at v2.6.26-rc2 3039 lines 72 kB view raw
1/* 2 * linux/fs/proc/base.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * proc base directory handling functions 7 * 8 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part. 9 * Instead of using magical inumbers to determine the kind of object 10 * we allocate and fill in-core inodes upon lookup. They don't even 11 * go into icache. We cache the reference to task_struct upon lookup too. 12 * Eventually it should become a filesystem in its own. We don't use the 13 * rest of procfs anymore. 14 * 15 * 16 * Changelog: 17 * 17-Jan-2005 18 * Allan Bezerra 19 * Bruna Moreira <bruna.moreira@indt.org.br> 20 * Edjard Mota <edjard.mota@indt.org.br> 21 * Ilias Biris <ilias.biris@indt.org.br> 22 * Mauricio Lin <mauricio.lin@indt.org.br> 23 * 24 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT 25 * 26 * A new process specific entry (smaps) included in /proc. It shows the 27 * size of rss for each memory area. The maps entry lacks information 28 * about physical memory size (rss) for each mapped file, i.e., 29 * rss information for executables and library files. 30 * This additional information is useful for any tools that need to know 31 * about physical memory consumption for a process specific library. 32 * 33 * Changelog: 34 * 21-Feb-2005 35 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT 36 * Pud inclusion in the page table walking. 37 * 38 * ChangeLog: 39 * 10-Mar-2005 40 * 10LE Instituto Nokia de Tecnologia - INdT: 41 * A better way to walks through the page table as suggested by Hugh Dickins. 42 * 43 * Simo Piiroinen <simo.piiroinen@nokia.com>: 44 * Smaps information related to shared, private, clean and dirty pages. 45 * 46 * Paul Mundt <paul.mundt@nokia.com>: 47 * Overall revision about smaps. 48 */ 49 50#include <asm/uaccess.h> 51 52#include <linux/errno.h> 53#include <linux/time.h> 54#include <linux/proc_fs.h> 55#include <linux/stat.h> 56#include <linux/init.h> 57#include <linux/capability.h> 58#include <linux/file.h> 59#include <linux/fdtable.h> 60#include <linux/string.h> 61#include <linux/seq_file.h> 62#include <linux/namei.h> 63#include <linux/mnt_namespace.h> 64#include <linux/mm.h> 65#include <linux/rcupdate.h> 66#include <linux/kallsyms.h> 67#include <linux/resource.h> 68#include <linux/module.h> 69#include <linux/mount.h> 70#include <linux/security.h> 71#include <linux/ptrace.h> 72#include <linux/cgroup.h> 73#include <linux/cpuset.h> 74#include <linux/audit.h> 75#include <linux/poll.h> 76#include <linux/nsproxy.h> 77#include <linux/oom.h> 78#include <linux/elf.h> 79#include <linux/pid_namespace.h> 80#include "internal.h" 81 82/* NOTE: 83 * Implementing inode permission operations in /proc is almost 84 * certainly an error. Permission checks need to happen during 85 * each system call not at open time. The reason is that most of 86 * what we wish to check for permissions in /proc varies at runtime. 87 * 88 * The classic example of a problem is opening file descriptors 89 * in /proc for a task before it execs a suid executable. 90 */ 91 92struct pid_entry { 93 char *name; 94 int len; 95 mode_t mode; 96 const struct inode_operations *iop; 97 const struct file_operations *fop; 98 union proc_op op; 99}; 100 101#define NOD(NAME, MODE, IOP, FOP, OP) { \ 102 .name = (NAME), \ 103 .len = sizeof(NAME) - 1, \ 104 .mode = MODE, \ 105 .iop = IOP, \ 106 .fop = FOP, \ 107 .op = OP, \ 108} 109 110#define DIR(NAME, MODE, OTYPE) \ 111 NOD(NAME, (S_IFDIR|(MODE)), \ 112 &proc_##OTYPE##_inode_operations, &proc_##OTYPE##_operations, \ 113 {} ) 114#define LNK(NAME, OTYPE) \ 115 NOD(NAME, (S_IFLNK|S_IRWXUGO), \ 116 &proc_pid_link_inode_operations, NULL, \ 117 { .proc_get_link = &proc_##OTYPE##_link } ) 118#define REG(NAME, MODE, OTYPE) \ 119 NOD(NAME, (S_IFREG|(MODE)), NULL, \ 120 &proc_##OTYPE##_operations, {}) 121#define INF(NAME, MODE, OTYPE) \ 122 NOD(NAME, (S_IFREG|(MODE)), \ 123 NULL, &proc_info_file_operations, \ 124 { .proc_read = &proc_##OTYPE } ) 125#define ONE(NAME, MODE, OTYPE) \ 126 NOD(NAME, (S_IFREG|(MODE)), \ 127 NULL, &proc_single_file_operations, \ 128 { .proc_show = &proc_##OTYPE } ) 129 130int maps_protect; 131EXPORT_SYMBOL(maps_protect); 132 133static struct fs_struct *get_fs_struct(struct task_struct *task) 134{ 135 struct fs_struct *fs; 136 task_lock(task); 137 fs = task->fs; 138 if(fs) 139 atomic_inc(&fs->count); 140 task_unlock(task); 141 return fs; 142} 143 144static int get_nr_threads(struct task_struct *tsk) 145{ 146 /* Must be called with the rcu_read_lock held */ 147 unsigned long flags; 148 int count = 0; 149 150 if (lock_task_sighand(tsk, &flags)) { 151 count = atomic_read(&tsk->signal->count); 152 unlock_task_sighand(tsk, &flags); 153 } 154 return count; 155} 156 157static int proc_cwd_link(struct inode *inode, struct path *path) 158{ 159 struct task_struct *task = get_proc_task(inode); 160 struct fs_struct *fs = NULL; 161 int result = -ENOENT; 162 163 if (task) { 164 fs = get_fs_struct(task); 165 put_task_struct(task); 166 } 167 if (fs) { 168 read_lock(&fs->lock); 169 *path = fs->pwd; 170 path_get(&fs->pwd); 171 read_unlock(&fs->lock); 172 result = 0; 173 put_fs_struct(fs); 174 } 175 return result; 176} 177 178static int proc_root_link(struct inode *inode, struct path *path) 179{ 180 struct task_struct *task = get_proc_task(inode); 181 struct fs_struct *fs = NULL; 182 int result = -ENOENT; 183 184 if (task) { 185 fs = get_fs_struct(task); 186 put_task_struct(task); 187 } 188 if (fs) { 189 read_lock(&fs->lock); 190 *path = fs->root; 191 path_get(&fs->root); 192 read_unlock(&fs->lock); 193 result = 0; 194 put_fs_struct(fs); 195 } 196 return result; 197} 198 199/* 200 * Return zero if current may access user memory in @task, -error if not. 201 */ 202static int check_mem_permission(struct task_struct *task) 203{ 204 /* 205 * A task can always look at itself, in case it chooses 206 * to use system calls instead of load instructions. 207 */ 208 if (task == current) 209 return 0; 210 211 /* 212 * If current is actively ptrace'ing, and would also be 213 * permitted to freshly attach with ptrace now, permit it. 214 */ 215 if (task->parent == current && (task->ptrace & PT_PTRACED) && 216 task_is_stopped_or_traced(task) && 217 ptrace_may_attach(task)) 218 return 0; 219 220 /* 221 * Noone else is allowed. 222 */ 223 return -EPERM; 224} 225 226struct mm_struct *mm_for_maps(struct task_struct *task) 227{ 228 struct mm_struct *mm = get_task_mm(task); 229 if (!mm) 230 return NULL; 231 down_read(&mm->mmap_sem); 232 task_lock(task); 233 if (task->mm != mm) 234 goto out; 235 if (task->mm != current->mm && __ptrace_may_attach(task) < 0) 236 goto out; 237 task_unlock(task); 238 return mm; 239out: 240 task_unlock(task); 241 up_read(&mm->mmap_sem); 242 mmput(mm); 243 return NULL; 244} 245 246static int proc_pid_cmdline(struct task_struct *task, char * buffer) 247{ 248 int res = 0; 249 unsigned int len; 250 struct mm_struct *mm = get_task_mm(task); 251 if (!mm) 252 goto out; 253 if (!mm->arg_end) 254 goto out_mm; /* Shh! No looking before we're done */ 255 256 len = mm->arg_end - mm->arg_start; 257 258 if (len > PAGE_SIZE) 259 len = PAGE_SIZE; 260 261 res = access_process_vm(task, mm->arg_start, buffer, len, 0); 262 263 // If the nul at the end of args has been overwritten, then 264 // assume application is using setproctitle(3). 265 if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) { 266 len = strnlen(buffer, res); 267 if (len < res) { 268 res = len; 269 } else { 270 len = mm->env_end - mm->env_start; 271 if (len > PAGE_SIZE - res) 272 len = PAGE_SIZE - res; 273 res += access_process_vm(task, mm->env_start, buffer+res, len, 0); 274 res = strnlen(buffer, res); 275 } 276 } 277out_mm: 278 mmput(mm); 279out: 280 return res; 281} 282 283static int proc_pid_auxv(struct task_struct *task, char *buffer) 284{ 285 int res = 0; 286 struct mm_struct *mm = get_task_mm(task); 287 if (mm) { 288 unsigned int nwords = 0; 289 do 290 nwords += 2; 291 while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */ 292 res = nwords * sizeof(mm->saved_auxv[0]); 293 if (res > PAGE_SIZE) 294 res = PAGE_SIZE; 295 memcpy(buffer, mm->saved_auxv, res); 296 mmput(mm); 297 } 298 return res; 299} 300 301 302#ifdef CONFIG_KALLSYMS 303/* 304 * Provides a wchan file via kallsyms in a proper one-value-per-file format. 305 * Returns the resolved symbol. If that fails, simply return the address. 306 */ 307static int proc_pid_wchan(struct task_struct *task, char *buffer) 308{ 309 unsigned long wchan; 310 char symname[KSYM_NAME_LEN]; 311 312 wchan = get_wchan(task); 313 314 if (lookup_symbol_name(wchan, symname) < 0) 315 return sprintf(buffer, "%lu", wchan); 316 else 317 return sprintf(buffer, "%s", symname); 318} 319#endif /* CONFIG_KALLSYMS */ 320 321#ifdef CONFIG_SCHEDSTATS 322/* 323 * Provides /proc/PID/schedstat 324 */ 325static int proc_pid_schedstat(struct task_struct *task, char *buffer) 326{ 327 return sprintf(buffer, "%llu %llu %lu\n", 328 task->sched_info.cpu_time, 329 task->sched_info.run_delay, 330 task->sched_info.pcount); 331} 332#endif 333 334#ifdef CONFIG_LATENCYTOP 335static int lstats_show_proc(struct seq_file *m, void *v) 336{ 337 int i; 338 struct inode *inode = m->private; 339 struct task_struct *task = get_proc_task(inode); 340 341 if (!task) 342 return -ESRCH; 343 seq_puts(m, "Latency Top version : v0.1\n"); 344 for (i = 0; i < 32; i++) { 345 if (task->latency_record[i].backtrace[0]) { 346 int q; 347 seq_printf(m, "%i %li %li ", 348 task->latency_record[i].count, 349 task->latency_record[i].time, 350 task->latency_record[i].max); 351 for (q = 0; q < LT_BACKTRACEDEPTH; q++) { 352 char sym[KSYM_NAME_LEN]; 353 char *c; 354 if (!task->latency_record[i].backtrace[q]) 355 break; 356 if (task->latency_record[i].backtrace[q] == ULONG_MAX) 357 break; 358 sprint_symbol(sym, task->latency_record[i].backtrace[q]); 359 c = strchr(sym, '+'); 360 if (c) 361 *c = 0; 362 seq_printf(m, "%s ", sym); 363 } 364 seq_printf(m, "\n"); 365 } 366 367 } 368 put_task_struct(task); 369 return 0; 370} 371 372static int lstats_open(struct inode *inode, struct file *file) 373{ 374 return