at v2.6.26-rc2 579 lines 14 kB view raw
1/* 2 * Copyright (C) 1995-1999 Gary Thomas, Paul Mackerras, Cort Dougan. 3 */ 4#ifndef _ASM_POWERPC_PPC_ASM_H 5#define _ASM_POWERPC_PPC_ASM_H 6 7#include <linux/stringify.h> 8#include <asm/asm-compat.h> 9 10#ifndef __ASSEMBLY__ 11#error __FILE__ should only be used in assembler files 12#else 13 14#define SZL (BITS_PER_LONG/8) 15 16/* 17 * Stuff for accurate CPU time accounting. 18 * These macros handle transitions between user and system state 19 * in exception entry and exit and accumulate time to the 20 * user_time and system_time fields in the paca. 21 */ 22 23#ifndef CONFIG_VIRT_CPU_ACCOUNTING 24#define ACCOUNT_CPU_USER_ENTRY(ra, rb) 25#define ACCOUNT_CPU_USER_EXIT(ra, rb) 26#else 27#define ACCOUNT_CPU_USER_ENTRY(ra, rb) \ 28 beq 2f; /* if from kernel mode */ \ 29BEGIN_FTR_SECTION; \ 30 mfspr ra,SPRN_PURR; /* get processor util. reg */ \ 31END_FTR_SECTION_IFSET(CPU_FTR_PURR); \ 32BEGIN_FTR_SECTION; \ 33 MFTB(ra); /* or get TB if no PURR */ \ 34END_FTR_SECTION_IFCLR(CPU_FTR_PURR); \ 35 ld rb,PACA_STARTPURR(r13); \ 36 std ra,PACA_STARTPURR(r13); \ 37 subf rb,rb,ra; /* subtract start value */ \ 38 ld ra,PACA_USER_TIME(r13); \ 39 add ra,ra,rb; /* add on to user time */ \ 40 std ra,PACA_USER_TIME(r13); \ 412: 42 43#define ACCOUNT_CPU_USER_EXIT(ra, rb) \ 44BEGIN_FTR_SECTION; \ 45 mfspr ra,SPRN_PURR; /* get processor util. reg */ \ 46END_FTR_SECTION_IFSET(CPU_FTR_PURR); \ 47BEGIN_FTR_SECTION; \ 48 MFTB(ra); /* or get TB if no PURR */ \ 49END_FTR_SECTION_IFCLR(CPU_FTR_PURR); \ 50 ld rb,PACA_STARTPURR(r13); \ 51 std ra,PACA_STARTPURR(r13); \ 52 subf rb,rb,ra; /* subtract start value */ \ 53 ld ra,PACA_SYSTEM_TIME(r13); \ 54 add ra,ra,rb; /* add on to user time */ \ 55 std ra,PACA_SYSTEM_TIME(r13); 56#endif 57 58/* 59 * Macros for storing registers into and loading registers from 60 * exception frames. 61 */ 62#ifdef __powerpc64__ 63#define SAVE_GPR(n, base) std n,GPR0+8*(n)(base) 64#define REST_GPR(n, base) ld n,GPR0+8*(n)(base) 65#define SAVE_NVGPRS(base) SAVE_8GPRS(14, base); SAVE_10GPRS(22, base) 66#define REST_NVGPRS(base) REST_8GPRS(14, base); REST_10GPRS(22, base) 67#else 68#define SAVE_GPR(n, base) stw n,GPR0+4*(n)(base) 69#define REST_GPR(n, base) lwz n,GPR0+4*(n)(base) 70#define SAVE_NVGPRS(base) SAVE_GPR(13, base); SAVE_8GPRS(14, base); \ 71 SAVE_10GPRS(22, base) 72#define REST_NVGPRS(base) REST_GPR(13, base); REST_8GPRS(14, base); \ 73 REST_10GPRS(22, base) 74#endif 75 76 77#define SAVE_2GPRS(n, base) SAVE_GPR(n, base); SAVE_GPR(n+1, base) 78#define SAVE_4GPRS(n, base) SAVE_2GPRS(n, base); SAVE_2GPRS(n+2, base) 79#define