at v2.6.26-rc2 755 lines 25 kB view raw
1#ifndef _ASM_POWERPC_IO_H 2#define _ASM_POWERPC_IO_H 3#ifdef __KERNEL__ 4 5/* 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 12/* Check of existence of legacy devices */ 13extern int check_legacy_ioport(unsigned long base_port); 14#define I8042_DATA_REG 0x60 15#define FDC_BASE 0x3f0 16/* only relevant for PReP */ 17#define _PIDXR 0x279 18#define _PNPWRP 0xa79 19#define PNPBIOS_BASE 0xf000 20 21#include <linux/device.h> 22#include <linux/io.h> 23 24#include <linux/compiler.h> 25#include <asm/page.h> 26#include <asm/byteorder.h> 27#include <asm/synch.h> 28#include <asm/delay.h> 29#include <asm/mmu.h> 30 31#include <asm-generic/iomap.h> 32 33#ifdef CONFIG_PPC64 34#include <asm/paca.h> 35#endif 36 37#define SIO_CONFIG_RA 0x398 38#define SIO_CONFIG_RD 0x399 39 40#define SLOW_DOWN_IO 41 42/* 32 bits uses slightly different variables for the various IO 43 * bases. Most of this file only uses _IO_BASE though which we 44 * define properly based on the platform 45 */ 46#ifndef CONFIG_PCI 47#define _IO_BASE 0 48#define _ISA_MEM_BASE 0 49#define PCI_DRAM_OFFSET 0 50#elif defined(CONFIG_PPC32) 51#define _IO_BASE isa_io_base 52#define _ISA_MEM_BASE isa_mem_base 53#define PCI_DRAM_OFFSET pci_dram_offset 54#else 55#define _IO_BASE pci_io_base 56#define _ISA_MEM_BASE isa_mem_base 57#define PCI_DRAM_OFFSET 0 58#endif 59 60extern unsigned long isa_io_base; 61extern unsigned long pci_io_base; 62extern unsigned long pci_dram_offset; 63 64extern resource_size_t isa_mem_base; 65 66#if defined(CONFIG_PPC32) && defined(CONFIG_PPC_INDIRECT_IO) 67#error CONFIG_PPC_INDIRECT_IO is not yet supported on 32 bits 68#endif 69 70/* 71 * 72 * Low level MMIO accessors 73 * 74 * This provides the non-bus specific accessors to MMIO. Those are PowerPC 75 * specific and thus shouldn't be used in generic code. The accessors 76 * provided here are: 77 * 78 * in_8, in_le16, in_be16, in_le32, in_be32, in_le64, in_be64 79 * out_8, out_le16, out_be16, out_le32, out_be32, out_le64, out_be64 80 * _insb, _insw_ns, _insl_ns, _outsb, _outsw_ns, _outsl_ns 81 * 82 * Those operate directly on a kernel virtual address. Note that the prototype 83 * for the out_* accessors has the arguments in opposite order from the usual 84 * linux PCI accessors. Unlike those, they take the address first and the value 85 * next. 86 * 87 * Note: I might drop the _ns suffix on the stream operations soon as it is 88 * simply normal for stream operations to not swap in the first place. 89 * 90 */ 91 92#ifdef CONFIG_PPC64 93#define IO_SET_SYNC_FLAG() do { local_paca->io_sync = 1; } while(0) 94#else 95#define IO_SET_SYNC_FLAG() 96#endif 97 98#define DEF_MMIO_IN(name, type, insn) \ 99static inline type name(const volatile type __iomem *addr) \ 100{ \ 101 type ret; \ 102 __asm__ __volatile__("sync;" insn ";twi 0,%0,0;isync" \ 103 : "=r" (ret) : "r" (addr), "m" (*addr)); \ 104 return ret; \ 105} 106 107#define DEF_MMIO_OUT(name, type, insn) \ 108static inline void name(volatile type __iomem *addr, type val) \ 109{ \ 110 __asm__ __volatile__("sync;" insn \ 111 : "=m" (*addr) : "r" (val), "r" (addr)); \ 112 IO_SET_SYNC_FLAG(); \ 113} 114 115 116#define DEF_MMIO_IN_BE(name, size, insn) \ 117 DEF_MMIO_IN(name, u##size, __stringify(insn)"%U2%X2 %0,%2") 118#define