at v2.6.26-rc2 358 lines 9.6 kB view raw
1/* 2 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com) 3 * Copyright 2003 PathScale, Inc. 4 * Derived from include/asm-i386/pgtable.h 5 * Licensed under the GPL 6 */ 7 8#ifndef __UM_PGTABLE_H 9#define __UM_PGTABLE_H 10 11#include <asm/fixmap.h> 12 13#define _PAGE_PRESENT 0x001 14#define _PAGE_NEWPAGE 0x002 15#define _PAGE_NEWPROT 0x004 16#define _PAGE_RW 0x020 17#define _PAGE_USER 0x040 18#define _PAGE_ACCESSED 0x080 19#define _PAGE_DIRTY 0x100 20/* If _PAGE_PRESENT is clear, we use these: */ 21#define _PAGE_FILE 0x008 /* nonlinear file mapping, saved PTE; unset:swap */ 22#define _PAGE_PROTNONE 0x010 /* if the user mapped it with PROT_NONE; 23 pte_present gives true */ 24 25#ifdef CONFIG_3_LEVEL_PGTABLES 26#include "asm/pgtable-3level.h" 27#else 28#include "asm/pgtable-2level.h" 29#endif 30 31extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; 32 33/* zero page used for uninitialized stuff */ 34extern unsigned long *empty_zero_page; 35 36#define pgtable_cache_init() do ; while (0) 37 38/* Just any arbitrary offset to the start of the vmalloc VM area: the 39 * current 8MB value just means that there will be a 8MB "hole" after the 40 * physical memory until the kernel virtual memory starts. That means that 41 * any out-of-bounds memory accesses will hopefully be caught. 42 * The vmalloc() routines leaves a hole of 4kB between each vmalloced 43 * area for the same reason. ;) 44 */ 45 46extern unsigned long end_iomem; 47 48#define VMALLOC_OFFSET (__va_space) 49#define VMALLOC_START ((end_iomem + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)) 50#ifdef CONFIG_HIGHMEM 51# define VMALLOC_END (PKMAP_BASE-2*PAGE_SIZE) 52#else 53# define VMALLOC_END (FIXADDR_START-2*PAGE_SIZE) 54#endif 55 56#define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY) 57#define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY) 58#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) 59 60#define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED) 61#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED) 62#define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED) 63#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED) 64#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED) 65 66/* 67 * The i386 can't do page protection for execute, and considers that the same 68 * are read. 69 * Also, write permissions imply read permissions. This is the closest we can 70 * get.. 71 */ 72#define __P000 PAGE_NONE 73#define __P001 PAGE_READONLY 74#define __P010 PAGE_COPY 75#define __P011 PAGE_COPY 76#define __P100 PAGE_READONLY 77#define __P101 PAGE_READONLY 78#define __P110 PAGE_COPY 79#define __P111 PAGE_COPY 80 81#define __S000 PAGE_NONE 82#define __S001 PAGE_READONLY 83#define __S010 PAGE_SHARED 84#define __S011 PAGE_SHARED 85#define __S100 PAGE_READONLY 86#define __S101 PAGE_READONLY 87#define __S110 PAGE_SHARED 88#define __S111 PAGE_SHARED 89 90/* 91 * ZERO_PAGE is a global shared page that is always zero: used 92 * for zero-mapped memory areas etc.. 93 */ 94#define ZERO_PAGE(vaddr) virt_to_page(empty_zero_page) 95 96#define pte_clear(mm,addr,xp) pte_set_val(*(xp), (phys_t) 0, __pgprot(_PAGE_NEWPAGE)) 97 98#define pmd_none(x) (!