single_open(file, lstats_show_proc, inode); 375} 376 377static ssize_t lstats_write(struct file *file, const char __user *buf, 378 size_t count, loff_t *offs) 379{ 380 struct task_struct *task = get_proc_task(file->f_dentry->d_inode); 381 382 if (!task) 383 return -ESRCH; 384 clear_all_latency_tracing(task); 385 put_task_struct(task); 386 387 return count; 388} 389 390static const struct file_operations proc_lstats_operations = { 391 .open = lstats_open, 392 .read = seq_read, 393 .write = lstats_write, 394 .llseek = seq_lseek, 395 .release = single_release, 396}; 397 398#endif 399 400/* The badness from the OOM killer */ 401unsigned long badness(struct task_struct *p, unsigned long uptime); 402static int proc_oom_score(struct task_struct *task, char *buffer) 403{ 404 unsigned long points; 405 struct timespec uptime; 406 407 do_posix_clock_monotonic_gettime(&uptime); 408 read_lock(&tasklist_lock); 409 points = badness(task, uptime.tv_sec); 410 read_unlock(&tasklist_lock); 411 return sprintf(buffer, "%lu\n", points); 412} 413 414struct limit_names { 415 char *name; 416 char *unit; 417}; 418 419static const struct limit_names lnames[RLIM_NLIMITS] = { 420 [RLIMIT_CPU] = {"Max cpu time", "ms"}, 421 [RLIMIT_FSIZE] = {"Max file size", "bytes"}, 422 [RLIMIT_DATA] = {"Max data size", "bytes"}, 423 [RLIMIT_STACK] = {"Max stack size", "bytes"}, 424 [RLIMIT_CORE] = {"Max core file size", "bytes"}, 425 [RLIMIT_RSS] = {"Max resident set", "bytes"}, 426 [RLIMIT_NPROC] = {"Max processes", "processes"}, 427 [RLIMIT_NOFILE] = {"Max open files", "files"}, 428 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"}, 429 [RLIMIT_AS] = {"Max address space", "bytes"}, 430 [RLIMIT_LOCKS] = {"Max file locks", "locks"}, 431 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"}, 432 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"}, 433 [RLIMIT_NICE] = {"Max nice priority", NULL}, 434 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL}, 435 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"}, 436}; 437 438/* Display limits for a process */ 439static int proc_pid_limits(struct task_struct *task, char *buffer) 440{ 441 unsigned int i; 442 int count = 0; 443 unsigned long flags; 444 char *bufptr = buffer; 445 446 struct rlimit rlim[RLIM_NLIMITS]; 447 448 rcu_read_lock(); 449 if (!lock_task_sighand(task,&flags)) { 450 rcu_read_unlock(); 451 return 0; 452 } 453 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS); 454 unlock_task_sighand(task, &flags); 455 rcu_read_unlock(); 456 457 /* 458 * print the file header 459 */ 460 count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n", 461 "Limit", "Soft Limit", "Hard Limit", "Units"); 462 463 for (i = 0; i < RLIM_NLIMITS; i++) { 464 if (rlim[i].rlim_cur == RLIM_INFINITY) 465 count += sprintf(&bufptr[count], "%-25s %-20s ", 466 lnames[i].name, "unlimited"); 467 else 468 count += sprintf(&bufptr[count], "%-25s %-20lu ", 469 lnames[i].name, rlim[i].rlim_cur); 470 471 if (rlim[i].rlim_max == RLIM_INFINITY) 472 count += sprintf(&bufptr[count], "%-20s ", "unlimited"); 473 else 474 count += sprintf(&bufptr[count], "%-20lu ", 475 rlim[i].rlim_max); 476 477 if (lnames[i].unit) 478 count += sprintf(&bufptr[count], "%-10s\n", 479 lnames[i].unit); 480 else 481 count += sprintf(&bufptr[count], "\n"); 482 } 483 484 return count; 485} 486 487/************************************************************************/ 488/* Here the fs part begins */ 489/************************************************************************/ 490 491/* permission checks */ 492static int proc_fd_access_allowed(struct inode *inode) 493{ 494 struct task_struct *task; 495 int allowed = 0; 496 /* Allow access to a task's file descriptors if it is us or we 497 * may use ptrace attach to the process and find out that 498 * information. 499 */ 500 task = get_proc_task(inode); 501 if (task) { 502 allowed = ptrace_may_attach(task); 503 put_task_struct(task); 504 } 505 return allowed; 506} 507 508static int proc_setattr(struct dentry *dentry, struct iattr *attr) 509{ 510 int error; 511 struct inode *inode = dentry->d_inode; 512 513 if (attr->ia_valid & ATTR_MODE) 514 return -EPERM; 515 516 error = inode_change_ok(inode, attr); 517 if (!error) 518 error = inode_setattr(inode, attr); 519 return error; 520} 521 522static const struct inode_operations proc_def_inode_operations = { 523 .setattr = proc_setattr, 524}; 525 526static int mounts_open_common(struct inode *inode, struct file *file, 527 const struct seq_operations *op) 528{ 529 struct task_struct *task = get_proc_task(inode); 530 struct nsproxy *nsp; 531 struct mnt_namespace *ns = NULL; 532 struct fs_struct *fs = NULL; 533 struct path root; 534 struct proc_mounts *p; 535 int ret = -EINVAL; 536 537 if (task) { 538 rcu_read_lock(); 539 nsp = task_nsproxy(task); 540 if (nsp) { 541 ns = nsp->mnt_ns; 542 if (ns) 543 get_mnt_ns(ns); 544 } 545 rcu_read_unlock(); 546 if (ns) 547 fs = get_fs_struct(task); 548 put_task_struct(task); 549 } 550 551 if (!ns) 552 goto err; 553 if (!fs) 554 goto err_put_ns; 555 556 read_lock(&fs->lock); 557 root = fs->root; 558 path_get(&root); 559 read_unlock(&fs->lock); 560 put_fs_struct(fs); 561 562 ret = -ENOMEM; 563 p = kmalloc(sizeof(struct proc_mounts), GFP_KERNEL); 564 if (!p) 565 goto err_put_path; 566 567 file->private_data = &p->m; 568 ret = seq_open(file, op); 569 if (ret) 570 goto err_free; 571 572 p->m.private = p; 573 p->ns = ns; 574 p->root = root; 575 p->event = ns->event; 576 577 return 0; 578 579 err_free: 580 kfree(p); 581 err_put_path: 582 path_put(&root); 583 err_put_ns: 584 put_mnt_ns(ns); 585 err: 586 return ret; 587} 588 589static int mounts_release(struct inode *inode, struct file *file) 590{ 591 struct proc_mounts *p = file->private_data; 592 path_put(&p->root); 593 put_mnt_ns(p->ns); 594 return seq_release(inode, file); 595} 596 597static unsigned mounts_poll(struct file *file, poll_table *wait) 598{ 599 struct proc_mounts *p = file->private_data; 600 struct mnt_namespace *ns = p->ns; 601 unsigned res = 0; 602 603 poll_wait(file, &ns->poll, wait); 604 605 spin_lock(&vfsmount_lock); 606 if (p->event != ns->event) { 607 p->event = ns->event; 608 res = POLLERR; 609 } 610 spin_unlock(&vfsmount_lock); 611 612 return res; 613} 614 615static int mounts_open(struct inode *inode, struct file *file) 616{ 617 return mounts_open_common(inode, file, &mounts_op); 618} 619 620static const struct file_operations proc_mounts_operations = { 621 .open = mounts_open, 622 .read = seq_read, 623 .llseek = seq_lseek, 624 .release = mounts_release, 625 .poll = mounts_poll, 626}; 627 628static int mountinfo_open(struct inode *inode, struct file *file) 629{ 630 return mounts_open_common(inode, file, &mountinfo_op); 631} 632 633static const struct file_operations proc_mountinfo_operations = { 634 .open = mountinfo_open, 635 .read = seq_read, 636 .llseek = seq_lseek, 637 .release = mounts_release, 638 .poll = mounts_poll, 639}; 640 641static int mountstats_open(struct inode *inode, struct file *file) 642{ 643 return mounts_open_common(inode, file, &mountstats_op); 644} 645 646static const struct file_operations proc_mountstats_operations = { 647 .open = mountstats_open, 648 .read = seq_read, 649 .llseek = seq_lseek, 650 .release = mounts_release, 651}; 652 653#define PROC_BLOCK_SIZE (3*1024) /* 4K page size but our output routines use some slack for overruns */ 654 655static ssize_t proc_info_read(struct file * file, char __user * buf, 656 size_t count, loff_t *ppos) 657{ 658 struct inode * inode = file->f_path.dentry->d_inode; 659 unsigned long page; 660 ssize_t length; 661 struct task_struct *task = get_proc_task(inode); 662 663 length = -ESRCH; 664 if (!task) 665 goto out_no_task; 666 667 if (count > PROC_BLOCK_SIZE) 668 count = PROC_BLOCK_SIZE; 669 670 length = -ENOMEM; 671 if (!(page = __get_free_page(GFP_TEMPORARY))) 672 goto out; 673 674 length = PROC_I(inode)->op.proc_read(task, (char*)page); 675 676 if (length >= 0) 677 length = simple_read_from_buffer(buf, count, ppos, (char *)page, length); 678 free_page(page); 679out: 680 put_task_struct(task); 681out_no_task: 682 return length; 683} 684 685static const struct file_operations proc_info_file_operations = { 686 .read = proc_info_read, 687}; 688 689static int proc_single_show(struct seq_file *m, void *v) 690{ 691 struct inode *inode = m->private; 692 struct pid_namespace *ns; 693 struct pid *pid; 694 struct task_struct *task; 695 int ret; 696 697 ns = inode->i_sb->s_fs_info; 698 pid = proc_pid(inode); 699 task = get_pid_task(pid, PIDTYPE_PID); 700 if (!task) 701 return -ESRCH; 702 703 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task); 704 705 put_task_struct(task); 706 return ret; 707} 708 709static int proc_single_open(struct inode *inode, struct file *filp) 710{ 711 int ret; 712 ret = single_open(filp, proc_single_show, NULL); 713 if (!ret) { 714 struct seq_file *m = filp->private_data; 715 716 m->private = inode; 717 } 718 return ret; 719} 720 721static const struct file_operations proc_single_file_operations = { 722 .open = proc_single_open, 723 .read = seq_read, 724 .llseek = seq_lseek, 725 .release = single_release, 726}; 727 728static int mem_open(struct inode* inode, struct file* file) 729{ 730 file->private_data = (void*)((long)current->self_exec_id); 731 return 0; 732} 733 734static ssize_t mem_read(struct file * file, char __user * buf, 735 size_t count, loff_t *ppos) 736{ 737 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode); 738 char *page; 739 unsigned long src = *ppos; 740 int ret = -ESRCH; 741 struct mm_struct *mm; 742 743 if (!task) 744 goto out_no_task; 745 746 if (check_mem_permission(task)) 747 goto out; 748 749 ret = -ENOMEM; 750 page = (char *)__get_free_page(GFP_TEMPORARY); 751 if (!page) 752 goto out; 753 754 ret = 0; 755 756 mm = get_task_mm(task); 757 if (!mm) 758 goto out_free; 759 760 ret = -EIO; 761 762 if (file->private_data != (void*)((long)current->self_exec_id)) 763 goto out_put; 764 765 ret = 0; 766 767 while (count > 0) { 768 int this_len, retval; 769 770 this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count; 771 retval = access_process_vm(task, src, page, this_len, 