DEF_MMIO_IN_LE(name, size, insn) \ 119 DEF_MMIO_IN(name, u##size, __stringify(insn)" %0,0,%1") 120 121#define DEF_MMIO_OUT_BE(name, size, insn) \ 122 DEF_MMIO_OUT(name, u##size, __stringify(insn)"%U0%X0 %1,%0") 123#define DEF_MMIO_OUT_LE(name, size, insn) \ 124 DEF_MMIO_OUT(name, u##size, __stringify(insn)" %1,0,%2") 125 126DEF_MMIO_IN_BE(in_8, 8, lbz); 127DEF_MMIO_IN_BE(in_be16, 16, lhz); 128DEF_MMIO_IN_BE(in_be32, 32, lwz); 129DEF_MMIO_IN_LE(in_le16, 16, lhbrx); 130DEF_MMIO_IN_LE(in_le32, 32, lwbrx); 131 132DEF_MMIO_OUT_BE(out_8, 8, stb); 133DEF_MMIO_OUT_BE(out_be16, 16, sth); 134DEF_MMIO_OUT_BE(out_be32, 32, stw); 135DEF_MMIO_OUT_LE(out_le16, 16, sthbrx); 136DEF_MMIO_OUT_LE(out_le32, 32, stwbrx); 137 138#ifdef __powerpc64__ 139DEF_MMIO_OUT_BE(out_be64, 64, std); 140DEF_MMIO_IN_BE(in_be64, 64, ld); 141 142/* There is no asm instructions for 64 bits reverse loads and stores */ 143static inline u64 in_le64(const volatile u64 __iomem *addr) 144{ 145 return swab64(in_be64(addr)); 146} 147 148static inline void out_le64(volatile u64 __iomem *addr, u64 val) 149{ 150 out_be64(addr, swab64(val)); 151} 152#endif /* __powerpc64__ */ 153 154/* 155 * Low level IO stream instructions are defined out of line for now 156 */ 157extern void _insb(const volatile u8 __iomem *addr, void *buf, long count); 158extern void _outsb(volatile u8 __iomem *addr,const void *buf,long count); 159extern void _insw_ns(const volatile u16 __iomem *addr, void *buf, long count); 160extern void _outsw_ns(volatile u16 __iomem *addr, const void *buf, long count); 161extern void _insl_ns(const volatile u32 __iomem *addr, void *buf, long count); 162extern void _outsl_ns(volatile u32 __iomem *addr, const void *buf, long count); 163 164/* The _ns naming is historical and will be removed. For now, just #define 165 * the non _ns equivalent names 166 */ 167#define _insw _insw_ns 168#define _insl _insl_ns 169#define _outsw _outsw_ns 170#define _outsl _outsl_ns 171 172 173/* 174 * memset_io, memcpy_toio, memcpy_fromio base implementations are out of line 175 */ 176 177extern void _memset_io(volatile void __iomem *addr, int c, unsigned long n); 178extern void _memcpy_fromio(void *dest, const volatile void __iomem *src, 179 unsigned long n); 180extern void _memcpy_toio(volatile void __iomem *dest, const void *src, 181 unsigned long n); 182 183/* 184 * 185 * PCI and standard ISA accessors 186 * 187 * Those are globally defined linux accessors for devices on PCI or ISA 188 * busses. They follow the Linux defined semantics. The current implementation 189 * for PowerPC is as close as possible to the x86 version of these, and thus 190 * provides fairly heavy weight barriers for the non-raw versions 191 * 192 * In addition, they support a hook mechanism when CONFIG_PPC_INDIRECT_IO 193 * allowing the platform to provide its own implementation of some or all 194 * of the accessors. 195 */ 196 197/* 198 * Include the EEH definitions when EEH is enabled only so they don't get 199 * in the way when building for 32 bits 200 */ 201#ifdef CONFIG_EEH 202#include <asm/eeh.h> 203#endif 204 205/* Shortcut to the MMIO argument pointer */ 206#define PCI_IO_ADDR volatile void __iomem * 207 208/* Indirect IO address tokens: 209 * 210 * When CONFIG_PPC_INDIRECT_IO is set, the platform can provide hooks 211 * on all IOs. (Note that this is all 64 bits only for now) 212 * 213 * To help platforms who may need to differenciate MMIO addresses in 214 * their hooks, a bitfield is reserved for use by the platform near the 215 * top of MMIO addresses (not PIO, those have to cope the hard way). 