at v2.6.26-rc2 3295 lines 99 kB view raw
1/* 2 * RocketPort device driver for Linux 3 * 4 * Written by Theodore Ts'o, 1995, 1996, 1997, 1998, 1999, 2000. 5 * 6 * Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2003 by Comtrol, Inc. 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License as 10 * published by the Free Software Foundation; either version 2 of the 11 * License, or (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23/* 24 * Kernel Synchronization: 25 * 26 * This driver has 2 kernel control paths - exception handlers (calls into the driver 27 * from user mode) and the timer bottom half (tasklet). This is a polled driver, interrupts 28 * are not used. 29 * 30 * Critical data: 31 * - rp_table[], accessed through passed "info" pointers, is a global (static) array of 32 * serial port state information and the xmit_buf circular buffer. Protected by 33 * a per port spinlock. 34 * - xmit_flags[], an array of ints indexed by line (port) number, indicating that there 35 * is data to be transmitted. Protected by atomic bit operations. 36 * - rp_num_ports, int indicating number of open ports, protected by atomic operations. 37 * 38 * rp_write() and rp_write_char() functions use a per port semaphore to protect against 39 * simultaneous access to the same port by more than one process. 40 */ 41 42/****** Defines ******/ 43#define ROCKET_PARANOIA_CHECK 44#define ROCKET_DISABLE_SIMUSAGE 45 46#undef ROCKET_SOFT_FLOW 47#undef ROCKET_DEBUG_OPEN 48#undef ROCKET_DEBUG_INTR 49#undef ROCKET_DEBUG_WRITE 50#undef ROCKET_DEBUG_FLOW 51#undef ROCKET_DEBUG_THROTTLE 52#undef ROCKET_DEBUG_WAIT_UNTIL_SENT 53#undef ROCKET_DEBUG_RECEIVE 54#undef ROCKET_DEBUG_HANGUP 55#undef REV_PCI_ORDER 56#undef ROCKET_DEBUG_IO 57 58#define POLL_PERIOD HZ/100 /* Polling period .01 seconds (10ms) */ 59 60/****** Kernel includes ******/ 61 62#include <linux/module.h> 63#include <linux/errno.h> 64#include <linux/major.h> 65#include <linux/kernel.h> 66#include <linux/signal.h> 67#include <linux/slab.h> 68#include <linux/mm.h> 69#include <linux/sched.h> 70#include <linux/timer.h> 71#include <linux/interrupt.h> 72#include <linux/tty.h> 73#include <linux/tty_driver.h> 74#include <linux/tty_flip.h> 75#include <linux/string.h> 76#include <linux/fcntl.h> 77#include <linux/ptrace.h> 78#include <linux/mutex.h> 79#include <linux/ioport.h> 80#include <linux/delay.h> 81#include <linux/completion.h> 82#include <linux/wait.h> 83#include <linux/pci.h> 84#include <asm/uaccess.h> 85#include <asm/atomic.h> 86#include <asm/unaligned.h> 87#include <linux/bitops.h> 88#include <linux/spinlock.h> 89#include <linux/init.h> 90 91/****** RocketPort includes ******/ 92 93#include "rocket_int.h" 94#include "rocket.h" 95 96#define ROCKET_VERSION "2.09" 97#define ROCKET_DATE "12-June-2003" 98 99/****** RocketPort Local Variables ******/ 100 101static void rp_do_poll(unsigned long dummy); 102 103static struct tty_driver *rocket_driver; 104 105static struct rocket_version driver_version = { 106 ROCKET_VERSION, ROCKET_DATE 107}; 108 109static struct r_port *rp_table[MAX_RP_PORTS]; /* The main repository of serial port state information. */ 110static unsigned int xmit_flags[NUM_BOARDS]; /* Bit significant, indicates port had data to transmit. */ 111 /* eg. Bit 0 indicates port 0 has xmit data, ... */ 112static atomic_t rp_num_ports_open; /* Number of serial ports open */ 113static DEFINE_TIMER(rocket_timer, rp_do_poll, 0, 0); 114 115static unsigned long board1; /* ISA addresses, retrieved from rocketport.conf */ 116static unsigned long board2; 117static unsigned long board3; 118static unsigned long board4; 119static unsigned long controller; 120static int support_low_speed; 121static unsigned long modem1; 122static unsigned long modem2; 123static unsigned long modem3; 124static unsigned long modem4; 125static unsigned long pc104_1[8]; 126static unsigned long pc104_2[8]; 127static unsigned long pc104_3[8]; 128static unsigned long pc104_4[8]; 129static unsigned long *pc104[4] = { pc104_1, pc104_2, pc104_3, pc104_4 }; 130 131static int rp_baud_base[NUM_BOARDS]; /* Board config info (Someday make a per-board structure) */ 132static unsigned long rcktpt_io_addr[NUM_BOARDS]; 133static int rcktpt_type[NUM_BOARDS]; 134static int is_PCI[NUM_BOARDS]; 135static rocketModel_t rocketModel[NUM_BOARDS]; 136static int max_board; 137 138/* 139 * The following arrays define the interrupt bits corresponding to each AIOP. 140 * These bits are different between the ISA and regular PCI boards and the 141 * Universal PCI boards. 142 */ 143 144static Word_t aiop_intr_bits[AIOP_CTL_SIZE] = { 145 AIOP_INTR_BIT_0, 146 AIOP_INTR_BIT_1, 147 AIOP_INTR_BIT_2, 148 AIOP_INTR_BIT_3 149}; 150 151static Word_t upci_aiop_intr_bits[AIOP_CTL_SIZE] = { 152 UPCI_AIOP_INTR_BIT_0, 153 UPCI_AIOP_INTR_BIT_1, 154 UPCI_AIOP_INTR_BIT_2, 155 UPCI_AIOP_INTR_BIT_3 156}; 157 158static Byte_t RData[RDATASIZE] = { 159 0x00, 0x09, 0xf6, 0x82, 160 0x02, 0x09, 0x86, 0xfb, 161 0x04, 0x09, 0x00, 0x0a, 162 0x06, 0x09, 0x01, 0x0a, 163 0x08, 0x09, 0x8a, 0x13, 164 0x0a, 0x09, 0xc5, 0x11, 165 0x0c, 0x09, 0x86, 0x85, 166 0x0e, 0x09, 0x20, 0x0a, 167 0x10, 0x09, 0x21, 0x0a, 168 0x12, 0x09, 0x41, 0xff, 169 0x14, 0x09, 0x82, 0x00, 170 0x16, 0x09, 0x82, 0x7b, 171 0x18, 0x09, 0x8a, 0x7d, 172 0x1a, 0x09, 0x88, 0x81, 173 0x1c, 0x09, 0x86, 0x7a, 174 0x1e, 0x09, 0x84, 0x81, 175 0x20, 0x09, 0x82, 0x7c, 176 0x22, 0x09, 0x0a, 0x0a 177}; 178 179static Byte_t RRegData[RREGDATASIZE] = { 180 0x00, 0x09, 0xf6, 0x82, /* 00: Stop Rx processor */ 181 0x08, 0x09, 0x8a, 0x13, /* 04: Tx software flow control */ 182 0x0a, 0x09, 0xc5, 0x11, /* 08: XON char */ 183 0x0c, 0x09, 0x86, 0x85, /* 0c: XANY */ 184 0x12, 0x09, 0x41, 0xff, /* 10: Rx mask char */ 185 0x14, 0x09, 0x82, 0x00, /* 14: Compare/Ignore #0 */ 186 0x16, 0x09, 0x82, 0x7b, /* 18: Compare #1 */ 187 0x18, 0x09, 0x8a, 0x7d, /* 1c: Compare #2 */ 188 0x1a, 0x09, 0x88, 0x81, /* 20: Interrupt #1 */ 189 0x1c, 0x09, 0x86, 0x7a, /* 24: Ignore/Replace #1 */ 190 0x1e, 0x09, 0x84, 0x81, /* 28: Interrupt #2 */ 191 0x20, 0x09, 0x82, 0x7c, /* 2c: Ignore/Replace #2 */ 192 0x22, 0x09, 0x0a, 0x0a /* 30: Rx FIFO Enable */ 193}; 194 195static CONTROLLER_T sController[CTL_SIZE] = { 196 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0}, 197 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}}, 198 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0}, 199 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}}, 200 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0}, 201 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}}, 202 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0}, 203 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}} 204}; 205 206static Byte_t sBitMapClrTbl[8] = { 207 0xfe, 0xfd, 0xfb, 0xf7, 0xef, 0xdf, 0xbf, 0x7f 208}; 209 210static Byte_t sBitMapSetTbl[8] = { 211 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80 212}; 213 214static int sClockPrescale = 0x14; 215 216/* 217 * Line number is the ttySIx number (x), the Minor number. We 218 * assign them sequentially, starting at zero. The following 219 * array keeps track of the line number assigned to a given board/aiop/channel. 220 */ 221static unsigned char lineNumbers[MAX_RP_PORTS]; 222static unsigned long nextLineNumber; 223 224/***** RocketPort Static Prototypes *********/ 225static int __init init_ISA(int i); 226static void rp_wait_until_sent(struct tty_struct *tty, int timeout); 227static void rp_flush_buffer(struct tty_struct *tty); 228static void rmSpeakerReset(CONTROLLER_T * CtlP, unsigned long model); 229static unsigned char GetLineNumber(int ctrl, int aiop, int ch); 230static unsigned char SetLineNumber(int ctrl, int aiop, int ch); 231static void rp_start(struct tty_struct *tty); 232static int sInitChan(CONTROLLER_T * CtlP, CHANNEL_T * ChP, int AiopNum, 233 int ChanNum); 234static void sSetInterfaceMode(CHANNEL_T * ChP, Byte_t mode); 235static void sFlushRxFIFO(CHANNEL_T * ChP); 236static void sFlushTxFIFO(CHANNEL_T * ChP); 237static void sEnInterrupts(CHANNEL_T * ChP, Word_t Flags); 238static void sDisInterrupts(CHANNEL_T * ChP, Word_t Flags); 239static void sModemReset(CONTROLLER_T * CtlP, int chan, int on); 240static void sPCIModemReset(CONTROLLER_T * CtlP, int chan, int on); 241static int sWriteTxPrioByte(CHANNEL_T * ChP, Byte_t Data); 242static int sPCIInitController(CONTROLLER_T * CtlP, int CtlNum, 243 ByteIO_t * AiopIOList, int AiopIOListSize, 244 WordIO_t ConfigIO, int IRQNum, Byte_t Frequency, 245 int PeriodicOnly, int altChanRingIndicator, 246 int UPCIRingInd); 247static int sInitController(CONTROLLER_T * CtlP, int CtlNum, ByteIO_t MudbacIO, 248 ByteIO_t * AiopIOList, int AiopIOListSize, 249 int IRQNum, Byte_t Frequency, int PeriodicOnly); 250static int sReadAiopID(ByteIO_t io); 251static int sReadAiopNumChan(WordIO_t io); 252 253MODULE_AUTHOR("Theodore Ts'o"); 254MODULE_DESCRIPTION("Comtrol RocketPort driver"); 255module_param(board1, ulong, 0); 256MODULE_PARM_DESC(board1, "I/O port for (ISA) board #1"); 257module_param(board2, ulong, 0); 258MODULE_PARM_DESC(board2, "I/O port for (ISA) board #2"); 259module_param(board3, ulong, 0); 260MODULE_PARM_DESC(board3, "I/O port for (ISA) board #3"); 261module_param(board4, ulong, 0); 262MODULE_PARM_DESC(board4, "I/O port for (ISA) board #4"); 263module_param(controller, ulong, 0); 264MODULE_PARM_DESC(controller, "I/O port for (ISA) rocketport controller"); 265module_param(support_low_speed, bool, 0); 266MODULE_PARM_DESC(support_low_speed, "1 means support 50 baud, 0 means support 460400 baud"); 267module_param(modem1, ulong, 0); 268MODULE_PARM_DESC(modem1, "1 means (ISA) board #1 is a RocketModem"); 269module_param(modem2, ulong, 0); 270MODULE_PARM_DESC(modem2, "1 means (ISA) board #2 is a RocketModem"); 271module_param(modem3, ulong, 0); 272MODULE_PARM_DESC(modem3, "1 means (ISA) board #3 is a RocketModem"); 273module_param(modem4, ulong, 0); 274MODULE_PARM_DESC(modem4, "1 means (ISA) board #4 is a RocketModem"); 275module_param_array(pc104_1, ulong, NULL, 0); 276MODULE_PARM_DESC(pc104_1, "set interface types for ISA(PC104) board #1 (e.g. pc104_1=232,232,485,485,..."); 277module_param_array(pc104_2, ulong, NULL, 0); 278MODULE_PARM_DESC(pc104_2, "set interface types for ISA(PC104) board #2 (e.g. pc104_2=232,232,485,485,..."); 279module_param_array(pc104_3, ulong, NULL, 0); 280MODULE_PARM_DESC(pc104_3, "set interface types for ISA(PC104) board #3 (e.g. pc104_3=232,232,485,485,..."); 281module_param_array(pc104_4, ulong, NULL, 0); 282MODULE_PARM_DESC(pc104_4, "set interface types for ISA(PC104) board #4 (e.g. pc104_4=232,232,485,485,..."); 283 284static int rp_init(void); 285static void rp_cleanup_module(void); 286 287module_init(rp_init); 288module_exit(rp_cleanup_module); 289 290 291MODULE_LICENSE("Dual BSD/GPL"); 292 293/*************************************************************************/ 294/* Module code starts here */ 295 296static inline int rocket_paranoia_check(struct r_port *info, 297 const char *routine) 298{ 299#ifdef ROCKET_PARANOIA_CHECK 300 if (!info) 301 return 1; 302 if (info->magic != RPORT_MAGIC) { 303 printk(KERN_WARNING "Warning: bad magic number for rocketport " 304 "struct in %s\n", routine); 305 return 1; 306 } 307#endif 308 return 0; 309} 310 311 312/* Serial port receive data function. Called (from timer poll) when an AIOPIC signals 313 * that receive data is present on a serial port. Pulls data from FIFO, moves it into the 314 * tty layer. 