0); 772 if (!retval || check_mem_permission(task)) { 773 if (!ret) 774 ret = -EIO; 775 break; 776 } 777 778 if (copy_to_user(buf, page, retval)) { 779 ret = -EFAULT; 780 break; 781 } 782 783 ret += retval; 784 src += retval; 785 buf += retval; 786 count -= retval; 787 } 788 *ppos = src; 789 790out_put: 791 mmput(mm); 792out_free: 793 free_page((unsigned long) page); 794out: 795 put_task_struct(task); 796out_no_task: 797 return ret; 798} 799 800#define mem_write NULL 801 802#ifndef mem_write 803/* This is a security hazard */ 804static ssize_t mem_write(struct file * file, const char __user *buf, 805 size_t count, loff_t *ppos) 806{ 807 int copied; 808 char *page; 809 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode); 810 unsigned long dst = *ppos; 811 812 copied = -ESRCH; 813 if (!task) 814 goto out_no_task; 815 816 if (check_mem_permission(task)) 817 goto out; 818 819 copied = -ENOMEM; 820 page = (char *)__get_free_page(GFP_TEMPORARY); 821 if (!page) 822 goto out; 823 824 copied = 0; 825 while (count > 0) { 826 int this_len, retval; 827 828 this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count; 829 if (copy_from_user(page, buf, this_len)) { 830 copied = -EFAULT; 831 break; 832 } 833 retval = access_process_vm(task, dst, page, this_len, 1); 834 if (!retval) { 835 if (!copied) 836 copied = -EIO; 837 break; 838 } 839 copied += retval; 840 buf += retval; 841 dst += retval; 842 count -= retval; 843 } 844 *ppos = dst; 845 free_page((unsigned long) page); 846out: 847 put_task_struct(task); 848out_no_task: 849 return copied; 850} 851#endif 852 853loff_t mem_lseek(struct file *file, loff_t offset, int orig) 854{ 855 switch (orig) { 856 case 0: 857 file->f_pos = offset; 858 break; 859 case 1: 860 file->f_pos += offset; 861 break; 862 default: 863 return -EINVAL; 864 } 865 force_successful_syscall_return(); 866 return file->f_pos; 867} 868 869static const struct file_operations proc_mem_operations = { 870 .llseek = mem_lseek, 871 .read = mem_read, 872 .write = mem_write, 873 .open = mem_open, 874}; 875 876static ssize_t environ_read(struct file *file, char __user *buf, 877 size_t count, loff_t *ppos) 878{ 879 struct task_struct *task = get_proc_task(file->f_dentry->d_inode); 880 char *page; 881 unsigned long src = *ppos; 882 int ret = -ESRCH; 883 struct mm_struct *mm; 884 885 if (!task) 886 goto out_no_task; 887 888 if (!ptrace_may_attach(task)) 889 goto out; 890 891 ret = -ENOMEM; 892 page = (char *)__get_free_page(GFP_TEMPORARY); 893 if (!page) 894 goto out; 895 896 ret = 0; 897 898 mm = get_task_mm(task); 899 if (!mm) 900 goto out_free; 901 902 while (count > 0) { 903 int this_len, retval, max_len; 904 905 this_len = mm->env_end - (mm->env_start + src); 906 907 if (this_len <= 0) 908 break; 909 910 max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count; 911 this_len = (this_len > max_len) ? max_len : this_len; 912 913 retval = access_process_vm(task, (mm->env_start + src), 914 page, this_len, 0); 915 916 if (retval <= 0) { 917 ret = retval; 918 break; 919 } 920 921 if (copy_to_user(buf, page, retval)) { 922 ret = -EFAULT; 923 break; 924 } 925 926 ret += retval; 927 src += retval; 928 buf += retval; 929 count -= retval; 930 } 931 *ppos = src; 932 933 mmput(mm); 934out_free: 935 free_page((unsigned long) page); 936out: 937 put_task_struct(task); 938out_no_task: 939 return ret; 940} 941 942static const struct file_operations proc_environ_operations = { 943 .read = environ_read, 944}; 945 946static ssize_t oom_adjust_read(struct file *file, char __user *buf, 947 size_t count, loff_t *ppos) 948{ 949 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode); 950 char buffer[PROC_NUMBUF]; 951 size_t len; 952 int oom_adjust; 953 954 if (!task) 955 return -ESRCH; 956 oom_adjust = task->oomkilladj; 957 put_task_struct(task); 958 959 len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust); 960 961 return simple_read_from_buffer(buf, count, ppos, buffer, len); 962} 963 964static ssize_t oom_adjust_write(struct file *file, const char __user *buf, 965 size_t count, loff_t *ppos) 966{ 967 struct task_struct *task; 968 char buffer[PROC_NUMBUF], *end; 969 int oom_adjust; 970 971 memset(buffer, 0, sizeof(buffer)); 972 if (count > sizeof(buffer) - 1) 973 count = sizeof(buffer) - 1; 974 if (copy_from_user(buffer, buf, count)) 975 return -EFAULT; 976 oom_adjust = simple_strtol(buffer, &end, 0); 977 if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) && 978 oom_adjust != OOM_DISABLE) 979 return -EINVAL; 980 if (*end == '\n') 981 end++; 982 task = get_proc_task(file->f_path.dentry->d_inode); 983 if (!task) 984 return -ESRCH; 985 if (oom_adjust < task->oomkilladj && !capable(CAP_SYS_RESOURCE)) { 986 put_task_struct(task); 987 return -EACCES; 988 } 989 task->oomkilladj = oom_adjust; 990 put_task_struct(task); 991 if (end - buffer == 0) 992 return -EIO; 993 return end - buffer; 994} 995 996static const struct file_operations proc_oom_adjust_operations = { 997 .read = oom_adjust_read, 998 .write = oom_adjust_write, 999}; 1000 1001#ifdef CONFIG_AUDITSYSCALL 1002#define TMPBUFLEN 21 1003static ssize_t proc_loginuid_read(struct file * file, char __user * buf, 1004 size_t count, loff_t *ppos) 1005{ 1006 struct inode * inode = file->f_path.dentry->d_inode; 1007 struct task_struct *task = get_proc_task(inode); 1008 ssize_t length; 1009 char tmpbuf[TMPBUFLEN]; 1010 1011 if (!task) 1012 return -ESRCH; 1013 length = scnprintf(tmpbuf, TMPBUFLEN, "%u", 1014 audit_get_loginuid(task)); 1015 put_task_struct(task); 1016 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); 1017} 1018 1019static ssize_t proc_loginuid_write(struct file * file, const char __user * buf, 1020 size_t count, loff_t *ppos) 1021{ 1022 struct inode * inode = file->f_path.dentry->d_inode; 1023 char *page, *tmp; 1024 ssize_t length; 1025 uid_t loginuid; 1026 1027 if (!capable(CAP_AUDIT_CONTROL)) 1028 return -EPERM; 1029 1030 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) 1031 return -EPERM; 1032 1033 if (count >= PAGE_SIZE) 1034 count = PAGE_SIZE - 1; 1035 1036 if (*ppos != 0) { 1037 /* No partial writes. */ 1038 return -EINVAL; 1039 } 1040 page = (char*)__get_free_page(GFP_TEMPORARY); 1041 if (!page) 1042 return -ENOMEM; 1043 length = -EFAULT; 1044 if (copy_from_user(page, buf, count)) 1045 goto out_free_page; 1046 1047 page[count] = '\0'; 1048 loginuid = simple_strtoul(page, &tmp, 10); 1049 if (tmp == page) { 1050 length = -EINVAL; 1051 goto out_free_page; 1052 1053 } 1054 length = audit_set_loginuid(current, loginuid); 1055 if (likely(length == 0)) 1056 length = count; 1057 1058out_free_page: 1059 free_page((unsigned long) page); 1060 return length; 1061} 1062 1063static const struct file_operations proc_loginuid_operations = { 1064 .read = proc_loginuid_read, 1065 .write = proc_loginuid_write, 1066}; 1067 1068static ssize_t proc_sessionid_read(struct file * file, char __user * buf, 1069 size_t count, loff_t *ppos) 1070{ 1071 struct inode * inode = file->f_path.dentry->d_inode; 1072 struct task_struct *task = get_proc_task(inode); 1073 ssize_t length; 1074 char tmpbuf[TMPBUFLEN]; 1075 1076 if (!task) 1077 return -ESRCH; 1078 length = scnprintf(tmpbuf, TMPBUFLEN, "%u", 1079 audit_get_sessionid(task)); 1080 put_task_struct(task); 1081 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); 1082} 1083 1084static const struct file_operations proc_sessionid_operations = { 1085 .read = proc_sessionid_read, 1086}; 1087#endif 1088 1089#ifdef CONFIG_FAULT_INJECTION 1090static ssize_t proc_fault_inject_read(struct file * file, char __user * buf, 1091 size_t count, loff_t *ppos) 1092{ 1093 struct task_struct *task = get_proc_task(file->f_dentry->d_inode); 1094 char buffer[PROC_NUMBUF]; 1095 size_t len; 1096 int make_it_fail; 1097 1098 if (!task) 1099 return -ESRCH; 1100 make_it_fail = task->make_it_fail; 1101 put_task_struct(task); 1102 1103 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail); 1104 1105 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1106} 1107 1108static ssize_t proc_fault_inject_write(struct file * file, 1109 const char __user * buf, size_t count, loff_t *ppos) 1110{ 1111 struct task_struct *task; 1112 char buffer[PROC_NUMBUF], *end; 1113 int make_it_fail; 1114 1115 if (!capable(CAP_SYS_RESOURCE)) 1116 return -EPERM; 1117 memset(buffer, 0, sizeof(buffer)); 1118 if (count > sizeof(buffer) - 1) 1119 count = sizeof(buffer) - 1; 1120 if (copy_from_user(buffer, buf, count)) 1121 return -EFAULT; 1122 make_it_fail = simple_strtol(buffer, &end, 0); 1123 if (*end == '\n') 1124 end++; 1125 task = get_proc_task(file->f_dentry->d_inode); 1126 if (!task) 1127 return -ESRCH; 1128 task->make_it_fail = make_it_fail; 1129 put_task_struct(task); 1130 if (end - buffer == 0) 1131 return -EIO; 1132 return end - buffer; 1133} 1134 1135static const struct file_operations proc_fault_inject_operations = { 1136 .read = proc_fault_inject_read, 1137 .write = proc_fault_inject_write, 1138}; 1139#endif 1140 1141 1142#ifdef CONFIG_SCHED_DEBUG 1143/* 1144 * Print out various scheduling related per-task fields: 1145 */ 1146static int sched_show(struct seq_file *m, void *v) 1147{ 1148 struct inode *inode = m->private; 1149 struct task_struct *p; 1150 1151 WARN_ON(!inode); 1152 1153 p = get_proc_task(inode); 1154 if (!p) 1155 return -ESRCH; 1156 proc_sched_show_task(p, m); 1157 1158 put_task_struct(p); 1159 1160 return 0; 1161} 1162 1163static ssize_t 1164sched_write(struct file *file, const char __user *buf, 1165 size_t count, loff_t *offset) 1166{ 1167 struct inode *inode = file->f_path.dentry->d_inode; 1168 struct task_struct *p; 1169 1170 WARN_ON(!inode); 1171 1172 p = get_proc_task(inode); 1173 if (!p) 1174 return -ESRCH; 1175 proc_sched_set_task(p); 1176 1177 put_task_struct(p); 1178 1179 return count; 1180} 1181 1182static int sched_open(struct inode *inode, struct file *filp) 1183{ 1184 int ret; 1185 1186 ret = single_open(filp, sched_show, NULL); 1187 if (!ret) { 1188 struct seq_file *m = filp->private_data; 1189 1190 m->private = inode; 1191 } 1192 return ret; 1193} 1194 1195static const struct file_operations proc_pid_sched_operations = { 1196 .open = sched_open, 1197 .read = seq_read, 1198 .write = sched_write, 1199 .llseek = seq_lseek, 1200 .release = single_release, 1201}; 1202 1203#endif 1204 1205/* 1206 * We added or removed a vma mapping the executable. The vmas are only mapped 1207 * during exec and are not mapped with the mmap system call. 1208 * Callers must hold down_write() on the mm's mmap_sem for these 1209 */ 1210void added_exe_file_vma(struct mm_struct *mm) 1211{ 1212 mm->num_exe_file_vmas++; 1213} 1214 1215void removed_exe_file_vma(struct mm_struct *mm) 1216{ 1217 mm->num_exe_file_vmas--; 1218 if ((mm->num_exe_file_vmas == 0) && mm->exe_file){ 1219 fput(mm->exe_file); 1220 mm->exe_file = NULL; 1221 } 1222 1223} 1224 1225void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1226{ 1227 if (new_exe_file) 1228 get_file(new_exe_file); 1229 if (mm->exe_file) 1230 fput(mm->exe_file); 1231 mm->exe_file = new_exe_file; 1232 mm->num_exe_file_vmas = 0; 1233} 1234 1235struct file *get_mm_exe_file(struct mm_struct *mm) 1236{ 1237 struct file *exe_file; 1238 1239 /* We need mmap_sem to protect against races with removal of 1240 * VM_EXECUTABLE vmas */ 1241 down_read(&mm->mmap_sem); 1242 exe_file = mm->exe_file; 1243 if (exe_file) 1244 get_file(exe_file); 1245 up_read(&mm->mmap_sem); 1246 return exe_file; 1247} 1248 1249void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm) 1250{ 1251 /* It's safe to write the exe_file pointer without exe_file_lock because 1252 * this is called during fork when the task is not yet in /proc */ 1253 newmm->exe_file = get_mm_exe_file(oldmm); 1254} 1255 1256static int proc_exe_link(struct inode *inode, struct path *exe_path) 1257{ 1258 struct task_struct *task; 1259 struct mm_struct *mm; 1260 struct file *exe_file; 1261 1262 task = get_proc_task(inode); 1263 if (!task) 1264 return -ENOENT; 1265 mm = get_task_mm(task); 1266 put_task_struct(task); 1267 if (!mm) 1268 return -ENOENT; 1269 exe_file = get_mm_exe_file(mm); 1270 mmput(mm); 1271 if (exe_file) { 1272 *exe_path = exe_file->f_path; 1273 path_get(&exe_file->f_path); 1274 fput(exe_file); 1275 return 0; 1276 } else 1277 return -ENOENT; 1278} 1279 1280static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd) 1281{ 1282 struct inode *inode = dentry->d_inode; 1283 int error = -EACCES; 1284 1285 /* We don't need a base pointer in the /proc filesystem */ 1286 path_put(&nd->path); 1287 1288 /* Are we allowed to snoop on the tasks file descriptors? */ 1289 if (!proc_fd_access_allowed(inode)) 1290 goto out; 1291 1292 error = PROC_I(inode)->op.proc_get_link(inode, &nd->path); 1293 nd->last_type = LAST_BIND; 1294out: 1295 return ERR_PTR(error); 1296} 1297 1298static int do_proc_readlink(struct path *path, char __user *buffer, int buflen) 1299{ 1300 char *tmp = (char*)__get_free_page(GFP_TEMPORARY); 1301 char *pathname; 1302 int len; 1303 1304 if (!tmp) 1305 return -ENOMEM; 1306 1307 pathname = d_path(path, tmp, PAGE_SIZE); 1308 len = PTR_ERR(pathname); 1309 if (IS_ERR(pathname)) 1310 goto out; 1311 len = tmp + PAGE_SIZE - 1 - pathname; 1312 1313 if (len > buflen) 1314 len = buflen; 1315 if (copy_to_user(buffer, pathname, len)) 1316 len = -EFAULT; 1317 out: 1318 free_page((unsigned long)tmp); 1319 return len; 1320} 1321 1322static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen) 1323{ 1324 int error = -EACCES; 1325 struct inode *inode = dentry->d_inode; 1326 struct path path; 1327 1328 /* Are we allowed to snoop on the tasks file descriptors? */ 1329 if (!proc_fd_access_allowed(inode)) 1330 goto out; 1331 1332 error = PROC_I(inode)->op.proc_get_link(inode, &path); 1333 if (error) 1334 goto out; 1335 1336 error = do_proc_readlink(&path, buffer, buflen); 1337 path_put(&path); 1338out: 1339 return error; 1340} 1341 1342static const struct inode_operations proc_pid_link_inode_operations = { 1343 .readlink = proc_pid_readlink, 1344 .follow_link = proc_pid_follow_link, 1345 .setattr = proc_setattr, 1346}; 1347 1348 1349/* building an inode */ 1350 1351static int task_dumpable(struct task_struct *task) 1352{ 1353 int dumpable = 0; 1354 struct mm_struct *mm; 1355 1356 task_lock(task); 1357 mm = task->mm; 1358 if (mm) 1359 dumpable = get_dumpable(mm); 1360 task_unlock(task); 1361 if(dumpable == 1) 1362 return 1; 1363 return 0; 1364} 1365 1366 1367static struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task) 1368{ 1369 struct inode * inode; 1370 struct proc_inode *ei; 1371 1372 /* We need a new inode */ 1373 1374 inode = new_inode(sb); 1375 if (!inode) 1376 goto out; 1377 1378 /* Common stuff */ 1379 ei = PROC_I(inode); 1380 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 1381 inode->i_op = &proc_def_inode_operations; 1382 1383 /* 1384 * grab the reference to task. 1385 */ 1386 ei->pid = get_task_pid(task, PIDTYPE_PID); 1387 if (!ei->pid) 1388 goto out_unlock; 1389 1390 inode->i_uid = 0; 1391 inode->i_gid = 0; 1392 if (task_dumpable(task)) { 1393 inode->i_uid = task->euid; 1394 inode->i_gid = task->egid; 1395 } 1396 security_task_to_inode(task, inode); 1397 1398out: 1399 return inode; 1400 1401out_unlock: 1402 iput(inode); 1403 return NULL; 1404} 1405 1406static int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat) 1407{ 1408 struct inode *inode = dentry->d_inode; 1409 struct task_struct *task; 1410 generic_fillattr(inode, stat); 1411 1412 rcu_read_lock(); 1413 stat->uid = 0; 1414 stat->gid = 0; 1415 task = pid_task(proc_pid(inode), PIDTYPE_PID); 1416 if (task) { 1417 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) || 1418 task_dumpable(task)) { 1419 stat->uid = task->euid; 1420 stat->gid = task->egid; 1421 } 1422 } 1423 rcu_read_unlock(); 1424 return 0; 1425} 1426 1427/* dentry stuff */ 1428 1429/* 1430 * Exceptional case: normally we are not allowed to unhash a busy 1431 * directory. In this case, however, we can do it - no aliasing problems 1432 * due to the way we treat inodes. 1433 * 1434 * Rewrite the inode's ownerships here because the owning task may have 1435 * performed a setuid(), etc. 1436 * 1437 * Before the /proc/pid/status file was created the only way to read 1438 * the effective uid of a /process was to stat /proc/pid. Reading 1439 * /proc/pid/status is slow enough that procps and other packages 1440 * kept stating /proc/pid. To keep the rules in /proc simple I have 1441 * made this apply to all per process world readable and executable 1442 * directories. 1443 */ 1444static int pid_revalidate(struct dentry *dentry, struct nameidata *nd) 1445{ 1446 struct inode *inode = dentry->d_inode; 1447 struct task_struct *task = get_proc_task(inode); 1448 if (task) { 1449 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) || 1450 task_dumpable(task)) { 1451 inode->i_uid = task->euid; 1452 inode->i_gid = task->egid; 1453 } else { 1454 inode->i_uid = 0; 1455 inode->i_gid = 0; 1456 } 1457 inode->i_mode &= ~(S_ISUID | S_ISGID); 1458 security_task_to_inode(task, inode); 1459 put_task_struct(task); 1460 return 1; 1461 } 1462 d_drop(dentry); 1463 return 0; 1464} 1465 1466static int pid_delete_dentry(struct dentry * dentry) 1467{ 1468 /* Is the task we represent dead? 1469 * If so, then don't put the dentry on the lru list, 1470 * kill it immediately. 1471 */ 1472 return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first; 1473} 1474 1475static struct dentry_operations pid_dentry_operations = 1476{ 1477 .d_revalidate = pid_revalidate, 1478 .d_delete = pid_delete_dentry, 1479}; 1480 1481/* Lookups */ 1482 1483typedef struct dentry *instantiate_t(struct inode *, struct dentry *, 1484 struct task_struct *, const void *); 1485 1486/* 1487 * Fill a directory entry. 1488 * 1489 * If possible create the dcache entry and derive our inode number and 1490 * file type from dcache entry. 1491 * 1492 * Since all of the proc inode numbers are dynamically generated, the inode 1493 * numbers do not exist until the inode is cache. This means creating the 1494 * the dcache entry in readdir is necessary to keep the inode numbers 1495 * reported by readdir in sync with the inode numbers reported 1496 * by stat. 1497 */ 1498static int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir, 1499 char *name, int len, 1500 instantiate_t instantiate, struct task_struct *task, const void *ptr) 1501{ 1502 struct dentry *child, *dir = filp->f_path.dentry; 1503 struct inode *inode; 1504 struct qstr qname; 1505 ino_t ino = 0; 1506 unsigned type = DT_UNKNOWN; 1507 1508 qname.name = name; 1509 qname.len = len; 1510 qname.hash = full_name_hash(name, len); 1511 1512 child = d_lookup(dir, &qname); 1513 if (!child) { 1514 struct dentry *new; 1515 new = d_alloc(dir, &qname); 1516 if (new) { 1517 child = instantiate(dir->d_inode, new, task, ptr); 1518 if (child) 1519 dput(new); 1520 else 1521 child = new; 1522 } 1523 } 1524 if (!child || IS_ERR(child) || !child->d_inode) 1525 goto end_instantiate; 1526 inode = child->d_inode; 1527 if (inode) { 1528 ino = inode->i_ino; 1529 type = inode->i_mode >> 12; 1530 } 1531 dput(child); 1532end_instantiate: 1533 if (!ino) 1534 ino = find_inode_number(dir, &qname); 1535 if (!ino) 1536 ino = 1; 1537 return filldir(dirent, name, len, filp->f_pos, ino, type); 1538} 1539 1540static unsigned name_to_int(struct dentry *dentry) 1541{ 1542 const char *name = dentry->d_name.name; 1543 int len = dentry->d_name.len; 1544 unsigned n = 0; 1545 1546 if (len > 1 && *name == '0') 1547 goto out; 1548 while (len-- > 0) { 1549 unsigned c = *name++ - '0'; 1550 if (c > 9) 1551 goto out; 1552 if (n >= (~0U-9)/10) 1553 goto out; 1554 n *= 10; 1555 n += c; 1556 } 1557 return n; 1558out: 1559 return ~0U; 1560} 1561 1562#define PROC_FDINFO_MAX 64 1563 1564static int proc_fd_info(struct inode *inode, struct path *path, char *info) 1565{ 1566 struct task_struct *task = get_proc_task(inode); 1567 struct files_struct *files = NULL; 1568 struct file *file; 1569 int fd = proc_fd(inode); 1570 1571 if (task) { 1572 files = get_files_struct(task); 1573 put_task_struct(task); 1574 } 1575 if (files) { 1576 /* 1577 * We are not taking a ref to the file structure, so we must 1578 * hold ->file_lock. 1579 */ 1580 spin_lock(&files->file_lock); 1581 file = fcheck_files(files, fd); 1582 