SAVE_8GPRS(n, base) SAVE_4GPRS(n, base); SAVE_4GPRS(n+4, base) 80#define SAVE_10GPRS(n, base) SAVE_8GPRS(n, base); SAVE_2GPRS(n+8, base) 81#define REST_2GPRS(n, base) REST_GPR(n, base); REST_GPR(n+1, base) 82#define REST_4GPRS(n, base) REST_2GPRS(n, base); REST_2GPRS(n+2, base) 83#define REST_8GPRS(n, base) REST_4GPRS(n, base); REST_4GPRS(n+4, base) 84#define REST_10GPRS(n, base) REST_8GPRS(n, base); REST_2GPRS(n+8, base) 85 86#define SAVE_FPR(n, base) stfd n,THREAD_FPR0+8*(n)(base) 87#define SAVE_2FPRS(n, base) SAVE_FPR(n, base); SAVE_FPR(n+1, base) 88#define SAVE_4FPRS(n, base) SAVE_2FPRS(n, base); SAVE_2FPRS(n+2, base) 89#define SAVE_8FPRS(n, base) SAVE_4FPRS(n, base); SAVE_4FPRS(n+4, base) 90#define SAVE_16FPRS(n, base) SAVE_8FPRS(n, base); SAVE_8FPRS(n+8, base) 91#define SAVE_32FPRS(n, base) SAVE_16FPRS(n, base); SAVE_16FPRS(n+16, base) 92#define REST_FPR(n, base) lfd n,THREAD_FPR0+8*(n)(base) 93#define REST_2FPRS(n, base) REST_FPR(n, base); REST_FPR(n+1, base) 94#define REST_4FPRS(n, base) REST_2FPRS(n, base); REST_2FPRS(n+2, base) 95#define REST_8FPRS(n, base) REST_4FPRS(n, base); REST_4FPRS(n+4, base) 96#define REST_16FPRS(n, base) REST_8FPRS(n, base); REST_8FPRS(n+8, base) 97#define REST_32FPRS(n, base) REST_16FPRS(n, base); REST_16FPRS(n+16, base) 98 99#define SAVE_VR(n,b,base) li b,THREAD_VR0+(16*(n)); stvx n,b,base 100#define SAVE_2VRS(n,b,base) SAVE_VR(n,b,base); SAVE_VR(n+1,b,base) 101#define SAVE_4VRS(n,b,base) SAVE_2VRS(n,b,base); SAVE_2VRS(n+2,b,base) 102#define SAVE_8VRS(n,b,base) SAVE_4VRS(n,b,base); SAVE_4VRS(n+4,b,base) 103#define SAVE_16VRS(n,b,base) SAVE_8VRS(n,b,base); SAVE_8VRS(n+8,b,base) 104#define SAVE_32VRS(n,b,base) SAVE_16VRS(n,b,base); SAVE_16VRS(n+16,b,base) 105#define REST_VR(n,b,base) li b,THREAD_VR0+(16*(n)); lvx n,b,base 106#define REST_2VRS(n,b,base) REST_VR(n,b,base); REST_VR(n+1,b,base) 107#define REST_4VRS(n,b,base) REST_2VRS(n,b,base); REST_2VRS(n+2,b,base) 108#define REST_8VRS(n,b,base) REST_4VRS(n,b,base); REST_4VRS(n+4,b,base) 109#define REST_16VRS(n,b,base) REST_8VRS(n,b,base); REST_8VRS(n+8,b,base) 110#define REST_32VRS(n,b,base) REST_16VRS(n,b,base); REST_16VRS(n+16,b,base) 111 112#define SAVE_EVR(n,s,base) evmergehi s,s,n; stw s,THREAD_EVR0+4*(n)(base) 113#define SAVE_2EVRS(n,s,base) SAVE_EVR(n,s,base); SAVE_EVR(n+1,s,base) 114#define SAVE_4EVRS(n,s,base) SAVE_2EVRS(n,s,base); SAVE_2EVRS(n+2,s,base) 115#define SAVE_8EVRS(n,s,base) SAVE_4EVRS(n,s,base); SAVE_4EVRS(n+4,s,base) 116#define SAVE_16EVRS(n,s,base) SAVE_8EVRS(n,s,base); SAVE_8EVRS(n+8,s,base) 117#define SAVE_32EVRS(n,s,base) SAVE_16EVRS(n,s,base); SAVE_16EVRS(n+16,s,base) 118#define REST_EVR(n,s,base) lwz