at v2.6.26-rc2 314 lines 12 kB view raw
1#ifndef __ASM_SH_PGTABLE_64_H 2#define __ASM_SH_PGTABLE_64_H 3 4/* 5 * include/asm-sh/pgtable_64.h 6 * 7 * This file contains the functions and defines necessary to modify and use 8 * the SuperH page table tree. 9 * 10 * Copyright (C) 2000, 2001 Paolo Alberelli 11 * Copyright (C) 2003, 2004 Paul Mundt 12 * Copyright (C) 2003, 2004 Richard Curnow 13 * 14 * This file is subject to the terms and conditions of the GNU General Public 15 * License. See the file "COPYING" in the main directory of this archive 16 * for more details. 17 */ 18#include <linux/threads.h> 19#include <asm/processor.h> 20#include <asm/page.h> 21 22/* 23 * Error outputs. 24 */ 25#define pte_ERROR(e) \ 26 printk("%s:%d: bad pte %016Lx.\n", __FILE__, __LINE__, pte_val(e)) 27#define pgd_ERROR(e) \ 28 printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e)) 29 30/* 31 * Table setting routines. Used within arch/mm only. 32 */ 33#define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval) 34 35static __inline__ void set_pte(pte_t *pteptr, pte_t pteval) 36{ 37 unsigned long long x = ((unsigned long long) pteval.pte_low); 38 unsigned long long *xp = (unsigned long long *) pteptr; 39 /* 40 * Sign-extend based on NPHYS. 41 */ 42 *(xp) = (x & NPHYS_SIGN) ? (x | NPHYS_MASK) : x; 43} 44#define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval) 45 46static __inline__ void pmd_set(pmd_t *pmdp,pte_t *ptep) 47{ 48 pmd_val(*pmdp) = (unsigned long) ptep; 49} 50 51/* 52 * PGD defines. Top level. 53 */ 54 55/* To find an entry in a generic PGD. */ 56#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) 57#define __pgd_offset(address) pgd_index(address) 58#define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address)) 59 60/* To find an entry in a kernel PGD. */ 61#define pgd_offset_k(address) pgd_offset(&init_mm, address) 62 63/* 64 * PMD level access routines. Same notes as above. 65 */ 66#define _PMD_EMPTY 0x0 67/* Either the PMD is empty or present, it's not paged out */ 68#define pmd_present(pmd_entry) (pmd_val(pmd_entry) & _PAGE_PRESENT) 69#define pmd_clear(pmd_entry_p) (set_pmd((pmd_entry_p), __pmd(_PMD_EMPTY))) 70#define pmd_none(pmd_entry) (pmd_val((pmd_entry)) == _PMD_EMPTY) 71#define pmd_bad(pmd_entry) ((pmd_val(pmd_entry) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE) 72 73#define pmd_page_vaddr(pmd_entry) \ 74 ((unsigned long) __va(pmd_val(pmd_entry) & PAGE_MASK)) 75 76#define pmd_page(pmd) \ 77 (virt_to_page(pmd_val(pmd))) 78 79/* PMD to PTE dereferencing */ 80#define pte_index(address) \ 81 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) 82 83#define pte_offset_kernel(dir, addr) \ 84 ((pte_t *) ((pmd_val(*(dir))) & PAGE_MASK) + pte_index((addr))) 85 86#define pte_offset_map(dir,addr) pte_offset_kernel(dir, addr) 87#define pte_offset_map_nested(dir,addr) pte_offset_kernel(dir, addr) 88#define pte_unmap(pte) do { } while (0) 89#define pte_unmap_nested(pte) do { } while (0) 90 91#ifndef __ASSEMBLY__ 92#define IOBASE_VADDR 0xff000000 93#define IOBASE_END 0xffffffff 94 95/* 96 * PTEL coherent flags. 97 * See Chapter 17 ST50 CPU Core Volume 1, Architecture. 98 */ 99/* The bits that are required in the SH-5 TLB are placed in the h/w-defined 100 positions, to avoid expensive bit shuffling on every refill. The remaining 101 bits are used for s/w purposes and masked out on each refill. 102 103 Note, the PTE slots are used to hold data of type swp_entry_t when a page is 104 swapped out. Only the _PAGE_PRESENT flag is significant when the page is 105 swapped out, and it must be placed so that it doesn't overlap either the 106 type or offset fields of swp_entry_t. For x86, offset is at [31:8] and type 107 at [6:1], with _PAGE_PRESENT at bit 0 for both pte_t and swp_entry_t. This 108 scheme doesn't map to SH-5 because bit [0] controls cacheability. So bit 109 [2] is used for _PAGE_PRESENT and the type field of swp_entry_t is split 110 into 2 pieces. That is handled by SWP_ENTRY and SWP_TYPE below. */ 111#define _PAGE_WT 0x001 /* CB0: if cacheable, 1->write-thru, 0->write-back */ 