315 */ 316static void rp_do_receive(struct r_port *info, 317 struct tty_struct *tty, 318 CHANNEL_t * cp, unsigned int ChanStatus) 319{ 320 unsigned int CharNStat; 321 int ToRecv, wRecv, space; 322 unsigned char *cbuf; 323 324 ToRecv = sGetRxCnt(cp); 325#ifdef ROCKET_DEBUG_INTR 326 printk(KERN_INFO "rp_do_receive(%d)...\n", ToRecv); 327#endif 328 if (ToRecv == 0) 329 return; 330 331 /* 332 * if status indicates there are errored characters in the 333 * FIFO, then enter status mode (a word in FIFO holds 334 * character and status). 335 */ 336 if (ChanStatus & (RXFOVERFL | RXBREAK | RXFRAME | RXPARITY)) { 337 if (!(ChanStatus & STATMODE)) { 338#ifdef ROCKET_DEBUG_RECEIVE 339 printk(KERN_INFO "Entering STATMODE...\n"); 340#endif 341 ChanStatus |= STATMODE; 342 sEnRxStatusMode(cp); 343 } 344 } 345 346 /* 347 * if we previously entered status mode, then read down the 348 * FIFO one word at a time, pulling apart the character and 349 * the status. Update error counters depending on status 350 */ 351 if (ChanStatus & STATMODE) { 352#ifdef ROCKET_DEBUG_RECEIVE 353 printk(KERN_INFO "Ignore %x, read %x...\n", 354 info->ignore_status_mask, info->read_status_mask); 355#endif 356 while (ToRecv) { 357 char flag; 358 359 CharNStat = sInW(sGetTxRxDataIO(cp)); 360#ifdef ROCKET_DEBUG_RECEIVE 361 printk(KERN_INFO "%x...\n", CharNStat); 362#endif 363 if (CharNStat & STMBREAKH) 364 CharNStat &= ~(STMFRAMEH | STMPARITYH); 365 if (CharNStat & info->ignore_status_mask) { 366 ToRecv--; 367 continue; 368 } 369 CharNStat &= info->read_status_mask; 370 if (CharNStat & STMBREAKH) 371 flag = TTY_BREAK; 372 else if (CharNStat & STMPARITYH) 373 flag = TTY_PARITY; 374 else if (CharNStat & STMFRAMEH) 375 flag = TTY_FRAME; 376 else if (CharNStat & STMRCVROVRH) 377 flag = TTY_OVERRUN; 378 else 379 flag = TTY_NORMAL; 380 tty_insert_flip_char(tty, CharNStat & 0xff, flag); 381 ToRecv--; 382 } 383 384 /* 385 * after we've emptied the FIFO in status mode, turn 386 * status mode back off 387 */ 388 if (sGetRxCnt(cp) == 0) { 389#ifdef ROCKET_DEBUG_RECEIVE 390 printk(KERN_INFO "Status mode off.\n"); 391#endif 392 sDisRxStatusMode(cp); 393 } 394 } else { 395 /* 396 * we aren't in status mode, so read down the FIFO two 397 * characters at time by doing repeated word IO 398 * transfer. 399 */ 400 space = tty_prepare_flip_string(tty, &cbuf, ToRecv); 401 if (space < ToRecv) { 402#ifdef ROCKET_DEBUG_RECEIVE 403 printk(KERN_INFO "rp_do_receive:insufficient space ToRecv=%d space=%d\n", ToRecv, space); 404#endif 405 if (space <= 0) 406 return; 407 ToRecv = space; 408 } 409 wRecv = ToRecv >> 1; 410 if (wRecv) 411 sInStrW(sGetTxRxDataIO(cp), (unsigned short *) cbuf, wRecv); 412 if (ToRecv & 1) 413 cbuf[ToRecv - 1] = sInB(sGetTxRxDataIO(cp)); 414 } 415 /* Push the data up to the tty layer */ 416 tty_flip_buffer_push(tty); 417} 418 419/* 420 * Serial port transmit data function. Called from the timer polling loop as a 421 * result of a bit set in xmit_flags[], indicating data (from the tty layer) is ready 422 * to be sent out the serial port. Data is buffered in rp_table[line].xmit_buf, it is 423 * moved to the port's xmit FIFO. *info is critical data, protected by spinlocks. 424 */ 425static void rp_do_transmit(struct r_port *info) 426{ 427 int c; 428 CHANNEL_t *cp = &info->channel; 429 struct tty_struct *tty; 430 unsigned long flags; 431 432#ifdef ROCKET_DEBUG_INTR 433 printk(KERN_DEBUG "%s\n", __func__); 434#endif 435 if (!info) 436 return; 437 if (!info->tty) { 438 printk(KERN_WARNING "rp: WARNING %s called with " 439 "info->tty==NULL\n", __func__); 440 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]); 441 return; 442 } 443 444 spin_lock_irqsave(&info->slock, flags); 445 tty = info->tty; 446 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp); 447 448 /* Loop sending data to FIFO until done or FIFO full */ 449 while (1) { 450 if (tty->stopped || tty->hw_stopped) 451 break; 452 c = min(info->xmit_fifo_room, info->xmit_cnt); 453 c = min(c, XMIT_BUF_SIZE - info->xmit_tail); 454 if (c <= 0 || info->xmit_fifo_room <= 0) 455 break; 456 sOutStrW(sGetTxRxDataIO(cp), (unsigned short *) (info->xmit_buf + info->xmit_tail), c / 2); 457 if (c & 1) 458 sOutB(sGetTxRxDataIO(cp), info->xmit_buf[info->xmit_tail + c - 1]); 459 info->xmit_tail += c; 460 info->xmit_tail &= XMIT_BUF_SIZE - 1; 461 info->xmit_cnt -= c; 462 info->xmit_fifo_room -= c; 463#ifdef ROCKET_DEBUG_INTR 464 printk(KERN_INFO "tx %d chars...\n", c); 465#endif 466 } 467 468 if (info->xmit_cnt == 0) 469 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]); 470 471 if (info->xmit_cnt < WAKEUP_CHARS) { 472 tty_wakeup(tty); 473#ifdef ROCKETPORT_HAVE_POLL_WAIT 474 wake_up_interruptible(&tty->poll_wait); 475#endif 476 } 477 478 spin_unlock_irqrestore(&info->slock, flags); 479 480#ifdef ROCKET_DEBUG_INTR 481 printk(KERN_DEBUG "(%d,%d,%d,%d)...\n", info->xmit_cnt, info->xmit_head, 482 info->xmit_tail, info->xmit_fifo_room); 483#endif 484} 485 486/* 487 * Called when a serial port signals it has read data in it's RX FIFO. 488 * It checks what interrupts are pending and services them, including 489 * receiving serial data. 490 */ 491static void rp_handle_port(struct r_port *info) 492{ 493 CHANNEL_t *cp; 494 struct tty_struct *tty; 495 unsigned int IntMask, ChanStatus; 496 497 if (!info) 498 return; 499 500 if ((info->flags & ROCKET_INITIALIZED) == 0) { 501 printk(KERN_WARNING "rp: WARNING: rp_handle_port called with " 502 "info->flags & NOT_INIT\n"); 503 return; 504 } 505 if (!info->tty) { 506 printk(KERN_WARNING "rp: WARNING: rp_handle_port called with " 507 "info->tty==NULL\n"); 508 return; 509 } 510 cp = &info->channel; 511 tty = info->tty; 512 513 IntMask = sGetChanIntID(cp) & info->intmask; 514#ifdef ROCKET_DEBUG_INTR 515 printk(KERN_INFO "rp_interrupt %02x...\n", IntMask); 516#endif 517 ChanStatus = sGetChanStatus(cp); 518 if (IntMask & RXF_TRIG) { /* Rx FIFO trigger level */ 519 rp_do_receive(info, tty, cp, ChanStatus); 520 } 521 if (IntMask & DELTA_CD) { /* CD change */ 522#if (defined(ROCKET_DEBUG_OPEN) || defined(ROCKET_DEBUG_INTR) || defined(ROCKET_DEBUG_HANGUP)) 523 printk(KERN_INFO "ttyR%d CD now %s...\n", info->line, 524 (ChanStatus & CD_ACT) ? "on" : "off"); 525#endif 526 if (!(ChanStatus & CD_ACT) && info->cd_status) { 527#ifdef ROCKET_DEBUG_HANGUP 528 printk(KERN_INFO "CD drop, calling hangup.\n"); 529#endif 530 tty_hangup(tty); 531 } 532 info->cd_status = (ChanStatus & CD_ACT) ? 1 : 0; 533 wake_up_interruptible(&info->open_wait); 534 } 535#ifdef ROCKET_DEBUG_INTR 536 if (IntMask & DELTA_CTS) { /* CTS change */ 537 printk(KERN_INFO "CTS change...\n"); 538 } 539 if (IntMask & DELTA_DSR) { /* DSR change */ 540 printk(KERN_INFO "DSR change...\n"); 541 } 542#endif 543} 544 545/* 546 * The top level polling routine. Repeats every 1/100 HZ (10ms). 547 */ 548static void rp_do_poll(unsigned long dummy) 549{ 550 CONTROLLER_t *ctlp; 551 int ctrl, aiop, ch, line; 552 unsigned int xmitmask, i; 553 unsigned int CtlMask; 554 unsigned char AiopMask; 555 Word_t bit; 556 557 /* Walk through all the boards (ctrl's) */ 558 for (ctrl = 0; ctrl < max_board; ctrl++) { 559 if (rcktpt_io_addr[ctrl] <= 0) 560 continue; 561 562 /* Get a ptr to the board's control struct */ 563 ctlp = sCtlNumToCtlPtr(ctrl); 564 565 /* Get the interrupt status from the board */ 566#ifdef CONFIG_PCI 567 if (ctlp->BusType == isPCI) 568 CtlMask = sPCIGetControllerIntStatus(ctlp); 569 else 570#endif 571 CtlMask = sGetControllerIntStatus(ctlp); 572 573 /* Check if any AIOP read bits are set */ 574 for (aiop = 0; CtlMask; aiop++) { 575 bit = ctlp->AiopIntrBits[aiop]; 576 if (CtlMask & bit) { 577 CtlMask &= ~bit; 578 AiopMask = sGetAiopIntStatus(ctlp, aiop); 579 580 /* Check if any port read bits are set */ 581 for (ch = 0; AiopMask; AiopMask >>= 1, ch++) { 582 if (AiopMask & 1) { 583 584 /* Get the line number (/dev/ttyRx number). */ 585 /* Read the data from the port. */ 586 line = GetLineNumber(ctrl, aiop, ch); 587 rp_handle_port(rp_table[line]); 588 } 589 } 590 } 591 } 592 593 xmitmask = xmit_flags[ctrl]; 594 595 /* 596 * xmit_flags contains bit-significant flags, indicating there is data 597 * to xmit on the port. Bit 0 is port 0 on this board, bit 1 is port 598 * 1, ... (32 total possible). The variable i has the aiop and ch 599 * numbers encoded in it (port 0-7 are aiop0, 8-15 are aiop1, etc). 600 */ 601 if (xmitmask) { 602 for (i = 0; i < rocketModel[ctrl].numPorts; i++) { 603 if (xmitmask & (1 << i)) { 604 aiop = (i & 0x18) >> 3; 605 ch = i & 0x07; 606 line = GetLineNumber(ctrl, aiop, ch); 607 rp_do_transmit(rp_table[line]); 608 } 609 } 610 } 611 } 612 613 /* 614 * Reset the timer so we get called at the next clock tick (10ms). 615 */ 616 if (atomic_read(&rp_num_ports_open)) 617 mod_timer(&rocket_timer, jiffies + POLL_PERIOD); 618} 619 620/* 621 * Initializes the r_port structure for a port, as well as enabling the port on 622 * the board. 623 * Inputs: board, aiop, chan numbers 624 */ 625static void init_r_port(int board, int aiop, int chan, struct pci_dev *pci_dev) 626{ 627 unsigned rocketMode; 628 struct r_port *info; 629 int line; 630 CONTROLLER_T *ctlp; 631 632 /* Get the next available line number */ 633 line = SetLineNumber(board, aiop, chan); 634 635 ctlp = sCtlNumToCtlPtr(board); 636 637 /* Get a r_port struct for the port, fill it in and save it globally, indexed by line number */ 638 info = kzalloc(sizeof (struct r_port), GFP_KERNEL); 639 if (!info) { 640 printk(KERN_ERR "Couldn't allocate info struct for line #%d\n", 641 line); 642 return; 643 } 644 645 info->magic = RPORT_MAGIC; 646 info->line = line; 647 info->ctlp = ctlp; 648 info->board = board; 649 info->aiop = aiop; 650 info->chan = chan; 651 info->closing_wait = 3000; 652 info->close_delay = 50; 653 init_waitqueue_head(&info->open_wait); 654 init_completion(&info->close_wait); 655 info->flags &= ~ROCKET_MODE_MASK; 656 switch (pc104[board][line]) { 657 case 422: 658 info->flags |= ROCKET_MODE_RS422; 659 break; 660 case 485: 661 info->flags |= ROCKET_MODE_RS485; 662 break; 663 case 232: 664 default: 665 info->flags |= ROCKET_MODE_RS232; 666 break; 667 } 668 669 info->intmask = RXF_TRIG | TXFIFO_MT | SRC_INT | DELTA_CD | DELTA_CTS | DELTA_DSR; 670 if (sInitChan(ctlp, &info->channel, aiop, chan) == 0) { 671 printk(KERN_ERR "RocketPort sInitChan(%d, %d, %d) failed!