if (file) { 1583 if (path) { 1584 *path = file->f_path; 1585 path_get(&file->f_path); 1586 } 1587 if (info) 1588 snprintf(info, PROC_FDINFO_MAX, 1589 "pos:\t%lli\n" 1590 "flags:\t0%o\n", 1591 (long long) file->f_pos, 1592 file->f_flags); 1593 spin_unlock(&files->file_lock); 1594 put_files_struct(files); 1595 return 0; 1596 } 1597 spin_unlock(&files->file_lock); 1598 put_files_struct(files); 1599 } 1600 return -ENOENT; 1601} 1602 1603static int proc_fd_link(struct inode *inode, struct path *path) 1604{ 1605 return proc_fd_info(inode, path, NULL); 1606} 1607 1608static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd) 1609{ 1610 struct inode *inode = dentry->d_inode; 1611 struct task_struct *task = get_proc_task(inode); 1612 int fd = proc_fd(inode); 1613 struct files_struct *files; 1614 1615 if (task) { 1616 files = get_files_struct(task); 1617 if (files) { 1618 rcu_read_lock(); 1619 if (fcheck_files(files, fd)) { 1620 rcu_read_unlock(); 1621 put_files_struct(files); 1622 if (task_dumpable(task)) { 1623 inode->i_uid = task->euid; 1624 inode->i_gid = task->egid; 1625 } else { 1626 inode->i_uid = 0; 1627 inode->i_gid = 0; 1628 } 1629 inode->i_mode &= ~(S_ISUID | S_ISGID); 1630 security_task_to_inode(task, inode); 1631 put_task_struct(task); 1632 return 1; 1633 } 1634 rcu_read_unlock(); 1635 put_files_struct(files); 1636 } 1637 put_task_struct(task); 1638 } 1639 d_drop(dentry); 1640 return 0; 1641} 1642 1643static struct dentry_operations tid_fd_dentry_operations = 1644{ 1645 .d_revalidate = tid_fd_revalidate, 1646 .d_delete = pid_delete_dentry, 1647}; 1648 1649static struct dentry *proc_fd_instantiate(struct inode *dir, 1650 struct dentry *dentry, struct task_struct *task, const void *ptr) 1651{ 1652 unsigned fd = *(const unsigned *)ptr; 1653 struct file *file; 1654 struct files_struct *files; 1655 struct inode *inode; 1656 struct proc_inode *ei; 1657 struct dentry *error = ERR_PTR(-ENOENT); 1658 1659 inode = proc_pid_make_inode(dir->i_sb, task); 1660 if (!inode) 1661 goto out; 1662 ei = PROC_I(inode); 1663 ei->fd = fd; 1664 files = get_files_struct(task); 1665 if (!files) 1666 goto out_iput; 1667 inode->i_mode = S_IFLNK; 1668 1669 /* 1670 * We are not taking a ref to the file structure, so we must 1671 * hold ->file_lock. 1672 */ 1673 spin_lock(&files->file_lock); 1674 file = fcheck_files(files, fd); 1675 if (!file) 1676 goto out_unlock; 1677 if (file->f_mode & 1) 1678 inode->i_mode |= S_IRUSR | S_IXUSR; 1679 if (file->f_mode & 2) 1680 inode->i_mode |= S_IWUSR | S_IXUSR; 1681 spin_unlock(&files->file_lock); 1682 put_files_struct(files); 1683 1684 inode->i_op = &proc_pid_link_inode_operations; 1685 inode->i_size = 64; 1686 ei->op.proc_get_link = proc_fd_link; 1687 dentry->d_op = &tid_fd_dentry_operations; 1688 d_add(dentry, inode); 1689 /* Close the race of the process dying before we return the dentry */ 1690 if (tid_fd_revalidate(dentry, NULL)) 1691 error = NULL; 1692 1693 out: 1694 return error; 1695out_unlock: 1696 spin_unlock(&files->file_lock); 1697 put_files_struct(files); 1698out_iput: 1699 iput(inode); 1700 goto out; 1701} 1702 1703static struct dentry *proc_lookupfd_common(struct inode *dir, 1704 struct dentry *dentry, 1705 instantiate_t instantiate) 1706{ 1707 struct task_struct *task = get_proc_task(dir); 1708 unsigned fd = name_to_int(dentry); 1709 struct dentry *result = ERR_PTR(-ENOENT); 1710 1711 if (!task) 1712 goto out_no_task; 1713 if (fd == ~0U) 1714 goto out; 1715 1716 result = instantiate(dir, dentry, task, &fd); 1717out: 1718 put_task_struct(task); 1719out_no_task: 1720 return result; 1721} 1722 1723static int proc_readfd_common(struct file * filp, void * dirent, 1724 filldir_t filldir, instantiate_t instantiate) 1725{ 1726 struct dentry *dentry = filp->f_path.dentry; 1727 struct inode *inode = dentry->d_inode; 1728 struct task_struct *p = get_proc_task(inode); 1729 unsigned int fd, ino; 1730 int retval; 1731 struct files_struct * files; 1732 1733 retval = -ENOENT; 1734 if (!p) 1735 goto out_no_task; 1736 retval = 0; 1737 1738 fd = filp->f_pos; 1739 switch (fd) { 1740 case 0: 1741 if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0) 1742 goto out; 1743 filp->f_pos++; 1744 case 1: 1745 ino = parent_ino(dentry); 1746 if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0) 1747 goto out; 1748 filp->f_pos++; 1749 default: 1750 files = get_files_struct(p); 1751 if (!files) 1752 goto out; 1753 rcu_read_lock(); 1754 for (fd = filp->f_pos-2; 1755 fd < files_fdtable(files)->max_fds; 1756 fd++, filp->f_pos++) { 1757 char name[PROC_NUMBUF]; 1758 int len; 1759 1760 if (!fcheck_files(files, fd)) 1761 continue; 1762 rcu_read_unlock(); 1763 1764 len = snprintf(name, sizeof(name), "%d", fd); 1765 if (proc_fill_cache(filp, dirent, filldir, 1766 name, len, instantiate, 1767 p, &fd) < 0) { 1768 rcu_read_lock(); 1769 break; 1770 } 1771 rcu_read_lock(); 1772 } 1773 rcu_read_unlock(); 1774 put_files_struct(files); 1775 } 1776out: 1777 put_task_struct(p); 1778out_no_task: 1779 return retval; 1780} 1781 1782static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry, 1783 struct nameidata *nd) 1784{ 1785 return proc_lookupfd_common(dir, dentry, proc_fd_instantiate); 1786} 1787 1788static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir) 1789{ 1790 return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate); 1791} 1792 1793static ssize_t proc_fdinfo_read(struct file *file, char __user *buf, 1794 size_t len, loff_t *ppos) 1795{ 1796 char tmp[PROC_FDINFO_MAX]; 1797 int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp); 1798 if (!err) 1799 err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp)); 1800 return err; 1801} 1802 1803static const struct file_operations proc_fdinfo_file_operations = { 1804 .open = nonseekable_open, 1805 .read = proc_fdinfo_read, 1806}; 1807 1808static const struct file_operations proc_fd_operations = { 1809 .read = generic_read_dir, 1810 .readdir = proc_readfd, 1811}; 1812 1813/* 1814 * /proc/pid/fd needs a special permission handler so that a process can still 1815 * access /proc/self/fd after it has executed a setuid(). 1816 */ 1817static int proc_fd_permission(struct inode *inode, int mask, 1818 struct nameidata *nd) 1819{ 1820 int rv; 1821 1822 rv = generic_permission(inode, mask, NULL); 1823 if (rv == 0) 1824 return 0; 1825 if (task_pid(current) == proc_pid(inode)) 1826 rv = 0; 1827 return rv; 1828} 1829 1830/* 1831 * proc directories can do almost nothing.. 1832 */ 1833static const struct inode_operations proc_fd_inode_operations = { 1834 .lookup = proc_lookupfd, 1835 .permission = proc_fd_permission, 1836 .setattr = proc_setattr, 1837}; 1838 1839static struct dentry *proc_fdinfo_instantiate(struct inode *dir, 1840 struct dentry *dentry, struct task_struct *task, const void *ptr) 1841{ 1842 unsigned fd = *(unsigned *)ptr; 1843 struct inode *inode; 1844 struct proc_inode *ei; 1845 struct dentry *error = ERR_PTR(-ENOENT); 1846 1847 inode = proc_pid_make_inode(dir->i_sb, task); 1848 if (!inode) 1849 goto out; 1850 ei = PROC_I(inode); 1851 ei->fd = fd; 1852 inode->i_mode = S_IFREG | S_IRUSR; 1853 inode->i_fop = &proc_fdinfo_file_operations; 1854 dentry->d_op = &tid_fd_dentry_operations; 1855 d_add(dentry, inode); 1856 /* Close the race of the process dying before we return the dentry */ 1857 if (tid_fd_revalidate(dentry, NULL)) 1858 error = NULL; 1859 1860 out: 1861 return error; 1862} 1863 1864static struct dentry *proc_lookupfdinfo(struct inode *dir, 1865 struct dentry *dentry, 1866 struct nameidata *nd) 1867{ 1868 return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate); 1869} 1870 1871static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir) 1872{ 1873 return proc_readfd_common(filp, dirent, filldir, 1874 proc_fdinfo_instantiate); 1875} 1876 1877static const struct file_operations proc_fdinfo_operations = { 1878 .read = generic_read_dir, 1879 .readdir = proc_readfdinfo, 1880}; 1881 1882/* 1883 * proc directories can do almost nothing.. 1884 */ 1885static const struct inode_operations proc_fdinfo_inode_operations = { 1886 .lookup = proc_lookupfdinfo, 1887 .setattr = proc_setattr, 1888}; 1889 1890 1891static struct dentry *proc_pident_instantiate(struct inode *dir, 1892 struct dentry *dentry, struct task_struct *task, const void *ptr) 1893{ 1894 const struct pid_entry *p = ptr; 1895 struct inode *inode; 1896 struct proc_inode *ei; 1897 struct dentry *error = ERR_PTR(-EINVAL); 1898 1899 inode = proc_pid_make_inode(dir->i_sb, task); 1900 if (!inode) 1901 goto out; 1902 1903 ei = PROC_I(inode); 1904 inode->i_mode = p->mode; 1905 if (S_ISDIR(inode->i_mode)) 1906 inode->i_nlink = 2; /* Use getattr to fix if necessary */ 1907 if (p->iop) 1908 inode->i_op = p->iop; 1909 if (p->fop) 1910 inode->i_fop = p->fop; 1911 ei->op = p->op; 1912 dentry->d_op = &pid_dentry_operations; 1913 d_add(dentry, inode); 1914 /* Close the race of the process dying before we return the dentry */ 1915 if (pid_revalidate(dentry, NULL)) 1916 error = NULL; 1917out: 1918 return error; 1919} 1920 1921static struct dentry *proc_pident_lookup(struct inode *dir, 1922 struct dentry *dentry, 1923 const struct pid_entry *ents, 1924 unsigned int nents) 1925{ 1926 struct inode *inode; 1927 struct dentry *error; 1928 struct task_struct *task = get_proc_task(dir); 1929 const struct pid_entry *p, *last; 1930 1931 error = ERR_PTR(-ENOENT); 1932 inode = NULL; 1933 1934 if (!task) 1935 goto out_no_task; 1936 1937 /* 1938 * Yes, it does not scale. And it should not. Don't add 1939 * new entries into /proc/<tgid>/ without very good reasons. 