at v2.6.26-rc2 609 lines 15 kB view raw
1/* 2 * linux/mm/bootmem.c 3 * 4 * Copyright (C) 1999 Ingo Molnar 5 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 6 * 7 * simple boot-time physical memory area allocator and 8 * free memory collector. It's used to deal with reserved 9 * system memory and memory holes as well. 10 */ 11#include <linux/init.h> 12#include <linux/pfn.h> 13#include <linux/bootmem.h> 14#include <linux/module.h> 15 16#include <asm/bug.h> 17#include <asm/io.h> 18#include <asm/processor.h> 19 20#include "internal.h" 21 22/* 23 * Access to this subsystem has to be serialized externally. (this is 24 * true for the boot process anyway) 25 */ 26unsigned long max_low_pfn; 27unsigned long min_low_pfn; 28unsigned long max_pfn; 29 30static LIST_HEAD(bdata_list); 31#ifdef CONFIG_CRASH_DUMP 32/* 33 * If we have booted due to a crash, max_pfn will be a very low value. We need 34 * to know the amount of memory that the previous kernel used. 35 */ 36unsigned long saved_max_pfn; 37#endif 38 39/* return the number of _pages_ that will be allocated for the boot bitmap */ 40unsigned long __init bootmem_bootmap_pages(unsigned long pages) 41{ 42 unsigned long mapsize; 43 44 mapsize = (pages+7)/8; 45 mapsize = (mapsize + ~PAGE_MASK) & PAGE_MASK; 46 mapsize >>= PAGE_SHIFT; 47 48 return mapsize; 49} 50 51/* 52 * link bdata in order 53 */ 54static void __init link_bootmem(bootmem_data_t *bdata) 55{ 56 bootmem_data_t *ent; 57 58 if (list_empty(&bdata_list)) { 59 list_add(&bdata->list, &bdata_list); 60 return; 61 } 62 /* insert in order */ 63 list_for_each_entry(ent, &bdata_list, list) { 64 if (bdata->node_boot_start < ent->node_boot_start) { 65 list_add_tail(&bdata->list, &ent->list); 66 return; 67 } 68 } 69 list_add_tail(&bdata->list, &bdata_list); 70} 71 72/* 73 * Given an initialised bdata, it returns the size of the boot bitmap 74 */ 75static unsigned long __init get_mapsize(bootmem_data_t *bdata) 76{ 77 unsigned long mapsize; 78 unsigned long start = PFN_DOWN(bdata->node_boot_start); 79 unsigned long end = bdata->node_low_pfn; 80 81 mapsize = ((end - start) + 7) / 8; 82 return ALIGN(mapsize, sizeof(long)); 83} 84 85/* 86 * Called once to set up the allocator itself. 87 */ 88static unsigned long __init init_bootmem_core(pg_data_t *pgdat, 89 unsigned long mapstart, unsigned long start, unsigned long end) 90{ 91 bootmem_data_t *bdata = pgdat->bdata; 92 unsigned long mapsize; 93 94 bdata->node_bootmem_map = phys_to_virt(PFN_PHYS(mapstart)); 95 bdata->node_boot_start = PFN_PHYS(start); 96 bdata->node_low_pfn = end; 97 link_bootmem(bdata); 98 99 /* 100 * Initially all pages are reserved - setup_arch() has to 101 * register free RAM areas explicitly. 102 */ 103 mapsize = get_mapsize(bdata); 104 memset(bdata->node_bootmem_map, 0xff, mapsize); 105 106 return mapsize; 107} 108 109/* 110 * Marks a particular physical memory range as unallocatable. Usable RAM 111 * might be used for boot-time allocations - or it might get added 112 * to the free page pool later on. 113 */ 114static int __init can_reserve_bootmem_core(bootmem_data_t *bdata, 115 unsigned long addr, unsigned long size, int flags) 116{ 117 unsigned long sidx, eidx; 118 unsigned long i; 119 120 BUG_ON(!size); 121 122 /* out of range, don't hold other */ 123 if (addr + size < bdata->node_boot_start || 124 PFN_DOWN(addr) > bdata->node_low_pfn) 125 return 0; 126 127 /* 128 * Round up to index to the range. 