsigned long end, 751 long *zap_work, struct zap_details *details) 752{ 753 pmd_t *pmd; 754 unsigned long next; 755 756 pmd = pmd_offset(pud, addr); 757 do { 758 next = pmd_addr_end(addr, end); 759 if (pmd_none_or_clear_bad(pmd)) { 760 (*zap_work)--; 761 continue; 762 } 763 next = zap_pte_range(tlb, vma, pmd, addr, next, 764 zap_work, details); 765 } while (pmd++, addr = next, (addr != end && *zap_work > 0)); 766 767 return addr; 768} 769 770static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 771 struct vm_area_struct *vma, pgd_t *pgd, 772 unsigned long addr, unsigned long end, 773 long *zap_work, struct zap_details *details) 774{ 775 pud_t *pud; 776 unsigned long next; 777 778 pud = pud_offset(pgd, addr); 779 do { 780 next = pud_addr_end(addr, end); 781 if (pud_none_or_clear_bad(pud)) { 782 (*zap_work)--; 783 continue; 784 } 785 next = zap_pmd_range(tlb, vma, pud, addr, next, 786 zap_work, details); 787 } while (pud++, addr = next, (addr != end && *zap_work > 0)); 788 789 return addr; 790} 791 792static unsigned long unmap_page_range(struct mmu_gather *tlb, 793 struct vm_area_struct *vma, 794 unsigned long addr, unsigned long end, 795 long *zap_work, struct zap_details *details) 796{ 797 pgd_t *pgd; 798 unsigned long next; 799 800 if (details && !details->check_mapping && !details->nonlinear_vma) 801 details = NULL; 802 803 BUG_ON(addr >= end); 804 tlb_start_vma(tlb, vma); 805 pgd = pgd_offset(vma->vm_mm, addr); 806 do { 807 next = pgd_addr_end(addr, end); 808 if (pgd_none_or_clear_bad(pgd)) { 809 (*zap_work)--; 810 continue; 811 } 812 next = zap_pud_range(tlb, vma, pgd, addr, next, 813 zap_work, details); 814 } while (pgd++, addr = next, (addr != end && *zap_work > 0)); 815 tlb_end_vma(tlb, vma); 816 817 return addr; 818} 819 820#ifdef CONFIG_PREEMPT 821# define ZAP_BLOCK_SIZE (8 * PAGE_SIZE) 822#else 823/* No preempt: go for improved straight-line efficiency */ 824# define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE) 825#endif 826 827/** 828 * unmap_vmas - unmap a range of memory covered by a list of vma's 829 * @tlbp: address of the caller's struct mmu_gather 830 * @vma: the starting vma 831 * @start_addr: virtual address at which to start unmapping 832 * @end_addr: virtual address at which to end unmapping 833 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here 834 * @details: details of nonlinear truncation or shared cache invalidation 835 * 836 * Returns the end address of the unmapping (restart addr if interrupted). 837 * 838 * Unmap all pages in the vma list. 839 * 840 * We aim to not hold locks for too long (for scheduling latency reasons). 841 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to 842 * return the ending mmu_gather to the caller. 843 * 844 * Only addresses between `start' and `end' will be unmapped. 845 * 846 * The VMA list must be sorted in ascending virtual address order. 847 * 848 * unmap_vmas() assumes that the caller will flush the whole unmapped address 849 * range after unmap_vmas() returns. So the only responsibility here is to 850 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 851 * drops the lock and schedules. 852 */ 853unsigned long unmap_vmas(struct mmu_gather **tlbp, 854 struct vm_area_struct *vma, unsigned long start_addr, 855 unsigned long end_addr, unsigned long *nr_accounted, 856 struct zap_details *details) 857{ 858 long zap_work = ZAP_BLOCK_SIZE; 859 unsigned long tlb_start = 0; /* For tlb_finish_mmu */ 860 int tlb_start_valid = 0; 861 unsigned long start = start_addr; 862 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL; 863 int fullmm = (*tlbp)->fullmm; 864 865 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) { 866 unsigned long end; 867 868 start = max(vma->vm_start, start_addr); 869 if (start >= vma->vm_end) 870 continue; 871 end = min(vma->vm_end, end_addr); 872 if (end <= vma->vm_start) 873 continue; 874 875 if (vma->vm_flags & VM_ACCOUNT) 876 *nr_accounted += (end - start) >> PAGE_SHIFT; 877 878 while (start != end) { 879 if (!tlb_start_valid) { 880 tlb_start = start; 881 tlb_start_valid = 1; 882 } 883 884 if (unlikely(is_vm_hugetlb_page(vma))) { 885 unmap_hugepage_range(vma, start, end); 886 zap_work -= (end - start) / 887 (HPAGE_SIZE / PAGE_SIZE); 888 start = end; 889 } else 890 start = unmap_page_range(*tlbp, vma, 891 start, end, &zap_work, details); 892 893 if (zap_work > 0) { 894 BUG_ON(start != end); 895 break; 896 } 897 898 tlb_finish_mmu(*tlbp, tlb_start, start); 899 900 if (need_resched() || 901 (i_mmap_lock && spin_needbreak(i_mmap_lock))) { 902 if (i_mmap_lock) { 903 *tlbp = NULL; 904 goto out; 905 } 906 cond_resched(); 907 } 908 909 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm); 910 tlb_start_valid = 0; 911 zap_work = ZAP_BLOCK_SIZE; 912 } 913 } 914out: 915 return start; /* which is now the end (or restart) address */ 916} 917 918/** 919 * zap_page_range - remove user pages in a given range 920 * @vma: vm_area_struct holding the applicable pages 921 * @address: starting address of pages to zap 922 * @size: number of bytes to zap 923 * @details: details of nonlinear truncation or shared cache invalidation 924 */ 925unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, 926 unsigned long size, struct zap_details *details) 927{ 928 struct mm_struct *mm = vma->vm_mm; 929 struct mmu_gather *tlb; 930 unsigned long end = address + size; 931 unsigned long nr_accounted = 0; 932 933 lru_add_drain(); 934 tlb = tlb_gather_mmu(mm, 0); 935 update_hiwater_rss(mm); 936 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details); 937 if (tlb) 938 tlb_finish_mmu(tlb, address, end); 939 return end; 940} 941 942/* 943 * Do a quick page-table lookup for a single page. 944 */ 945struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 946 unsigned int flags) 947{ 948 pgd_t *pgd; 949 pud_t *pud; 950 pmd_t *pmd; 951 pte_t *ptep, pte; 952 spinlock_t *ptl; 953 struct page *page; 954 struct mm_struct *mm = vma->vm_mm; 955 956 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 957 if (!IS_ERR(page)) { 958 BUG_ON(flags & FOLL_GET); 959 goto out; 960 } 961 962 page = NULL; 963 pgd = pgd_offset(mm, address); 964 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 965 goto no_page_table; 966 967 pud = pud_offset(pgd, address); 968 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 969 goto no_page_table; 970 971 pmd = pmd_offset(pud, address); 972 if (pmd_none(*pmd)) 973 goto no_page_table; 974 975 if (pmd_huge(*pmd)) { 976 BUG_ON(flags & FOLL_GET); 977 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); 978 goto out; 979 } 980 981 if (unlikely(pmd_bad(*pmd))) 982 goto no_page_table; 983 984 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 985 if (!ptep) 986 goto out; 987 988 pte = *ptep; 989 if (!pte_present(pte)) 990 goto unlock; 991 if ((flags & FOLL_WRITE) && !pte_write(pte)) 992 goto unlock; 993 page = vm_normal_page(vma, address, pte); 994 if (unlikely(!page)) 995 goto unlock; 996 997 if (flags & FOLL_GET) 998 get_page(page); 999 if (flags & FOLL_TOUCH) { 1000 if ((flags & FOLL_WRITE) && 1001 !pte_dirty(pte) && !PageDirty(page)) 1002 set_page_dirty(page); 1003 mark_page_accessed(page); 1004 } 1005unlock: 1006 pte_unmap_unlock(ptep, ptl); 1007out: 1008 return page; 1009 1010no_page_table: 1011 /* 1012 * When core dumping an enormous anonymous area that nobody 1013 * has touched so far, we don't want to allocate page tables. 1014 */ 1015 if (flags & FOLL_ANON) { 1016 page = ZERO_PAGE(0); 1017 if (flags & FOLL_GET) 1018 get_page(page); 1019 BUG_ON(flags & FOLL_WRITE); 1020 } 1021 return page; 1022} 1023 1024int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1025 unsigned long start, int len, int write, int force, 1026 struct page **pages, struct vm_area_struct **vmas) 1027{ 1028 int i; 1029 unsigned int vm_flags; 1030 1031 if (len <= 0) 1032 return 0; 1033 /* 1034 * Require read or write permissions. 