216 * 217 * This bit field is 12 bits and is at the top of the IO virtual 218 * addresses PCI_IO_INDIRECT_TOKEN_MASK. 219 * 220 * The kernel virtual space is thus: 221 * 222 * 0xD000000000000000 : vmalloc 223 * 0xD000080000000000 : PCI PHB IO space 224 * 0xD000080080000000 : ioremap 225 * 0xD0000fffffffffff : end of ioremap region 226 * 227 * Since the top 4 bits are reserved as the region ID, we use thus 228 * the next 12 bits and keep 4 bits available for the future if the 229 * virtual address space is ever to be extended. 230 * 231 * The direct IO mapping operations will then mask off those bits 232 * before doing the actual access, though that only happen when 233 * CONFIG_PPC_INDIRECT_IO is set, thus be careful when you use that 234 * mechanism 235 */ 236 237#ifdef CONFIG_PPC_INDIRECT_IO 238#define PCI_IO_IND_TOKEN_MASK 0x0fff000000000000ul 239#define PCI_IO_IND_TOKEN_SHIFT 48 240#define PCI_FIX_ADDR(addr) \ 241 ((PCI_IO_ADDR)(((unsigned long)(addr)) & ~PCI_IO_IND_TOKEN_MASK)) 242#define PCI_GET_ADDR_TOKEN(addr) \ 243 (((unsigned long)(addr) & PCI_IO_IND_TOKEN_MASK) >> \ 244 PCI_IO_IND_TOKEN_SHIFT) 245#define PCI_SET_ADDR_TOKEN(addr, token) \ 246do { \ 247 unsigned long __a = (unsigned long)(addr); \ 248 __a &= ~PCI_IO_IND_TOKEN_MASK; \ 249 __a |= ((unsigned long)(token)) << PCI_IO_IND_TOKEN_SHIFT; \ 250 (addr) = (void __iomem *)__a; \ 251} while(0) 252#else 253#define PCI_FIX_ADDR(addr) (addr) 254#endif 255 256 257/* 258 * Non ordered and non-swapping "raw" accessors 259 */ 260 261static inline unsigned char __raw_readb(const volatile void __iomem *addr) 262{ 263 return *(volatile unsigned char __force *)PCI_FIX_ADDR(addr); 264} 265static inline unsigned short __raw_readw(const volatile void __iomem *addr) 266{ 267 return *(volatile unsigned short __force *)PCI_FIX_ADDR(addr); 268} 269static inline unsigned int __raw_readl(const volatile void __iomem *addr) 270{ 271 return *(volatile unsigned int __force *)PCI_FIX_ADDR(addr); 272} 273static inline void __raw_writeb(unsigned char v, volatile void __iomem *addr) 274{ 275 *(volatile unsigned char __force *)PCI_FIX_ADDR(addr) = v; 276} 277static inline void __raw_writew(unsigned short v, volatile void __iomem *addr) 278{ 279 *(volatile unsigned short __force *)PCI_FIX_ADDR(addr) = v; 280} 281static inline void __raw_writel(unsigned int v, volatile void __iomem *addr) 282{ 283 *(volatile unsigned int __force *)PCI_FIX_ADDR(addr) = v; 284} 285 286#ifdef __powerpc64__ 287static inline unsigned long __raw_readq(const volatile void __iomem *addr) 288{ 289 return *(volatile unsigned long __force *)PCI_FIX_ADDR(addr); 290} 291static inline void __raw_writeq(unsigned long v, volatile void __iomem *addr) 292{ 293 *(volatile unsigned long __force *)PCI_FIX_ADDR(addr) = v; 294} 295#endif /* __powerpc64__ */ 296 297/* 298 * 299 * PCI PIO and MMIO accessors. 300 * 301 * 302 * On 32 bits, PIO operations have a recovery mechanism in case they trigger 303 * machine checks (which they occasionally do when probing non existing 304 * IO ports on some platforms, like PowerMac and 8xx). 