((unsigned long)pmd_val(x) & ~_PAGE_NEWPAGE)) 99#define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE) 100 101#define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT) 102#define pmd_clear(xp) do { pmd_val(*(xp)) = _PAGE_NEWPAGE; } while (0) 103 104#define pmd_newpage(x) (pmd_val(x) & _PAGE_NEWPAGE) 105#define pmd_mkuptodate(x) (pmd_val(x) &= ~_PAGE_NEWPAGE) 106 107#define pud_newpage(x) (pud_val(x) & _PAGE_NEWPAGE) 108#define pud_mkuptodate(x) (pud_val(x) &= ~_PAGE_NEWPAGE) 109 110#define pmd_page(pmd) phys_to_page(pmd_val(pmd) & PAGE_MASK) 111 112#define pte_page(x) pfn_to_page(pte_pfn(x)) 113 114#define pte_present(x) pte_get_bits(x, (_PAGE_PRESENT | _PAGE_PROTNONE)) 115 116/* 117 * ================================= 118 * Flags checking section. 119 * ================================= 120 */ 121 122static inline int pte_none(pte_t pte) 123{ 124 return pte_is_zero(pte); 125} 126 127/* 128 * The following only work if pte_present() is true. 129 * Undefined behaviour if not.. 130 */ 131static inline int pte_read(pte_t pte) 132{ 133 return((pte_get_bits(pte, _PAGE_USER)) && 134 !(pte_get_bits(pte, _PAGE_PROTNONE))); 135} 136 137static inline int pte_exec(pte_t pte){ 138 return((pte_get_bits(pte, _PAGE_USER)) && 139 !(pte_get_bits(pte, _PAGE_PROTNONE))); 140} 141 142static inline int pte_write(pte_t pte) 143{ 144 return((pte_get_bits(pte, _PAGE_RW)) && 145 !(pte_get_bits(pte, _PAGE_PROTNONE))); 146} 147 148/* 149 * The following only works if pte_present() is not true. 150 */ 151static inline int pte_file(pte_t pte) 152{ 153 return pte_get_bits(pte, _PAGE_FILE); 154} 155 156static inline int pte_dirty(pte_t pte) 157{ 158 return pte_get_bits(pte, _PAGE_DIRTY); 159} 160 161static inline int pte_young(pte_t pte) 162{ 163 return pte_get_bits(pte, _PAGE_ACCESSED); 164} 165 166static inline int pte_newpage(pte_t pte) 167{ 168 return pte_get_bits(pte, _PAGE_NEWPAGE); 169} 170 171static inline int pte_newprot(pte_t pte) 172{ 173 return(pte_present(pte) && (pte_get_bits(pte, _PAGE_NEWPROT))); 174} 175 176static inline int pte_special(pte_t pte) 177{ 178 return 0; 179} 180 181/* 182 * ================================= 183 * Flags setting section. 184 * ================================= 185 */ 186 187static inline pte_t pte_mknewprot(pte_t pte) 188{ 189 pte_set_bits(pte, _PAGE_NEWPROT); 190 return(pte); 191} 192 193static inline pte_t pte_mkclean(pte_t pte) 194{ 195 pte_clear_bits(pte, _PAGE_DIRTY); 196 return(pte); 197} 198 199static inline pte_t pte_mkold(pte_t pte) 200{ 201 pte_clear_bits(pte, _PAGE_ACCESSED); 202 return(pte); 203} 204 205static inline pte_t pte_wrprotect(pte_t pte) 206{ 207 pte_clear_bits(pte, _PAGE_RW); 208 return(pte_mknewprot(pte)); 209} 210 211static inline pte_t pte_mkread(pte_t pte) 212{ 213 pte_set_bits(pte, _PAGE_USER); 214 return(pte_mknewprot(pte)); 215} 216 217static inline pte_t pte_mkdirty(pte_t pte) 218{ 219 pte_set_bits(pte, _PAGE_DIRTY); 220 return(pte); 221} 222 223static inline pte_t pte_mkyoung(pte_t pte) 224{ 225 pte_set_bits(pte, _PAGE_ACCESSED); 226 return(pte); 227} 228 229static inline pte_t pte_mkwrite(pte_t pte) 230{ 231 pte_set_bits(pte, _PAGE_RW); 232 return(pte_mknewprot(pte)); 233} 234 235static inline pte_t pte_mkuptodate(pte_t pte) 236{ 237 pte_clear_bits(pte, _PAGE_NEWPAGE); 238 if(pte_present(pte)) 239 pte_clear_bits(pte, _PAGE_NEWPROT); 240 return(pte); 241} 242 243static inline pte_t pte_mknewpage(pte_t pte) 244{ 245 pte_set_bits(pte, _PAGE_NEWPAGE); 246 return(pte); 247} 248 249static inline pte_t pte_mkspecial(pte_t pte) 250{ 251 return(pte); 252} 253 254static inline void set_pte(pte_t *pteptr, pte_t pteval) 255{ 256 pte_copy(*pteptr, pteval); 257 258 /* If it's a swap entry, it needs to be marked _PAGE_NEWPAGE so 259 * fix_range knows to unmap it. _PAGE_NEWPROT is specific to 260 * mapped pages. 