1035 * If 'force' is set, we only require the "MAY" flags. 1036 */ 1037 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1038 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1039 i = 0; 1040 1041 do { 1042 struct vm_area_struct *vma; 1043 unsigned int foll_flags; 1044 1045 vma = find_extend_vma(mm, start); 1046 if (!vma && in_gate_area(tsk, start)) { 1047 unsigned long pg = start & PAGE_MASK; 1048 struct vm_area_struct *gate_vma = get_gate_vma(tsk); 1049 pgd_t *pgd; 1050 pud_t *pud; 1051 pmd_t *pmd; 1052 pte_t *pte; 1053 if (write) /* user gate pages are read-only */ 1054 return i ? : -EFAULT; 1055 if (pg > TASK_SIZE) 1056 pgd = pgd_offset_k(pg); 1057 else 1058 pgd = pgd_offset_gate(mm, pg); 1059 BUG_ON(pgd_none(*pgd)); 1060 pud = pud_offset(pgd, pg); 1061 BUG_ON(pud_none(*pud)); 1062 pmd = pmd_offset(pud, pg); 1063 if (pmd_none(*pmd)) 1064 return i ? : -EFAULT; 1065 pte = pte_offset_map(pmd, pg); 1066 if (pte_none(*pte)) { 1067 pte_unmap(pte); 1068 return i ? : -EFAULT; 1069 } 1070 if (pages) { 1071 struct page *page = vm_normal_page(gate_vma, start, *pte); 1072 pages[i] = page; 1073 if (page) 1074 get_page(page); 1075 } 1076 pte_unmap(pte); 1077 if (vmas) 1078 vmas[i] = gate_vma; 1079 i++; 1080 start += PAGE_SIZE; 1081 len--; 1082 continue; 1083 } 1084 1085 if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1086 || !(vm_flags & vma->vm_flags)) 1087 return i ? : -EFAULT; 1088 1089 if (is_vm_hugetlb_page(vma)) { 1090 i = follow_hugetlb_page(mm, vma, pages, vmas, 1091 &start, &len, i, write); 1092 continue; 1093 } 1094 1095 foll_flags = FOLL_TOUCH; 1096 if (pages) 1097 foll_flags |= FOLL_GET; 1098 if (!write && !(vma->vm_flags & VM_LOCKED) && 1099 (!vma->vm_ops || !vma->vm_ops->fault)) 1100 foll_flags |= FOLL_ANON; 1101 1102 do { 1103 struct page *page; 1104 1105 /* 1106 * If tsk is ooming, cut off its access to large memory 1107 * allocations. It has a pending SIGKILL, but it can't 1108 * be processed until returning to user space. 1109 */ 1110 if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE))) 1111 return -ENOMEM; 1112 1113 if (write) 1114 foll_flags |= FOLL_WRITE; 1115 1116 cond_resched(); 1117 while (!(page = follow_page(vma, start, foll_flags))) { 1118 int ret; 1119 ret = handle_mm_fault(mm, vma, start, 1120 foll_flags & FOLL_WRITE); 1121 if (ret & VM_FAULT_ERROR) { 1122 if (ret & VM_FAULT_OOM) 1123 return i ? i : -ENOMEM; 1124 else if (ret & VM_FAULT_SIGBUS) 1125 return i ? i : -EFAULT; 1126 BUG(); 1127 } 1128 if (ret & VM_FAULT_MAJOR) 1129 tsk->maj_flt++; 1130 else 1131 tsk->min_flt++; 1132 1133 /* 1134 * The VM_FAULT_WRITE bit tells us that 1135 * do_wp_page has broken COW when necessary, 1136 * even if maybe_mkwrite decided not to set 1137 * pte_write. We can thus safely do subsequent 1138 * page lookups as if they were reads. 1139 */ 1140 if (ret & VM_FAULT_WRITE) 1141 foll_flags &= ~FOLL_WRITE; 1142 1143 cond_resched(); 1144 } 1145 if (pages) { 1146 pages[i] = page; 1147 1148 flush_anon_page(vma, page, start); 1149 flush_dcache_page(page); 1150 } 1151 if (vmas) 1152 vmas[i] = vma; 1153 i++; 1154 start += PAGE_SIZE; 1155 len--; 1156 } while (len && start < vma->vm_end); 1157 } while (len); 1158 return i; 1159} 1160EXPORT_SYMBOL(get_user_pages); 1161 1162pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1163 spinlock_t **ptl) 1164{ 1165 pgd_t * pgd = pgd_offset(mm, addr); 1166 pud_t * pud = pud_alloc(mm, pgd, addr); 1167 if (pud) { 1168 pmd_t * pmd = pmd_alloc(mm, pud, addr); 1169 if (pmd) 1170 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1171 } 1172 return NULL; 1173} 1174 1175/* 1176 * This is the old fallback for page remapping. 1177 * 1178 * For historical reasons, it only allows reserved pages. Only 1179 * old drivers should use this, and they needed to mark their 1180 * pages reserved for the old functions anyway. 1181 */ 1182static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1183 struct page *page, pgprot_t prot) 1184{ 1185 struct mm_struct *mm = vma->vm_mm; 1186 int retval; 1187 pte_t *pte; 1188 spinlock_t *ptl; 1189 1190 retval = mem_cgroup_charge(page, mm, GFP_KERNEL); 1191 if (retval) 1192 goto out; 1193 1194 retval = -EINVAL; 1195 if (PageAnon(page)) 1196 goto out_uncharge; 1197 retval = -ENOMEM; 1198 flush_dcache_page(page); 1199 pte = get_locked_pte(mm, addr, &ptl); 1200 if (!pte) 1201 goto out_uncharge; 1202 retval = -EBUSY; 1203 if (!pte_none(*pte)) 1204 goto out_unlock; 1205 1206 /* Ok, finally just insert the thing.. */ 1207 get_page(page); 1208 inc_mm_counter(mm, file_rss); 1209 page_add_file_rmap(page); 1210 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1211 1212 retval = 0; 1213 pte_unmap_unlock(pte, ptl); 1214 return retval; 1215out_unlock: 1216 pte_unmap_unlock(pte, ptl); 1217out_uncharge: 1218 mem_cgroup_uncharge_page(page); 1219out: 1220 return retval; 1221} 1222 1223/** 1224 * vm_insert_page - insert single page into user vma 1225 * @vma: user vma to map to 1226 * @addr: target user address of this page 1227 * @page: source kernel page 1228 * 1229 * This allows drivers to insert individual pages they've allocated 1230 * into a user vma. 1231 * 1232 * The page has to be a nice clean _individual_ kernel allocation. 1233 * If you allocate a compound page, you need to have marked it as 1234 * such (__GFP_COMP), or manually just split the page up yourself 1235 * (see split_page()). 1236 * 1237 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1238 * took an arbitrary page protection parameter. This doesn't allow 1239 * that. Your vma protection will have to be set up correctly, which 1240 * means that if you want a shared writable mapping, you'd better 1241 * ask for a shared writable mapping! 1242 * 1243 * The page does not need to be reserved. 1244 */ 1245int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1246 struct page *page) 1247{ 1248 if (addr < vma->vm_start || addr >= vma->vm_end) 1249 return -EFAULT; 1250 if (!page_count(page)) 1251 return -EINVAL; 1252 vma->vm_flags |= VM_INSERTPAGE; 1253 return insert_page(vma, addr, page, vma->vm_page_prot); 1254} 1255EXPORT_SYMBOL(vm_insert_page); 1256 1257static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1258 unsigned long pfn, pgprot_t prot) 1259{ 1260 struct mm_struct *mm = vma->vm_mm; 1261 int retval; 1262 pte_t *pte, entry; 1263 spinlock_t *ptl; 1264 1265 retval = -ENOMEM; 1266 pte = get_locked_pte(mm, addr, &ptl); 1267 if (!pte) 1268 goto out; 1269 retval = -EBUSY; 1270 if (!pte_none(*pte)) 1271 goto out_unlock; 1272 1273 /* Ok, finally just insert the thing.. */ 1274 entry = pte_mkspecial(pfn_pte(pfn, prot)); 1275 set_pte_at(mm, addr, pte, entry); 1276 update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */ 1277 1278 retval = 0; 1279out_unlock: 1280 pte_unmap_unlock(pte, ptl); 1281out: 1282 return retval; 1283} 1284 1285/** 1286 * vm_insert_pfn - insert single pfn into user vma 1287 * @vma: user vma to map to 1288 * @addr: target user address of this page 1289 * @pfn: source kernel pfn 1290 * 1291 * Similar to vm_inert_page, this allows drivers to insert individual pages 1292 * they've allocated into a user vma. Same comments apply. 1293 * 1294 * This function should only be called from a vm_ops->fault handler, and 1295 * in that case the handler should return NULL. 1296 */ 1297int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1298 unsigned long pfn) 1299{ 1300 /* 1301 * Technically, architectures with pte_special can avoid all these 1302 * restrictions (same for remap_pfn_range). However we would like 1303 * consistency in testing and feature parity among all, so we should 1304 * try to keep these invariants in place for everybody. 