305 * I always found it to be of dubious reliability and I am tempted to get 306 * rid of it one of these days. So if you think it's important to keep it, 307 * please voice up asap. We never had it for 64 bits and I do not intend 308 * to port it over 309 */ 310 311#ifdef CONFIG_PPC32 312 313#define __do_in_asm(name, op) \ 314static inline unsigned int name(unsigned int port) \ 315{ \ 316 unsigned int x; \ 317 __asm__ __volatile__( \ 318 "sync\n" \ 319 "0:" op " %0,0,%1\n" \ 320 "1: twi 0,%0,0\n" \ 321 "2: isync\n" \ 322 "3: nop\n" \ 323 "4:\n" \ 324 ".section .fixup,\"ax\"\n" \ 325 "5: li %0,-1\n" \ 326 " b 4b\n" \ 327 ".previous\n" \ 328 ".section __ex_table,\"a\"\n" \ 329 " .align 2\n" \ 330 " .long 0b,5b\n" \ 331 " .long 1b,5b\n" \ 332 " .long 2b,5b\n" \ 333 " .long 3b,5b\n" \ 334 ".previous" \ 335 : "=&r" (x) \ 336 : "r" (port + _IO_BASE)); \ 337 return x; \ 338} 339 340#define __do_out_asm(name, op) \ 341static inline void name(unsigned int val, unsigned int port) \ 342{ \ 343 __asm__ __volatile__( \ 344 "sync\n" \ 345 "0:" op " %0,0,%1\n" \ 346 "1: sync\n" \ 347 "2:\n" \ 348 ".section __ex_table,\"a\"\n" \ 349 " .align 2\n" \ 350 " .long 0b,2b\n" \ 351 " .long 1b,2b\n" \ 352 ".previous" \ 353 : : "r" (val), "r" (port + _IO_BASE)); \ 354} 355 356__do_in_asm(_rec_inb, "lbzx") 357__do_in_asm(_rec_inw, "lhbrx") 358__do_in_asm(_rec_inl, "lwbrx") 359__do_out_asm(_rec_outb, "stbx") 360__do_out_asm(_rec_outw, "sthbrx") 361__do_out_asm(_rec_outl, "stwbrx") 362 363#endif /* CONFIG_PPC32 */ 364 365/* The "__do_*" operations below provide the actual "base" implementation 366 * for each of the defined acccessor. Some of them use the out_* functions 367 * directly, some of them still use EEH, though we might change that in the 368 * future. Those macros below provide the necessary argument swapping and 369 * handling of the IO base for PIO. 370 * 371 * They are themselves used by the macros that define the actual accessors 372 * and can be used by the hooks if any. 373 * 374 * Note that PIO operations are always defined in terms of their corresonding 375 * MMIO operations. That allows platforms like iSeries who want to modify the 376 * behaviour of both to only hook on the MMIO version and get both. It's also 377 * possible to hook directly at the toplevel PIO operation if they have to 378 * be handled differently 379 */ 380#define __do_writeb(val, addr) out_8(PCI_FIX_ADDR(addr), val) 381#define __do_writew(val, addr) out_le16(PCI_FIX_ADDR(addr), val) 382#define __do_writel(val, addr) out_le32(PCI_FIX_ADDR(addr), val) 383#define __do_writeq(val, addr) out_le64(PCI_FIX_ADDR(addr), val) 384#define __do_writew_be(val, addr) out_be16(PCI_FIX_ADDR(addr), val) 385#define __do_writel_be(val, addr) out_be32(PCI_FIX_ADDR(addr), val) 386#define __do_writeq_be(val, addr) out_be64(PCI_FIX_ADDR(addr), val) 387 388#ifdef CONFIG_EEH 389#define __do_readb(addr) eeh_readb(PCI_FIX_ADDR(addr)) 390#define __do_readw(addr) eeh_readw(PCI_FIX_ADDR(addr)) 391#define __do_readl(addr) eeh_readl(PCI_FIX_ADDR(addr)) 392#define __do_readq(addr) eeh_readq(PCI_FIX_ADDR(addr)) 393#define __do_readw_be(addr) eeh_readw_be(PCI_FIX_ADDR(addr)) 394#define __do_readl_be(addr) eeh_readl_be(PCI_FIX_ADDR(addr)) 395#define __do_readq_be(addr) eeh_readq_be(PCI_FIX_ADDR(addr)) 396#else /* CONFIG_EEH */ 397#define __do_readb(addr) in_8(PCI_FIX_ADDR(addr)) 398#define __do_readw(addr) in_le16(PCI_FIX_ADDR(addr)) 399#define __do_readl(addr) in_le32(PCI_FIX_ADDR(addr)) 400#define __do_readq(addr) in_le64(PCI_FIX_ADDR(addr)) 401#define __do_readw_be(addr) in_be16(PCI_FIX_ADDR(addr)) 402#define __do_readl_be(addr) in_be32(PCI_FIX_ADDR(addr)) 403#define __do_readq_be(addr) in_be64(PCI_FIX_ADDR(addr)) 404#endif /* !defined(CONFIG_EEH) */ 405 406#ifdef CONFIG_PPC32 407#define __do_outb(val, port) _rec_outb(val, port) 408#define __do_outw(val, port) _rec_outw(val, port) 409#define __do_outl(val, port) _rec_outl(val, port) 410#define __do_inb(port) _rec_inb(port) 411#define __do_inw(port) _rec_inw(port) 412#define __do_inl(port) _rec_inl(port) 413#else /* CONFIG_PPC32 */ 414#define __do_outb(val, port) writeb(val,(PCI_IO_ADDR)_IO_BASE+port); 415#define __do_outw(val, port) writew(val,(PCI_IO_ADDR)_IO_BASE+port); 416#define __do_outl(val, port) writel(val,(PCI_IO_ADDR)_IO_BASE+port); 417#define __do_inb(port) readb((PCI_IO_ADDR)_IO_BASE + port); 418#define __do_inw(port) readw((PCI_IO_ADDR)_IO_BASE + port); 419#define __do_inl(port) readl((PCI_IO_ADDR)_IO_BASE + port); 420#endif /* !CONFIG_PPC32 */ 421 422#ifdef CONFIG_EEH 423#define __do_readsb(a, b, n) eeh_readsb(PCI_FIX_ADDR(a), (b), (n)) 424#define __do_readsw(a, b, n) eeh_readsw(PCI_FIX_ADDR(a), (b), (n)) 425#define __do_readsl(a, b, n) eeh_readsl(PCI_FIX_ADDR(a), (b), (n)) 426#else /* CONFIG_EEH */ 427#define __do_readsb(a, b, n) _insb(PCI_FIX_ADDR(a), (b), (n)) 428#define __do_readsw(a, b, n) _insw(PCI_FIX_ADDR(a), (b), (n)) 429#define __do_readsl(a, b, n) _insl(PCI_FIX_ADDR(a), (b), (n)) 430#endif /* !CONFIG_EEH */ 431#define __do_writesb(a, b, n) _outsb(PCI_FIX_ADDR(a),(b),(n)) 432#define __do_writesw(a, b, n) _outsw(PCI_FIX_ADDR(a),(b),(n)) 433#define __do_writesl(a, b, n) _outsl(PCI_FIX_ADDR(a),(b),(n)) 434 435#define __do_insb(p, b, n) readsb((PCI_IO_ADDR)_IO_BASE+(p), (b), (n)) 436#define __do_insw(p, b, n) readsw((PCI_IO_ADDR)_IO_BASE+(p), (b), (n)) 437#define __do_insl(p, b, n) readsl((PCI_IO_ADDR)_IO_BASE+(p), (b), (n)) 438#define __do_outsb(p, b, n) writesb((PCI_IO_ADDR)_IO_BASE+(p),(b),(n)) 439#define __do_outsw(p, b, n) writesw((PCI_IO_ADDR)_IO_BASE+(p),(b),(n)) 440#define __do_outsl(p, b, n) writesl((PCI_IO_ADDR)_IO_BASE+(p),(b),(n)) 441 442#define __do_memset_io(addr, c, n) \ 443 _memset_io(PCI_FIX_ADDR(addr), c, n) 444#define __do_memcpy_toio(dst, src, n) \ 445 _memcpy_toio(PCI_FIX_ADDR(dst), src, n) 446 447#ifdef CONFIG_EEH 448#define __do_memcpy_fromio(dst, src, n) \ 449 eeh_memcpy_fromio(dst, PCI_FIX_ADDR(src), n) 450#else /* CONFIG_EEH */ 451#define __do_memcpy_fromio(dst, src, n) \ 452 _memcpy_fromio(dst,PCI_FIX_ADDR(src),n) 453#endif /* !CONFIG_EEH */ 454 455#ifdef CONFIG_PPC_INDIRECT_IO 456#define DEF_PCI_HOOK(x) x 457#else 458#define DEF_PCI_HOOK(x) NULL 459#endif 460 461/* Structure containing all the hooks */ 462extern struct ppc_pci_io { 463 464#define DEF_PCI_AC_RET(name, ret, at, al, space, aa) ret (*name) at; 465#define DEF_PCI_AC_NORET(name, at, al, space, aa) void (*name) at; 466 467#include <asm/io-defs.h> 468 469#undef DEF_PCI_AC_RET 470#undef DEF_PCI_AC_NORET 471 472} ppc_pci_io; 