1940 */ 1941 last = &ents[nents - 1]; 1942 for (p = ents; p <= last; p++) { 1943 if (p->len != dentry->d_name.len) 1944 continue; 1945 if (!memcmp(dentry->d_name.name, p->name, p->len)) 1946 break; 1947 } 1948 if (p > last) 1949 goto out; 1950 1951 error = proc_pident_instantiate(dir, dentry, task, p); 1952out: 1953 put_task_struct(task); 1954out_no_task: 1955 return error; 1956} 1957 1958static int proc_pident_fill_cache(struct file *filp, void *dirent, 1959 filldir_t filldir, struct task_struct *task, const struct pid_entry *p) 1960{ 1961 return proc_fill_cache(filp, dirent, filldir, p->name, p->len, 1962 proc_pident_instantiate, task, p); 1963} 1964 1965static int proc_pident_readdir(struct file *filp, 1966 void *dirent, filldir_t filldir, 1967 const struct pid_entry *ents, unsigned int nents) 1968{ 1969 int i; 1970 struct dentry *dentry = filp->f_path.dentry; 1971 struct inode *inode = dentry->d_inode; 1972 struct task_struct *task = get_proc_task(inode); 1973 const struct pid_entry *p, *last; 1974 ino_t ino; 1975 int ret; 1976 1977 ret = -ENOENT; 1978 if (!task) 1979 goto out_no_task; 1980 1981 ret = 0; 1982 i = filp->f_pos; 1983 switch (i) { 1984 case 0: 1985 ino = inode->i_ino; 1986 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0) 1987 goto out; 1988 i++; 1989 filp->f_pos++; 1990 /* fall through */ 1991 case 1: 1992 ino = parent_ino(dentry); 1993 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0) 1994 goto out; 1995 i++; 1996 filp->f_pos++; 1997 /* fall through */ 1998 default: 1999 i -= 2; 2000 if (i >= nents) { 2001 ret = 1; 2002 goto out; 2003 } 2004 p = ents + i; 2005 last = &ents[nents - 1]; 2006 while (p <= last) { 2007 if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0) 2008 goto out; 2009 filp->f_pos++; 2010 p++; 2011 } 2012 } 2013 2014 ret = 1; 2015out: 2016 put_task_struct(task); 2017out_no_task: 2018 return ret; 2019} 2020 2021#ifdef CONFIG_SECURITY 2022static ssize_t proc_pid_attr_read(struct file * file, char __user * buf, 2023 size_t count, loff_t *ppos) 2024{ 2025 struct inode * inode = file->f_path.dentry->d_inode; 2026 char *p = NULL; 2027 ssize_t length; 2028 struct task_struct *task = get_proc_task(inode); 2029 2030 if (!task) 2031 return -ESRCH; 2032 2033 length = security_getprocattr(task, 2034 (char*)file->f_path.dentry->d_name.name, 2035 &p); 2036 put_task_struct(task); 2037 if (length > 0) 2038 length = simple_read_from_buffer(buf, count, ppos, p, length); 2039 kfree(p); 2040 return length; 2041} 2042 2043static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf, 2044 size_t count, loff_t *ppos) 2045{ 2046 struct inode * inode = file->f_path.dentry->d_inode; 2047 char *page; 2048 ssize_t length; 2049 struct task_struct *task = get_proc_task(inode); 2050 2051 length = -ESRCH; 2052 if (!task) 2053 goto out_no_task; 2054 if (count > PAGE_SIZE) 2055 count = PAGE_SIZE; 2056 2057 /* No partial writes. */ 2058 length = -EINVAL; 2059 if (*ppos != 0) 2060 goto out; 2061 2062 length = -ENOMEM; 2063 page = (char*)__get_free_page(GFP_TEMPORARY); 2064 if (!page) 2065 goto out; 2066 2067 length = -EFAULT; 2068 if (copy_from_user(page, buf, count)) 2069 goto out_free; 2070 2071 length = security_setprocattr(task, 2072 (char*)file->f_path.dentry->d_name.name, 2073 (void*)page, count); 2074out_free: 2075 free_page((unsigned long) page); 2076out: 2077 put_task_struct(task); 2078out_no_task: 2079 return length; 2080} 2081 2082static const struct file_operations proc_pid_attr_operations = { 2083 .read = proc_pid_attr_read, 2084 .write = proc_pid_attr_write, 2085}; 2086 2087static const struct pid_entry attr_dir_stuff[] = { 2088 REG("current", S_IRUGO|S_IWUGO, pid_attr), 2089 REG("prev", S_IRUGO, pid_attr), 2090 REG("exec", S_IRUGO|S_IWUGO, pid_attr), 2091 REG("fscreate", S_IRUGO|S_IWUGO, pid_attr), 2092 REG("keycreate", S_IRUGO|S_IWUGO, pid_attr), 2093 REG("sockcreate", S_IRUGO|S_IWUGO, pid_attr), 2094}; 2095 2096static int proc_attr_dir_readdir(struct file * filp, 2097 void * dirent, filldir_t filldir) 2098{ 2099 return proc_pident_readdir(filp,dirent,filldir, 2100 attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff)); 2101} 2102 2103static const struct file_operations proc_attr_dir_operations = { 2104 .read = generic_read_dir, 2105 .readdir = proc_attr_dir_readdir, 2106}; 2107 2108static struct dentry *proc_attr_dir_lookup(struct inode *dir, 2109 struct dentry *dentry, struct nameidata *nd) 2110{ 2111 return proc_pident_lookup(dir, dentry, 2112 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff)); 2113} 2114 2115static const struct inode_operations proc_attr_dir_inode_operations = { 2116 .lookup = proc_attr_dir_lookup, 2117 .getattr = pid_getattr, 2118 .setattr = proc_setattr, 2119}; 2120 2121#endif 2122 2123#if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE) 2124static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf, 2125 size_t count, loff_t *ppos) 2126{ 2127 struct task_struct *task = get_proc_task(file->f_dentry->d_inode); 2128 struct mm_struct *mm; 2129 char buffer[PROC_NUMBUF]; 2130 size_t len; 2131 int ret; 2132 2133 if (!task) 2134 return -ESRCH; 2135 2136 ret = 0; 2137 mm = get_task_mm(task); 2138 if (mm) { 2139 len = snprintf(buffer, sizeof(buffer), "%08lx\n", 2140 ((mm->flags & MMF_DUMP_FILTER_MASK) >> 2141 MMF_DUMP_FILTER_SHIFT)); 2142 mmput(mm); 2143 ret = simple_read_from_buffer(buf, count, ppos, buffer, len); 2144 } 2145 2146 put_task_struct(task); 2147 2148 return ret; 2149} 2150 2151static ssize_t proc_coredump_filter_write(struct file *file, 2152 const char __user *buf, 2153 size_t count, 2154 loff_t *ppos) 2155{ 2156 struct task_struct *task; 2157 struct mm_struct *mm; 2158 char buffer[PROC_NUMBUF], *end; 2159 unsigned int val; 2160 int ret; 2161 int i; 2162 unsigned long mask; 2163 2164 ret = -EFAULT; 2165 memset(buffer, 0, sizeof(buffer)); 2166 if (count > sizeof(buffer) - 1) 2167 count = sizeof(buffer) - 1; 2168 if (copy_from_user(buffer, buf, count)) 2169 goto out_no_task; 2170 2171 ret = -EINVAL; 2172 val = (unsigned int)simple_strtoul(buffer, &end, 0); 2173 if (*end == '\n') 2174 end++; 2175 if (end - buffer == 0) 2176 goto out_no_task; 2177 2178 ret = -ESRCH; 2179 task = get_proc_task(file->f_dentry->d_inode); 2180 if (!task) 2181 goto out_no_task; 2182 2183 ret = end - buffer; 2184 mm = get_task_mm(task); 2185 if (!mm) 2186 goto out_no_mm; 2187 2188 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) { 2189 if (val & mask) 2190 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags); 2191 else 2192 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags); 2193 } 2194 2195 mmput(mm); 2196 out_no_mm: 2197 put_task_struct(task); 2198 out_no_task: 2199 return ret; 2200} 2201 2202static const struct file_operations proc_coredump_filter_operations = { 2203 .read = proc_coredump_filter_read, 2204 .write = proc_coredump_filter_write, 2205}; 2206#endif 2207 2208/* 2209 * /proc/self: 2210 */ 2211static int proc_self_readlink(struct dentry *dentry, char __user *buffer, 2212 int buflen) 2213{ 2214 struct pid_namespace *ns = dentry->d_sb->s_fs_info; 2215 pid_t tgid = task_tgid_nr_ns(current, ns); 2216 char tmp[PROC_NUMBUF]; 2217 if (!tgid) 2218 return -ENOENT; 2219 sprintf(tmp, "%d", tgid); 2220 return vfs_readlink(dentry,buffer,buflen,tmp); 2221} 2222 2223static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd) 2224{ 2225 struct pid_namespace *ns = dentry->d_sb->s_fs_info; 2226 pid_t tgid = task_tgid_nr_ns(current, ns); 2227 char tmp[PROC_NUMBUF]; 2228 if (!tgid) 2229 return ERR_PTR(-ENOENT); 2230 sprintf(tmp, "%d", task_tgid_nr_ns(current, ns)); 2231 return ERR_PTR(vfs_follow_link(nd,tmp)); 2232} 2233 2234static const struct inode_operations proc_self_inode_operations = { 2235 .readlink = proc_self_readlink, 2236 .follow_link = proc_self_follow_link, 2237}; 2238 2239/* 2240 * proc base 2241 * 2242 * These are the directory entries in the root directory of /proc 2243 * that properly belong to the /proc filesystem, as they describe 2244 * describe something that is process related. 2245 */ 2246static const struct pid_entry proc_base_stuff[] = { 2247 NOD("self", S_IFLNK|S_IRWXUGO, 2248 &proc_self_inode_operations, NULL, {}), 2249}; 2250 2251/* 2252 * Exceptional case: normally we are not allowed to unhash a busy 2253 * directory. In this case, however, we can do it - no aliasing problems 2254 * due to the way we treat inodes. 2255 */ 2256static int proc_base_revalidate(struct dentry *dentry, struct nameidata *nd) 2257{ 2258 struct inode *inode = dentry->d_inode; 2259 struct task_struct *task = get_proc_task(inode); 2260 if (task) { 2261 put_task_struct(task); 2262 return 1; 2263 } 2264 d_drop(dentry); 2265 return 0; 2266} 2267 2268static struct dentry_operations proc_base_dentry_operations = 2269{ 2270 .d_revalidate = proc_base_revalidate, 2271 .d_delete = pid_delete_dentry, 2272}; 2273 2274static struct dentry *proc_base_instantiate(struct inode *dir, 2275 struct dentry *dentry, struct task_struct *task, const void *ptr) 2276{ 2277 const struct pid_entry *p = ptr; 2278 struct inode *inode; 2279 struct proc_inode *ei; 2280 struct dentry *error = ERR_PTR(-EINVAL); 2281 2282 /* Allocate the inode */ 2283 error = ERR_PTR(-ENOMEM); 2284 inode = new_inode(dir->i_sb); 2285 if (!inode) 2286 goto out; 2287 2288 /* Initialize the inode */ 2289 ei = PROC_I(inode); 2290 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 2291 2292 /* 2293 * grab the reference to the task. 2294 */ 2295 ei->pid = get_task_pid(task, PIDTYPE_PID); 2296 if (!ei->pid) 2297 goto out_iput; 2298 2299 inode->i_uid = 0; 2300 inode->i_gid = 0; 2301 inode->i_mode = p->mode; 2302 if (S_ISDIR(inode->i_mode)) 2303 inode->i_nlink = 2; 2304 if (S_ISLNK(inode->i_mode)) 2305 inode->i_size = 64; 2306 if (p->iop) 2307 inode->i_op = p->iop; 2308 if (p->fop) 2309 inode->i_fop = p->fop; 2310 ei->op = p->op; 2311 dentry->d_op = &proc_base_dentry_operations; 2312 d_add(dentry, inode); 2313 error = NULL; 2314out: 2315 return error; 2316out_iput: 2317 iput(inode); 2318 goto out; 2319} 2320 2321static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry) 2322{ 2323 struct dentry *error; 2324 struct task_struct *task = get_proc_task(dir); 2325 const struct pid_entry *p, *last; 2326 2327 error = ERR_PTR(-ENOENT); 2328 2329 if (!task) 2330 goto out_no_task; 2331 2332 /* Lookup the directory entry */ 2333 last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1]; 2334 for (p = proc_base_stuff; p <= last; p++) { 2335 if (p->len != dentry->d_name.len) 2336 continue; 2337 if (!memcmp(dentry->d_name.name, p->name, p->len)) 2338 break; 2339 } 2340 if (p > last) 2341 goto out; 2342 2343 error = proc_base_instantiate(dir, dentry, task, p); 2344 2345out: 2346 