\n", 672 board, aiop, chan); 673 kfree(info); 674 return; 675 } 676 677 rocketMode = info->flags & ROCKET_MODE_MASK; 678 679 if ((info->flags & ROCKET_RTS_TOGGLE) || (rocketMode == ROCKET_MODE_RS485)) 680 sEnRTSToggle(&info->channel); 681 else 682 sDisRTSToggle(&info->channel); 683 684 if (ctlp->boardType == ROCKET_TYPE_PC104) { 685 switch (rocketMode) { 686 case ROCKET_MODE_RS485: 687 sSetInterfaceMode(&info->channel, InterfaceModeRS485); 688 break; 689 case ROCKET_MODE_RS422: 690 sSetInterfaceMode(&info->channel, InterfaceModeRS422); 691 break; 692 case ROCKET_MODE_RS232: 693 default: 694 if (info->flags & ROCKET_RTS_TOGGLE) 695 sSetInterfaceMode(&info->channel, InterfaceModeRS232T); 696 else 697 sSetInterfaceMode(&info->channel, InterfaceModeRS232); 698 break; 699 } 700 } 701 spin_lock_init(&info->slock); 702 mutex_init(&info->write_mtx); 703 rp_table[line] = info; 704 tty_register_device(rocket_driver, line, pci_dev ? &pci_dev->dev : 705 NULL); 706} 707 708/* 709 * Configures a rocketport port according to its termio settings. Called from 710 * user mode into the driver (exception handler). *info CD manipulation is spinlock protected. 711 */ 712static void configure_r_port(struct r_port *info, 713 struct ktermios *old_termios) 714{ 715 unsigned cflag; 716 unsigned long flags; 717 unsigned rocketMode; 718 int bits, baud, divisor; 719 CHANNEL_t *cp; 720 struct ktermios *t = info->tty->termios; 721 722 cp = &info->channel; 723 cflag = t->c_cflag; 724 725 /* Byte size and parity */ 726 if ((cflag & CSIZE) == CS8) { 727 sSetData8(cp); 728 bits = 10; 729 } else { 730 sSetData7(cp); 731 bits = 9; 732 } 733 if (cflag & CSTOPB) { 734 sSetStop2(cp); 735 bits++; 736 } else { 737 sSetStop1(cp); 738 } 739 740 if (cflag & PARENB) { 741 sEnParity(cp); 742 bits++; 743 if (cflag & PARODD) { 744 sSetOddParity(cp); 745 } else { 746 sSetEvenParity(cp); 747 } 748 } else { 749 sDisParity(cp); 750 } 751 752 /* baud rate */ 753 baud = tty_get_baud_rate(info->tty); 754 if (!baud) 755 baud = 9600; 756 divisor = ((rp_baud_base[info->board] + (baud >> 1)) / baud) - 1; 757 if ((divisor >= 8192 || divisor < 0) && old_termios) { 758 baud = tty_termios_baud_rate(old_termios); 759 if (!baud) 760 baud = 9600; 761 divisor = (rp_baud_base[info->board] / baud) - 1; 762 } 763 if (divisor >= 8192 || divisor < 0) { 764 baud = 9600; 765 divisor = (rp_baud_base[info->board] / baud) - 1; 766 } 767 info->cps = baud / bits; 768 sSetBaud(cp, divisor); 769 770 /* FIXME: Should really back compute a baud rate from the divisor */ 771 tty_encode_baud_rate(info->tty, baud, baud); 772 773 if (cflag & CRTSCTS) { 774 info->intmask |= DELTA_CTS; 775 sEnCTSFlowCtl(cp); 776 } else { 777 info->intmask &= ~DELTA_CTS; 778 sDisCTSFlowCtl(cp); 779 } 780 if (cflag & CLOCAL) { 781 info->intmask &= ~DELTA_CD; 782 } else { 783 spin_lock_irqsave(&info->slock, flags); 784 if (sGetChanStatus(cp) & CD_ACT) 785 info->cd_status = 1; 786 else 787 info->cd_status = 0; 788 info->intmask |= DELTA_CD; 789 spin_unlock_irqrestore(&info->slock, flags); 790 } 791 792 /* 793 * Handle software flow control in the board 794 */ 795#ifdef ROCKET_SOFT_FLOW 796 if (I_IXON(info->tty)) { 797 sEnTxSoftFlowCtl(cp); 798 if (I_IXANY(info->tty)) { 799 sEnIXANY(cp); 800 } else { 801 sDisIXANY(cp); 802 } 803 sSetTxXONChar(cp, START_CHAR(info->tty)); 804 sSetTxXOFFChar(cp, STOP_CHAR(info->tty)); 805 } else { 806 sDisTxSoftFlowCtl(cp); 807 sDisIXANY(cp); 808 sClrTxXOFF(cp); 809 } 810#endif 811 812 /* 813 * Set up ignore/read mask words 814 */ 815 info->read_status_mask = STMRCVROVRH | 0xFF; 816 if (I_INPCK(info->tty)) 817 info->read_status_mask |= STMFRAMEH | STMPARITYH; 818 if (I_BRKINT(info->tty) || I_PARMRK(info->tty)) 819 info->read_status_mask |= STMBREAKH; 820 821 /* 822 * Characters to ignore 823 */ 824 info->ignore_status_mask = 0; 825 if (I_IGNPAR(info->tty)) 826 info->ignore_status_mask |= STMFRAMEH | STMPARITYH; 827 if (I_IGNBRK(info->tty)) { 828 info->ignore_status_mask |= STMBREAKH; 829 /* 830 * If we're ignoring parity and break indicators, 831 * ignore overruns too. (For real raw support). 832 */ 833 if (I_IGNPAR(info->tty)) 834 info->ignore_status_mask |= STMRCVROVRH; 835 } 836 837 rocketMode = info->flags & ROCKET_MODE_MASK; 838 839 if ((info->flags & ROCKET_RTS_TOGGLE) 840 || (rocketMode == ROCKET_MODE_RS485)) 841 sEnRTSToggle(cp); 842 else 843 sDisRTSToggle(cp); 844 845 sSetRTS(&info->channel); 846 847 if (cp->CtlP->boardType == ROCKET_TYPE_PC104) { 848 switch (rocketMode) { 849 case ROCKET_MODE_RS485: 850 sSetInterfaceMode(cp, InterfaceModeRS485); 851 break; 852 case ROCKET_MODE_RS422: 853 sSetInterfaceMode(cp, InterfaceModeRS422); 854 break; 855 case ROCKET_MODE_RS232: 856 default: 857 if (info->flags & ROCKET_RTS_TOGGLE) 858 sSetInterfaceMode(cp, InterfaceModeRS232T); 859 else 860 sSetInterfaceMode(cp, InterfaceModeRS232); 861 break; 862 } 863 } 864} 865 866/* info->count is considered critical, protected by spinlocks. */ 867static int block_til_ready(struct tty_struct *tty, struct file *filp, 868 struct r_port *info) 869{ 870 DECLARE_WAITQUEUE(wait, current); 871 int retval; 872 int do_clocal = 0, extra_count = 0; 873 unsigned long flags; 874 875 /* 876 * If the device is in the middle of being closed, then block 877 * until it's done, and then try again. 878 */ 879 if (tty_hung_up_p(filp)) 880 return ((info->flags & ROCKET_HUP_NOTIFY) ? -EAGAIN : -ERESTARTSYS); 881 if (info->flags & ROCKET_CLOSING) { 882 if (wait_for_completion_interruptible(&info->close_wait)) 883 return -ERESTARTSYS; 884 return ((info->flags & ROCKET_HUP_NOTIFY) ? -EAGAIN : -ERESTARTSYS); 885 } 886 887 /* 888 * If non-blocking mode is set, or the port is not enabled, 889 * then make the check up front and then exit. 890 */ 891 if ((filp->f_flags & O_NONBLOCK) || (tty->flags & (1 << TTY_IO_ERROR))) { 892 info->flags |= ROCKET_NORMAL_ACTIVE; 893 return 0; 894 } 895 if (tty->termios->c_cflag & CLOCAL) 896 do_clocal = 1; 897 898 /* 899 * Block waiting for the carrier detect and the line to become free. While we are in 900 * this loop, info->count is dropped by one, so that rp_close() knows when to free things. 901 * We restore it upon exit, either normal or abnormal. 902 */ 903 retval = 0; 904 add_wait_queue(&info->open_wait, &wait); 905#ifdef ROCKET_DEBUG_OPEN 906 printk(KERN_INFO "block_til_ready before block: ttyR%d, count = %d\n", info->line, info->count); 907#endif 908 spin_lock_irqsave(&info->slock, flags); 909 910#ifdef ROCKET_DISABLE_SIMUSAGE 911 info->flags |= ROCKET_NORMAL_ACTIVE; 912#else 913 if (!tty_hung_up_p(filp)) { 914 extra_count = 1; 915 info->count--; 916 } 917#endif 918 info->blocked_open++; 919 920 spin_unlock_irqrestore(&info->slock, flags); 921 922 while (1) { 923 if (tty->termios->c_cflag & CBAUD) { 924 sSetDTR(&info->channel); 925 sSetRTS(&info->channel); 926 } 927 set_current_state(TASK_INTERRUPTIBLE); 928 if (tty_hung_up_p(filp) || !(info->flags & ROCKET_INITIALIZED)) { 929 if (info->flags & ROCKET_HUP_NOTIFY) 930 retval = -EAGAIN; 931 else 932 retval = -ERESTARTSYS; 933 break; 934 } 935 if (!(info->flags & ROCKET_CLOSING) && (do_clocal || (sGetChanStatusLo(&info->channel) & CD_ACT))) 936 break; 937 if (signal_pending(current)) { 938 retval = -ERESTARTSYS; 939 break; 940 } 941#ifdef ROCKET_DEBUG_OPEN 942 printk(KERN_INFO "block_til_ready blocking: ttyR%d, count = %d, flags=0x%0x\n", 943 info->line, info->count, info->flags); 944#endif 945 schedule(); /* Don't hold spinlock here, will hang PC */ 946 } 947 __set_current_state(TASK_RUNNING); 948 remove_wait_queue(&info->open_wait, &wait); 949 950 spin_lock_irqsave(&info->slock, flags); 951 952 if (extra_count) 953 info->count++; 954 info->blocked_open--; 955 956 spin_unlock_irqrestore(&info->slock, flags); 957 958#ifdef ROCKET_DEBUG_OPEN 959 printk(KERN_INFO "block_til_ready after blocking: ttyR%d, count = %d\n", 960 info->line, info->count); 961#endif 962 if (retval) 963 return retval; 964 info->flags |= ROCKET_NORMAL_ACTIVE; 965 return 0; 966} 967 968/* 969 * Exception handler that opens a serial port. Creates xmit_buf storage, fills in 970 * port's r_port struct. Initializes the port hardware. 971 */ 972static int rp_open(struct tty_struct *tty, struct file *filp) 973{ 974 struct r_port *info; 975 int line = 0, retval; 976 CHANNEL_t *cp; 977 unsigned long page; 978 979 line = tty->index; 980 if ((line < 0) || (line >= MAX_RP_PORTS) || ((info = rp_table[line]) == NULL)) 981 return -ENXIO; 982 983 page = __get_free_page(GFP_KERNEL); 984 if (!page) 985 return -ENOMEM; 986 987 if (info->flags & ROCKET_CLOSING) { 988 retval = wait_for_completion_interruptible(&info->close_wait); 989 free_page(page); 990 if (retval) 991 return retval; 992 return ((info->flags & ROCKET_HUP_NOTIFY) ? -EAGAIN : -ERESTARTSYS); 993 } 994 995 /* 996 * We must not sleep from here until the port is marked fully in use. 997 */ 998 if (info->xmit_buf) 999 free_page(page); 1000 else 1001 info->xmit_buf = (unsigned char *) page; 1002 1003 tty->driver_data = info; 1004 info->tty = tty; 1005 1006 if (info->count++ == 0) { 1007 atomic_inc(&rp_num_ports_open); 1008 1009#ifdef ROCKET_DEBUG_OPEN 1010 printk(KERN_INFO "rocket mod++ = %d...\n", 1011 atomic_read(&rp_num_ports_open)); 1012#endif 1013 } 1014#ifdef ROCKET_DEBUG_OPEN 1015 printk(KERN_INFO "rp_open ttyR%d, count=%d\n", info->line, info->count); 1016#endif 1017 1018 /* 1019 * Info->count is now 1; so it's safe to sleep now. 1020 */ 1021 if ((info->flags & ROCKET_INITIALIZED) == 0) { 1022 cp = &info->channel; 1023 sSetRxTrigger(cp, TRIG_1); 1024 if (sGetChanStatus(cp) & CD_ACT) 1025 info->cd_status = 1; 1026 else 1027 info->cd_status = 0; 1028 sDisRxStatusMode(cp); 1029 sFlushRxFIFO(cp); 1030 sFlushTxFIFO(cp); 1031 1032 sEnInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN)); 1033 sSetRxTrigger(cp, TRIG_1); 1034 1035 sGetChanStatus(cp); 1036 sDisRxStatusMode(cp); 1037 sClrTxXOFF(cp); 1038 1039 sDisCTSFlowCtl(cp); 1040 sDisTxSoftFlowCtl(cp); 1041 1042 sEnRxFIFO(cp); 1043 sEnTransmit(cp); 1044 1045 info->flags |= ROCKET_INITIALIZED; 1046 1047 /* 1048 * Set up the tty->alt_speed kludge 1049 */ 1050 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_HI) 1051 info->tty->alt_speed = 57600; 1052 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_VHI) 1053 info->tty->alt_speed = 115200; 1054 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_SHI) 1055 info->tty->alt_speed = 230400; 1056 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_WARP) 1057 info->tty->alt_speed = 460800; 1058 1059 configure_r_port(info, NULL); 1060 if (tty->termios->c_cflag & CBAUD) { 1061 sSetDTR(cp); 1062 sSetRTS(cp); 1063 } 1064 } 1065 /* Starts (or resets) the maint polling loop */ 1066 mod_timer(&rocket_timer, jiffies + POLL_PERIOD); 1067 1068 retval = block_til_ready(tty, filp, info); 1069 if (retval) { 1070#ifdef ROCKET_DEBUG_OPEN 1071 printk(KERN_INFO "rp_open returning after block_til_ready with %d\n", retval); 1072#endif 1073 return retval; 1074 } 1075 return 0; 1076} 1077 1078/* 1079 * Exception handler that closes a serial port. info->count is considered critical. 1080 */ 1081static void rp_close(struct tty_struct *tty, struct file *filp) 1082{ 1083 struct r_port *info = (struct r_port *) tty->driver_data; 1084 unsigned long flags; 1085 int timeout; 1086 CHANNEL_t *cp; 1087 1088 if (rocket_paranoia_check(info, "rp_close")) 1089 return; 1090 1091#ifdef ROCKET_DEBUG_OPEN 1092 printk(KERN_INFO "rp_close ttyR%d, count = %d\n", info->line, info->count); 1093#endif 1094 1095 if (tty_hung_up_p(filp)) 1096 return; 1097 spin_lock_irqsave(&info->slock, flags); 1098 1099 if ((tty->count == 1) && (info->count != 1)) { 1100 /* 1101 * Uh, oh. tty->count is 1, which means that the tty 1102 * structure will be freed. Info->count should always 1103 * be one in these conditions. If it's greater than 1104 * one, we've got real problems, since it means the 1105 * serial port won't be shutdown. 