112#define _PAGE_DEVICE 0x001 /* CB0: if uncacheable, 1->device (i.e. no write-combining or reordering at bus level) */ 113#define _PAGE_CACHABLE 0x002 /* CB1: uncachable/cachable */ 114#define _PAGE_PRESENT 0x004 /* software: page referenced */ 115#define _PAGE_FILE 0x004 /* software: only when !present */ 116#define _PAGE_SIZE0 0x008 /* SZ0-bit : size of page */ 117#define _PAGE_SIZE1 0x010 /* SZ1-bit : size of page */ 118#define _PAGE_SHARED 0x020 /* software: reflects PTEH's SH */ 119#define _PAGE_READ 0x040 /* PR0-bit : read access allowed */ 120#define _PAGE_EXECUTE 0x080 /* PR1-bit : execute access allowed */ 121#define _PAGE_WRITE 0x100 /* PR2-bit : write access allowed */ 122#define _PAGE_USER 0x200 /* PR3-bit : user space access allowed */ 123#define _PAGE_DIRTY 0x400 /* software: page accessed in write */ 124#define _PAGE_ACCESSED 0x800 /* software: page referenced */ 125 126/* Mask which drops software flags */ 127#define _PAGE_FLAGS_HARDWARE_MASK 0xfffffffffffff3dbLL 128 129/* 130 * HugeTLB support 131 */ 132#if defined(CONFIG_HUGETLB_PAGE_SIZE_64K) 133#define _PAGE_SZHUGE (_PAGE_SIZE0) 134#elif defined(CONFIG_HUGETLB_PAGE_SIZE_1MB) 135#define _PAGE_SZHUGE (_PAGE_SIZE1) 136#elif defined(CONFIG_HUGETLB_PAGE_SIZE_512MB) 137#define _PAGE_SZHUGE (_PAGE_SIZE0 | _PAGE_SIZE1) 138#endif 139 140/* 141 * Stub out _PAGE_SZHUGE if we don't have a good definition for it, 142 * to make pte_mkhuge() happy. 143 */ 144#ifndef _PAGE_SZHUGE 145# define _PAGE_SZHUGE (0) 146#endif 147 148/* 149 * Default flags for a Kernel page. 150 * This is fundametally also SHARED because the main use of this define 151 * (other than for PGD/PMD entries) is for the VMALLOC pool which is 152 * contextless. 153 * 154 * _PAGE_EXECUTE is required for modules 155 * 156 */ 157#define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 158 _PAGE_EXECUTE | \ 159 _PAGE_CACHABLE | _PAGE_ACCESSED | _PAGE_DIRTY | \ 160 _PAGE_SHARED) 161 162/* Default flags for a User page */ 163#define _PAGE_TABLE (_KERNPG_TABLE | _PAGE_USER) 164 165#define _PAGE_CHG_MASK (PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) 166 167/* 168 * We have full permissions (Read/Write/Execute/Shared). 169 */ 170#define _PAGE_COMMON (_PAGE_PRESENT | _PAGE_USER | \ 171 _PAGE_CACHABLE | _PAGE_ACCESSED) 172 173#define PAGE_NONE __pgprot(_PAGE_CACHABLE | _PAGE_ACCESSED) 174#define PAGE_SHARED __pgprot(_PAGE_COMMON | _PAGE_READ | _PAGE_WRITE | \ 175 _PAGE_SHARED) 176#define PAGE_EXECREAD __pgprot(_PAGE_COMMON | _PAGE_READ | _PAGE_EXECUTE) 177 178/* 179 * We need to include PAGE_EXECUTE in PAGE_COPY because it is the default 180 * protection mode for the stack. 181 */ 182#define PAGE_COPY PAGE_EXECREAD 183 184#define PAGE_READONLY __pgprot(_PAGE_COMMON | _PAGE_READ) 185#define PAGE_WRITEONLY __pgprot(_PAGE_COMMON | _PAGE_WRITE) 186#define PAGE_RWX __pgprot(_PAGE_COMMON | _PAGE_READ | \ 187 _PAGE_WRITE | _PAGE_EXECUTE) 188#define PAGE_KERNEL __pgprot(_KERNPG_TABLE) 189 190#define PAGE_KERNEL_NOCACHE \ 191 __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 192 _PAGE_EXECUTE | _PAGE_ACCESSED | \ 193 _PAGE_DIRTY | _PAGE_SHARED) 194 195/* Make it a device mapping for maximum safety (e.g. for mapping device 196 registers into user-space via /dev/map). */ 197#define pgprot_noncached(x) __pgprot(((x).pgprot & ~(_PAGE_CACHABLE)) | _PAGE_DEVICE) 198#define pgprot_writecombine(prot) __pgprot(pgprot_val(prot) & ~_PAGE_CACHABLE) 199 200/* 201 * Handling allocation failures during page table setup. 202 */ 203extern void __handle_bad_pmd_kernel(pmd_t * pmd); 204#define __handle_bad_pmd(x) __handle_bad_pmd_kernel(x) 205 206/* 207 * PTE level access routines. 208 * 209 * Note1: 210 * It's the tree walk leaf. This is physical address to be stored. 211 * 212 * Note 2: 213 * Regarding the choice of _PTE_EMPTY: 214 215 We must choose a bit pattern that cannot be valid, whether or not the page 216 is present. bit[2]==1 => present, bit[2]==0 => swapped out. If swapped 217 out, bits [31:8], [6:3], [1:0] are under swapper control, so only bit[7] is 218 left for us to select. If we force bit[7]==0 when swapped out, we could use 219 the combination bit[7,2]=2'b10 to indicate an empty PTE. Alternatively, if 220 we force bit[7]==1 when swapped out, we can use all zeroes to indicate 221 empty. This is convenient, because the page tables get cleared to zero 222 when they are allocated. 