261 */ 262 263 *pteptr = pte_mknewpage(*pteptr); 264 if(pte_present(*pteptr)) *pteptr = pte_mknewprot(*pteptr); 265} 266#define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval) 267 268/* 269 * Conversion functions: convert a page and protection to a page entry, 270 * and a page entry and page directory to the page they refer to. 271 */ 272 273#define phys_to_page(phys) pfn_to_page(phys_to_pfn(phys)) 274#define __virt_to_page(virt) phys_to_page(__pa(virt)) 275#define page_to_phys(page) pfn_to_phys((pfn_t) page_to_pfn(page)) 276#define virt_to_page(addr) __virt_to_page((const unsigned long) addr) 277 278#define mk_pte(page, pgprot) \ 279 ({ pte_t pte; \ 280 \ 281 pte_set_val(pte, page_to_phys(page), (pgprot)); \ 282 if (pte_present(pte)) \ 283 pte_mknewprot(pte_mknewpage(pte)); \ 284 pte;}) 285 286static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 287{ 288 pte_set_val(pte, (pte_val(pte) & _PAGE_CHG_MASK), newprot); 289 return pte; 290} 291 292/* 293 * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD] 294 * 295 * this macro returns the index of the entry in the pgd page which would 296 * control the given virtual address 297 */ 298#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) 299 300/* 301 * pgd_offset() returns a (pgd_t *) 302 * pgd_index() is used get the offset into the pgd page's array of pgd_t's; 303 */ 304#define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address)) 305 306/* 307 * a shortcut which implies the use of the kernel's pgd, instead 308 * of a process's 309 */ 310#define pgd_offset_k(address) pgd_offset(&init_mm, address) 311 312/* 313 * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD] 314 * 315 * this macro returns the index of the entry in the pmd page which would 316 * control the given virtual address 317 */ 318#define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK)) 319#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1)) 320 321#define pmd_page_vaddr(pmd) \ 322 ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK)) 323 324/* 325 * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE] 326 * 327 * this macro returns the index of the entry in the pte page which would 328 * control the given virtual address 329 */ 330#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) 331#define pte_offset_kernel(dir, address) \ 332 ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(address)) 333#define pte_offset_map(dir, address) \ 334 ((pte_t *)page_address(pmd_page(*(dir))) + pte_index(address)) 335#define pte_offset_map_nested(dir, address) pte_offset_map(dir, address) 336#define pte_unmap(pte) do { } while (0) 337#define pte_unmap_nested(pte) do { } while (0) 338 339struct mm_struct; 340extern pte_t *virt_to_pte(struct mm_struct *mm, unsigned long addr); 341 342#define update_mmu_cache(vma,address,pte) do ; while (0) 343 344/* Encode and de-code a swap entry */ 345#define __swp_type(x) (((x).val >> 4) & 0x3f) 346#define __swp_offset(x) ((x).val >> 11) 347 348#define __swp_entry(type, offset) \ 349 ((swp_entry_t) { ((type) << 4) | ((offset) << 11) }) 350#define __pte_to_swp_entry(pte) \ 351 ((swp_entry_t) { pte_val(pte_mkuptodate(pte)) }) 352#define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 353 354#define kern_addr_valid(addr) (1) 355 356#include <asm-generic/pgtable.h> 357 358#endif