1106 */ 1107 printk(KERN_WARNING "rp_close: bad serial port count; " 1108 "tty->count is 1, info->count is %d\n", info->count); 1109 info->count = 1; 1110 } 1111 if (--info->count < 0) { 1112 printk(KERN_WARNING "rp_close: bad serial port count for " 1113 "ttyR%d: %d\n", info->line, info->count); 1114 info->count = 0; 1115 } 1116 if (info->count) { 1117 spin_unlock_irqrestore(&info->slock, flags); 1118 return; 1119 } 1120 info->flags |= ROCKET_CLOSING; 1121 spin_unlock_irqrestore(&info->slock, flags); 1122 1123 cp = &info->channel; 1124 1125 /* 1126 * Notify the line discpline to only process XON/XOFF characters 1127 */ 1128 tty->closing = 1; 1129 1130 /* 1131 * If transmission was throttled by the application request, 1132 * just flush the xmit buffer. 1133 */ 1134 if (tty->flow_stopped) 1135 rp_flush_buffer(tty); 1136 1137 /* 1138 * Wait for the transmit buffer to clear 1139 */ 1140 if (info->closing_wait != ROCKET_CLOSING_WAIT_NONE) 1141 tty_wait_until_sent(tty, info->closing_wait); 1142 /* 1143 * Before we drop DTR, make sure the UART transmitter 1144 * has completely drained; this is especially 1145 * important if there is a transmit FIFO! 1146 */ 1147 timeout = (sGetTxCnt(cp) + 1) * HZ / info->cps; 1148 if (timeout == 0) 1149 timeout = 1; 1150 rp_wait_until_sent(tty, timeout); 1151 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]); 1152 1153 sDisTransmit(cp); 1154 sDisInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN)); 1155 sDisCTSFlowCtl(cp); 1156 sDisTxSoftFlowCtl(cp); 1157 sClrTxXOFF(cp); 1158 sFlushRxFIFO(cp); 1159 sFlushTxFIFO(cp); 1160 sClrRTS(cp); 1161 if (C_HUPCL(tty)) 1162 sClrDTR(cp); 1163 1164 rp_flush_buffer(tty); 1165 1166 tty_ldisc_flush(tty); 1167 1168 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]); 1169 1170 if (info->blocked_open) { 1171 if (info->close_delay) { 1172 msleep_interruptible(jiffies_to_msecs(info->close_delay)); 1173 } 1174 wake_up_interruptible(&info->open_wait); 1175 } else { 1176 if (info->xmit_buf) { 1177 free_page((unsigned long) info->xmit_buf); 1178 info->xmit_buf = NULL; 1179 } 1180 } 1181 info->flags &= ~(ROCKET_INITIALIZED | ROCKET_CLOSING | ROCKET_NORMAL_ACTIVE); 1182 tty->closing = 0; 1183 complete_all(&info->close_wait); 1184 atomic_dec(&rp_num_ports_open); 1185 1186#ifdef ROCKET_DEBUG_OPEN 1187 printk(KERN_INFO "rocket mod-- = %d...\n", 1188 atomic_read(&rp_num_ports_open)); 1189 printk(KERN_INFO "rp_close ttyR%d complete shutdown\n", info->line); 1190#endif 1191 1192} 1193 1194static void rp_set_termios(struct tty_struct *tty, 1195 struct ktermios *old_termios) 1196{ 1197 struct r_port *info = (struct r_port *) tty->driver_data; 1198 CHANNEL_t *cp; 1199 unsigned cflag; 1200 1201 if (rocket_paranoia_check(info, "rp_set_termios")) 1202 return; 1203 1204 cflag = tty->termios->c_cflag; 1205 1206 /* 1207 * This driver doesn't support CS5 or CS6 1208 */ 1209 if (((cflag & CSIZE) == CS5) || ((cflag & CSIZE) == CS6)) 1210 tty->termios->c_cflag = 1211 ((cflag & ~CSIZE) | (old_termios->c_cflag & CSIZE)); 1212 /* Or CMSPAR */ 1213 tty->termios->c_cflag &= ~CMSPAR; 1214 1215 configure_r_port(info, old_termios); 1216 1217 cp = &info->channel; 1218 1219 /* Handle transition to B0 status */ 1220 if ((old_termios->c_cflag & CBAUD) && !(tty->termios->c_cflag & CBAUD)) { 1221 sClrDTR(cp); 1222 sClrRTS(cp); 1223 } 1224 1225 /* Handle transition away from B0 status */ 1226 if (!(old_termios->c_cflag & CBAUD) && (tty->termios->c_cflag & CBAUD)) { 1227 if (!tty->hw_stopped || !(tty->termios->c_cflag & CRTSCTS)) 1228 sSetRTS(cp); 1229 sSetDTR(cp); 1230 } 1231 1232 if ((old_termios->c_cflag & CRTSCTS) && !(tty->termios->c_cflag & CRTSCTS)) { 1233 tty->hw_stopped = 0; 1234 rp_start(tty); 1235 } 1236} 1237 1238static void rp_break(struct tty_struct *tty, int break_state) 1239{ 1240 struct r_port *info = (struct r_port *) tty->driver_data; 1241 unsigned long flags; 1242 1243 if (rocket_paranoia_check(info, "rp_break")) 1244 return; 1245 1246 spin_lock_irqsave(&info->slock, flags); 1247 if (break_state == -1) 1248 sSendBreak(&info->channel); 1249 else 1250 sClrBreak(&info->channel); 1251 spin_unlock_irqrestore(&info->slock, flags); 1252} 1253 1254/* 1255 * sGetChanRI used to be a macro in rocket_int.h. When the functionality for 1256 * the UPCI boards was added, it was decided to make this a function because 1257 * the macro was getting too complicated. All cases except the first one 1258 * (UPCIRingInd) are taken directly from the original macro. 1259 */ 1260static int sGetChanRI(CHANNEL_T * ChP) 1261{ 1262 CONTROLLER_t *CtlP = ChP->CtlP; 1263 int ChanNum = ChP->ChanNum; 1264 int RingInd = 0; 1265 1266 if (CtlP->UPCIRingInd) 1267 RingInd = !(sInB(CtlP->UPCIRingInd) & sBitMapSetTbl[ChanNum]); 1268 else if (CtlP->AltChanRingIndicator) 1269 RingInd = sInB((ByteIO_t) (ChP->ChanStat + 8)) & DSR_ACT; 1270 else if (CtlP->boardType == ROCKET_TYPE_PC104) 1271 RingInd = !(sInB(CtlP->AiopIO[3]) & sBitMapSetTbl[ChanNum]); 1272 1273 return RingInd; 1274} 1275 1276/********************************************************************************************/ 1277/* Here are the routines used by rp_ioctl. These are all called from exception handlers. */ 1278 1279/* 1280 * Returns the state of the serial modem control lines. These next 2 functions 1281 * are the way kernel versions > 2.5 handle modem control lines rather than IOCTLs. 1282 */ 1283static int rp_tiocmget(struct tty_struct *tty, struct file *file) 1284{ 1285 struct r_port *info = (struct r_port *)tty->driver_data; 1286 unsigned int control, result, ChanStatus; 1287 1288 ChanStatus = sGetChanStatusLo(&info->channel); 1289 control = info->channel.TxControl[3]; 1290 result = ((control & SET_RTS) ? TIOCM_RTS : 0) | 1291 ((control & SET_DTR) ? TIOCM_DTR : 0) | 1292 ((ChanStatus & CD_ACT) ? TIOCM_CAR : 0) | 1293 (sGetChanRI(&info->channel) ? TIOCM_RNG : 0) | 1294 ((ChanStatus & DSR_ACT) ? TIOCM_DSR : 0) | 1295 ((ChanStatus & CTS_ACT) ? TIOCM_CTS : 0); 1296 1297 return result; 1298} 1299 1300/* 1301 * Sets the modem control lines 1302 */ 1303static int rp_tiocmset(struct tty_struct *tty, struct file *file, 1304 unsigned int set, unsigned int clear) 1305{ 1306 struct r_port *info = (struct r_port *)tty->driver_data; 1307 1308 if (set & TIOCM_RTS) 1309 info->channel.TxControl[3] |= SET_RTS; 1310 if (set & TIOCM_DTR) 1311 info->channel.TxControl[3] |= SET_DTR; 1312 if (clear & TIOCM_RTS) 1313 info->channel.TxControl[3] &= ~SET_RTS; 1314 if (clear & TIOCM_DTR) 1315 info->channel.TxControl[3] &= ~SET_DTR; 1316 1317 out32(info->channel.IndexAddr, info->channel.TxControl); 1318 return 0; 1319} 1320 1321static int get_config(struct r_port *info, struct rocket_config __user *retinfo) 1322{ 1323 struct rocket_config tmp; 1324 1325 if (!retinfo) 1326 return -EFAULT; 1327 memset(&tmp, 0, sizeof (tmp)); 1328 tmp.line = info->line; 1329 tmp.flags = info->flags; 1330 tmp.close_delay = info->close_delay; 1331 tmp.closing_wait = info->closing_wait; 1332 tmp.port = rcktpt_io_addr[(info->line >> 5) & 3]; 1333 1334 if (copy_to_user(retinfo, &tmp, sizeof (*retinfo))) 1335 return -EFAULT; 1336 return 0; 1337} 1338 1339static int set_config(struct r_port *info, struct rocket_config __user *new_info) 1340{ 1341 struct rocket_config new_serial; 1342 1343 if (copy_from_user(&new_serial, new_info, sizeof (new_serial))) 1344 return -EFAULT; 1345 1346 if (!capable(CAP_SYS_ADMIN)) 1347 { 1348 if ((new_serial.flags & ~ROCKET_USR_MASK) != (info->flags & ~ROCKET_USR_MASK)) 1349 return -EPERM; 1350 info->flags = ((info->flags & ~ROCKET_USR_MASK) | (new_serial.flags & ROCKET_USR_MASK)); 1351 configure_r_port(info, NULL); 1352 return 0; 1353 } 1354 1355 info->flags = ((info->flags & ~ROCKET_FLAGS) | (new_serial.flags & ROCKET_FLAGS)); 1356 info->close_delay = new_serial.close_delay; 1357 info->closing_wait = new_serial.closing_wait; 1358 1359 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_HI) 1360 info->tty->alt_speed = 57600; 1361 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_VHI) 1362 info->tty->alt_speed = 115200; 1363 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_SHI) 1364 info->tty->alt_speed = 230400; 1365 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_WARP) 1366 info->tty->alt_speed = 460800; 1367 1368 configure_r_port(info, NULL); 1369 return 0; 1370} 1371 1372/* 1373 * This function fills in a rocket_ports struct with information 1374 * about what boards/ports are in the system. This info is passed 1375 * to user space. See setrocket.c where the info is used to create 1376 * the /dev/ttyRx ports. 1377 */ 1378static int get_ports(struct r_port *info, struct rocket_ports __user *retports) 1379{ 1380 struct rocket_ports tmp; 1381 int board; 1382 1383 if (!retports) 1384 return -EFAULT; 1385 memset(&tmp, 0, sizeof (tmp)); 1386 tmp.tty_major = rocket_driver->major; 1387 1388 for (board = 0; board < 4; board++) { 1389 tmp.rocketModel[board].model = rocketModel[board].model; 1390 strcpy(tmp.rocketModel[board].modelString, rocketModel[board].modelString); 1391 tmp.rocketModel[board].numPorts = rocketModel[board].numPorts; 1392 tmp.rocketModel[board].loadrm2 = rocketModel[board].loadrm2; 1393 tmp.rocketModel[board].startingPortNumber = rocketModel[board].startingPortNumber; 1394 } 1395 if (copy_to_user(retports, &tmp, sizeof (*retports))) 1396 return -EFAULT; 1397 return 0; 1398} 1399 1400static int reset_rm2(struct r_port *info, void __user *arg) 1401{ 1402 int reset; 1403 1404 if (!capable(CAP_SYS_ADMIN)) 1405 return -EPERM; 1406 1407 if (copy_from_user(&reset, arg, sizeof (int))) 1408 return -EFAULT; 1409 if (reset) 1410 reset = 1; 1411 1412 if (rcktpt_type[info->board] != ROCKET_TYPE_MODEMII && 1413 rcktpt_type[info->board] != ROCKET_TYPE_MODEMIII) 1414 return -EINVAL; 1415 1416 if (info->ctlp->BusType == isISA) 1417 sModemReset(info->ctlp, info->chan, reset); 1418 else 1419 sPCIModemReset(info->ctlp, info->chan, reset); 1420 1421 return 0; 1422} 1423 1424static int get_version(struct r_port *info, struct rocket_version __user *retvers) 1425{ 1426 if (copy_to_user(retvers, &driver_version, sizeof (*retvers))) 1427 return -EFAULT; 1428 return 0; 1429} 1430 1431/* IOCTL call handler into the driver */ 1432static int rp_ioctl(struct tty_struct *tty, struct file *file, 1433 unsigned int cmd, unsigned long arg) 1434{ 1435 struct r_port *info = (struct r_port *) tty->driver_data; 1436 void __user *argp = (void __user *)arg; 1437 int ret = 0; 1438 1439 if (cmd != RCKP_GET_PORTS && rocket_paranoia_check(info, "rp_ioctl")) 1440 return -ENXIO; 1441 1442 lock_kernel(); 1443 1444 switch (cmd) { 1445 case RCKP_GET_STRUCT: 1446 if (copy_to_user(argp, info, sizeof (struct r_port))) 1447 ret = -EFAULT; 1448 break; 1449 case RCKP_GET_CONFIG: 1450 ret = get_config(info, argp); 1451 break; 1452 case RCKP_SET_CONFIG: 1453 ret = set_config(info, argp); 1454 break; 1455 case RCKP_GET_PORTS: 1456 ret = get_ports(info, argp); 1457 break; 1458 case RCKP_RESET_RM2: 1459 ret = reset_rm2(info, argp); 1460 break; 1461 case RCKP_GET_VERSION: 1462 ret = get_version(info, argp); 1463 break; 1464 default: 1465 ret = -ENOIOCTLCMD; 1466 } 1467 unlock_kernel(); 1468 return ret; 1469} 1470 1471static void rp_send_xchar(struct tty_struct *tty, char ch) 1472{ 1473 struct r_port *info = (struct r_port *) tty->driver_data; 1474 CHANNEL_t *cp; 1475 1476 if (rocket_paranoia_check(info, "rp_send_xchar")) 1477 return; 1478 1479 cp = &info->channel; 1480 if (sGetTxCnt(cp)) 1481 sWriteTxPrioByte(cp, ch); 1482 else 1483 sWriteTxByte(sGetTxRxDataIO(cp), ch); 1484} 1485 1486static void rp_throttle(struct tty_struct *tty) 1487{ 1488 struct r_port *info = (struct r_port *) tty->driver_data; 1489 CHANNEL_t *cp; 1490 1491#ifdef ROCKET_DEBUG_THROTTLE 1492 printk(KERN_INFO "throttle %s: %d....