1305 */ 1306 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 1307 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1308 (VM_PFNMAP|VM_MIXEDMAP)); 1309 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1310 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 1311 1312 if (addr < vma->vm_start || addr >= vma->vm_end) 1313 return -EFAULT; 1314 return insert_pfn(vma, addr, pfn, vma->vm_page_prot); 1315} 1316EXPORT_SYMBOL(vm_insert_pfn); 1317 1318int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1319 unsigned long pfn) 1320{ 1321 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP)); 1322 1323 if (addr < vma->vm_start || addr >= vma->vm_end) 1324 return -EFAULT; 1325 1326 /* 1327 * If we don't have pte special, then we have to use the pfn_valid() 1328 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 1329 * refcount the page if pfn_valid is true (hence insert_page rather 1330 * than insert_pfn). 1331 */ 1332 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) { 1333 struct page *page; 1334 1335 page = pfn_to_page(pfn); 1336 return insert_page(vma, addr, page, vma->vm_page_prot); 1337 } 1338 return insert_pfn(vma, addr, pfn, vma->vm_page_prot); 1339} 1340EXPORT_SYMBOL(vm_insert_mixed); 1341 1342/* 1343 * maps a range of physical memory into the requested pages. the old 1344 * mappings are removed. any references to nonexistent pages results 1345 * in null mappings (currently treated as "copy-on-access") 1346 */ 1347static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1348 unsigned long addr, unsigned long end, 1349 unsigned long pfn, pgprot_t prot) 1350{ 1351 pte_t *pte; 1352 spinlock_t *ptl; 1353 1354 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1355 if (!pte) 1356 return -ENOMEM; 1357 arch_enter_lazy_mmu_mode(); 1358 do { 1359 BUG_ON(!pte_none(*pte)); 1360 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 1361 pfn++; 1362 } while (pte++, addr += PAGE_SIZE, addr != end); 1363 arch_leave_lazy_mmu_mode(); 1364 pte_unmap_unlock(pte - 1, ptl); 1365 return 0; 1366} 1367 1368static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 1369 unsigned long addr, unsigned long end, 1370 unsigned long pfn, pgprot_t prot) 1371{ 1372 pmd_t *pmd; 1373 unsigned long next; 1374 1375 pfn -= addr >> PAGE_SHIFT; 1376 pmd = pmd_alloc(mm, pud, addr); 1377 if (!pmd) 1378 return -ENOMEM; 1379 do { 1380 next = pmd_addr_end(addr, end); 1381 if (remap_pte_range(mm, pmd, addr, next, 1382 pfn + (addr >> PAGE_SHIFT), prot)) 1383 return -ENOMEM; 1384 } while (pmd++, addr = next, addr != end); 1385 return 0; 1386} 1387 1388static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, 1389 unsigned long addr, unsigned long end, 1390 unsigned long pfn, pgprot_t prot) 1391{ 1392 pud_t *pud; 1393 unsigned long next; 1394 1395 pfn -= addr >> PAGE_SHIFT; 1396 pud = pud_alloc(mm, pgd, addr); 1397 if (!pud) 1398 return -ENOMEM; 1399 do { 1400 next = pud_addr_end(addr, end); 1401 if (remap_pmd_range(mm, pud, addr, next, 1402 pfn + (addr >> PAGE_SHIFT), prot)) 1403 return -ENOMEM; 1404 } while (pud++, addr = next, addr != end); 1405 return 0; 1406} 1407 1408/** 1409 * remap_pfn_range - remap kernel memory to userspace 1410 * @vma: user vma to map to 1411 * @addr: target user address to start at 1412 * @pfn: physical address of kernel memory 1413 * @size: size of map area 1414 * @prot: page protection flags for this mapping 1415 * 1416 * Note: this is only safe if the mm semaphore is held when called. 1417 */ 1418int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1419 unsigned long pfn, unsigned long size, pgprot_t prot) 1420{ 1421 pgd_t *pgd; 1422 unsigned long next; 1423 unsigned long end = addr + PAGE_ALIGN(size); 1424 struct mm_struct *mm = vma->vm_mm; 1425 int err; 1426 1427 /* 1428 * Physically remapped pages are special. Tell the 1429 * rest of the world about it: 1430 * VM_IO tells people not to look at these pages 1431 * (accesses can have side effects). 1432 * VM_RESERVED is specified all over the place, because 1433 * in 2.4 it kept swapout's vma scan off this vma; but 1434 * in 2.6 the LRU scan won't even find its pages, so this 1435 * flag means no more than count its pages in reserved_vm, 1436 * and omit it from core dump, even when VM_IO turned off. 1437 * VM_PFNMAP tells the core MM that the base pages are just 1438 * raw PFN mappings, and do not have a "struct page" associated 1439 * with them. 1440 * 1441 * There's a horrible special case to handle copy-on-write 1442 * behaviour that some programs depend on. We mark the "original" 1443 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 1444 */ 1445 if (is_cow_mapping(vma->vm_flags)) { 1446 if (addr != vma->vm_start || end != vma->vm_end) 1447 return -EINVAL; 1448 vma->vm_pgoff = pfn; 1449 } 1450 1451 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP; 1452 1453 BUG_ON(addr >= end); 1454 pfn -= addr >> PAGE_SHIFT; 1455 pgd = pgd_offset(mm, addr); 1456 flush_cache_range(vma, addr, end); 1457 do { 1458 next = pgd_addr_end(addr, end); 1459 err = remap_pud_range(mm, pgd, addr, next, 1460 pfn + (addr >> PAGE_SHIFT), prot); 1461 if (err) 1462 break; 1463 } while (pgd++, addr = next, addr != end); 1464 return err; 1465} 1466EXPORT_SYMBOL(remap_pfn_range); 1467 1468static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 1469 unsigned long addr, unsigned long end, 1470 pte_fn_t fn, void *data) 1471{ 1472 pte_t *pte; 1473 int err; 1474 pgtable_t token; 1475 spinlock_t *uninitialized_var(ptl); 1476 1477 pte = (mm == &init_mm) ? 1478 pte_alloc_kernel(pmd, addr) : 1479 pte_alloc_map_lock(mm, pmd, addr, &ptl); 1480 if (!pte) 1481 return -ENOMEM; 1482 1483 BUG_ON(pmd_huge(*pmd)); 1484 1485 token = pmd_pgtable(*pmd); 1486 1487 do { 1488 err = fn(pte, token, addr, data); 1489 if (err) 1490 break; 1491 } while (pte++, addr += PAGE_SIZE, addr != end); 1492 1493 if (mm != &init_mm) 1494 pte_unmap_unlock(pte-1, ptl); 1495 return err; 1496} 1497 1498static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 1499 unsigned long addr, unsigned long end, 1500 pte_fn_t fn, void *data) 1501{ 1502 pmd_t *pmd; 1503 unsigned long next; 1504 int err; 1505 1506 pmd = pmd_alloc(mm, pud, addr); 1507 if (!pmd) 1508 return -ENOMEM; 1509 do { 1510 next = pmd_addr_end(addr, end); 1511 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 1512 if (err) 1513 break; 1514 } while (pmd++, addr = next, addr != end); 1515 return err; 1516} 1517 1518static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd, 1519 unsigned long addr, unsigned long end, 1520 pte_fn_t fn, void *data) 1521{ 1522 pud_t *pud; 1523 unsigned long next; 1524 int err; 1525 1526 pud = pud_alloc(mm, pgd, addr); 1527 if (!pud) 1528 return -ENOMEM; 1529 do { 1530 next = pud_addr_end(addr, end); 1531 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 1532 if (err) 1533 break; 1534 } while (pud++, addr = next, addr != end); 1535 return err; 1536} 1537 1538/* 1539 * Scan a region of virtual memory, filling in page tables as necessary 1540 * and calling a provided function on each leaf page table. 1541 */ 1542int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 1543 unsigned long size, pte_fn_t fn, void *data) 1544{ 1545 pgd_t *pgd; 1546 unsigned long next; 1547 unsigned long end = addr + size; 1548 int err; 1549 1550 BUG_ON(addr >= end); 1551 pgd = pgd_offset(mm, addr); 1552 do { 1553 next = pgd_addr_end(addr, end); 1554 err = apply_to_pud_range(mm, pgd, addr, next, fn, data); 1555 if (err) 1556 break; 1557 } while (pgd++, addr = next, addr != end); 1558 return err; 1559} 1560EXPORT_SYMBOL_GPL(apply_to_page_range); 1561 1562/* 1563 * handle_pte_fault chooses page fault handler according to an entry 1564 * which was read non-atomically. Before making any commitment, on 1565 * those architectures or configurations (e.g. i386 with PAE) which 1566 * might give a mix of unmatched parts, do_swap_page and do_file_page 1567 * must check under lock before unmapping the pte and proceeding 1568 * (but do_wp_page is only called after already making such a check; 1569 * and do_anonymous_page and do_no_page can safely check later on). 