223 224 */ 225#define _PTE_EMPTY 0x0 226#define pte_present(x) (pte_val(x) & _PAGE_PRESENT) 227#define pte_clear(mm,addr,xp) (set_pte_at(mm, addr, xp, __pte(_PTE_EMPTY))) 228#define pte_none(x) (pte_val(x) == _PTE_EMPTY) 229 230/* 231 * Some definitions to translate between mem_map, PTEs, and page 232 * addresses: 233 */ 234 235/* 236 * Given a PTE, return the index of the mem_map[] entry corresponding 237 * to the page frame the PTE. Get the absolute physical address, make 238 * a relative physical address and translate it to an index. 239 */ 240#define pte_pagenr(x) (((unsigned long) (pte_val(x)) - \ 241 __MEMORY_START) >> PAGE_SHIFT) 242 243/* 244 * Given a PTE, return the "struct page *". 245 */ 246#define pte_page(x) (mem_map + pte_pagenr(x)) 247 248/* 249 * Return number of (down rounded) MB corresponding to x pages. 250 */ 251#define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT)) 252 253 254/* 255 * The following have defined behavior only work if pte_present() is true. 256 */ 257static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } 258static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } 259static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; } 260static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITE; } 261static inline int pte_special(pte_t pte){ return 0; } 262 263static inline pte_t pte_wrprotect(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_WRITE)); return pte; } 264static inline pte_t pte_mkclean(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_DIRTY)); return pte; } 265static inline pte_t pte_mkold(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_ACCESSED)); return pte; } 266static inline pte_t pte_mkwrite(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_WRITE)); return pte; } 267static inline pte_t pte_mkdirty(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_DIRTY)); return pte; } 268static inline pte_t pte_mkyoung(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_ACCESSED)); return pte; } 269static inline pte_t pte_mkhuge(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_SZHUGE)); return pte; } 270static inline pte_t pte_mkspecial(pte_t pte) { return pte; } 271 272 273/* 274 * Conversion functions: convert a page and protection to a page entry. 275 * 276 * extern pte_t mk_pte(struct page *page, pgprot_t pgprot) 277 */ 278#define mk_pte(page,pgprot) \ 279({ \ 280 pte_t __pte; \ 281 \ 282 set_pte(&__pte, __pte((((page)-mem_map) << PAGE_SHIFT) | \ 283 __MEMORY_START | pgprot_val((pgprot)))); \ 284 __pte; \ 285}) 286 287/* 288 * This takes a (absolute) physical page address that is used 289 * by the remapping functions 290 */ 291#define mk_pte_phys(physpage, pgprot) \ 292({ pte_t __pte; set_pte(&__pte, __pte(physpage | pgprot_val(pgprot))); __pte; }) 293 294static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 295{ set_pte(&pte, __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot))); return pte; } 296 297/* Encode and decode a swap entry */ 298#define __swp_type(x) (((x).val & 3) + (((x).val >> 1) & 0x3c)) 299#define __swp_offset(x) ((x).val >> 8) 300#define __swp_entry(type, offset) ((swp_entry_t) { ((offset << 8) + ((type & 0x3c) << 1) + (type & 3)) }) 301#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 302#define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 303 304/* Encode and decode a nonlinear file mapping entry */ 305#define PTE_FILE_MAX_BITS 29 306#define pte_to_pgoff(pte) (pte_val(pte)) 307#define pgoff_to_pte(off) ((pte_t) { (off) | _PAGE_FILE }) 308 309#endif /* !__ASSEMBLY__ */ 310 311#define pfn_pte(pfn, prot) __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot)) 312#define pfn_pmd(pfn, prot) __pmd(((pfn) << PAGE_SHIFT) | pgprot_val(prot)) 313 314#endif /* __ASM_SH_PGTABLE_64_H */