s,THREAD_EVR0+4*(n)(base); evmergelo n,s,n 119#define REST_2EVRS(n,s,base) REST_EVR(n,s,base); REST_EVR(n+1,s,base) 120#define REST_4EVRS(n,s,base) REST_2EVRS(n,s,base); REST_2EVRS(n+2,s,base) 121#define REST_8EVRS(n,s,base) REST_4EVRS(n,s,base); REST_4EVRS(n+4,s,base) 122#define REST_16EVRS(n,s,base) REST_8EVRS(n,s,base); REST_8EVRS(n+8,s,base) 123#define REST_32EVRS(n,s,base) REST_16EVRS(n,s,base); REST_16EVRS(n+16,s,base) 124 125/* Macros to adjust thread priority for hardware multithreading */ 126#define HMT_VERY_LOW or 31,31,31 # very low priority 127#define HMT_LOW or 1,1,1 128#define HMT_MEDIUM_LOW or 6,6,6 # medium low priority 129#define HMT_MEDIUM or 2,2,2 130#define HMT_MEDIUM_HIGH or 5,5,5 # medium high priority 131#define HMT_HIGH or 3,3,3 132 133/* handle instructions that older assemblers may not know */ 134#define RFCI .long 0x4c000066 /* rfci instruction */ 135#define RFDI .long 0x4c00004e /* rfdi instruction */ 136#define RFMCI .long 0x4c00004c /* rfmci instruction */ 137 138#ifdef __KERNEL__ 139#ifdef CONFIG_PPC64 140 141#define XGLUE(a,b) a##b 142#define GLUE(a,b) XGLUE(a,b) 143 144#define _GLOBAL(name) \ 145 .section ".text"; \ 146 .align 2 ; \ 147 .globl name; \ 148 .globl GLUE(.,name); \ 149 .section ".opd","aw"; \ 150name: \ 151 .quad GLUE(.,name); \ 152 .quad .TOC.@tocbase; \ 153 .quad 0; \ 154 .previous; \ 155 .type GLUE(.,name),@function; \ 156GLUE(.,name): 157 158#define _INIT_GLOBAL(name) \ 159 .section ".text.init.refok"; \ 160 .align 2 ; \ 161 .globl name; \ 162 .globl GLUE(.,name); \ 163 .section ".opd","aw"; \ 164name: \ 165 .quad GLUE(.,name); \ 166 .quad .TOC.@tocbase; \ 167 .quad 0; \ 168 .previous; \ 169 .type GLUE(.,name),@function; \ 170GLUE(.,name): 171 172#define _KPROBE(name) \ 173 .section ".kprobes.text","a"; \ 174 .align 2 ; \ 175 .globl name; \ 176 .globl GLUE(.,name); \ 177 .section ".opd","aw"; \ 178name: \ 179 .quad GLUE(.,name); \ 180 .quad .TOC.@tocbase; \ 181 .quad 0; \ 182 .previous; \ 183 .type GLUE(.,name),@function; \ 184GLUE(.,name): 185 186#define _STATIC(name) \ 187 .section ".text"; \ 188 .align 2 ; \ 189 .section ".opd","aw"; \ 190name: \ 191 .quad GLUE(.,name); \ 192 .quad .TOC.@tocbase; \ 193 .quad 0; \ 194 .previous; \ 195 .type GLUE(.,name),@function; \ 196GLUE(.,name): 197 198#define _INIT_STATIC(name) \ 199 .section ".text.init.refok"; \ 200 .align 2 ; \ 201 .section ".opd","aw"; \ 202name: \ 203 .quad GLUE(.,name); \ 204 .quad .TOC.