1570 */ 1571static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 1572 pte_t *page_table, pte_t orig_pte) 1573{ 1574 int same = 1; 1575#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 1576 if (sizeof(pte_t) > sizeof(unsigned long)) { 1577 spinlock_t *ptl = pte_lockptr(mm, pmd); 1578 spin_lock(ptl); 1579 same = pte_same(*page_table, orig_pte); 1580 spin_unlock(ptl); 1581 } 1582#endif 1583 pte_unmap(page_table); 1584 return same; 1585} 1586 1587/* 1588 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 1589 * servicing faults for write access. In the normal case, do always want 1590 * pte_mkwrite. But get_user_pages can cause write faults for mappings 1591 * that do not have writing enabled, when used by access_process_vm. 1592 */ 1593static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 1594{ 1595 if (likely(vma->vm_flags & VM_WRITE)) 1596 pte = pte_mkwrite(pte); 1597 return pte; 1598} 1599 1600static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 1601{ 1602 /* 1603 * If the source page was a PFN mapping, we don't have 1604 * a "struct page" for it. We do a best-effort copy by 1605 * just copying from the original user address. If that 1606 * fails, we just zero-fill it. Live with it. 1607 */ 1608 if (unlikely(!src)) { 1609 void *kaddr = kmap_atomic(dst, KM_USER0); 1610 void __user *uaddr = (void __user *)(va & PAGE_MASK); 1611 1612 /* 1613 * This really shouldn't fail, because the page is there 1614 * in the page tables. But it might just be unreadable, 1615 * in which case we just give up and fill the result with 1616 * zeroes. 1617 */ 1618 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 1619 memset(kaddr, 0, PAGE_SIZE); 1620 kunmap_atomic(kaddr, KM_USER0); 1621 flush_dcache_page(dst); 1622 } else 1623 copy_user_highpage(dst, src, va, vma); 1624} 1625 1626/* 1627 * This routine handles present pages, when users try to write 1628 * to a shared page. It is done by copying the page to a new address 1629 * and decrementing the shared-page counter for the old page. 1630 * 1631 * Note that this routine assumes that the protection checks have been 1632 * done by the caller (the low-level page fault routine in most cases). 1633 * Thus we can safely just mark it writable once we've done any necessary 1634 * COW. 1635 * 1636 * We also mark the page dirty at this point even though the page will 1637 * change only once the write actually happens. This avoids a few races, 1638 * and potentially makes it more efficient. 1639 * 1640 * We enter with non-exclusive mmap_sem (to exclude vma changes, 1641 * but allow concurrent faults), with pte both mapped and locked. 1642 * We return with mmap_sem still held, but pte unmapped and unlocked. 1643 */ 1644static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, 1645 unsigned long address, pte_t *page_table, pmd_t *pmd, 1646 spinlock_t *ptl, pte_t orig_pte) 1647{ 1648 struct page *old_page, *new_page; 1649 pte_t entry; 1650 int reuse = 0, ret = 0; 1651 int page_mkwrite = 0; 1652 struct page *dirty_page = NULL; 1653 1654 old_page = vm_normal_page(vma, address, orig_pte); 1655 if (!old_page) 1656 goto gotten; 1657 1658 /* 1659 * Take out anonymous pages first, anonymous shared vmas are 1660 * not dirty accountable. 1661 */ 1662 if (PageAnon(old_page)) { 1663 if (!TestSetPageLocked(old_page)) { 1664 reuse = can_share_swap_page(old_page); 1665 unlock_page(old_page); 1666 } 1667 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 1668 (VM_WRITE|VM_SHARED))) { 1669 /* 1670 * Only catch write-faults on shared writable pages, 1671 * read-only shared pages can get COWed by 1672 * get_user_pages(.write=1, .force=1). 1673 */ 1674 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 1675 /* 1676 * Notify the address space that the page is about to 1677 * become writable so that it can prohibit this or wait 1678 * for the page to get into an appropriate state. 1679 * 1680 * We do this without the lock held, so that it can 1681 * sleep if it needs to. 1682 */ 1683 page_cache_get(old_page); 1684 pte_unmap_unlock(page_table, ptl); 1685 1686 if (vma->vm_ops->page_mkwrite(vma, old_page) < 0) 1687 goto unwritable_page; 1688 1689 /* 1690 * Since we dropped the lock we need to revalidate 1691 * the PTE as someone else may have changed it. If 1692 * they did, we just return, as we can count on the 1693 * MMU to tell us if they didn't also make it writable. 1694 */ 1695 page_table = pte_offset_map_lock(mm, pmd, address, 1696 &ptl); 1697 page_cache_release(old_page); 1698 if (!pte_same(*page_table, orig_pte)) 1699 goto unlock; 1700 1701 page_mkwrite = 1; 1702 } 1703 dirty_page = old_page; 1704 get_page(dirty_page); 1705 reuse = 1; 1706 } 1707 1708 if (reuse) { 1709 flush_cache_page(vma, address, pte_pfn(orig_pte)); 1710 entry = pte_mkyoung(orig_pte); 1711 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1712 if (ptep_set_access_flags(vma, address, page_table, entry,1)) 1713 update_mmu_cache(vma, address, entry); 1714 ret |= VM_FAULT_WRITE; 1715 goto unlock; 1716 } 1717 1718 /* 1719 * Ok, we need to copy. Oh, well.. 1720 */ 1721 page_cache_get(old_page); 1722gotten: 1723 pte_unmap_unlock(page_table, ptl); 1724 1725 if (unlikely(anon_vma_prepare(vma))) 1726 goto oom; 1727 VM_BUG_ON(old_page == ZERO_PAGE(0)); 1728 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 1729 if (!new_page) 1730 goto oom; 1731 cow_user_page(new_page, old_page, address, vma); 1732 __SetPageUptodate(new_page); 1733 1734 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL)) 1735 goto oom_free_new; 1736 1737 /* 1738 * Re-check the pte - we dropped the lock 1739 */ 1740 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 1741 if (likely(pte_same(*page_table, orig_pte))) { 1742 if (old_page) { 1743 page_remove_rmap(old_page, vma); 1744 if (!PageAnon(old_page)) { 1745 dec_mm_counter(mm, file_rss); 1746 inc_mm_counter(mm, anon_rss); 1747 } 1748 } else 1749 inc_mm_counter(mm, anon_rss); 1750 flush_cache_page(vma, address, pte_pfn(orig_pte)); 1751 entry = mk_pte(new_page, vma->vm_page_prot); 1752 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1753 /* 1754 * Clear the pte entry and flush it first, before updating the 1755 * pte with the new entry. This will avoid a race condition 1756 * seen in the presence of one thread doing SMC and another 1757 * thread doing COW. 1758 */ 1759 ptep_clear_flush(vma, address, page_table); 1760 set_pte_at(mm, address, page_table, entry); 1761 update_mmu_cache(vma, address, entry); 1762 lru_cache_add_active(new_page); 1763 page_add_new_anon_rmap(new_page, vma, address); 1764 1765 /* Free the old page.. */ 1766 new_page = old_page; 1767 ret |= VM_FAULT_WRITE; 1768 } else 1769 mem_cgroup_uncharge_page(new_page); 1770 1771 if (new_page) 1772 page_cache_release(new_page); 1773 if (old_page) 1774 page_cache_release(old_page); 1775unlock: 1776 pte_unmap_unlock(page_table, ptl); 1777 if (dirty_page) { 1778 if (vma->vm_file) 1779 file_update_time(vma->vm_file); 1780 1781 /* 1782 * Yes, Virginia, this is actually required to prevent a race 1783 * with clear_page_dirty_for_io() from clearing the page dirty 1784 * bit after it clear all dirty ptes, but before a racing 1785 * do_wp_page installs a dirty pte. 1786 * 1787 * do_no_page is protected similarly. 1788 */ 1789 wait_on_page_locked(dirty_page); 1790 set_page_dirty_balance(dirty_page, page_mkwrite); 1791 put_page(dirty_page); 1792 } 1793 return ret; 1794oom_free_new: 1795 page_cache_release(new_page); 1796oom: 1797 if (old_page) 1798 page_cache_release(old_page); 1799 return VM_FAULT_OOM; 1800 1801unwritable_page: 1802 page_cache_release(old_page); 1803 return VM_FAULT_SIGBUS; 1804} 1805 1806/* 1807 * Helper functions for unmap_mapping_range(). 