put_task_struct(task); 2347out_no_task: 2348 return error; 2349} 2350 2351static int proc_base_fill_cache(struct file *filp, void *dirent, 2352 filldir_t filldir, struct task_struct *task, const struct pid_entry *p) 2353{ 2354 return proc_fill_cache(filp, dirent, filldir, p->name, p->len, 2355 proc_base_instantiate, task, p); 2356} 2357 2358#ifdef CONFIG_TASK_IO_ACCOUNTING 2359static int proc_pid_io_accounting(struct task_struct *task, char *buffer) 2360{ 2361 return sprintf(buffer, 2362#ifdef CONFIG_TASK_XACCT 2363 "rchar: %llu\n" 2364 "wchar: %llu\n" 2365 "syscr: %llu\n" 2366 "syscw: %llu\n" 2367#endif 2368 "read_bytes: %llu\n" 2369 "write_bytes: %llu\n" 2370 "cancelled_write_bytes: %llu\n", 2371#ifdef CONFIG_TASK_XACCT 2372 (unsigned long long)task->rchar, 2373 (unsigned long long)task->wchar, 2374 (unsigned long long)task->syscr, 2375 (unsigned long long)task->syscw, 2376#endif 2377 (unsigned long long)task->ioac.read_bytes, 2378 (unsigned long long)task->ioac.write_bytes, 2379 (unsigned long long)task->ioac.cancelled_write_bytes); 2380} 2381#endif 2382 2383/* 2384 * Thread groups 2385 */ 2386static const struct file_operations proc_task_operations; 2387static const struct inode_operations proc_task_inode_operations; 2388 2389static const struct pid_entry tgid_base_stuff[] = { 2390 DIR("task", S_IRUGO|S_IXUGO, task), 2391 DIR("fd", S_IRUSR|S_IXUSR, fd), 2392 DIR("fdinfo", S_IRUSR|S_IXUSR, fdinfo), 2393#ifdef CONFIG_NET 2394 DIR("net", S_IRUGO|S_IXUGO, net), 2395#endif 2396 REG("environ", S_IRUSR, environ), 2397 INF("auxv", S_IRUSR, pid_auxv), 2398 ONE("status", S_IRUGO, pid_status), 2399 INF("limits", S_IRUSR, pid_limits), 2400#ifdef CONFIG_SCHED_DEBUG 2401 REG("sched", S_IRUGO|S_IWUSR, pid_sched), 2402#endif 2403 INF("cmdline", S_IRUGO, pid_cmdline), 2404 ONE("stat", S_IRUGO, tgid_stat), 2405 ONE("statm", S_IRUGO, pid_statm), 2406 REG("maps", S_IRUGO, maps), 2407#ifdef CONFIG_NUMA 2408 REG("numa_maps", S_IRUGO, numa_maps), 2409#endif 2410 REG("mem", S_IRUSR|S_IWUSR, mem), 2411 LNK("cwd", cwd), 2412 LNK("root", root), 2413 LNK("exe", exe), 2414 REG("mounts", S_IRUGO, mounts), 2415 REG("mountinfo", S_IRUGO, mountinfo), 2416 REG("mountstats", S_IRUSR, mountstats), 2417#ifdef CONFIG_PROC_PAGE_MONITOR 2418 REG("clear_refs", S_IWUSR, clear_refs), 2419 REG("smaps", S_IRUGO, smaps), 2420 REG("pagemap", S_IRUSR, pagemap), 2421#endif 2422#ifdef CONFIG_SECURITY 2423 DIR("attr", S_IRUGO|S_IXUGO, attr_dir), 2424#endif 2425#ifdef CONFIG_KALLSYMS 2426 INF("wchan", S_IRUGO, pid_wchan), 2427#endif 2428#ifdef CONFIG_SCHEDSTATS 2429 INF("schedstat", S_IRUGO, pid_schedstat), 2430#endif 2431#ifdef CONFIG_LATENCYTOP 2432 REG("latency", S_IRUGO, lstats), 2433#endif 2434#ifdef CONFIG_PROC_PID_CPUSET 2435 REG("cpuset", S_IRUGO, cpuset), 2436#endif 2437#ifdef CONFIG_CGROUPS 2438 REG("cgroup", S_IRUGO, cgroup), 2439#endif 2440 INF("oom_score", S_IRUGO, oom_score), 2441 REG("oom_adj", S_IRUGO|S_IWUSR, oom_adjust), 2442#ifdef CONFIG_AUDITSYSCALL 2443 REG("loginuid", S_IWUSR|S_IRUGO, loginuid), 2444 REG("sessionid", S_IRUSR, sessionid), 2445#endif 2446#ifdef CONFIG_FAULT_INJECTION 2447 REG("make-it-fail", S_IRUGO|S_IWUSR, fault_inject), 2448#endif 2449#if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE) 2450 REG("coredump_filter", S_IRUGO|S_IWUSR, coredump_filter), 2451#endif 2452#ifdef CONFIG_TASK_IO_ACCOUNTING 2453 INF("io", S_IRUGO, pid_io_accounting), 2454#endif 2455}; 2456 2457static int proc_tgid_base_readdir(struct file * filp, 2458 void * dirent, filldir_t filldir) 2459{ 2460 return proc_pident_readdir(filp,dirent,filldir, 2461 tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff)); 2462} 2463 2464static const struct file_operations proc_tgid_base_operations = { 2465 .read = generic_read_dir, 2466 .readdir = proc_tgid_base_readdir, 2467}; 2468 2469static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){ 2470 return proc_pident_lookup(dir, dentry, 2471 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff)); 2472} 2473 2474static const struct inode_operations proc_tgid_base_inode_operations = { 2475 .lookup = proc_tgid_base_lookup, 2476 .getattr = pid_getattr, 2477 .setattr = proc_setattr, 2478}; 2479 2480static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid) 2481{ 2482 struct dentry *dentry, *leader, *dir; 2483 char buf[PROC_NUMBUF]; 2484 struct qstr name; 2485 2486 name.name = buf; 2487 name.len = snprintf(buf, sizeof(buf), "%d", pid); 2488 dentry = d_hash_and_lookup(mnt->mnt_root, &name); 2489 if (dentry) { 2490 if (!(current->flags & PF_EXITING)) 2491 shrink_dcache_parent(dentry); 2492 d_drop(dentry); 2493 dput(dentry); 2494 } 2495 2496 if (tgid == 0) 2497 goto out; 2498 2499 name.name = buf; 2500 name.len = snprintf(buf, sizeof(buf), "%d", tgid); 2501 leader = d_hash_and_lookup(mnt->mnt_root, &name); 2502 if (!leader) 2503 goto out; 2504 2505 name.name = "task"; 2506 name.len = strlen(name.name); 2507 dir = d_hash_and_lookup(leader, &name); 2508 if (!dir) 2509 goto out_put_leader; 2510 2511 name.name = buf; 2512 name.len = snprintf(buf, sizeof(buf), "%d", pid); 2513 dentry = d_hash_and_lookup(dir, &name); 2514 if (dentry) { 2515 shrink_dcache_parent(dentry); 2516 d_drop(dentry); 2517 dput(dentry); 2518 } 2519 2520 dput(dir); 2521out_put_leader: 2522 dput(leader); 2523out: 2524 return; 2525} 2526 2527/** 2528 * proc_flush_task - Remove dcache entries for @task from the /proc dcache. 2529 * @task: task that should be flushed. 2530 * 2531 * When flushing dentries from proc, one needs to flush them from global 2532 * proc (proc_mnt) and from all the namespaces' procs this task was seen 2533 * in. This call is supposed to do all of this job. 2534 * 2535 * Looks in the dcache for 2536 * /proc/@pid 2537 * /proc/@tgid/task/@pid 2538 * if either directory is present flushes it and all of it'ts children 2539 * from the dcache. 2540 * 2541 * It is safe and reasonable to cache /proc entries for a task until 2542 * that task exits. After that they just clog up the dcache with 2543 * useless entries, possibly causing useful dcache entries to be 2544 * flushed instead. This routine is proved to flush those useless 2545 * dcache entries at process exit time. 2546 * 2547 * NOTE: This routine is just an optimization so it does not guarantee 2548 * that no dcache entries will exist at process exit time it 2549 * just makes it very unlikely that any will persist. 2550 */ 2551 2552void proc_flush_task(struct task_struct *task) 2553{ 2554 int i; 2555 struct pid *pid, *tgid = NULL; 2556 struct upid *upid; 2557 2558 pid = task_pid(task); 2559 if (thread_group_leader(task)) 2560 tgid = task_tgid(task); 2561 2562 for (i = 0; i <= pid->level; i++) { 2563 upid = &pid->numbers[i]; 2564 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr, 2565 tgid ? tgid->numbers[i].nr : 0); 2566 } 2567 2568 upid = &pid->numbers[pid->level]; 2569 if (upid->nr == 1) 2570 pid_ns_release_proc(upid->ns); 2571} 2572 2573static struct dentry *proc_pid_instantiate(struct inode *dir, 2574 struct dentry * dentry, 2575 struct task_struct *task, const void *ptr) 2576{ 2577 struct dentry *error = ERR_PTR(-ENOENT); 2578 struct inode *inode; 2579 2580 inode = proc_pid_make_inode(dir->i_sb, task); 2581 if (!inode) 2582 goto out; 2583 2584 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO; 2585 inode->i_op = &proc_tgid_base_inode_operations; 2586 inode->i_fop = &proc_tgid_base_operations; 2587 inode->i_flags|=S_IMMUTABLE; 2588 inode->i_nlink = 5; 2589#ifdef CONFIG_SECURITY 2590 inode->i_nlink += 1; 2591#endif 2592 2593 dentry->d_op = &pid_dentry_operations; 2594 2595 d_add(dentry, inode); 2596 /* Close the race of the process dying before we return the dentry */ 2597 if (pid_revalidate(dentry, NULL)) 2598 error = NULL; 2599out: 2600 return error; 2601} 2602 2603struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd) 2604{ 2605 struct dentry *result = ERR_PTR(-ENOENT); 2606 struct task_struct *task; 2607 unsigned tgid; 2608 struct pid_namespace *ns; 2609 2610 result = proc_base_lookup(dir, dentry); 2611 if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT) 2612 goto out; 2613 2614 tgid = name_to_int(dentry); 2615 if (tgid == ~0U) 2616 goto out; 2617 2618 ns = dentry->d_sb->s_fs_info; 2619 rcu_read_lock(); 2620 task = find_task_by_pid_ns(tgid, ns); 2621 if (task) 2622 get_task_struct(task); 2623 rcu_read_unlock(); 2624 if (!task) 2625 goto out; 2626 2627 result = proc_pid_instantiate(dir, dentry, task, NULL); 2628 put_task_struct(task); 2629out: 2630 return result; 2631} 2632 2633/* 2634 * Find the first task with tgid >= tgid 2635 * 2636 */ 2637struct tgid_iter { 2638 unsigned int tgid; 2639 struct task_struct *task; 2640}; 2641static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter) 2642{ 2643 struct pid *pid; 2644 2645 if (iter.task) 2646 put_task_struct(iter.task); 2647 rcu_read_lock(); 2648retry: 2649 iter.task = NULL; 2650 pid = find_ge_pid(iter.tgid, ns); 2651 if (pid) { 2652 iter.tgid = pid_nr_ns(pid, ns); 2653 iter.task = pid_task(pid, PIDTYPE_PID); 2654 /* What we to know is if the pid we have find is the 2655 * pid of a thread_group_leader. Testing for task 2656 * being a thread_group_leader is the obvious thing 2657 * todo but there is a window when it fails, due to 2658 * the pid transfer logic in de_thread. 2659 * 2660 * So we perform the straight forward test of seeing 2661 * if the pid we have found is the pid of a thread 2662 * group leader, and don't worry if the task we have 2663 * found doesn't happen to be a thread group leader. 2664 * As we don't care in the case of readdir. 