129 */ 130 if (addr > bdata->node_boot_start) 131 sidx= PFN_DOWN(addr - bdata->node_boot_start); 132 else 133 sidx = 0; 134 135 eidx = PFN_UP(addr + size - bdata->node_boot_start); 136 if (eidx > bdata->node_low_pfn - PFN_DOWN(bdata->node_boot_start)) 137 eidx = bdata->node_low_pfn - PFN_DOWN(bdata->node_boot_start); 138 139 for (i = sidx; i < eidx; i++) { 140 if (test_bit(i, bdata->node_bootmem_map)) { 141 if (flags & BOOTMEM_EXCLUSIVE) 142 return -EBUSY; 143 } 144 } 145 146 return 0; 147 148} 149 150static void __init reserve_bootmem_core(bootmem_data_t *bdata, 151 unsigned long addr, unsigned long size, int flags) 152{ 153 unsigned long sidx, eidx; 154 unsigned long i; 155 156 BUG_ON(!size); 157 158 /* out of range */ 159 if (addr + size < bdata->node_boot_start || 160 PFN_DOWN(addr) > bdata->node_low_pfn) 161 return; 162 163 /* 164 * Round up to index to the range. 165 */ 166 if (addr > bdata->node_boot_start) 167 sidx= PFN_DOWN(addr - bdata->node_boot_start); 168 else 169 sidx = 0; 170 171 eidx = PFN_UP(addr + size - bdata->node_boot_start); 172 if (eidx > bdata->node_low_pfn - PFN_DOWN(bdata->node_boot_start)) 173 eidx = bdata->node_low_pfn - PFN_DOWN(bdata->node_boot_start); 174 175 for (i = sidx; i < eidx; i++) { 176 if (test_and_set_bit(i, bdata->node_bootmem_map)) { 177#ifdef CONFIG_DEBUG_BOOTMEM 178 printk("hm, page %08lx reserved twice.\n", i*PAGE_SIZE); 179#endif 180 } 181 } 182} 183 184static void __init free_bootmem_core(bootmem_data_t *bdata, unsigned long addr, 185 unsigned long size) 186{ 187 unsigned long sidx, eidx; 188 unsigned long i; 189 190 BUG_ON(!size); 191 192 /* out range */ 193 if (addr + size < bdata->node_boot_start || 194 PFN_DOWN(addr) > bdata->node_low_pfn) 195 return; 196 /* 197 * round down end of usable mem, partially free pages are 198 * considered reserved. 199 */ 200 201 if (addr >= bdata->node_boot_start && addr < bdata->last_success) 202 bdata->last_success = addr; 203 204 /* 205 * Round up to index to the range. 206 */ 207 if (PFN_UP(addr) > PFN_DOWN(bdata->node_boot_start)) 208 sidx = PFN_UP(addr) - PFN_DOWN(bdata->node_boot_start); 209 else 210 sidx = 0; 211 212 eidx = PFN_DOWN(addr + size - bdata->node_boot_start); 213 if (eidx > bdata->node_low_pfn - PFN_DOWN(bdata->node_boot_start)) 214 eidx = bdata->node_low_pfn - PFN_DOWN(bdata->node_boot_start); 215 216 for (i = sidx; i < eidx; i++) { 217 if (unlikely(!test_and_clear_bit(i, bdata->node_bootmem_map))) 218 BUG(); 219 } 220} 221 222/* 223 * We 'merge' subsequent allocations to save space. We might 'lose' 224 * some fraction of a page if allocations cannot be satisfied due to 225 * size constraints on boxes where there is physical RAM space 226 * fragmentation - in these cases (mostly large memory boxes) this 227 * is not a problem. 228 * 229 * On low memory boxes we get it right in 100% of the cases. 230 * 231 * alignment has to be a power of 2 value. 232 * 233 * NOTE: This function is _not_ reentrant. 