1808 * 1809 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __ 1810 * 1811 * We have to restart searching the prio_tree whenever we drop the lock, 1812 * since the iterator is only valid while the lock is held, and anyway 1813 * a later vma might be split and reinserted earlier while lock dropped. 1814 * 1815 * The list of nonlinear vmas could be handled more efficiently, using 1816 * a placeholder, but handle it in the same way until a need is shown. 1817 * It is important to search the prio_tree before nonlinear list: a vma 1818 * may become nonlinear and be shifted from prio_tree to nonlinear list 1819 * while the lock is dropped; but never shifted from list to prio_tree. 1820 * 1821 * In order to make forward progress despite restarting the search, 1822 * vm_truncate_count is used to mark a vma as now dealt with, so we can 1823 * quickly skip it next time around. Since the prio_tree search only 1824 * shows us those vmas affected by unmapping the range in question, we 1825 * can't efficiently keep all vmas in step with mapping->truncate_count: 1826 * so instead reset them all whenever it wraps back to 0 (then go to 1). 1827 * mapping->truncate_count and vma->vm_truncate_count are protected by 1828 * i_mmap_lock. 1829 * 1830 * In order to make forward progress despite repeatedly restarting some 1831 * large vma, note the restart_addr from unmap_vmas when it breaks out: 1832 * and restart from that address when we reach that vma again. It might 1833 * have been split or merged, shrunk or extended, but never shifted: so 1834 * restart_addr remains valid so long as it remains in the vma's range. 1835 * unmap_mapping_range forces truncate_count to leap over page-aligned 1836 * values so we can save vma's restart_addr in its truncate_count field. 1837 */ 1838#define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK)) 1839 1840static void reset_vma_truncate_counts(struct address_space *mapping) 1841{ 1842 struct vm_area_struct *vma; 1843 struct prio_tree_iter iter; 1844 1845 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX) 1846 vma->vm_truncate_count = 0; 1847 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) 1848 vma->vm_truncate_count = 0; 1849} 1850 1851static int unmap_mapping_range_vma(struct vm_area_struct *vma, 1852 unsigned long start_addr, unsigned long end_addr, 1853 struct zap_details *details) 1854{ 1855 unsigned long restart_addr; 1856 int need_break; 1857 1858 /* 1859 * files that support invalidating or truncating portions of the 1860 * file from under mmaped areas must have their ->fault function 1861 * return a locked page (and set VM_FAULT_LOCKED in the return). 1862 * This provides synchronisation against concurrent unmapping here. 1863 */ 1864 1865again: 1866 restart_addr = vma->vm_truncate_count; 1867 if (is_restart_addr(restart_addr) && start_addr < restart_addr) { 1868 start_addr = restart_addr; 1869 if (start_addr >= end_addr) { 1870 /* Top of vma has been split off since last time */ 1871 vma->vm_truncate_count = details->truncate_count; 1872 return 0; 1873 } 1874 } 1875 1876 restart_addr = zap_page_range(vma, start_addr, 1877 end_addr - start_addr, details); 1878 need_break = need_resched() || spin_needbreak(details->i_mmap_lock); 1879 1880 if (restart_addr >= end_addr) { 1881 /* We have now completed this vma: mark it so */ 1882 vma->vm_truncate_count = details->truncate_count; 1883 if (!need_break) 1884 return 0; 1885 } else { 1886 /* Note restart_addr in vma's truncate_count field */ 1887 vma->vm_truncate_count = restart_addr; 1888 if (!need_break) 1889 goto again; 1890 } 1891 1892 spin_unlock(details->i_mmap_lock); 1893 cond_resched(); 1894 spin_lock(details->i_mmap_lock); 1895 return -EINTR; 1896} 1897 1898static inline void unmap_mapping_range_tree(struct prio_tree_root *root, 1899 struct zap_details *details) 1900{ 1901 struct vm_area_struct *vma; 1902 struct prio_tree_iter iter; 1903 pgoff_t vba, vea, zba, zea; 1904 1905restart: 1906 vma_prio_tree_foreach(vma, &iter, root, 1907 details->first_index, details->last_index) { 1908 /* Skip quickly over those we have already dealt with */ 1909 if (vma->vm_truncate_count == details->truncate_count) 1910 continue; 1911 1912 vba = vma->vm_pgoff; 1913 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1; 1914 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ 1915 zba = details->first_index; 1916 if (zba < vba) 1917 zba = vba; 1918 zea = details->last_index; 1919 if (zea > vea) 1920 zea = vea; 1921 1922 if (unmap_mapping_range_vma(vma, 1923 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 1924 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 1925 details) < 0) 1926 goto restart; 1927 } 1928} 1929 1930static inline void unmap_mapping_range_list(struct list_head *head, 1931 struct zap_details *details) 1932{ 1933 struct vm_area_struct *vma; 1934 1935 /* 1936 * In nonlinear VMAs there is no correspondence between virtual address 1937 * offset and file offset. So we must perform an exhaustive search 1938 * across *all* the pages in each nonlinear VMA, not just the pages 1939 * whose virtual address lies outside the file truncation point. 1940 */ 1941restart: 1942 list_for_each_entry(vma, head, shared.vm_set.list) { 1943 /* Skip quickly over those we have already dealt with */ 1944 if (vma->vm_truncate_count == details->truncate_count) 1945 continue; 1946 details->nonlinear_vma = vma; 1947 if (unmap_mapping_range_vma(vma, vma->vm_start, 1948 vma->vm_end, details) < 0) 1949 goto restart; 1950 } 1951} 1952 1953/** 1954 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file. 1955 * @mapping: the address space containing mmaps to be unmapped. 1956 * @holebegin: byte in first page to unmap, relative to the start of 1957 * the underlying file. This will be rounded down to a PAGE_SIZE 1958 * boundary. Note that this is different from vmtruncate(), which 1959 * must keep the partial page. In contrast, we must get rid of 1960 * partial pages. 1961 * @holelen: size of prospective hole in bytes. This will be rounded 1962 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 1963 * end of the file. 1964 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 1965 * but 0 when invalidating pagecache, don't throw away private data. 1966 */ 1967void unmap_mapping_range(struct address_space *mapping, 1968 loff_t const holebegin, loff_t const holelen, int even_cows) 1969{ 1970 struct zap_details details; 1971 pgoff_t hba = holebegin >> PAGE_SHIFT; 1972 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 1973 1974 /* Check for overflow. */ 1975 if (sizeof(holelen) > sizeof(hlen)) { 1976 long long holeend = 1977 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 1978 if (holeend & ~(long long)ULONG_MAX) 1979 hlen = ULONG_MAX - hba + 1; 1980 } 1981 1982 details.check_mapping = even_cows? NULL: mapping; 1983 details.nonlinear_vma = NULL; 1984 details.first_index = hba; 1985 details.last_index = hba + hlen - 1; 1986 if (details.last_index < details.first_index) 1987 details.last_index = ULONG_MAX; 1988 details.i_mmap_lock = &mapping->i_mmap_lock; 1989 1990 spin_lock(&mapping->i_mmap_lock); 1991 1992 /* Protect against endless unmapping loops */ 1993 mapping->truncate_count++; 1994 if (unlikely(is_restart_addr(mapping->truncate_count))) { 1995 if (mapping->truncate_count == 0) 1996 reset_vma_truncate_counts(mapping); 1997 mapping->truncate_count++; 1998 } 1999 details.truncate_count = mapping->truncate_count; 2000 2001 if (unlikely(!prio_tree_empty(&mapping->i_mmap))) 2002 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2003 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) 2004 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); 2005 spin_unlock(&mapping->i_mmap_lock); 2006} 2007EXPORT_SYMBOL(unmap_mapping_range); 2008 2009/** 2010 * vmtruncate - unmap mappings "freed" by truncate() syscall 2011 * @inode: inode of the file used 2012 * @offset: file offset to start truncating 2013 * 2014 * NOTE! We have to be ready to update the memory sharing 2015 * between the file and the memory map for a potential last 2016 * incomplete page. Ugly, but necessary. 