\n", tty->name, 1493 tty->ldisc.chars_in_buffer(tty)); 1494#endif 1495 1496 if (rocket_paranoia_check(info, "rp_throttle")) 1497 return; 1498 1499 cp = &info->channel; 1500 if (I_IXOFF(tty)) 1501 rp_send_xchar(tty, STOP_CHAR(tty)); 1502 1503 sClrRTS(&info->channel); 1504} 1505 1506static void rp_unthrottle(struct tty_struct *tty) 1507{ 1508 struct r_port *info = (struct r_port *) tty->driver_data; 1509 CHANNEL_t *cp; 1510#ifdef ROCKET_DEBUG_THROTTLE 1511 printk(KERN_INFO "unthrottle %s: %d....\n", tty->name, 1512 tty->ldisc.chars_in_buffer(tty)); 1513#endif 1514 1515 if (rocket_paranoia_check(info, "rp_throttle")) 1516 return; 1517 1518 cp = &info->channel; 1519 if (I_IXOFF(tty)) 1520 rp_send_xchar(tty, START_CHAR(tty)); 1521 1522 sSetRTS(&info->channel); 1523} 1524 1525/* 1526 * ------------------------------------------------------------ 1527 * rp_stop() and rp_start() 1528 * 1529 * This routines are called before setting or resetting tty->stopped. 1530 * They enable or disable transmitter interrupts, as necessary. 1531 * ------------------------------------------------------------ 1532 */ 1533static void rp_stop(struct tty_struct *tty) 1534{ 1535 struct r_port *info = (struct r_port *) tty->driver_data; 1536 1537#ifdef ROCKET_DEBUG_FLOW 1538 printk(KERN_INFO "stop %s: %d %d....\n", tty->name, 1539 info->xmit_cnt, info->xmit_fifo_room); 1540#endif 1541 1542 if (rocket_paranoia_check(info, "rp_stop")) 1543 return; 1544 1545 if (sGetTxCnt(&info->channel)) 1546 sDisTransmit(&info->channel); 1547} 1548 1549static void rp_start(struct tty_struct *tty) 1550{ 1551 struct r_port *info = (struct r_port *) tty->driver_data; 1552 1553#ifdef ROCKET_DEBUG_FLOW 1554 printk(KERN_INFO "start %s: %d %d....\n", tty->name, 1555 info->xmit_cnt, info->xmit_fifo_room); 1556#endif 1557 1558 if (rocket_paranoia_check(info, "rp_stop")) 1559 return; 1560 1561 sEnTransmit(&info->channel); 1562 set_bit((info->aiop * 8) + info->chan, 1563 (void *) &xmit_flags[info->board]); 1564} 1565 1566/* 1567 * rp_wait_until_sent() --- wait until the transmitter is empty 1568 */ 1569static void rp_wait_until_sent(struct tty_struct *tty, int timeout) 1570{ 1571 struct r_port *info = (struct r_port *) tty->driver_data; 1572 CHANNEL_t *cp; 1573 unsigned long orig_jiffies; 1574 int check_time, exit_time; 1575 int txcnt; 1576 1577 if (rocket_paranoia_check(info, "rp_wait_until_sent")) 1578 return; 1579 1580 cp = &info->channel; 1581 1582 orig_jiffies = jiffies; 1583#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT 1584 printk(KERN_INFO "In RP_wait_until_sent(%d) (jiff=%lu)...\n", timeout, 1585 jiffies); 1586 printk(KERN_INFO "cps=%d...\n", info->cps); 1587#endif 1588 lock_kernel(); 1589 while (1) { 1590 txcnt = sGetTxCnt(cp); 1591 if (!txcnt) { 1592 if (sGetChanStatusLo(cp) & TXSHRMT) 1593 break; 1594 check_time = (HZ / info->cps) / 5; 1595 } else { 1596 check_time = HZ * txcnt / info->cps; 1597 } 1598 if (timeout) { 1599 exit_time = orig_jiffies + timeout - jiffies; 1600 if (exit_time <= 0) 1601 break; 1602 if (exit_time < check_time) 1603 check_time = exit_time; 1604 } 1605 if (check_time == 0) 1606 check_time = 1; 1607#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT 1608 printk(KERN_INFO "txcnt = %d (jiff=%lu,check=%d)...\n", txcnt, 1609 jiffies, check_time); 1610#endif 1611 msleep_interruptible(jiffies_to_msecs(check_time)); 1612 if (signal_pending(current)) 1613 break; 1614 } 1615 __set_current_state(TASK_RUNNING); 1616 unlock_kernel(); 1617#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT 1618 printk(KERN_INFO "txcnt = %d (jiff=%lu)...done\n", txcnt, jiffies); 1619#endif 1620} 1621 1622/* 1623 * rp_hangup() --- called by tty_hangup() when a hangup is signaled. 1624 */ 1625static void rp_hangup(struct tty_struct *tty) 1626{ 1627 CHANNEL_t *cp; 1628 struct r_port *info = (struct r_port *) tty->driver_data; 1629 1630 if (rocket_paranoia_check(info, "rp_hangup")) 1631 return; 1632 1633#if (defined(ROCKET_DEBUG_OPEN) || defined(ROCKET_DEBUG_HANGUP)) 1634 printk(KERN_INFO "rp_hangup of ttyR%d...\n", info->line); 1635#endif 1636 rp_flush_buffer(tty); 1637 if (info->flags & ROCKET_CLOSING) 1638 return; 1639 if (info->count) 1640 atomic_dec(&rp_num_ports_open); 1641 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]); 1642 1643 info->count = 0; 1644 info->flags &= ~ROCKET_NORMAL_ACTIVE; 1645 info->tty = NULL; 1646 1647 cp = &info->channel; 1648 sDisRxFIFO(cp); 1649 sDisTransmit(cp); 1650 sDisInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN)); 1651 sDisCTSFlowCtl(cp); 1652 sDisTxSoftFlowCtl(cp); 1653 sClrTxXOFF(cp); 1654 info->flags &= ~ROCKET_INITIALIZED; 1655 1656 wake_up_interruptible(&info->open_wait); 1657} 1658 1659/* 1660 * Exception handler - write char routine. The RocketPort driver uses a 1661 * double-buffering strategy, with the twist that if the in-memory CPU 1662 * buffer is empty, and there's space in the transmit FIFO, the 1663 * writing routines will write directly to transmit FIFO. 1664 * Write buffer and counters protected by spinlocks 1665 */ 1666static int rp_put_char(struct tty_struct *tty, unsigned char ch) 1667{ 1668 struct r_port *info = (struct r_port *) tty->driver_data; 1669 CHANNEL_t *cp; 1670 unsigned long flags; 1671 1672 if (rocket_paranoia_check(info, "rp_put_char")) 1673 return 0; 1674 1675 /* 1676 * Grab the port write mutex, locking out other processes that try to 1677 * write to this port 1678 */ 1679 mutex_lock(&info->write_mtx); 1680 1681#ifdef ROCKET_DEBUG_WRITE 1682 printk(KERN_INFO "rp_put_char %c...\n", ch); 1683#endif 1684 1685 spin_lock_irqsave(&info->slock, flags); 1686 cp = &info->channel; 1687 1688 if (!tty->stopped && !tty->hw_stopped && info->xmit_fifo_room == 0) 1689 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp); 1690 1691 if (tty->stopped || tty->hw_stopped || info->xmit_fifo_room == 0 || info->xmit_cnt != 0) { 1692 info->xmit_buf[info->xmit_head++] = ch; 1693 info->xmit_head &= XMIT_BUF_SIZE - 1; 1694 info->xmit_cnt++; 1695 set_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]); 1696 } else { 1697 sOutB(sGetTxRxDataIO(cp), ch); 1698 info->xmit_fifo_room--; 1699 } 1700 spin_unlock_irqrestore(&info->slock, flags); 1701 mutex_unlock(&info->write_mtx); 1702 return 1; 1703} 1704 1705/* 1706 * Exception handler - write routine, called when user app writes to the device. 1707 * A per port write mutex is used to protect from another process writing to 1708 * this port at the same time. This other process could be running on the other CPU 1709 * or get control of the CPU if the copy_from_user() blocks due to a page fault (swapped out). 1710 * Spinlocks protect the info xmit members. 1711 */ 1712static int rp_write(struct tty_struct *tty, 1713 const unsigned char *buf, int count) 1714{ 1715 struct r_port *info = (struct r_port *) tty->driver_data; 1716 CHANNEL_t *cp; 1717 const unsigned char *b; 1718 int c, retval = 0; 1719 unsigned long flags; 1720 1721 if (count <= 0 || rocket_paranoia_check(info, "rp_write")) 1722 return 0; 1723 1724 if (mutex_lock_interruptible(&info->write_mtx)) 1725 return -ERESTARTSYS; 1726 1727#ifdef ROCKET_DEBUG_WRITE 1728 printk(KERN_INFO "rp_write %d chars...\n", count); 1729#endif 1730 cp = &info->channel; 1731 1732 if (!tty->stopped && !tty->hw_stopped && info->xmit_fifo_room < count) 1733 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp); 1734 1735 /* 1736 * If the write queue for the port is empty, and there is FIFO space, stuff bytes 1737 * into FIFO. Use the write queue for temp storage. 1738 */ 1739 if (!tty->stopped && !tty->hw_stopped && info->xmit_cnt == 0 && info->xmit_fifo_room > 0) { 1740 c = min(count, info->xmit_fifo_room); 1741 b = buf; 1742 1743 /* Push data into FIFO, 2 bytes at a time */ 1744 sOutStrW(sGetTxRxDataIO(cp), (unsigned short *) b, c / 2); 1745 1746 /* If there is a byte remaining, write it */ 1747 if (c & 1) 1748 sOutB(sGetTxRxDataIO(cp), b[c - 1]); 1749 1750 retval += c; 1751 buf += c; 1752 count -= c; 1753 1754 spin_lock_irqsave(&info->slock, flags); 1755 info->xmit_fifo_room -= c; 1756 spin_unlock_irqrestore(&info->slock, flags); 1757 } 1758 1759 /* If count is zero, we wrote it all and are done */ 1760 if (!count) 1761 goto end; 1762 1763 /* Write remaining data into the port's xmit_buf */ 1764 while (1) { 1765 if (!info->tty) /* Seemingly obligatory check... */ 1766 goto end; 1767 c = min(count, XMIT_BUF_SIZE - info->xmit_cnt - 1); 1768 c = min(c, XMIT_BUF_SIZE - info->xmit_head); 1769 if (c <= 0) 1770 break; 1771 1772 b = buf; 1773 memcpy(info->xmit_buf + info->xmit_head, b, c); 1774 1775 spin_lock_irqsave(&info->slock, flags); 1776 info->xmit_head = 1777 (info->xmit_head + c) & (XMIT_BUF_SIZE - 1); 1778 info->xmit_cnt += c; 1779 spin_unlock_irqrestore(&info->slock, flags); 1780 1781 buf += c; 1782 count -= c; 1783 retval += c; 1784 } 1785 1786 if ((retval > 0) && !tty->stopped && !tty->hw_stopped) 1787 set_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]); 1788 1789end: 1790 if (info->xmit_cnt < WAKEUP_CHARS) { 1791 tty_wakeup(tty); 1792#ifdef ROCKETPORT_HAVE_POLL_WAIT 1793 wake_up_interruptible(&tty->poll_wait); 1794#endif 1795 } 1796 mutex_unlock(&info->write_mtx); 1797 return retval; 1798} 1799 1800/* 1801 * Return the number of characters that can be sent. We estimate 1802 * only using the in-memory transmit buffer only, and ignore the 1803 * potential space in the transmit FIFO. 1804 */ 1805static int rp_write_room(struct tty_struct *tty) 1806{ 1807 struct r_port *info = (struct r_port *) tty->driver_data; 1808 int ret; 1809 1810 if (rocket_paranoia_check(info, "rp_write_room")) 1811 return 0; 1812 1813 ret = XMIT_BUF_SIZE - info->xmit_cnt - 1; 1814 if (ret < 0) 1815 ret = 0; 1816#ifdef ROCKET_DEBUG_WRITE 1817 printk(KERN_INFO "rp_write_room returns %d...\n", ret); 1818#endif 1819 return ret; 1820} 1821 1822/* 1823 * Return the number of characters in the buffer. Again, this only 1824 * counts those characters in the in-memory transmit buffer. 1825 */ 1826static int rp_chars_in_buffer(struct tty_struct *tty) 1827{ 1828 struct r_port *info = (struct r_port *) tty->driver_data; 1829 CHANNEL_t *cp; 1830 1831 if (rocket_paranoia_check(info, "rp_chars_in_buffer")) 1832 return 0; 1833 1834 cp = &info->channel; 1835 1836#ifdef ROCKET_DEBUG_WRITE 1837 printk(KERN_INFO "rp_chars_in_buffer returns %d...