@tocbase; \ 205 .quad 0; \ 206 .previous; \ 207 .type GLUE(.,name),@function; \ 208GLUE(.,name): 209 210#else /* 32-bit */ 211 212#define _ENTRY(n) \ 213 .globl n; \ 214n: 215 216#define _GLOBAL(n) \ 217 .text; \ 218 .stabs __stringify(n:F-1),N_FUN,0,0,n;\ 219 .globl n; \ 220n: 221 222#define _KPROBE(n) \ 223 .section ".kprobes.text","a"; \ 224 .globl n; \ 225n: 226 227#endif 228 229/* 230 * LOAD_REG_IMMEDIATE(rn, expr) 231 * Loads the value of the constant expression 'expr' into register 'rn' 232 * using immediate instructions only. Use this when it's important not 233 * to reference other data (i.e. on ppc64 when the TOC pointer is not 234 * valid). 235 * 236 * LOAD_REG_ADDR(rn, name) 237 * Loads the address of label 'name' into register 'rn'. Use this when 238 * you don't particularly need immediate instructions only, but you need 239 * the whole address in one register (e.g. it's a structure address and 240 * you want to access various offsets within it). On ppc32 this is 241 * identical to LOAD_REG_IMMEDIATE. 242 * 243 * LOAD_REG_ADDRBASE(rn, name) 244 * ADDROFF(name) 245 * LOAD_REG_ADDRBASE loads part of the address of label 'name' into 246 * register 'rn'. ADDROFF(name) returns the remainder of the address as 247 * a constant expression. ADDROFF(name) is a signed expression < 16 bits 248 * in size, so is suitable for use directly as an offset in load and store 249 * instructions. Use this when loading/storing a single word or less as: 250 * LOAD_REG_ADDRBASE(rX, name) 251 * ld rY,ADDROFF(name)(rX) 252 */ 253#ifdef __powerpc64__ 254#define LOAD_REG_IMMEDIATE(reg,expr) \ 255 lis (reg),(expr)@highest; \ 256 ori (reg),(reg),(expr)@higher; \ 257 rldicr (reg),(reg),32,31; \ 258 oris (reg),(reg),(expr)@h; \ 259 ori (reg),(reg),(expr)@l; 260 261#define LOAD_REG_ADDR(reg,name) \ 262 ld (reg),name@got(r2) 263 264#define LOAD_REG_ADDRBASE(reg,name) LOAD_REG_ADDR(reg,name) 265#define ADDROFF(name) 0 266 267/* offsets for stack frame layout */ 268#define LRSAVE 16 269 270#else /* 32-bit */ 271 272#define LOAD_REG_IMMEDIATE(reg,expr) \ 273 lis (reg),(expr)@ha; \ 274 addi (reg),(reg),(expr)@l; 275 276#define LOAD_REG_ADDR(reg,name) LOAD_REG_IMMEDIATE(reg, name) 277 278#define LOAD_REG_ADDRBASE(reg, name) lis (reg),name@ha 279#define ADDROFF(name) name@l 280 281/* offsets for stack frame layout */ 282#define LRSAVE 4 283 284#endif 285 286/* various errata or part fixups */ 287#ifdef CONFIG_PPC601_SYNC_FIX 288#define SYNC \ 289BEGIN_FTR_SECTION \ 290 sync; \ 291 isync; \ 292END_FTR_SECTION_IFSET(CPU_FTR_601) 293#define SYNC_601 \ 294BEGIN_FTR_SECTION \ 295 sync; \ 296END_FTR_SECTION_IFSET(CPU_FTR_601) 297#define ISYNC_601 \ 298BEGIN_FTR_SECTION \ 299 isync; \ 300END_FTR_SECTION_IFSET(CPU_FTR_601) 301#else 302#define SYNC 303#define SYNC_601 304#define ISYNC_601 305#endif 306 307#ifdef CONFIG_PPC_CELL 308#define MFTB(dest) \ 