234 */ 235void * __init 236__alloc_bootmem_core(struct bootmem_data *bdata, unsigned long size, 237 unsigned long align, unsigned long goal, unsigned long limit) 238{ 239 unsigned long areasize, preferred; 240 unsigned long i, start = 0, incr, eidx, end_pfn; 241 void *ret; 242 unsigned long node_boot_start; 243 void *node_bootmem_map; 244 245 if (!size) { 246 printk("__alloc_bootmem_core(): zero-sized request\n"); 247 BUG(); 248 } 249 BUG_ON(align & (align-1)); 250 251 /* on nodes without memory - bootmem_map is NULL */ 252 if (!bdata->node_bootmem_map) 253 return NULL; 254 255 /* bdata->node_boot_start is supposed to be (12+6)bits alignment on x86_64 ? */ 256 node_boot_start = bdata->node_boot_start; 257 node_bootmem_map = bdata->node_bootmem_map; 258 if (align) { 259 node_boot_start = ALIGN(bdata->node_boot_start, align); 260 if (node_boot_start > bdata->node_boot_start) 261 node_bootmem_map = (unsigned long *)bdata->node_bootmem_map + 262 PFN_DOWN(node_boot_start - bdata->node_boot_start)/BITS_PER_LONG; 263 } 264 265 if (limit && node_boot_start >= limit) 266 return NULL; 267 268 end_pfn = bdata->node_low_pfn; 269 limit = PFN_DOWN(limit); 270 if (limit && end_pfn > limit) 271 end_pfn = limit; 272 273 eidx = end_pfn - PFN_DOWN(node_boot_start); 274 275 /* 276 * We try to allocate bootmem pages above 'goal' 277 * first, then we try to allocate lower pages. 278 */ 279 preferred = 0; 280 if (goal && PFN_DOWN(goal) < end_pfn) { 281 if (goal > node_boot_start) 282 preferred = goal - node_boot_start; 283 284 if (bdata->last_success > node_boot_start && 285 bdata->last_success - node_boot_start >= preferred) 286 if (!limit || (limit && limit > bdata->last_success)) 287 preferred = bdata->last_success - node_boot_start; 288 } 289 290 preferred = PFN_DOWN(ALIGN(preferred, align)); 291 areasize = (size + PAGE_SIZE-1) / PAGE_SIZE; 292 incr = align >> PAGE_SHIFT ? : 1; 293 294restart_scan: 295 for (i = preferred; i < eidx;) { 296 unsigned long j; 297 298 i = find_next_zero_bit(node_bootmem_map, eidx, i); 299 i = ALIGN(i, incr); 300 if (i >= eidx) 301 break; 302 if (test_bit(i, node_bootmem_map)) { 303 i += incr; 304 continue; 305 } 306 for (j = i + 1; j < i + areasize; ++j) { 307 if (j >= eidx) 308 goto fail_block; 309 if (test_bit(j, node_bootmem_map)) 310 goto fail_block; 311 } 312 start = i; 313 goto found; 314 fail_block: 315 i = ALIGN(j, incr); 316 if (i == j) 317 i += incr; 318 } 319 320 if (preferred > 0) { 321 preferred = 0; 322 goto restart_scan; 323 } 324 return NULL; 325 326found: 327 bdata->last_success = PFN_PHYS(start) + node_boot_start; 328 BUG_ON(start >= eidx); 329 330 /* 331 * Is the next page of the previous allocation-end the start 332 * of this allocation's buffer? If yes then we can 'merge' 333 * the previous partial page with this allocation. 334 */ 335 if (align < PAGE_SIZE && 336 bdata->last_offset && bdata->last_pos+1 == start) { 337 unsigned long offset, remaining_size; 338 offset = ALIGN(bdata->last_offset, align); 339 BUG_ON(offset > PAGE_SIZE); 340 remaining_size = PAGE_SIZE - offset; 341 if (size < remaining_size) { 342 areasize = 0; 343 /* last_pos unchanged */ 344 bdata->last_offset = offset + size; 345 ret = phys_to_virt(bdata->last_pos * PAGE_SIZE + 346 offset + node_boot_start); 347 } else { 348 remaining_size = size - remaining_size; 349 areasize = (remaining_size + PAGE_SIZE-1) / PAGE_SIZE; 350 ret = phys_to_virt(bdata->last_pos * PAGE_SIZE + 351 offset + node_boot_start); 352 bdata->last_pos = start + areasize - 1; 353 bdata->last_offset = remaining_size; 354 } 355 bdata->last_offset &= ~PAGE_MASK; 356 } else { 357 bdata->last_pos = start + areasize - 1; 358 bdata->last_offset = size & ~PAGE_MASK; 359 ret = phys_to_virt(start * PAGE_SIZE + node_boot_start); 360 } 361 362 /* 363 * Reserve the area now: 364 */ 365 for (i = start; i < start + areasize; i++) 366 if (unlikely(test_and_set_bit(i, node_bootmem_map))) 367 BUG(); 368 memset(ret, 0, size); 369 return ret; 370} 371 372static unsigned long __init free_all_bootmem_core(pg_data_t *pgdat) 373{ 374 struct page *page; 375 unsigned long pfn; 376 bootmem_data_t *bdata = pgdat->bdata; 377 unsigned long i, count, total = 0; 378 unsigned long idx; 379 unsigned long *map; 380 int gofast = 0; 381 382 BUG_ON(!bdata->node_bootmem_map); 383 384 count = 0; 385 /* first extant page of the node */ 386 pfn = PFN_DOWN(bdata->node_boot_start); 387 idx = bdata->node_low_pfn - pfn; 388 map = bdata->node_bootmem_map; 389 /* Check physaddr is O(LOG2(BITS_PER_LONG)) page aligned */ 390 if (bdata->node_boot_start == 0 || 391 ffs(bdata->node_boot_start) - PAGE_SHIFT > ffs(BITS_PER_LONG)) 392 gofast = 1; 393 for (i = 0; i < idx; ) { 394 unsigned long v = ~map[i / BITS_PER_LONG]; 395 396 if (gofast && v == ~0UL) { 397 int order; 398 399 page = pfn_to_page(pfn); 400 count += BITS_PER_LONG; 401 order = ffs(BITS_PER_LONG) - 1; 402 __free_pages_bootmem(page, order); 403 i += BITS_PER_LONG; 404 page += BITS_PER_LONG; 405 } else if (v) { 406 unsigned long m; 407 408 page = pfn_to_page(pfn); 409 for (m = 1; m && i < idx; m<<=1, page++, i++) { 410 if (v & m) { 411 count++; 412 __free_pages_bootmem(page, 0); 413 } 414 } 415 } else { 416 i += BITS_PER_LONG; 417 } 418 pfn += BITS_PER_LONG; 419 } 420 total += count; 421 422 /* 423 * Now free the allocator bitmap itself, it's not 424 * needed anymore: 425 */ 426 page = virt_to_page(bdata->node_bootmem_map); 427 count = 0; 428 idx = (get_mapsize(bdata) + PAGE_SIZE-1) >> PAGE_SHIFT; 429 for (i = 0; i < idx; i++, page++) { 430 __free_pages_bootmem(page, 0); 431 count++; 432 } 433 total += count; 434 bdata->node_bootmem_map = NULL; 435 436 return total; 437} 438 439unsigned long __init init_bootmem_node(pg_data_t *pgdat, unsigned long freepfn, 440 unsigned long startpfn, unsigned long endpfn) 441{ 442 return init_bootmem_core(pgdat, freepfn, startpfn, endpfn); 443} 444 445void __init reserve_bootmem_node(pg_data_t *pgdat, unsigned long physaddr, 446 unsigned long size, int flags) 447{ 448 int ret; 449 450 ret = can_reserve_bootmem_core(pgdat->bdata, physaddr, size, flags); 451 if (ret < 0) 452 return; 453 reserve_bootmem_core(pgdat->bdata, physaddr, size, flags); 454} 455 456void __init free_bootmem_node(pg_data_t *pgdat, unsigned long physaddr, 457 unsigned long size) 458{ 459 free_bootmem_core(pgdat->bdata, physaddr, size); 460} 461 462unsigned long __init free_all_bootmem_node(pg_data_t *pgdat) 463{ 464 register_page_bootmem_info_node(pgdat); 465 return free_all_bootmem_core(pgdat); 466} 467 468unsigned long __init init_bootmem(unsigned long start, unsigned long pages) 469{ 470 max_low_pfn = pages; 471 min_low_pfn = start; 472 return init_bootmem_core(NODE_DATA(0), start, 0, pages); 473} 474 475#ifndef CONFIG_HAVE_ARCH_BOOTMEM_NODE 476int __init reserve_bootmem(unsigned long addr, unsigned long size, 477 int flags) 478{ 479 bootmem_data_t *bdata; 480 int ret; 481 482 list_for_each_entry(bdata, &bdata_list, list) { 483 ret = can_reserve_bootmem_core(bdata, addr, size, flags); 484 if (ret < 0) 485 return ret; 486 } 487 list_for_each_entry(bdata, &bdata_list, list) 488 reserve_bootmem_core(bdata, addr, size, flags); 489 490 return 0; 491} 492#endif /* !CONFIG_HAVE_ARCH_BOOTMEM_NODE */ 493 494void __init free_bootmem(unsigned long addr, unsigned long size) 495{ 496 bootmem_data_t *bdata; 497 list_for_each_entry(bdata, &bdata_list, list) 498 free_bootmem_core(bdata, addr, size); 499} 500 501unsigned long __init free_all_bootmem(void) 502{ 503 return free_all_bootmem_core(NODE_DATA(0)); 504} 505 506void * __init __alloc_bootmem_nopanic(unsigned long size, unsigned long align, 507 unsigned long goal) 508{ 509 bootmem_data_t *bdata; 510 void *ptr; 511 512 list_for_each_entry(bdata, &bdata_list, list) { 513 ptr = __alloc_bootmem_core(bdata, size, align, goal, 0); 514 if (ptr) 515 return ptr; 516 } 517 return NULL; 518} 519 520void * __init __alloc_bootmem(unsigned long size, unsigned long align, 521 unsigned long goal) 522{ 523 void *mem = __alloc_bootmem_nopanic(size,align,goal); 524 525 if (mem) 526 return mem; 527 /* 528 * Whoops, we cannot satisfy the allocation request. 529 */ 530 printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size); 531 panic("Out of memory"); 532 return NULL; 533} 534 535 536void * __init __alloc_bootmem_node(pg_data_t *pgdat, unsigned long size, 537 unsigned long align, unsigned long goal) 538{ 539 void *ptr; 540 541 ptr = __alloc_bootmem_core(pgdat->bdata, size, align, goal, 0); 542 if (ptr) 543 return ptr; 544 545 return __alloc_bootmem(size, align, goal); 546} 547 548#ifdef CONFIG_SPARSEMEM 549void * __init alloc_bootmem_section(unsigned long size, 550 unsigned long section_nr) 551{ 552 void *ptr; 553 unsigned long limit, goal, start_nr, end_nr, pfn; 554 struct pglist_data *pgdat; 555 556 pfn = section_nr_to_pfn(section_nr); 557 goal = PFN_PHYS(pfn); 558 limit = PFN_PHYS(section_nr_to_pfn(section_nr + 1)) - 1; 559 pgdat = NODE_DATA(early_pfn_to_nid(pfn)); 560 ptr = __alloc_bootmem_core(pgdat->bdata, size, SMP_CACHE_BYTES, goal, 561 limit); 562 563 if (!ptr) 564 return NULL; 565 566 start_nr = pfn_to_section_nr(PFN_DOWN(__pa(ptr))); 567 end_nr = pfn_to_section_nr(PFN_DOWN(__pa(ptr) + size)); 568 if (start_nr != section_nr || end_nr != section_nr) { 569 printk(KERN_WARNING "alloc_bootmem failed on section %ld.\n", 570 section_nr); 571 free_bootmem_core(pgdat->bdata, __pa(ptr), size); 572 ptr = NULL; 573 } 574 575 return ptr; 576} 577#endif 578 579#ifndef ARCH_LOW_ADDRESS_LIMIT 580#define ARCH_LOW_ADDRESS_LIMIT 0xffffffffUL 581#endif 582 583void * __init __alloc_bootmem_low(unsigned long size, unsigned long align, 584 unsigned long goal) 585{ 586 bootmem_data_t *bdata; 587 void *ptr; 588 589 list_for_each_entry(bdata, &bdata_list, list) { 590 ptr = __alloc_bootmem_core(bdata, size, align, goal, 591 ARCH_LOW_ADDRESS_LIMIT); 592 if (ptr) 593 return ptr; 594 } 595 596 /* 597 * Whoops, we cannot satisfy the allocation request. 598 */ 599 printk(KERN_ALERT "low bootmem alloc of %lu bytes failed!\n", size); 600 panic("Out of low memory"); 601 return NULL; 602} 603 604void * __init __alloc_bootmem_low_node(pg_data_t *pgdat, unsigned long size, 605 unsigned long align, unsigned long goal) 606{ 607 return __alloc_bootmem_core(pgdat->bdata, size, align, goal, 608 ARCH_LOW_ADDRESS_LIMIT); 609}