\n", info->xmit_cnt); 1838#endif 1839 return info->xmit_cnt; 1840} 1841 1842/* 1843 * Flushes the TX fifo for a port, deletes data in the xmit_buf stored in the 1844 * r_port struct for the port. Note that spinlock are used to protect info members, 1845 * do not call this function if the spinlock is already held. 1846 */ 1847static void rp_flush_buffer(struct tty_struct *tty) 1848{ 1849 struct r_port *info = (struct r_port *) tty->driver_data; 1850 CHANNEL_t *cp; 1851 unsigned long flags; 1852 1853 if (rocket_paranoia_check(info, "rp_flush_buffer")) 1854 return; 1855 1856 spin_lock_irqsave(&info->slock, flags); 1857 info->xmit_cnt = info->xmit_head = info->xmit_tail = 0; 1858 spin_unlock_irqrestore(&info->slock, flags); 1859 1860#ifdef ROCKETPORT_HAVE_POLL_WAIT 1861 wake_up_interruptible(&tty->poll_wait); 1862#endif 1863 tty_wakeup(tty); 1864 1865 cp = &info->channel; 1866 sFlushTxFIFO(cp); 1867} 1868 1869#ifdef CONFIG_PCI 1870 1871static struct pci_device_id __devinitdata rocket_pci_ids[] = { 1872 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_ANY_ID) }, 1873 { } 1874}; 1875MODULE_DEVICE_TABLE(pci, rocket_pci_ids); 1876 1877/* 1878 * Called when a PCI card is found. Retrieves and stores model information, 1879 * init's aiopic and serial port hardware. 1880 * Inputs: i is the board number (0-n) 1881 */ 1882static __init int register_PCI(int i, struct pci_dev *dev) 1883{ 1884 int num_aiops, aiop, max_num_aiops, num_chan, chan; 1885 unsigned int aiopio[MAX_AIOPS_PER_BOARD]; 1886 char *str, *board_type; 1887 CONTROLLER_t *ctlp; 1888 1889 int fast_clock = 0; 1890 int altChanRingIndicator = 0; 1891 int ports_per_aiop = 8; 1892 WordIO_t ConfigIO = 0; 1893 ByteIO_t UPCIRingInd = 0; 1894 1895 if (!dev || pci_enable_device(dev)) 1896 return 0; 1897 1898 rcktpt_io_addr[i] = pci_resource_start(dev, 0); 1899 1900 rcktpt_type[i] = ROCKET_TYPE_NORMAL; 1901 rocketModel[i].loadrm2 = 0; 1902 rocketModel[i].startingPortNumber = nextLineNumber; 1903 1904 /* Depending on the model, set up some config variables */ 1905 switch (dev->device) { 1906 case PCI_DEVICE_ID_RP4QUAD: 1907 str = "Quadcable"; 1908 max_num_aiops = 1; 1909 ports_per_aiop = 4; 1910 rocketModel[i].model = MODEL_RP4QUAD; 1911 strcpy(rocketModel[i].modelString, "RocketPort 4 port w/quad cable"); 1912 rocketModel[i].numPorts = 4; 1913 break; 1914 case PCI_DEVICE_ID_RP8OCTA: 1915 str = "Octacable"; 1916 max_num_aiops = 1; 1917 rocketModel[i].model = MODEL_RP8OCTA; 1918 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/octa cable"); 1919 rocketModel[i].numPorts = 8; 1920 break; 1921 case PCI_DEVICE_ID_URP8OCTA: 1922 str = "Octacable"; 1923 max_num_aiops = 1; 1924 rocketModel[i].model = MODEL_UPCI_RP8OCTA; 1925 strcpy(rocketModel[i].modelString, "RocketPort UPCI 8 port w/octa cable"); 1926 rocketModel[i].numPorts = 8; 1927 break; 1928 case PCI_DEVICE_ID_RP8INTF: 1929 str = "8"; 1930 max_num_aiops = 1; 1931 rocketModel[i].model = MODEL_RP8INTF; 1932 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/external I/F"); 1933 rocketModel[i].numPorts = 8; 1934 break; 1935 case PCI_DEVICE_ID_URP8INTF: 1936 str = "8"; 1937 max_num_aiops = 1; 1938 rocketModel[i].model = MODEL_UPCI_RP8INTF; 1939 strcpy(rocketModel[i].modelString, "RocketPort UPCI 8 port w/external I/F"); 1940 rocketModel[i].numPorts = 8; 1941 break; 1942 case PCI_DEVICE_ID_RP8J: 1943 str = "8J"; 1944 max_num_aiops = 1; 1945 rocketModel[i].model = MODEL_RP8J; 1946 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/RJ11 connectors"); 1947 rocketModel[i].numPorts = 8; 1948 break; 1949 case PCI_DEVICE_ID_RP4J: 1950 str = "4J"; 1951 max_num_aiops = 1; 1952 ports_per_aiop = 4; 1953 rocketModel[i].model = MODEL_RP4J; 1954 strcpy(rocketModel[i].modelString, "RocketPort 4 port w/RJ45 connectors"); 1955 rocketModel[i].numPorts = 4; 1956 break; 1957 case PCI_DEVICE_ID_RP8SNI: 1958 str = "8 (DB78 Custom)"; 1959 max_num_aiops = 1; 1960 rocketModel[i].model = MODEL_RP8SNI; 1961 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/ custom DB78"); 1962 rocketModel[i].numPorts = 8; 1963 break; 1964 case PCI_DEVICE_ID_RP16SNI: 1965 str = "16 (DB78 Custom)"; 1966 max_num_aiops = 2; 1967 rocketModel[i].model = MODEL_RP16SNI; 1968 strcpy(rocketModel[i].modelString, "RocketPort 16 port w/ custom DB78"); 1969 rocketModel[i].numPorts = 16; 1970 break; 1971 case PCI_DEVICE_ID_RP16INTF: 1972 str = "16"; 1973 max_num_aiops = 2; 1974 rocketModel[i].model = MODEL_RP16INTF; 1975 strcpy(rocketModel[i].modelString, "RocketPort 16 port w/external I/F"); 1976 rocketModel[i].numPorts = 16; 1977 break; 1978 case PCI_DEVICE_ID_URP16INTF: 1979 str = "16"; 1980 max_num_aiops = 2; 1981 rocketModel[i].model = MODEL_UPCI_RP16INTF; 1982 strcpy(rocketModel[i].modelString, "RocketPort UPCI 16 port w/external I/F"); 1983 rocketModel[i].numPorts = 16; 1984 break; 1985 case PCI_DEVICE_ID_CRP16INTF: 1986 str = "16"; 1987 max_num_aiops = 2; 1988 rocketModel[i].model = MODEL_CPCI_RP16INTF; 1989 strcpy(rocketModel[i].modelString, "RocketPort Compact PCI 16 port w/external I/F"); 1990 rocketModel[i].numPorts = 16; 1991 break; 1992 case PCI_DEVICE_ID_RP32INTF: 1993 str = "32"; 1994 max_num_aiops = 4; 1995 rocketModel[i].model = MODEL_RP32INTF; 1996 strcpy(rocketModel[i].modelString, "RocketPort 32 port w/external I/F"); 1997 rocketModel[i].numPorts = 32; 1998 break; 1999 case PCI_DEVICE_ID_URP32INTF: 2000 str = "32"; 2001 max_num_aiops = 4; 2002 rocketModel[i].model = MODEL_UPCI_RP32INTF; 2003 strcpy(rocketModel[i].modelString, "RocketPort UPCI 32 port w/external I/F"); 2004 rocketModel[i].numPorts = 32; 2005 break; 2006 case PCI_DEVICE_ID_RPP4: 2007 str = "Plus Quadcable"; 2008 max_num_aiops = 1; 2009 ports_per_aiop = 4; 2010 altChanRingIndicator++; 2011 fast_clock++; 2012 rocketModel[i].model = MODEL_RPP4; 2013 strcpy(rocketModel[i].modelString, "RocketPort Plus 4 port"); 2014 rocketModel[i].numPorts = 4; 2015 break; 2016 case PCI_DEVICE_ID_RPP8: 2017 str = "Plus Octacable"; 2018 max_num_aiops = 2; 2019 ports_per_aiop = 4; 2020 altChanRingIndicator++; 2021 fast_clock++; 2022 rocketModel[i].model = MODEL_RPP8; 2023 strcpy(rocketModel[i].modelString, "RocketPort Plus 8 port"); 2024 rocketModel[i].numPorts = 8; 2025 break; 2026 case PCI_DEVICE_ID_RP2_232: 2027 str = "Plus 2 (RS-232)"; 2028 max_num_aiops = 1; 2029 ports_per_aiop = 2; 2030 altChanRingIndicator++; 2031 fast_clock++; 2032 rocketModel[i].model = MODEL_RP2_232; 2033 strcpy(rocketModel[i].modelString, "RocketPort Plus 2 port RS232"); 2034 rocketModel[i].numPorts = 2; 2035 break; 2036 case PCI_DEVICE_ID_RP2_422: 2037 str = "Plus 2 (RS-422)"; 2038 max_num_aiops = 1; 2039 ports_per_aiop = 2; 2040 altChanRingIndicator++; 2041 fast_clock++; 2042 rocketModel[i].model = MODEL_RP2_422; 2043 strcpy(rocketModel[i].modelString, "RocketPort Plus 2 port RS422"); 2044 rocketModel[i].numPorts = 2; 2045 break; 2046 case PCI_DEVICE_ID_RP6M: 2047 2048 max_num_aiops = 1; 2049 ports_per_aiop = 6; 2050 str = "6-port"; 2051 2052 /* If revision is 1, the rocketmodem flash must be loaded. 2053 * If it is 2 it is a "socketed" version. */ 2054 if (dev->revision == 1) { 2055 rcktpt_type[i] = ROCKET_TYPE_MODEMII; 2056 rocketModel[i].loadrm2 = 1; 2057 } else { 2058 rcktpt_type[i] = ROCKET_TYPE_MODEM; 2059 } 2060 2061 rocketModel[i].model = MODEL_RP6M; 2062 strcpy(rocketModel[i].modelString, "RocketModem 6 port"); 2063 rocketModel[i].numPorts = 6; 2064 break; 2065 case PCI_DEVICE_ID_RP4M: 2066 max_num_aiops = 1; 2067 ports_per_aiop = 4; 2068 str = "4-port"; 2069 if (dev->revision == 1) { 2070 rcktpt_type[i] = ROCKET_TYPE_MODEMII; 2071 rocketModel[i].loadrm2 = 1; 2072 } else { 2073 rcktpt_type[i] = ROCKET_TYPE_MODEM; 2074 } 2075 2076 rocketModel[i].model = MODEL_RP4M; 2077 strcpy(rocketModel[i].modelString, "RocketModem 4 port"); 2078 rocketModel[i].numPorts = 4; 2079 break; 2080 default: 2081 str = "(unknown/unsupported)"; 2082 max_num_aiops = 0; 2083 break; 2084 } 2085 2086 /* 2087 * Check for UPCI boards. 2088 */ 2089 2090 switch (dev->device) { 2091 case PCI_DEVICE_ID_URP32INTF: 2092 case PCI_DEVICE_ID_URP8INTF: 2093 case PCI_DEVICE_ID_URP16INTF: 2094 case PCI_DEVICE_ID_CRP16INTF: 2095 case PCI_DEVICE_ID_URP8OCTA: 2096 rcktpt_io_addr[i] = pci_resource_start(dev, 2); 2097 ConfigIO = pci_resource_start(dev, 1); 2098 if (dev->device == PCI_DEVICE_ID_URP8OCTA) { 2099 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND; 2100 2101 /* 2102 * Check for octa or quad cable. 2103 */ 2104 if (! 2105 (sInW(ConfigIO + _PCI_9030_GPIO_CTRL) & 2106 PCI_GPIO_CTRL_8PORT)) { 2107 str = "Quadcable"; 2108 ports_per_aiop = 4; 2109 rocketModel[i].numPorts = 4; 2110 } 2111 } 2112 break; 2113 case PCI_DEVICE_ID_UPCI_RM3_8PORT: 2114 str = "8 ports"; 2115 max_num_aiops = 1; 2116 rocketModel[i].model = MODEL_UPCI_RM3_8PORT; 2117 strcpy(rocketModel[i].modelString, "RocketModem III 8 port"); 2118 rocketModel[i].numPorts = 8; 2119 rcktpt_io_addr[i] = pci_resource_start(dev, 2); 2120 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND; 2121 ConfigIO = pci_resource_start(dev, 1); 2122 rcktpt_type[i] = ROCKET_TYPE_MODEMIII; 2123 break; 2124 case PCI_DEVICE_ID_UPCI_RM3_4PORT: 2125 str = "4 ports"; 2126 max_num_aiops = 1; 2127 rocketModel[i].model = MODEL_UPCI_RM3_4PORT; 2128 strcpy(rocketModel[i].modelString, "RocketModem III 4 port"); 2129 rocketModel[i].numPorts = 4; 2130 rcktpt_io_addr[i] = pci_resource_start(dev, 2); 2131 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND; 2132 ConfigIO = pci_resource_start(dev, 1); 2133 rcktpt_type[i] = ROCKET_TYPE_MODEMIII; 2134 break; 2135 default: 2136 break; 2137 } 2138 2139 switch (rcktpt_type[i]) { 2140 case ROCKET_TYPE_MODEM: 2141 board_type = "RocketModem"; 2142 break; 2143 case ROCKET_TYPE_MODEMII: 2144 board_type = "RocketModem II"; 2145 break; 2146 case ROCKET_TYPE_MODEMIII: 2147 board_type = "RocketModem III"; 2148 break; 2149 default: 2150 board_type = "RocketPort"; 2151 break; 2152 } 2153 2154 if (fast_clock) { 2155 sClockPrescale = 0x12; /* mod 2 (divide by 3) */ 2156 rp_baud_base[i] = 921600; 2157 } else { 2158 /* 2159 * If support_low_speed is set, use the slow clock 2160 * prescale, which supports 50 bps 2161 */ 2162 if (support_low_speed) { 2163 /* mod 9 (divide by 10) prescale */ 2164 sClockPrescale = 0x19; 2165 rp_baud_base[i] = 230400; 2166 } else { 2167 /* mod 4 (devide by 5) prescale */ 2168 sClockPrescale = 0x14; 2169 rp_baud_base[i] = 460800; 2170 } 2171 } 2172 2173 for (aiop = 0; aiop < max_num_aiops; aiop++) 2174 aiopio[aiop] = rcktpt_io_addr[i] + (aiop * 0x40); 2175 ctlp = sCtlNumToCtlPtr(i); 2176 num_aiops = sPCIInitController(ctlp, i, aiopio, max_num_aiops, ConfigIO, 0, FREQ_DIS, 0, altChanRingIndicator, UPCIRingInd); 2177 for (aiop = 0; aiop < max_num_aiops; aiop++) 2178 ctlp->AiopNumChan[aiop] = ports_per_aiop; 2179 2180 dev_info(&dev->dev, "comtrol PCI controller #%d found at " 2181 "address %04lx, %d AIOP(s) (%s), creating ttyR%d - %ld\n", 2182 i, rcktpt_io_addr[i], num_aiops, rocketModel[i].modelString, 2183 rocketModel[i].startingPortNumber, 2184 rocketModel[i].startingPortNumber + rocketModel[i].numPorts-1); 2185 2186 if (num_aiops <= 0) { 2187 rcktpt_io_addr[i] = 0; 2188 return (0); 2189 } 2190 is_PCI[i] = 1; 2191 2192 /* Reset the AIOPIC, init the serial