2017 */ 2018int vmtruncate(struct inode * inode, loff_t offset) 2019{ 2020 if (inode->i_size < offset) { 2021 unsigned long limit; 2022 2023 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; 2024 if (limit != RLIM_INFINITY && offset > limit) 2025 goto out_sig; 2026 if (offset > inode->i_sb->s_maxbytes) 2027 goto out_big; 2028 i_size_write(inode, offset); 2029 } else { 2030 struct address_space *mapping = inode->i_mapping; 2031 2032 /* 2033 * truncation of in-use swapfiles is disallowed - it would 2034 * cause subsequent swapout to scribble on the now-freed 2035 * blocks. 2036 */ 2037 if (IS_SWAPFILE(inode)) 2038 return -ETXTBSY; 2039 i_size_write(inode, offset); 2040 2041 /* 2042 * unmap_mapping_range is called twice, first simply for 2043 * efficiency so that truncate_inode_pages does fewer 2044 * single-page unmaps. However after this first call, and 2045 * before truncate_inode_pages finishes, it is possible for 2046 * private pages to be COWed, which remain after 2047 * truncate_inode_pages finishes, hence the second 2048 * unmap_mapping_range call must be made for correctness. 2049 */ 2050 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1); 2051 truncate_inode_pages(mapping, offset); 2052 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1); 2053 } 2054 2055 if (inode->i_op && inode->i_op->truncate) 2056 inode->i_op->truncate(inode); 2057 return 0; 2058 2059out_sig: 2060 send_sig(SIGXFSZ, current, 0); 2061out_big: 2062 return -EFBIG; 2063} 2064EXPORT_SYMBOL(vmtruncate); 2065 2066int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end) 2067{ 2068 struct address_space *mapping = inode->i_mapping; 2069 2070 /* 2071 * If the underlying filesystem is not going to provide 2072 * a way to truncate a range of blocks (punch a hole) - 2073 * we should return failure right now. 2074 */ 2075 if (!inode->i_op || !inode->i_op->truncate_range) 2076 return -ENOSYS; 2077 2078 mutex_lock(&inode->i_mutex); 2079 down_write(&inode->i_alloc_sem); 2080 unmap_mapping_range(mapping, offset, (end - offset), 1); 2081 truncate_inode_pages_range(mapping, offset, end); 2082 unmap_mapping_range(mapping, offset, (end - offset), 1); 2083 inode->i_op->truncate_range(inode, offset, end); 2084 up_write(&inode->i_alloc_sem); 2085 mutex_unlock(&inode->i_mutex); 2086 2087 return 0; 2088} 2089 2090/* 2091 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2092 * but allow concurrent faults), and pte mapped but not yet locked. 2093 * We return with mmap_sem still held, but pte unmapped and unlocked. 2094 */ 2095static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, 2096 unsigned long address, pte_t *page_table, pmd_t *pmd, 2097 int write_access, pte_t orig_pte) 2098{ 2099 spinlock_t *ptl; 2100 struct page *page; 2101 swp_entry_t entry; 2102 pte_t pte; 2103 int ret = 0; 2104 2105 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 2106 goto out; 2107 2108 entry = pte_to_swp_entry(orig_pte); 2109 if (is_migration_entry(entry)) { 2110 migration_entry_wait(mm, pmd, address); 2111 goto out; 2112 } 2113 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 2114 page = lookup_swap_cache(entry); 2115 if (!page) { 2116 grab_swap_token(); /* Contend for token _before_ read-in */ 2117 page = swapin_readahead(entry, 2118 GFP_HIGHUSER_MOVABLE, vma, address); 2119 if (!page) { 2120 /* 2121 * Back out if somebody else faulted in this pte 2122 * while we released the pte lock. 2123 */ 2124 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2125 if (likely(pte_same(*page_table, orig_pte))) 2126 ret = VM_FAULT_OOM; 2127 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2128 goto unlock; 2129 } 2130 2131 /* Had to read the page from swap area: Major fault */ 2132 ret = VM_FAULT_MAJOR; 2133 count_vm_event(PGMAJFAULT); 2134 } 2135 2136 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) { 2137 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2138 ret = VM_FAULT_OOM; 2139 goto out; 2140 } 2141 2142 mark_page_accessed(page); 2143 lock_page(page); 2144 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2145 2146 /* 2147 * Back out if somebody else already faulted in this pte. 2148 */ 2149 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2150 if (unlikely(!pte_same(*page_table, orig_pte))) 2151 goto out_nomap; 2152 2153 if (unlikely(!PageUptodate(page))) { 2154 ret = VM_FAULT_SIGBUS; 2155 goto out_nomap; 2156 } 2157 2158 /* The page isn't present yet, go ahead with the fault. */ 2159 2160 inc_mm_counter(mm, anon_rss); 2161 pte = mk_pte(page, vma->vm_page_prot); 2162 if (write_access && can_share_swap_page(page)) { 2163 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 2164 write_access = 0; 2165 } 2166 2167 flush_icache_page(vma, page); 2168 set_pte_at(mm, address, page_table, pte); 2169 page_add_anon_rmap(page, vma, address); 2170 2171 swap_free(entry); 2172 if (vm_swap_full()) 2173 remove_exclusive_swap_page(page); 2174 unlock_page(page); 2175 2176 if (write_access) { 2177 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte); 2178 if (ret & VM_FAULT_ERROR) 2179 ret &= VM_FAULT_ERROR; 2180 goto out; 2181 } 2182 2183 /* No need to invalidate - it was non-present before */ 2184 update_mmu_cache(vma, address, pte); 2185unlock: 2186 pte_unmap_unlock(page_table, ptl); 2187out: 2188 return ret; 2189out_nomap: 2190 mem_cgroup_uncharge_page(page); 2191 pte_unmap_unlock(page_table, ptl); 2192 unlock_page(page); 2193 page_cache_release(page); 2194 return ret; 2195} 2196 2197/* 2198 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2199 * but allow concurrent faults), and pte mapped but not yet locked. 2200 * We return with mmap_sem still held, but pte unmapped and unlocked. 2201 */ 2202static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, 2203 unsigned long address, pte_t *page_table, pmd_t *pmd, 2204 int write_access) 2205{ 2206 struct page *page; 2207 spinlock_t *ptl; 2208 pte_t entry; 2209 2210 /* Allocate our own private page. */ 2211 pte_unmap(page_table); 2212 2213 if (unlikely(anon_vma_prepare(vma))) 2214 goto oom; 2215 page = alloc_zeroed_user_highpage_movable(vma, address); 2216 if (!page) 2217 goto oom; 2218 __SetPageUptodate(page); 2219 2220 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) 2221 goto oom_free_page; 2222 2223 entry = mk_pte(page, vma->vm_page_prot); 2224 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2225 2226 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2227 if (!pte_none(*page_table)) 2228 goto release; 2229 inc_mm_counter(mm, anon_rss); 2230 lru_cache_add_active(page); 2231 page_add_new_anon_rmap(page, vma, address); 2232 set_pte_at(mm, address, page_table, entry); 2233 2234 /* No need to invalidate - it was non-present before */ 2235 update_mmu_cache(vma, address, entry); 2236unlock: 2237 pte_unmap_unlock(page_table, ptl); 2238 return 0; 2239release: 2240 mem_cgroup_uncharge_page(page); 2241 page_cache_release(page); 2242 goto unlock; 2243oom_free_page: 2244 page_cache_release(page); 2245oom: 2246 return VM_FAULT_OOM; 2247} 2248 2249/* 2250 * __do_fault() tries to create a new page mapping. It aggressively 2251 * tries to share with existing pages, but makes a separate copy if 2252 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid 2253 * the next page fault. 2254 * 2255 * As this is called only for pages that do not currently exist, we 2256 * do not need to flush old virtual caches or the TLB. 2257 * 2258 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2259 * but allow concurrent faults), and pte neither mapped nor locked. 2260 * We return with mmap_sem still held, but pte unmapped and unlocked. 