30990: mftb dest; \ 310BEGIN_FTR_SECTION_NESTED(96); \ 311 cmpwi dest,0; \ 312 beq- 90b; \ 313END_FTR_SECTION_NESTED(CPU_FTR_CELL_TB_BUG, CPU_FTR_CELL_TB_BUG, 96) 314#else 315#define MFTB(dest) mftb dest 316#endif 317 318#ifndef CONFIG_SMP 319#define TLBSYNC 320#else /* CONFIG_SMP */ 321/* tlbsync is not implemented on 601 */ 322#define TLBSYNC \ 323BEGIN_FTR_SECTION \ 324 tlbsync; \ 325 sync; \ 326END_FTR_SECTION_IFCLR(CPU_FTR_601) 327#endif 328 329 330/* 331 * This instruction is not implemented on the PPC 603 or 601; however, on 332 * the 403GCX and 405GP tlbia IS defined and tlbie is not. 333 * All of these instructions exist in the 8xx, they have magical powers, 334 * and they must be used. 335 */ 336 337#if !defined(CONFIG_4xx) && !defined(CONFIG_8xx) 338#define tlbia \ 339 li r4,1024; \ 340 mtctr r4; \ 341 lis r4,KERNELBASE@h; \ 3420: tlbie r4; \ 343 addi r4,r4,0x1000; \ 344 bdnz 0b 345#endif 346 347 348#ifdef CONFIG_IBM440EP_ERR42 349#define PPC440EP_ERR42 isync 350#else 351#define PPC440EP_ERR42 352#endif 353 354 355#if defined(CONFIG_BOOKE) 356#define toreal(rd) 357#define fromreal(rd) 358 359#define tophys(rd,rs) \ 360 addis rd,rs,0 361 362#define tovirt(rd,rs) \ 363 addis rd,rs,0 364 365#elif defined(CONFIG_PPC64) 366#define toreal(rd) /* we can access c000... in real mode */ 367#define fromreal(rd) 368 369#define tophys(rd,rs) \ 370 clrldi rd,rs,2 371 372#define tovirt(rd,rs) \ 373 rotldi rd,rs,16; \ 374 ori rd,rd,((KERNELBASE>>48)&0xFFFF);\ 375 rotldi rd,rd,48 376#else 377/* 378 * On APUS (Amiga PowerPC cpu upgrade board), we don't know the 379 * physical base address of RAM at compile time. 380 */ 381#define toreal(rd) tophys(rd,rd) 382#define fromreal(rd) tovirt(rd,rd) 383 384#define tophys(rd,rs) \ 3850: addis rd,rs,-KERNELBASE@h; \ 386 .section ".vtop_fixup","aw"; \ 387 .align 1; \ 388 .long 0b; \ 389 .previous 390 391#define tovirt(rd,rs) \ 3920: addis rd,rs,KERNELBASE@h; \ 393 .section ".ptov_fixup","aw"; \ 394 .align 1; \ 395 .long 0b; \ 396 .previous 397#endif 398 399#ifdef CONFIG_PPC64 400#define RFI rfid 401#define MTMSRD(r) mtmsrd r 402 403#else 404#define FIX_SRR1(ra, rb) 405#ifndef CONFIG_40x 406#define RFI rfi 407#else 408#define RFI rfi; b . /* Prevent prefetch past rfi */ 409#endif 410#define MTMSRD(r) mtmsr r 411#define CLR_TOP32(r) 412#endif 413 414#endif /* __KERNEL__ */ 415 416/* The boring bits... */ 417 418/* Condition Register Bit Fields */ 419 420#define cr0 0 421#define cr1 1 422#define cr2 2 423#define cr3 3 424#define cr4 4 425#define cr5 5 426#define cr6 6 427#define cr7 7 428 429 430/* General Purpose Registers (GPRs) */ 431 432#define r0 0 433#define