ports */ 2193 for (aiop = 0; aiop < num_aiops; aiop++) { 2194 sResetAiopByNum(ctlp, aiop); 2195 num_chan = ports_per_aiop; 2196 for (chan = 0; chan < num_chan; chan++) 2197 init_r_port(i, aiop, chan, dev); 2198 } 2199 2200 /* Rocket modems must be reset */ 2201 if ((rcktpt_type[i] == ROCKET_TYPE_MODEM) || 2202 (rcktpt_type[i] == ROCKET_TYPE_MODEMII) || 2203 (rcktpt_type[i] == ROCKET_TYPE_MODEMIII)) { 2204 num_chan = ports_per_aiop; 2205 for (chan = 0; chan < num_chan; chan++) 2206 sPCIModemReset(ctlp, chan, 1); 2207 msleep(500); 2208 for (chan = 0; chan < num_chan; chan++) 2209 sPCIModemReset(ctlp, chan, 0); 2210 msleep(500); 2211 rmSpeakerReset(ctlp, rocketModel[i].model); 2212 } 2213 return (1); 2214} 2215 2216/* 2217 * Probes for PCI cards, inits them if found 2218 * Input: board_found = number of ISA boards already found, or the 2219 * starting board number 2220 * Returns: Number of PCI boards found 2221 */ 2222static int __init init_PCI(int boards_found) 2223{ 2224 struct pci_dev *dev = NULL; 2225 int count = 0; 2226 2227 /* Work through the PCI device list, pulling out ours */ 2228 while ((dev = pci_get_device(PCI_VENDOR_ID_RP, PCI_ANY_ID, dev))) { 2229 if (register_PCI(count + boards_found, dev)) 2230 count++; 2231 } 2232 return (count); 2233} 2234 2235#endif /* CONFIG_PCI */ 2236 2237/* 2238 * Probes for ISA cards 2239 * Input: i = the board number to look for 2240 * Returns: 1 if board found, 0 else 2241 */ 2242static int __init init_ISA(int i) 2243{ 2244 int num_aiops, num_chan = 0, total_num_chan = 0; 2245 int aiop, chan; 2246 unsigned int aiopio[MAX_AIOPS_PER_BOARD]; 2247 CONTROLLER_t *ctlp; 2248 char *type_string; 2249 2250 /* If io_addr is zero, no board configured */ 2251 if (rcktpt_io_addr[i] == 0) 2252 return (0); 2253 2254 /* Reserve the IO region */ 2255 if (!request_region(rcktpt_io_addr[i], 64, "Comtrol RocketPort")) { 2256 printk(KERN_ERR "Unable to reserve IO region for configured " 2257 "ISA RocketPort at address 0x%lx, board not " 2258 "installed...\n", rcktpt_io_addr[i]); 2259 rcktpt_io_addr[i] = 0; 2260 return (0); 2261 } 2262 2263 ctlp = sCtlNumToCtlPtr(i); 2264 2265 ctlp->boardType = rcktpt_type[i]; 2266 2267 switch (rcktpt_type[i]) { 2268 case ROCKET_TYPE_PC104: 2269 type_string = "(PC104)"; 2270 break; 2271 case ROCKET_TYPE_MODEM: 2272 type_string = "(RocketModem)"; 2273 break; 2274 case ROCKET_TYPE_MODEMII: 2275 type_string = "(RocketModem II)"; 2276 break; 2277 default: 2278 type_string = ""; 2279 break; 2280 } 2281 2282 /* 2283 * If support_low_speed is set, use the slow clock prescale, 2284 * which supports 50 bps 2285 */ 2286 if (support_low_speed) { 2287 sClockPrescale = 0x19; /* mod 9 (divide by 10) prescale */ 2288 rp_baud_base[i] = 230400; 2289 } else { 2290 sClockPrescale = 0x14; /* mod 4 (devide by 5) prescale */ 2291 rp_baud_base[i] = 460800; 2292 } 2293 2294 for (aiop = 0; aiop < MAX_AIOPS_PER_BOARD; aiop++) 2295 aiopio[aiop] = rcktpt_io_addr[i] + (aiop * 0x400); 2296 2297 num_aiops = sInitController(ctlp, i, controller + (i * 0x400), aiopio, MAX_AIOPS_PER_BOARD, 0, FREQ_DIS, 0); 2298 2299 if (ctlp->boardType == ROCKET_TYPE_PC104) { 2300 sEnAiop(ctlp, 2); /* only one AIOPIC, but these */ 2301 sEnAiop(ctlp, 3); /* CSels used for other stuff */ 2302 } 2303 2304 /* If something went wrong initing the AIOP's release the ISA IO memory */ 2305 if (num_aiops <= 0) { 2306 release_region(rcktpt_io_addr[i], 64); 2307 rcktpt_io_addr[i] = 0; 2308 return (0); 2309 } 2310 2311 rocketModel[i].startingPortNumber = nextLineNumber; 2312 2313 for (aiop = 0; aiop < num_aiops; aiop++) { 2314 sResetAiopByNum(ctlp, aiop); 2315 sEnAiop(ctlp, aiop); 2316 num_chan = sGetAiopNumChan(ctlp, aiop); 2317 total_num_chan += num_chan; 2318 for (chan = 0; chan < num_chan; chan++) 2319 init_r_port(i, aiop, chan, NULL); 2320 } 2321 is_PCI[i] = 0; 2322 if ((rcktpt_type[i] == ROCKET_TYPE_MODEM) || (rcktpt_type[i] == ROCKET_TYPE_MODEMII)) { 2323 num_chan = sGetAiopNumChan(ctlp, 0); 2324 total_num_chan = num_chan; 2325 for (chan = 0; chan < num_chan; chan++) 2326 sModemReset(ctlp, chan, 1); 2327 msleep(500); 2328 for (chan = 0; chan < num_chan; chan++) 2329 sModemReset(ctlp, chan, 0); 2330 msleep(500); 2331 strcpy(rocketModel[i].modelString, "RocketModem ISA"); 2332 } else { 2333 strcpy(rocketModel[i].modelString, "RocketPort ISA"); 2334 } 2335 rocketModel[i].numPorts = total_num_chan; 2336 rocketModel[i].model = MODEL_ISA; 2337 2338 printk(KERN_INFO "RocketPort ISA card #%d found at 0x%lx - %d AIOPs %s\n", 2339 i, rcktpt_io_addr[i], num_aiops, type_string); 2340 2341 printk(KERN_INFO "Installing %s, creating /dev/ttyR%d - %ld\n", 2342 rocketModel[i].modelString, 2343 rocketModel[i].startingPortNumber, 2344 rocketModel[i].startingPortNumber + 2345 rocketModel[i].numPorts - 1); 2346 2347 return (1); 2348} 2349 2350static const struct tty_operations rocket_ops = { 2351 .open = rp_open, 2352 .close = rp_close, 2353 .write = rp_write, 2354 .put_char = rp_put_char, 2355 .write_room = rp_write_room, 2356 .chars_in_buffer = rp_chars_in_buffer, 2357 .flush_buffer = rp_flush_buffer, 2358 .ioctl = rp_ioctl, 2359 .throttle = rp_throttle, 2360 .unthrottle = rp_unthrottle, 2361 .set_termios = rp_set_termios, 2362 .stop = rp_stop, 2363 .start = rp_start, 2364 .hangup = rp_hangup, 2365 .break_ctl = rp_break, 2366 .send_xchar = rp_send_xchar, 2367 .wait_until_sent = rp_wait_until_sent, 2368 .tiocmget = rp_tiocmget, 2369 .tiocmset = rp_tiocmset, 2370}; 2371 2372/* 2373 * The module "startup" routine; it's run when the module is loaded. 2374 */ 2375static int __init rp_init(void) 2376{ 2377 int ret = -ENOMEM, pci_boards_found, isa_boards_found, i; 2378 2379 printk(KERN_INFO "RocketPort device driver module, version %s, %s\n", 2380 ROCKET_VERSION, ROCKET_DATE); 2381 2382 rocket_driver = alloc_tty_driver(MAX_RP_PORTS); 2383 if (!rocket_driver) 2384 goto err; 2385 2386 /* 2387 * If board 1 is non-zero, there is at least one ISA configured. If controller is 2388 * zero, use the default controller IO address of board1 + 0x40. 2389 */ 2390 if (board1) { 2391 if (controller == 0) 2392 controller = board1 + 0x40; 2393 } else { 2394 controller = 0; /* Used as a flag, meaning no ISA boards */ 2395 } 2396 2397 /* If an ISA card is configured, reserve the 4 byte IO space for the Mudbac controller */ 2398 if (controller && (!request_region(controller, 4, "Comtrol RocketPort"))) { 2399 printk(KERN_ERR "Unable to reserve IO region for first " 2400 "configured ISA RocketPort controller 0x%lx. " 2401 "Driver exiting\n", controller); 2402 ret = -EBUSY; 2403 goto err_tty; 2404 } 2405 2406 /* Store ISA variable retrieved from command line or .conf file. */ 2407 rcktpt_io_addr[0] = board1; 2408 rcktpt_io_addr[1] = board2; 2409 rcktpt_io_addr[2] = board3; 2410 rcktpt_io_addr[3] = board4; 2411 2412 rcktpt_type[0] = modem1 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL; 2413 rcktpt_type[0] = pc104_1[0] ? ROCKET_TYPE_PC104 : rcktpt_type[0]; 2414 rcktpt_type[1] = modem2 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL; 2415 rcktpt_type[1] = pc104_2[0] ? ROCKET_TYPE_PC104 : rcktpt_type[1]; 2416 rcktpt_type[2] = modem3 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL; 2417 rcktpt_type[2] = pc104_3[0] ? ROCKET_TYPE_PC104 : rcktpt_type[2]; 2418 rcktpt_type[3] = modem4 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL; 2419 rcktpt_type[3] = pc104_4[0] ? ROCKET_TYPE_PC104 : rcktpt_type[3]; 2420 2421 /* 2422 * Set up the tty driver structure and then register this 2423 * driver with the tty layer. 2424 */ 2425 2426 rocket_driver->owner = THIS_MODULE; 2427 rocket_driver->flags = TTY_DRIVER_DYNAMIC_DEV; 2428 rocket_driver->name = "ttyR"; 2429 rocket_driver->driver_name = "Comtrol RocketPort"; 2430 rocket_driver->major = TTY_ROCKET_MAJOR; 2431 rocket_driver->minor_start = 0; 2432 rocket_driver->type = TTY_DRIVER_TYPE_SERIAL; 2433 rocket_driver->subtype = SERIAL_TYPE_NORMAL; 2434 rocket_driver->init_termios = tty_std_termios; 2435 rocket_driver->init_termios.c_cflag = 2436 B9600 | CS8 | CREAD | HUPCL | CLOCAL; 2437 rocket_driver->init_termios.c_ispeed = 9600; 2438 rocket_driver->init_termios.c_ospeed = 9600; 2439#ifdef ROCKET_SOFT_FLOW 2440 rocket_driver->flags |= TTY_DRIVER_REAL_RAW; 2441#endif 2442 tty_set_operations(rocket_driver, &rocket_ops); 2443 2444 ret = tty_register_driver(rocket_driver); 2445 if (ret < 0) { 2446 printk(KERN_ERR "Couldn't install tty RocketPort driver\n"); 2447 goto err_tty; 2448 } 2449 2450#ifdef ROCKET_DEBUG_OPEN 2451 printk(KERN_INFO "RocketPort driver is major %d\n", rocket_driver.major); 2452#endif 2453 2454 /* 2455 * OK, let's probe each of the controllers looking for boards. Any boards found 2456 * will be initialized here. 2457 */ 2458 isa_boards_found = 0; 2459 pci_boards_found = 0; 2460 2461 for (i = 0; i < NUM_BOARDS; i++) { 2462 if (init_ISA(i)) 2463 isa_boards_found++; 2464 } 2465 2466#ifdef CONFIG_PCI 2467 if (isa_boards_found < NUM_BOARDS) 2468 pci_boards_found = init_PCI(isa_boards_found); 2469#endif 2470 2471 max_board = pci_boards_found + isa_boards_found; 2472 2473 if (max_board == 0) { 2474 printk(KERN_ERR "No rocketport ports found; unloading driver\n"); 2475 ret = -ENXIO; 2476 goto err_ttyu; 2477 } 2478 2479 return 0; 2480err_ttyu: 2481 tty_unregister_driver(rocket_driver); 2482err_tty: 2483 put_tty_driver(rocket_driver); 2484err: 2485 return ret; 2486} 2487 2488 2489static void rp_cleanup_module(void) 2490{ 2491 int retval; 2492 int i; 2493 2494 del_timer_sync(&rocket_timer); 2495 2496 retval = tty_unregister_driver(rocket_driver); 2497 if (retval) 2498 printk(KERN_ERR "Error %d while trying to unregister " 2499 "rocketport driver\n", -retval); 2500 2501 for (i = 0; i < MAX_RP_PORTS; i++) 2502 if (rp_table[i]) { 2503 tty_unregister_device(rocket_driver, i); 2504 kfree(rp_table[i]); 2505 } 2506 2507 put_tty_driver(rocket_driver); 2508 2509 for (i = 0; i < NUM_BOARDS; i++) { 2510 if (rcktpt_io_addr[i] <= 0 || is_PCI[i]) 2511 continue; 2512 release_region(rcktpt_io_addr[i], 64); 2513 } 2514 if (controller) 2515 release_region(controller, 4); 2516} 2517 2518/*************************************************************************** 2519Function: sInitController 2520Purpose: Initialization of controller global registers and controller 2521 structure. 2522Call: sInitController(CtlP,CtlNum,MudbacIO,AiopIOList,AiopIOListSize, 2523 IRQNum,Frequency,PeriodicOnly) 2524 CONTROLLER_T *CtlP; Ptr to controller structure 2525 int CtlNum; Controller number 2526 ByteIO_t MudbacIO; Mudbac base I/O address. 2527 ByteIO_t *AiopIOList; List of I/O addresses for each AIOP. 2528 This list must be in the order the AIOPs will be found on the 2529 controller. Once an AIOP in the list is not found, it is 2530 assumed that there are no more AIOPs on the controller. 