2261 */ 2262static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2263 unsigned long address, pmd_t *pmd, 2264 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 2265{ 2266 pte_t *page_table; 2267 spinlock_t *ptl; 2268 struct page *page; 2269 pte_t entry; 2270 int anon = 0; 2271 struct page *dirty_page = NULL; 2272 struct vm_fault vmf; 2273 int ret; 2274 int page_mkwrite = 0; 2275 2276 vmf.virtual_address = (void __user *)(address & PAGE_MASK); 2277 vmf.pgoff = pgoff; 2278 vmf.flags = flags; 2279 vmf.page = NULL; 2280 2281 BUG_ON(vma->vm_flags & VM_PFNMAP); 2282 2283 ret = vma->vm_ops->fault(vma, &vmf); 2284 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2285 return ret; 2286 2287 /* 2288 * For consistency in subsequent calls, make the faulted page always 2289 * locked. 2290 */ 2291 if (unlikely(!(ret & VM_FAULT_LOCKED))) 2292 lock_page(vmf.page); 2293 else 2294 VM_BUG_ON(!PageLocked(vmf.page)); 2295 2296 /* 2297 * Should we do an early C-O-W break? 2298 */ 2299 page = vmf.page; 2300 if (flags & FAULT_FLAG_WRITE) { 2301 if (!(vma->vm_flags & VM_SHARED)) { 2302 anon = 1; 2303 if (unlikely(anon_vma_prepare(vma))) { 2304 ret = VM_FAULT_OOM; 2305 goto out; 2306 } 2307 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, 2308 vma, address); 2309 if (!page) { 2310 ret = VM_FAULT_OOM; 2311 goto out; 2312 } 2313 copy_user_highpage(page, vmf.page, address, vma); 2314 __SetPageUptodate(page); 2315 } else { 2316 /* 2317 * If the page will be shareable, see if the backing 2318 * address space wants to know that the page is about 2319 * to become writable 2320 */ 2321 if (vma->vm_ops->page_mkwrite) { 2322 unlock_page(page); 2323 if (vma->vm_ops->page_mkwrite(vma, page) < 0) { 2324 ret = VM_FAULT_SIGBUS; 2325 anon = 1; /* no anon but release vmf.page */ 2326 goto out_unlocked; 2327 } 2328 lock_page(page); 2329 /* 2330 * XXX: this is not quite right (racy vs 2331 * invalidate) to unlock and relock the page 2332 * like this, however a better fix requires 2333 * reworking page_mkwrite locking API, which 2334 * is better done later. 2335 */ 2336 if (!page->mapping) { 2337 ret = 0; 2338 anon = 1; /* no anon but release vmf.page */ 2339 goto out; 2340 } 2341 page_mkwrite = 1; 2342 } 2343 } 2344 2345 } 2346 2347 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) { 2348 ret = VM_FAULT_OOM; 2349 goto out; 2350 } 2351 2352 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2353 2354 /* 2355 * This silly early PAGE_DIRTY setting removes a race 2356 * due to the bad i386 page protection. But it's valid 2357 * for other architectures too. 2358 * 2359 * Note that if write_access is true, we either now have 2360 * an exclusive copy of the page, or this is a shared mapping, 2361 * so we can make it writable and dirty to avoid having to 2362 * handle that later. 2363 */ 2364 /* Only go through if we didn't race with anybody else... */ 2365 if (likely(pte_same(*page_table, orig_pte))) { 2366 flush_icache_page(vma, page); 2367 entry = mk_pte(page, vma->vm_page_prot); 2368 if (flags & FAULT_FLAG_WRITE) 2369 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2370 set_pte_at(mm, address, page_table, entry); 2371 if (anon) { 2372 inc_mm_counter(mm, anon_rss); 2373 lru_cache_add_active(page); 2374 page_add_new_anon_rmap(page, vma, address); 2375 } else { 2376 inc_mm_counter(mm, file_rss); 2377 page_add_file_rmap(page); 2378 if (flags & FAULT_FLAG_WRITE) { 2379 dirty_page = page; 2380 get_page(dirty_page); 2381 } 2382 } 2383 2384 /* no need to invalidate: a not-present page won't be cached */ 2385 update_mmu_cache(vma, address, entry); 2386 } else { 2387 mem_cgroup_uncharge_page(page); 2388 if (anon) 2389 page_cache_release(page); 2390 else 2391 anon = 1; /* no anon but release faulted_page */ 2392 } 2393 2394 pte_unmap_unlock(page_table, ptl); 2395 2396out: 2397 unlock_page(vmf.page); 2398out_unlocked: 2399 if (anon) 2400 page_cache_release(vmf.page); 2401 else if (dirty_page) { 2402 if (vma->vm_file) 2403 file_update_time(vma->vm_file); 2404 2405 set_page_dirty_balance(dirty_page, page_mkwrite); 2406 put_page(dirty_page); 2407 } 2408 2409 return ret; 2410} 2411 2412static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2413 unsigned long address, pte_t *page_table, pmd_t *pmd, 2414 int write_access, pte_t orig_pte) 2415{ 2416 pgoff_t pgoff = (((address & PAGE_MASK) 2417 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2418 unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0); 2419 2420 pte_unmap(page_table); 2421 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 2422} 2423 2424 2425/* 2426 * do_no_pfn() tries to create a new page mapping for a page without 2427 * a struct_page backing it 2428 * 2429 * As this is called only for pages that do not currently exist, we 2430 * do not need to flush old virtual caches or the TLB. 2431 * 2432 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2433 * but allow concurrent faults), and pte mapped but not yet locked. 2434 * We return with mmap_sem still held, but pte unmapped and unlocked. 2435 * 2436 * It is expected that the ->nopfn handler always returns the same pfn 2437 * for a given virtual mapping. 2438 * 2439 * Mark this `noinline' to prevent it from bloating the main pagefault code. 2440 */ 2441static noinline int do_no_pfn(struct mm_struct *mm, struct vm_area_struct *vma, 2442 unsigned long address, pte_t *page_table, pmd_t *pmd, 2443 int write_access) 2444{ 2445 spinlock_t *ptl; 2446 pte_t entry; 2447 unsigned long pfn; 2448 2449 pte_unmap(page_table); 2450 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2451 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2452 2453 pfn = vma->vm_ops->nopfn(vma, address & PAGE_MASK); 2454 2455 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2456 2457 if (unlikely(pfn == NOPFN_OOM)) 2458 return VM_FAULT_OOM; 2459 else if (unlikely(pfn == NOPFN_SIGBUS)) 2460 return VM_FAULT_SIGBUS; 2461 else if (unlikely(pfn == NOPFN_REFAULT)) 2462 return 0; 2463 2464 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2465 2466 /* Only go through if we didn't race with anybody else... */ 2467 if (pte_none(*page_table)) { 2468 entry = pfn_pte(pfn, vma->vm_page_prot); 2469 if (write_access) 2470 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2471 set_pte_at(mm, address, page_table, entry); 2472 } 2473 pte_unmap_unlock(page_table, ptl); 2474 return 0; 2475} 2476 2477/* 2478 * Fault of a previously existing named mapping. Repopulate the pte 2479 * from the encoded file_pte if possible. This enables swappable 2480 * nonlinear vmas. 2481 * 2482 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2483 * but allow concurrent faults), and pte mapped but not yet locked. 2484 * We return with mmap_sem still held, but pte unmapped and unlocked. 2485 */ 2486static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2487 unsigned long address, pte_t *page_table, pmd_t *pmd, 2488 int write_access, pte_t orig_pte) 2489{ 2490 unsigned int flags = FAULT_FLAG_NONLINEAR | 2491 (write_access ? FAULT_FLAG_WRITE : 0); 2492 pgoff_t pgoff; 2493 2494 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 2495 return 0; 2496 2497 if (unlikely(!(vma->vm_flags & VM_NONLINEAR) || 2498 !(vma->vm_flags & VM_CAN_NONLINEAR))) { 2499 /* 2500 * Page table corrupted: show pte and kill process. 2501 */ 2502 print_bad_pte(vma, orig_pte, address); 2503 return VM_FAULT_OOM; 2504 } 2505 2506 pgoff = pte_to_pgoff(orig_pte); 2507 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 2508} 2509 2510/* 2511 * These routines also need to handle stuff like marking pages dirty 2512 * and/or accessed for architectures that don't do it in hardware (most 2513 * RISC architectures). The early dirtying is also good on the i386. 2514 * 2515 * There is also a hook called "update_mmu_cache()" that architectures 2516 * with external mmu caches can use to update those (ie the Sparc or 2517 * PowerPC hashed page tables that act as extended TLBs). 