2665 */ 2666 if (!iter.task || !has_group_leader_pid(iter.task)) { 2667 iter.tgid += 1; 2668 goto retry; 2669 } 2670 get_task_struct(iter.task); 2671 } 2672 rcu_read_unlock(); 2673 return iter; 2674} 2675 2676#define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff)) 2677 2678static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir, 2679 struct tgid_iter iter) 2680{ 2681 char name[PROC_NUMBUF]; 2682 int len = snprintf(name, sizeof(name), "%d", iter.tgid); 2683 return proc_fill_cache(filp, dirent, filldir, name, len, 2684 proc_pid_instantiate, iter.task, NULL); 2685} 2686 2687/* for the /proc/ directory itself, after non-process stuff has been done */ 2688int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir) 2689{ 2690 unsigned int nr = filp->f_pos - FIRST_PROCESS_ENTRY; 2691 struct task_struct *reaper = get_proc_task(filp->f_path.dentry->d_inode); 2692 struct tgid_iter iter; 2693 struct pid_namespace *ns; 2694 2695 if (!reaper) 2696 goto out_no_task; 2697 2698 for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) { 2699 const struct pid_entry *p = &proc_base_stuff[nr]; 2700 if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0) 2701 goto out; 2702 } 2703 2704 ns = filp->f_dentry->d_sb->s_fs_info; 2705 iter.task = NULL; 2706 iter.tgid = filp->f_pos - TGID_OFFSET; 2707 for (iter = next_tgid(ns, iter); 2708 iter.task; 2709 iter.tgid += 1, iter = next_tgid(ns, iter)) { 2710 filp->f_pos = iter.tgid + TGID_OFFSET; 2711 if (proc_pid_fill_cache(filp, dirent, filldir, iter) < 0) { 2712 put_task_struct(iter.task); 2713 goto out; 2714 } 2715 } 2716 filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET; 2717out: 2718 put_task_struct(reaper); 2719out_no_task: 2720 return 0; 2721} 2722 2723/* 2724 * Tasks 2725 */ 2726static const struct pid_entry tid_base_stuff[] = { 2727 DIR("fd", S_IRUSR|S_IXUSR, fd), 2728 DIR("fdinfo", S_IRUSR|S_IXUSR, fdinfo), 2729 REG("environ", S_IRUSR, environ), 2730 INF("auxv", S_IRUSR, pid_auxv), 2731 ONE("status", S_IRUGO, pid_status), 2732 INF("limits", S_IRUSR, pid_limits), 2733#ifdef CONFIG_SCHED_DEBUG 2734 REG("sched", S_IRUGO|S_IWUSR, pid_sched), 2735#endif 2736 INF("cmdline", S_IRUGO, pid_cmdline), 2737 ONE("stat", S_IRUGO, tid_stat), 2738 ONE("statm", S_IRUGO, pid_statm), 2739 REG("maps", S_IRUGO, maps), 2740#ifdef CONFIG_NUMA 2741 REG("numa_maps", S_IRUGO, numa_maps), 2742#endif 2743 REG("mem", S_IRUSR|S_IWUSR, mem), 2744 LNK("cwd", cwd), 2745 LNK("root", root), 2746 LNK("exe", exe), 2747 REG("mounts", S_IRUGO, mounts), 2748 REG("mountinfo", S_IRUGO, mountinfo), 2749#ifdef CONFIG_PROC_PAGE_MONITOR 2750 REG("clear_refs", S_IWUSR, clear_refs), 2751 REG("smaps", S_IRUGO, smaps), 2752 REG("pagemap", S_IRUSR, pagemap), 2753#endif 2754#ifdef CONFIG_SECURITY 2755 DIR("attr", S_IRUGO|S_IXUGO, attr_dir), 2756#endif 2757#ifdef CONFIG_KALLSYMS 2758 INF("wchan", S_IRUGO, pid_wchan), 2759#endif 2760#ifdef CONFIG_SCHEDSTATS 2761 INF("schedstat", S_IRUGO, pid_schedstat), 2762#endif 2763#ifdef CONFIG_LATENCYTOP 2764 REG("latency", S_IRUGO, lstats), 2765#endif 2766#ifdef CONFIG_PROC_PID_CPUSET 2767 REG("cpuset", S_IRUGO, cpuset), 2768#endif 2769#ifdef CONFIG_CGROUPS 2770 REG("cgroup", S_IRUGO, cgroup), 2771#endif 2772 INF("oom_score", S_IRUGO, oom_score), 2773 REG("oom_adj", S_IRUGO|S_IWUSR, oom_adjust), 2774#ifdef CONFIG_AUDITSYSCALL 2775 REG("loginuid", S_IWUSR|S_IRUGO, loginuid), 2776 REG("sessionid", S_IRUSR, sessionid), 2777#endif 2778#ifdef CONFIG_FAULT_INJECTION 2779 REG("make-it-fail", S_IRUGO|S_IWUSR, fault_inject), 2780#endif 2781}; 2782 2783static int proc_tid_base_readdir(struct file * filp, 2784 void * dirent, filldir_t filldir) 2785{ 2786 return proc_pident_readdir(filp,dirent,filldir, 2787 tid_base_stuff,ARRAY_SIZE(tid_base_stuff)); 2788} 2789 2790static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){ 2791 return proc_pident_lookup(dir, dentry, 2792 tid_base_stuff, ARRAY_SIZE(tid_base_stuff)); 2793} 2794 2795static const struct file_operations proc_tid_base_operations = { 2796 .read = generic_read_dir, 2797 .readdir = proc_tid_base_readdir, 2798}; 2799 2800static const struct inode_operations proc_tid_base_inode_operations = { 2801 .lookup = proc_tid_base_lookup, 2802 .getattr = pid_getattr, 2803 .setattr = proc_setattr, 2804}; 2805 2806static struct dentry *proc_task_instantiate(struct inode *dir, 2807 struct dentry *dentry, struct task_struct *task, const void *ptr) 2808{ 2809 struct dentry *error = ERR_PTR(-ENOENT); 2810 struct inode *inode; 2811 inode = proc_pid_make_inode(dir->i_sb, task); 2812 2813 if (!inode) 2814 goto out; 2815 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO; 2816 inode->i_op = &proc_tid_base_inode_operations; 2817 inode->i_fop = &proc_tid_base_operations; 2818 inode->i_flags|=S_IMMUTABLE; 2819 inode->i_nlink = 4; 2820#ifdef CONFIG_SECURITY 2821 inode->i_nlink += 1; 2822#endif 2823 2824 dentry->d_op = &pid_dentry_operations; 2825 2826 d_add(dentry, inode); 2827 /* Close the race of the process dying before we return the dentry */ 2828 if (pid_revalidate(dentry, NULL)) 2829 error = NULL; 2830out: 2831 return error; 2832} 2833 2834static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd) 2835{ 2836 struct dentry *result = ERR_PTR(-ENOENT); 2837 struct task_struct *task; 2838 struct task_struct *leader = get_proc_task(dir); 2839 unsigned tid; 2840 struct pid_namespace *ns; 2841 2842 if (!leader) 2843 goto out_no_task; 2844 2845 tid = name_to_int(dentry); 2846 if (tid == ~0U) 2847 goto out; 2848 2849 ns = dentry->d_sb->s_fs_info; 2850 rcu_read_lock(); 2851 task = find_task_by_pid_ns(tid, ns); 2852 if (task) 2853 get_task_struct(task); 2854 rcu_read_unlock(); 2855 if (!task) 2856 goto out; 2857 if (!same_thread_group(leader, task)) 2858 goto out_drop_task; 2859 2860 result = proc_task_instantiate(dir, dentry, task, NULL); 2861out_drop_task: 2862 put_task_struct(task); 2863out: 2864 put_task_struct(leader); 2865out_no_task: 2866 return result; 2867} 2868 2869/* 2870 * Find the first tid of a thread group to return to user space. 2871 * 2872 * Usually this is just the thread group leader, but if the users 2873 * buffer was too small or there was a seek into the middle of the 2874 * directory we have more work todo. 2875 * 2876 * In the case of a short read we start with find_task_by_pid. 2877 * 2878 * In the case of a seek we start with the leader and walk nr 2879 * threads past it. 2880 */ 2881static struct task_struct *first_tid(struct task_struct *leader, 2882 int tid, int nr, struct pid_namespace *ns) 2883{ 2884 struct task_struct *pos; 2885 2886 rcu_read_lock(); 2887 /* Attempt to start with the pid of a thread */ 2888 if (tid && (nr > 0)) { 2889 pos = find_task_by_pid_ns(tid, ns); 2890 if (pos && (pos->group_leader == leader)) 2891 goto found; 2892 } 2893 2894 /* If nr exceeds the number of threads there is nothing todo */ 2895 pos = NULL; 2896 if (nr && nr >= get_nr_threads(leader)) 2897 goto out; 2898 2899 /* If we haven't found our starting place yet start 2900 * with the leader and walk nr threads forward. 2901 */ 2902 for (pos = leader; nr > 0; --nr) { 2903 pos = next_thread(pos); 2904 if (pos == leader) { 2905 pos = NULL; 2906 goto out; 2907 } 2908 } 2909found: 2910 get_task_struct(pos); 2911out: 2912 rcu_read_unlock(); 2913 return pos; 2914} 2915 2916/* 2917 * Find the next thread in the thread list. 2918 * Return NULL if there is an error or no next thread. 2919 * 2920 * The reference to the input task_struct is released. 2921 */ 2922static struct task_struct *next_tid(struct task_struct *start) 2923{ 2924 struct task_struct *pos = NULL; 2925 rcu_read_lock(); 2926 if (pid_alive(start)) { 2927 pos = next_thread(start); 2928 if (thread_group_leader(pos)) 2929 pos = NULL; 2930 else 2931 get_task_struct(pos); 2932 } 2933 rcu_read_unlock(); 2934 put_task_struct(start); 2935 return pos; 2936} 2937 2938static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir, 2939 struct task_struct *task, int tid) 2940{ 2941 char name[PROC_NUMBUF]; 2942 int len = snprintf(name, sizeof(name), "%d", tid); 2943 return proc_fill_cache(filp, dirent, filldir, name, len, 2944 proc_task_instantiate, task, NULL); 2945} 2946 2947/* for the /proc/TGID/task/ directories */ 2948static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir) 2949{ 2950 struct dentry *dentry = filp->f_path.dentry; 2951 struct inode *inode = dentry->d_inode; 2952 struct task_struct *leader = NULL; 2953 struct task_struct *task; 2954 int retval = -ENOENT; 2955 ino_t ino; 2956 int tid; 2957 unsigned long pos = filp->f_pos; /* avoiding "long long" filp->f_pos */ 2958 struct pid_namespace *ns; 2959 2960 task = get_proc_task(inode); 2961 if (!task) 2962 goto out_no_task; 2963 rcu_read_lock(); 2964 if (pid_alive(task)) { 2965 leader = task->group_leader; 2966 get_task_struct(leader); 2967 } 2968 rcu_read_unlock(); 2969 put_task_struct(task); 2970 if (!leader) 2971 goto out_no_task; 2972 retval = 0; 2973 2974 switch (pos) { 2975 case 0: 2976 ino = inode->i_ino; 2977 if (filldir(dirent, ".", 1, pos, ino, DT_DIR) < 0) 2978 goto out; 2979 pos++; 2980 /* fall through */ 2981 case 1: 2982 ino = parent_ino(dentry); 2983 if (filldir(dirent, "..", 2, pos, ino, DT_DIR) < 0) 2984 goto out; 2985 pos++; 2986 /* fall through */ 2987 } 2988 2989 /* f_version caches the tgid value that the last readdir call couldn't 2990 * return. lseek aka telldir automagically resets f_version to 0. 2991 */ 2992 ns = filp->f_dentry->d_sb->s_fs_info; 2993 tid = (int)filp->f_version; 2994 filp->f_version = 0; 2995 for (task = first_tid(leader, tid, pos - 2, ns); 2996 task; 2997 task = next_tid(task), pos++) { 2998 tid = task_pid_nr_ns(task, ns); 2999 if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) { 3000 /* returning this tgid failed, save it as the first 3001 * pid for the next readir call */ 3002 filp->f_version = (u64)tid; 3003 put_task_struct(task); 3004 break; 3005 } 3006 } 3007out: 3008 filp->f_pos = pos; 3009 put_task_struct(leader); 3010out_no_task: 3011 return retval; 3012} 3013 3014static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat) 3015{ 3016 struct inode *inode = dentry->d_inode; 3017 struct task_struct *p = get_proc_task(inode); 3018 generic_fillattr(inode, stat); 3019 3020 if (p) { 3021 rcu_read_lock(); 3022 stat->nlink += get_nr_threads(p); 3023 rcu_read_unlock(); 3024 put_task_struct(p); 3025 } 3026 3027 return 0; 3028} 3029 3030static const struct inode_operations proc_task_inode_operations = { 3031 .lookup = proc_task_lookup, 3032 .getattr = proc_task_getattr, 3033 .setattr = proc_setattr, 3034}; 3035 3036static const struct file_operations proc_task_operations = { 3037 .read = generic_read_dir, 3038 .readdir = proc_task_readdir, 3039};