473 474/* The inline wrappers */ 475#define DEF_PCI_AC_RET(name, ret, at, al, space, aa) \ 476static inline ret name at \ 477{ \ 478 if (DEF_PCI_HOOK(ppc_pci_io.name) != NULL) \ 479 return ppc_pci_io.name al; \ 480 return __do_##name al; \ 481} 482 483#define DEF_PCI_AC_NORET(name, at, al, space, aa) \ 484static inline void name at \ 485{ \ 486 if (DEF_PCI_HOOK(ppc_pci_io.name) != NULL) \ 487 ppc_pci_io.name al; \ 488 else \ 489 __do_##name al; \ 490} 491 492#include <asm/io-defs.h> 493 494#undef DEF_PCI_AC_RET 495#undef DEF_PCI_AC_NORET 496 497/* Some drivers check for the presence of readq & writeq with 498 * a #ifdef, so we make them happy here. 499 */ 500#ifdef __powerpc64__ 501#define readq readq 502#define writeq writeq 503#endif 504 505/* 506 * Convert a physical pointer to a virtual kernel pointer for /dev/mem 507 * access 508 */ 509#define xlate_dev_mem_ptr(p) __va(p) 510 511/* 512 * Convert a virtual cached pointer to an uncached pointer 513 */ 514#define xlate_dev_kmem_ptr(p) p 515 516/* 517 * We don't do relaxed operations yet, at least not with this semantic 518 */ 519#define readb_relaxed(addr) readb(addr) 520#define readw_relaxed(addr) readw(addr) 521#define readl_relaxed(addr) readl(addr) 522#define readq_relaxed(addr) readq(addr) 523 524#ifdef CONFIG_PPC32 525#define mmiowb() 526#else 527/* 528 * Enforce synchronisation of stores vs. spin_unlock 529 * (this does it explicitly, though our implementation of spin_unlock 530 * does it implicitely too) 531 */ 532static inline void mmiowb(void) 533{ 534 unsigned long tmp; 535 536 __asm__ __volatile__("sync; li %0,0; stb %0,%1(13)" 537 : "=&r" (tmp) : "i" (offsetof(struct paca_struct, io_sync)) 538 : "memory"); 539} 540#endif /* !CONFIG_PPC32 */ 541 542static inline void iosync(void) 543{ 544 __asm__ __volatile__ ("sync" : : : "memory"); 545} 546 547/* Enforce in-order execution of data I/O. 548 * No distinction between read/write on PPC; use eieio for all three. 549 * Those are fairly week though. They don't provide a barrier between 550 * MMIO and cacheable storage nor do they provide a barrier vs. locks, 551 * they only provide barriers between 2 __raw MMIO operations and 552 * possibly break write combining. 553 */ 554#define iobarrier_rw() eieio() 555#define iobarrier_r() eieio() 556#define iobarrier_w() eieio() 557 558 559/* 560 * output pause versions need a delay at least for the 561 * w83c105 ide controller in a p610. 562 */ 563#define inb_p(port) inb(port) 564#define outb_p(val, port) (udelay(1), outb((val), (port))) 565#define inw_p(port) inw(port) 566#define outw_p(val, port) (udelay(1), outw((val), (port))) 567#define inl_p(port) inl(port) 568#define outl_p(val, port) (udelay(1), outl((val), (port))) 569 570 571#define IO_SPACE_LIMIT ~(0UL) 572 573 574/** 575 * ioremap - map bus memory into CPU space 576 * @address: bus address of the memory 577 * @size: size of the resource to map 578 * 579 * ioremap performs a platform specific sequence of operations to 580 * make bus memory CPU accessible via the readb/readw/readl/writeb/ 581 * writew/writel functions and the other mmio helpers. The returned 582 * address is not guaranteed to be usable directly as a virtual 583 * address. 