r1 1 434#define r2 2 435#define r3 3 436#define r4 4 437#define r5 5 438#define r6 6 439#define r7 7 440#define r8 8 441#define r9 9 442#define r10 10 443#define r11 11 444#define r12 12 445#define r13 13 446#define r14 14 447#define r15 15 448#define r16 16 449#define r17 17 450#define r18 18 451#define r19 19 452#define r20 20 453#define r21 21 454#define r22 22 455#define r23 23 456#define r24 24 457#define r25 25 458#define r26 26 459#define r27 27 460#define r28 28 461#define r29 29 462#define r30 30 463#define r31 31 464 465 466/* Floating Point Registers (FPRs) */ 467 468#define fr0 0 469#define fr1 1 470#define fr2 2 471#define fr3 3 472#define fr4 4 473#define fr5 5 474#define fr6 6 475#define fr7 7 476#define fr8 8 477#define fr9 9 478#define fr10 10 479#define fr11 11 480#define fr12 12 481#define fr13 13 482#define fr14 14 483#define fr15 15 484#define fr16 16 485#define fr17 17 486#define fr18 18 487#define fr19 19 488#define fr20 20 489#define fr21 21 490#define fr22 22 491#define fr23 23 492#define fr24 24 493#define fr25 25 494#define fr26 26 495#define fr27 27 496#define fr28 28 497#define fr29 29 498#define fr30 30 499#define fr31 31 500 501/* AltiVec Registers (VPRs) */ 502 503#define vr0 0 504#define vr1 1 505#define vr2 2 506#define vr3 3 507#define vr4 4 508#define vr5 5 509#define vr6 6 510#define vr7 7 511#define vr8 8 512#define vr9 9 513#define vr10 10 514#define vr11 11 515#define vr12 12 516#define vr13 13 517#define vr14 14 518#define vr15 15 519#define vr16 16 520#define vr17 17 521#define vr18 18 522#define vr19 19 523#define vr20 20 524#define vr21 21 525#define vr22 22 526#define vr23 23 527#define vr24 24 528#define vr25 25 529#define vr26 26 530#define vr27 27 531#define vr28 28 532#define vr29 29 533#define vr30 30 534#define vr31 31 535 536/* SPE Registers (EVPRs) */ 537 538#define evr0 0 539#define evr1 1 540#define evr2 2 541#define evr3 3 542#define evr4 4 543#define evr5 5 544#define evr6 6 545#define evr7 7 546#define evr8 8 547#define evr9 9 548#define evr10 10 549#define evr11 11 550#define evr12 12 551#define evr13 13 552#define evr14 14 553#define evr15 15 554#define evr16 16 555#define evr17 17 556#define evr18 18 557#define evr19 19 558#define evr20 20 559#define evr21 21 560#define evr22 22 561#define evr23 23 562#define evr24 24 563#define evr25 25 564#define evr26 26 565#define evr27 27 566#define evr28 28 567#define evr29 29 568#define evr30 30 569#define evr31 31 570 571/* some stab codes */ 572#define N_FUN 36 573#define N_RSYM 64 574#define N_SLINE 68 575#define N_SO 100 576 577#endif /* __ASSEMBLY__ */ 578 579#endif /* _ASM_POWERPC_PPC_ASM_H */