2518 * 2519 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2520 * but allow concurrent faults), and pte mapped but not yet locked. 2521 * We return with mmap_sem still held, but pte unmapped and unlocked. 2522 */ 2523static inline int handle_pte_fault(struct mm_struct *mm, 2524 struct vm_area_struct *vma, unsigned long address, 2525 pte_t *pte, pmd_t *pmd, int write_access) 2526{ 2527 pte_t entry; 2528 spinlock_t *ptl; 2529 2530 entry = *pte; 2531 if (!pte_present(entry)) { 2532 if (pte_none(entry)) { 2533 if (vma->vm_ops) { 2534 if (likely(vma->vm_ops->fault)) 2535 return do_linear_fault(mm, vma, address, 2536 pte, pmd, write_access, entry); 2537 if (unlikely(vma->vm_ops->nopfn)) 2538 return do_no_pfn(mm, vma, address, pte, 2539 pmd, write_access); 2540 } 2541 return do_anonymous_page(mm, vma, address, 2542 pte, pmd, write_access); 2543 } 2544 if (pte_file(entry)) 2545 return do_nonlinear_fault(mm, vma, address, 2546 pte, pmd, write_access, entry); 2547 return do_swap_page(mm, vma, address, 2548 pte, pmd, write_access, entry); 2549 } 2550 2551 ptl = pte_lockptr(mm, pmd); 2552 spin_lock(ptl); 2553 if (unlikely(!pte_same(*pte, entry))) 2554 goto unlock; 2555 if (write_access) { 2556 if (!pte_write(entry)) 2557 return do_wp_page(mm, vma, address, 2558 pte, pmd, ptl, entry); 2559 entry = pte_mkdirty(entry); 2560 } 2561 entry = pte_mkyoung(entry); 2562 if (ptep_set_access_flags(vma, address, pte, entry, write_access)) { 2563 update_mmu_cache(vma, address, entry); 2564 } else { 2565 /* 2566 * This is needed only for protection faults but the arch code 2567 * is not yet telling us if this is a protection fault or not. 2568 * This still avoids useless tlb flushes for .text page faults 2569 * with threads. 2570 */ 2571 if (write_access) 2572 flush_tlb_page(vma, address); 2573 } 2574unlock: 2575 pte_unmap_unlock(pte, ptl); 2576 return 0; 2577} 2578 2579/* 2580 * By the time we get here, we already hold the mm semaphore 2581 */ 2582int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2583 unsigned long address, int write_access) 2584{ 2585 pgd_t *pgd; 2586 pud_t *pud; 2587 pmd_t *pmd; 2588 pte_t *pte; 2589 2590 __set_current_state(TASK_RUNNING); 2591 2592 count_vm_event(PGFAULT); 2593 2594 if (unlikely(is_vm_hugetlb_page(vma))) 2595 return hugetlb_fault(mm, vma, address, write_access); 2596 2597 pgd = pgd_offset(mm, address); 2598 pud = pud_alloc(mm, pgd, address); 2599 if (!pud) 2600 return VM_FAULT_OOM; 2601 pmd = pmd_alloc(mm, pud, address); 2602 if (!pmd) 2603 return VM_FAULT_OOM; 2604 pte = pte_alloc_map(mm, pmd, address); 2605 if (!pte) 2606 return VM_FAULT_OOM; 2607 2608 return handle_pte_fault(mm, vma, address, pte, pmd, write_access); 2609} 2610 2611#ifndef __PAGETABLE_PUD_FOLDED 2612/* 2613 * Allocate page upper directory. 2614 * We've already handled the fast-path in-line. 2615 */ 2616int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 2617{ 2618 pud_t *new = pud_alloc_one(mm, address); 2619 if (!new) 2620 return -ENOMEM; 2621 2622 spin_lock(&mm->page_table_lock); 2623 if (pgd_present(*pgd)) /* Another has populated it */ 2624 pud_free(mm, new); 2625 else 2626 pgd_populate(mm, pgd, new); 2627 spin_unlock(&mm->page_table_lock); 2628 return 0; 2629} 2630#endif /* __PAGETABLE_PUD_FOLDED */ 2631 2632#ifndef __PAGETABLE_PMD_FOLDED 2633/* 2634 * Allocate page middle directory. 2635 * We've already handled the fast-path in-line. 2636 */ 2637int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2638{ 2639 pmd_t *new = pmd_alloc_one(mm, address); 2640 if (!new) 2641 return -ENOMEM; 2642 2643 spin_lock(&mm->page_table_lock); 2644#ifndef __ARCH_HAS_4LEVEL_HACK 2645 if (pud_present(*pud)) /* Another has populated it */ 2646 pmd_free(mm, new); 2647 else 2648 pud_populate(mm, pud, new); 2649#else 2650 if (pgd_present(*pud)) /* Another has populated it */ 2651 pmd_free(mm, new); 2652 else 2653 pgd_populate(mm, pud, new); 2654#endif /* __ARCH_HAS_4LEVEL_HACK */ 2655 spin_unlock(&mm->page_table_lock); 2656 return 0; 2657} 2658#endif /* __PAGETABLE_PMD_FOLDED */ 2659 2660int make_pages_present(unsigned long addr, unsigned long end) 2661{ 2662 int ret, len, write; 2663 struct vm_area_struct * vma; 2664 2665 vma = find_vma(current->mm, addr); 2666 if (!vma) 2667 return -1; 2668 write = (vma->vm_flags & VM_WRITE) != 0; 2669 BUG_ON(addr >= end); 2670 BUG_ON(end > vma->vm_end); 2671 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE; 2672 ret = get_user_pages(current, current->mm, addr, 2673 len, write, 0, NULL, NULL); 2674 if (ret < 0) 2675 return ret; 2676 return ret == len ? 0 : -1; 2677} 2678 2679#if !defined(__HAVE_ARCH_GATE_AREA) 2680 2681#if defined(AT_SYSINFO_EHDR) 2682static struct vm_area_struct gate_vma; 2683 2684static int __init gate_vma_init(void) 2685{ 2686 gate_vma.vm_mm = NULL; 2687 gate_vma.vm_start = FIXADDR_USER_START; 2688 gate_vma.vm_end = FIXADDR_USER_END; 2689 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC; 2690 gate_vma.vm_page_prot = __P101; 2691 /* 2692 * Make sure the vDSO gets into every core dump. 2693 * Dumping its contents makes post-mortem fully interpretable later 2694 * without matching up the same kernel and hardware config to see 2695 * what PC values meant. 2696 */ 2697 gate_vma.vm_flags |= VM_ALWAYSDUMP; 2698 return 0; 2699} 2700__initcall(gate_vma_init); 2701#endif 2702 2703struct vm_area_struct *get_gate_vma(struct task_struct *tsk) 2704{ 2705#ifdef AT_SYSINFO_EHDR 2706 return &gate_vma; 2707#else 2708 return NULL; 2709#endif 2710} 2711 2712int in_gate_area_no_task(unsigned long addr) 2713{ 2714#ifdef AT_SYSINFO_EHDR 2715 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) 2716 return 1; 2717#endif 2718 return 0; 2719} 2720 2721#endif /* __HAVE_ARCH_GATE_AREA */ 2722 2723/* 2724 * Access another process' address space. 2725 * Source/target buffer must be kernel space, 2726 * Do not walk the page table directly, use get_user_pages 2727 */ 2728int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write) 2729{ 2730 struct mm_struct *mm; 2731 struct vm_area_struct *vma; 2732 struct page *page; 2733 void *old_buf = buf; 2734 2735 mm = get_task_mm(tsk); 2736 if (!mm) 2737 return 0; 2738 2739 down_read(&mm->mmap_sem); 2740 /* ignore errors, just check how much was successfully transferred */ 2741 while (len) { 2742 int bytes, ret, offset; 2743 void *maddr; 2744 2745 ret = get_user_pages(tsk, mm, addr, 1, 2746 write, 1, &page, &vma); 2747 if (ret <= 0) 2748 break; 2749 2750 bytes = len; 2751 offset = addr & (PAGE_SIZE-1); 2752 if (bytes > PAGE_SIZE-offset) 2753 bytes = PAGE_SIZE-offset; 2754 2755 maddr = kmap(page); 2756 if (write) { 2757 copy_to_user_page(vma, page, addr, 2758 maddr + offset, buf, bytes); 2759 set_page_dirty_lock(page); 2760 } else { 2761 copy_from_user_page(vma, page, addr, 2762 buf, maddr + offset, bytes); 2763 } 2764 kunmap(page); 2765 page_cache_release(page); 2766 len -= bytes; 2767 buf += bytes; 2768 addr += bytes; 2769 } 2770 up_read(&mm->mmap_sem); 2771 mmput(mm); 2772 2773 return buf - old_buf; 2774} 2775 2776/* 2777 * Print the name of a VMA. 2778 */ 2779void print_vma_addr(char *prefix, unsigned long ip) 2780{ 2781 struct mm_struct *mm = current->mm; 2782 struct vm_area_struct *vma; 2783 2784 /* 2785 * Do not print if we are in atomic 2786 * contexts (in exception stacks, etc.): 2787 */ 2788 if (preempt_count()) 2789 return; 2790 2791 down_read(&mm->mmap_sem); 2792 vma = find_vma(mm, ip); 2793 if (vma && vma->vm_file) { 2794 struct file *f = vma->vm_file; 2795 char *buf = (char *)__get_free_page(GFP_KERNEL); 2796 if (buf) { 2797 char *p, *s; 2798 2799 p = d_path(&f->f_path, buf, PAGE_SIZE); 2800 if (IS_ERR(p)) 2801 p = "?"; 2802 s = strrchr(p, '/'); 2803 if (s) 2804 p = s+1; 2805 printk("%s%s[%lx+%lx]", prefix, p, 2806 vma->vm_start, 2807 vma->vm_end - vma->vm_start); 2808 free_page((unsigned long)buf); 2809 } 2810 } 2811 up_read(&current->mm->mmap_sem); 2812}