584 * 585 * We provide a few variations of it: 586 * 587 * * ioremap is the standard one and provides non-cacheable guarded mappings 588 * and can be hooked by the platform via ppc_md 589 * 590 * * ioremap_flags allows to specify the page flags as an argument and can 591 * also be hooked by the platform via ppc_md 592 * 593 * * ioremap_nocache is identical to ioremap 594 * 595 * * iounmap undoes such a mapping and can be hooked 596 * 597 * * __ioremap_at (and the pending __iounmap_at) are low level functions to 598 * create hand-made mappings for use only by the PCI code and cannot 599 * currently be hooked. Must be page aligned. 600 * 601 * * __ioremap is the low level implementation used by ioremap and 602 * ioremap_flags and cannot be hooked (but can be used by a hook on one 603 * of the previous ones) 604 * 605 * * __iounmap, is the low level implementation used by iounmap and cannot 606 * be hooked (but can be used by a hook on iounmap) 607 * 608 */ 609extern void __iomem *ioremap(phys_addr_t address, unsigned long size); 610extern void __iomem *ioremap_flags(phys_addr_t address, unsigned long size, 611 unsigned long flags); 612#define ioremap_nocache(addr, size) ioremap((addr), (size)) 613extern void iounmap(volatile void __iomem *addr); 614 615extern void __iomem *__ioremap(phys_addr_t, unsigned long size, 616 unsigned long flags); 617extern void __iounmap(volatile void __iomem *addr); 618 619extern void __iomem * __ioremap_at(phys_addr_t pa, void *ea, 620 unsigned long size, unsigned long flags); 621extern void __iounmap_at(void *ea, unsigned long size); 622 623/* 624 * When CONFIG_PPC_INDIRECT_IO is set, we use the generic iomap implementation 625 * which needs some additional definitions here. They basically allow PIO 626 * space overall to be 1GB. This will work as long as we never try to use 627 * iomap to map MMIO below 1GB which should be fine on ppc64 628 */ 629#define HAVE_ARCH_PIO_SIZE 1 630#define PIO_OFFSET 0x00000000UL 631#define PIO_MASK (FULL_IO_SIZE - 1) 632#define PIO_RESERVED (FULL_IO_SIZE) 633 634#define mmio_read16be(addr) readw_be(addr) 635#define mmio_read32be(addr) readl_be(addr) 636#define mmio_write16be(val, addr) writew_be(val, addr) 637#define mmio_write32be(val, addr) writel_be(val, addr) 638#define mmio_insb(addr, dst, count) readsb(addr, dst, count) 639#define mmio_insw(addr, dst, count) readsw(addr, dst, count) 640#define mmio_insl(addr, dst, count) readsl(addr, dst, count) 641#define mmio_outsb(addr, src, count) writesb(addr, src, count) 642#define mmio_outsw(addr, src, count) writesw(addr, src, count) 643#define mmio_outsl(addr, src, count) writesl(addr, src, count) 644 645/** 646 * virt_to_phys - map virtual addresses to physical 647 * @address: address to remap 648 * 649 * The returned physical address is the physical (CPU) mapping for 650 * the memory address given. It is only valid to use this function on 651 * addresses directly mapped or allocated via kmalloc. 652 * 653 * This function does not give bus mappings for DMA transfers. In 654 * almost all conceivable cases a device driver should not be using 655 * this function 656 */ 657static inline unsigned long virt_to_phys(volatile void * address) 658{ 659 return __pa((unsigned long)address); 660} 661 662/** 663 * phys_to_virt - map physical address to virtual 664 * @address: address to remap 665 * 666 * The returned virtual address is a current CPU mapping for 667 * the memory address given. It is only valid to use this function on 668 * addresses that have a kernel mapping 669 * 670 * This function does not handle bus mappings for DMA transfers. In 671 * almost all conceivable cases a device driver should not be using 672 * this function 673 */ 674static inline void * phys_to_virt(unsigned long address) 675{ 676 return (void *)__va(address); 677} 678 679/* 680 * Change "struct page" to physical address. 681 */ 682#define page_to_phys(page) (page_to_pfn(page) << PAGE_SHIFT) 683 684/* We do NOT want virtual merging, it would put too much pressure on 685 * our iommu allocator. Instead, we want drivers to be smart enough 686 * to coalesce sglists that happen to have been mapped in a contiguous 687 * way by the iommu 688 */ 689#define BIO_VMERGE_BOUNDARY 0 690 691/* 692 * 32 bits still uses virt_to_bus() for it's implementation of DMA 693 * mappings se we have to keep it defined here. We also have some old 694 * drivers (shame shame shame) that use bus_to_virt() and haven't been 695 * fixed yet so I need to define it here. 696 */ 697#ifdef CONFIG_PPC32 698 699static inline unsigned long virt_to_bus(volatile void * address) 700{ 701 if (address == NULL) 702 return 0; 703 return __pa(address) + PCI_DRAM_OFFSET; 704} 705 706static inline void * bus_to_virt(unsigned long address) 707{ 708 if (address == 0) 709 return NULL; 710 return __va(address - PCI_DRAM_OFFSET); 711} 712 713#define page_to_bus(page) (page_to_phys(page) + PCI_DRAM_OFFSET) 714 715#endif /* CONFIG_PPC32 */ 716 717/* access ports */ 718#define setbits32(_addr, _v) out_be32((_addr), in_be32(_addr) | (_v)) 719#define clrbits32(_addr, _v) out_be32((_addr), in_be32(_addr) & ~(_v)) 720 721#define setbits16(_addr, _v) out_be16((_addr), in_be16(_addr) | (_v)) 722#define clrbits16(_addr, _v) out_be16((_addr), in_be16(_addr) & ~(_v)) 723 724#define setbits8(_addr, _v) out_8((_addr), in_8(_addr) | (_v)) 725#define clrbits8(_addr, _v) out_8((_addr), in_8(_addr) & ~(_v)) 726 727/* Clear and set bits in one shot. These macros can be used to clear and 728 * set multiple bits in a register using a single read-modify-write. These 729 * macros can also be used to set a multiple-bit bit pattern using a mask, 730 * by specifying the mask in the 'clear' parameter and the new bit pattern 731 * in the 'set' parameter. 732 */ 733 734#define clrsetbits(type, addr, clear, set) \ 735 out_##type((addr), (in_##type(addr) & ~(clear)) | (set)) 736 737#ifdef __powerpc64__ 738#define clrsetbits_be64(addr, clear, set) clrsetbits(be64, addr, clear, set) 739#define clrsetbits_le64(addr, clear, set) clrsetbits(le64, addr, clear, set) 740#endif 741 742#define clrsetbits_be32(addr, clear, set) clrsetbits(be32, addr, clear, set) 743#define clrsetbits_le32(addr, clear, set) clrsetbits(le32, addr, clear, set) 744 745#define clrsetbits_be16(addr, clear, set) clrsetbits(be16, addr, clear, set) 746#define clrsetbits_le16(addr, clear, set) clrsetbits(le32, addr, clear, set) 747 748#define clrsetbits_8(addr, clear, set) clrsetbits(8, addr, clear, set) 749 750void __iomem *devm_ioremap_prot(struct device *dev, resource_size_t offset, 751 size_t size, unsigned long flags); 752 753#endif /* __KERNEL__ */ 754 755#endif /* _ASM_POWERPC_IO_H */