2531 int AiopIOListSize; Number of addresses in AiopIOList 2532 int IRQNum; Interrupt Request number. Can be any of the following: 2533 0: Disable global interrupts 2534 3: IRQ 3 2535 4: IRQ 4 2536 5: IRQ 5 2537 9: IRQ 9 2538 10: IRQ 10 2539 11: IRQ 11 2540 12: IRQ 12 2541 15: IRQ 15 2542 Byte_t Frequency: A flag identifying the frequency 2543 of the periodic interrupt, can be any one of the following: 2544 FREQ_DIS - periodic interrupt disabled 2545 FREQ_137HZ - 137 Hertz 2546 FREQ_69HZ - 69 Hertz 2547 FREQ_34HZ - 34 Hertz 2548 FREQ_17HZ - 17 Hertz 2549 FREQ_9HZ - 9 Hertz 2550 FREQ_4HZ - 4 Hertz 2551 If IRQNum is set to 0 the Frequency parameter is 2552 overidden, it is forced to a value of FREQ_DIS. 2553 int PeriodicOnly: 1 if all interrupts except the periodic 2554 interrupt are to be blocked. 2555 0 is both the periodic interrupt and 2556 other channel interrupts are allowed. 2557 If IRQNum is set to 0 the PeriodicOnly parameter is 2558 overidden, it is forced to a value of 0. 2559Return: int: Number of AIOPs on the controller, or CTLID_NULL if controller 2560 initialization failed. 2561 2562Comments: 2563 If periodic interrupts are to be disabled but AIOP interrupts 2564 are allowed, set Frequency to FREQ_DIS and PeriodicOnly to 0. 2565 2566 If interrupts are to be completely disabled set IRQNum to 0. 2567 2568 Setting Frequency to FREQ_DIS and PeriodicOnly to 1 is an 2569 invalid combination. 2570 2571 This function performs initialization of global interrupt modes, 2572 but it does not actually enable global interrupts. To enable 2573 and disable global interrupts use functions sEnGlobalInt() and 2574 sDisGlobalInt(). Enabling of global interrupts is normally not 2575 done until all other initializations are complete. 2576 2577 Even if interrupts are globally enabled, they must also be 2578 individually enabled for each channel that is to generate 2579 interrupts. 2580 2581Warnings: No range checking on any of the parameters is done. 2582 2583 No context switches are allowed while executing this function. 2584 2585 After this function all AIOPs on the controller are disabled, 2586 they can be enabled with sEnAiop(). 2587*/ 2588static int sInitController(CONTROLLER_T * CtlP, int CtlNum, ByteIO_t MudbacIO, 2589 ByteIO_t * AiopIOList, int AiopIOListSize, 2590 int IRQNum, Byte_t Frequency, int PeriodicOnly) 2591{ 2592 int i; 2593 ByteIO_t io; 2594 int done; 2595 2596 CtlP->AiopIntrBits = aiop_intr_bits; 2597 CtlP->AltChanRingIndicator = 0; 2598 CtlP->CtlNum = CtlNum; 2599 CtlP->CtlID = CTLID_0001; /* controller release 1 */ 2600 CtlP->BusType = isISA; 2601 CtlP->MBaseIO = MudbacIO; 2602 CtlP->MReg1IO = MudbacIO + 1; 2603 CtlP->MReg2IO = MudbacIO + 2; 2604 CtlP->MReg3IO = MudbacIO + 3; 2605#if 1 2606 CtlP->MReg2 = 0; /* interrupt disable */ 2607 CtlP->MReg3 = 0; /* no periodic interrupts */ 2608#else 2609 if (sIRQMap[IRQNum] == 0) { /* interrupts globally disabled */ 2610 CtlP->MReg2 = 0; /* interrupt disable */ 2611 CtlP->MReg3 = 0; /* no periodic interrupts */ 2612 } else { 2613 CtlP->MReg2 = sIRQMap[IRQNum]; /* set IRQ number */ 2614 CtlP->MReg3 = Frequency; /* set frequency */ 2615 if (PeriodicOnly) { /* periodic interrupt only */ 2616 CtlP->MReg3 |= PERIODIC_ONLY; 2617 } 2618 } 2619#endif 2620 sOutB(CtlP->MReg2IO, CtlP->MReg2); 2621 sOutB(CtlP->MReg3IO, CtlP->MReg3); 2622 sControllerEOI(CtlP); /* clear EOI if warm init */ 2623 /* Init AIOPs */ 2624 CtlP->NumAiop = 0; 2625 for (i = done = 0; i < AiopIOListSize; i++) { 2626 io = AiopIOList[i]; 2627 CtlP->AiopIO[i] = (WordIO_t) io; 2628 CtlP->AiopIntChanIO[i] = io + _INT_CHAN; 2629 sOutB(CtlP->MReg2IO, CtlP->MReg2 | (i & 0x03)); /* AIOP index */ 2630 sOutB(MudbacIO, (Byte_t) (io >> 6)); /* set up AIOP I/O in MUDBAC */ 2631 if (done) 2632 continue; 2633 sEnAiop(CtlP, i); /* enable the AIOP */ 2634 CtlP->AiopID[i] = sReadAiopID(io); /* read AIOP ID */ 2635 if (CtlP->AiopID[i] == AIOPID_NULL) /* if AIOP does not exist */ 2636 done = 1; /* done looking for AIOPs */ 2637 else { 2638 CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t) io); /* num channels in AIOP */ 2639 sOutW((WordIO_t) io + _INDX_ADDR, _CLK_PRE); /* clock prescaler */ 2640 sOutB(io + _INDX_DATA, sClockPrescale); 2641 CtlP->NumAiop++; /* bump count of AIOPs */ 2642 } 2643 sDisAiop(CtlP, i); /* disable AIOP */ 2644 } 2645 2646 if (CtlP->NumAiop == 0) 2647 return (-1); 2648 else 2649 return (CtlP->NumAiop); 2650} 2651 2652/*************************************************************************** 2653Function: sPCIInitController 2654Purpose: Initialization of controller global registers and controller 2655 structure. 2656Call: sPCIInitController(CtlP,CtlNum,AiopIOList,AiopIOListSize, 2657 IRQNum,Frequency,PeriodicOnly) 2658 CONTROLLER_T *CtlP; Ptr to controller structure 2659 int CtlNum; Controller number 2660 ByteIO_t *AiopIOList; List of I/O addresses for each AIOP. 2661 This list must be in the order the AIOPs will be found on the 2662 controller. Once an AIOP in the list is not found, it is 2663 assumed that there are no more AIOPs on the controller. 2664 int AiopIOListSize; Number of addresses in AiopIOList 2665 int IRQNum; Interrupt Request number. Can be any of the following: 2666 0: Disable global interrupts 2667 3: IRQ 3 2668 4: IRQ 4 2669 5: IRQ 5 2670 9: IRQ 9 2671 10: IRQ 10 2672 11: IRQ 11 2673 12: IRQ 12 2674 15: IRQ 15 2675 Byte_t Frequency: A flag identifying the frequency 2676 of the periodic interrupt, can be any one of the following: 2677 FREQ_DIS - periodic interrupt disabled 2678 FREQ_137HZ - 137 Hertz 2679 FREQ_69HZ - 69 Hertz 2680 FREQ_34HZ - 34 Hertz 2681 FREQ_17HZ - 17 Hertz 2682 FREQ_9HZ - 9 Hertz 2683 FREQ_4HZ - 4 Hertz 2684 If IRQNum is set to 0 the Frequency parameter is 2685 overidden, it is forced to a value of FREQ_DIS. 2686 int PeriodicOnly: 1 if all interrupts except the periodic 2687 interrupt are to be blocked. 2688 0 is both the periodic interrupt and 2689 other channel interrupts are allowed. 2690 If IRQNum is set to 0 the PeriodicOnly parameter is 2691 overidden, it is forced to a value of 0. 2692Return: int: Number of AIOPs on the controller, or CTLID_NULL if controller 2693 initialization failed. 2694 2695Comments: 2696 If periodic interrupts are to be disabled but AIOP interrupts 2697 are allowed, set Frequency to FREQ_DIS and PeriodicOnly to 0. 2698 2699 If interrupts are to be completely disabled set IRQNum to 0. 2700 2701 Setting Frequency to FREQ_DIS and PeriodicOnly to 1 is an 2702 invalid combination. 2703 2704 This function performs initialization of global interrupt modes, 2705 but it does not actually enable global interrupts. To enable 2706 and disable global interrupts use functions sEnGlobalInt() and 2707 sDisGlobalInt(). Enabling of global interrupts is normally not 2708 done until all other initializations are complete. 2709 2710 Even if interrupts are globally enabled, they must also be 2711 individually enabled for each channel that is to generate 2712 interrupts. 2713 2714Warnings: No range checking on any of the parameters is done. 2715 2716 No context switches are allowed while executing this function. 2717 2718 After this function all AIOPs on the controller are disabled, 2719 they can be enabled with sEnAiop(). 2720*/ 2721static int sPCIInitController(CONTROLLER_T * CtlP, int CtlNum, 2722 ByteIO_t * AiopIOList, int AiopIOListSize, 2723 WordIO_t ConfigIO, int IRQNum, Byte_t Frequency, 2724 int PeriodicOnly, int altChanRingIndicator, 2725 int UPCIRingInd) 2726{ 2727 int i; 2728 ByteIO_t io; 2729 2730 CtlP->AltChanRingIndicator = altChanRingIndicator; 2731 CtlP->UPCIRingInd = UPCIRingInd; 2732 CtlP->CtlNum = CtlNum; 2733 CtlP->CtlID = CTLID_0001; /* controller release 1 */ 2734 CtlP->BusType = isPCI; /* controller release 1 */ 2735 2736 if (ConfigIO) { 2737 CtlP->isUPCI = 1; 2738 CtlP->PCIIO = ConfigIO + _PCI_9030_INT_CTRL; 2739 CtlP->PCIIO2 = ConfigIO + _PCI_9030_GPIO_CTRL; 2740 CtlP->AiopIntrBits = upci_aiop_intr_bits; 2741 } else { 2742 CtlP->isUPCI = 0; 2743 CtlP->PCIIO = 2744 (WordIO_t) ((ByteIO_t) AiopIOList[0] + _PCI_INT_FUNC); 2745 CtlP->AiopIntrBits = aiop_intr_bits; 2746 } 2747 2748 sPCIControllerEOI(CtlP); /* clear EOI if warm init */ 2749 /* Init AIOPs */ 2750 CtlP->NumAiop = 0; 2751 for (i = 0; i < AiopIOListSize; i++) { 2752 io = AiopIOList[i]; 2753 CtlP->AiopIO[i] = (WordIO_t) io; 2754 CtlP->AiopIntChanIO[i] = io + _INT_CHAN; 2755 2756 CtlP->AiopID[i] = sReadAiopID(io); /* read AIOP ID */ 2757 if (CtlP->AiopID[i] == AIOPID_NULL) /* if AIOP does not exist */ 2758 break; /* done looking for AIOPs */ 2759 2760 CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t) io); /* num channels in AIOP */ 2761 sOutW((WordIO_t) io + _INDX_ADDR, _CLK_PRE); /* clock prescaler */ 2762 sOutB(io + _INDX_DATA, sClockPrescale); 2763 CtlP->NumAiop++; /* bump count of AIOPs */ 2764 } 2765 2766 if (CtlP->NumAiop == 0) 2767 return (-1); 2768 else 2769 return (CtlP->NumAiop); 2770} 2771 2772/*************************************************************************** 2773Function: sReadAiopID 2774Purpose: Read the AIOP idenfication number directly from an AIOP. 2775Call: sReadAiopID(io) 2776 ByteIO_t io: AIOP base I/O address 2777Return: int: Flag AIOPID_XXXX if a valid AIOP is found, where X 2778 is replace by an identifying number. 2779 Flag AIOPID_NULL if no valid AIOP is found 2780Warnings: No context switches are allowed while executing this function. 2781 2782*/ 2783static int sReadAiopID(ByteIO_t io) 2784{ 2785 Byte_t AiopID; /* ID byte from AIOP */ 2786 2787 sOutB(io + _CMD_REG, RESET_ALL); /* reset AIOP */ 2788 sOutB(io + _CMD_REG, 0x0); 2789 AiopID = sInW(io + _CHN_STAT0) & 0x07; 2790 if (AiopID == 0x06) 2791 return (1); 2792 else /* AIOP does not exist */ 2793 return (-1); 2794} 2795 2796/*************************************************************************** 2797Function: sReadAiopNumChan 2798Purpose: Read the number of channels available in an AIOP directly from 2799 an AIOP. 2800Call: sReadAiopNumChan(io) 2801 WordIO_t io: AIOP base I/O address 2802Return: int: The number of channels available 2803Comments: The number of channels is determined by write/reads from identical 2804 offsets within the SRAM address spaces for channels 0 and 4. 2805 If the channel 4 space is mirrored to channel 0 it is a 4 channel 2806 AIOP, otherwise it is an 8 channel. 2807Warnings: No context switches are allowed while executing this function. 2808*/ 2809static int sReadAiopNumChan(WordIO_t io) 2810{ 2811 Word_t x; 2812 static Byte_t R[4] = { 0x00, 0x00, 0x34, 0x12 }; 2813 2814 /* write to chan 0 SRAM */ 2815 out32((DWordIO_t) io + _INDX_ADDR, R); 2816 sOutW(io + _INDX_ADDR, 0); /* read from SRAM, chan 0 */ 2817 x = sInW(io + _INDX_DATA); 2818 sOutW(io + _INDX_ADDR, 0x4000); /* read from SRAM, chan 4 */ 2819 if (x != sInW(io + _INDX_DATA)) /* if different must be 8 chan */ 2820 return (8); 2821 else 2822 return (4); 2823} 2824 2825/*************************************************************************** 2826Function: sInitChan 2827Purpose: Initialization of a channel and channel structure 2828Call: sInitChan(CtlP,ChP,AiopNum,ChanNum) 2829 CONTROLLER_T *CtlP; Ptr to controller structure 2830 CHANNEL_T *ChP; Ptr to channel structure 2831 int AiopNum; AIOP number within controller 2832 int ChanNum; Channel number within AIOP 2833Return: int: 1 if initialization succeeded, 0 if it fails because channel 2834 number exceeds number of channels available in AIOP. 2835Comments: This function must be called before a channel can be used. 2836Warnings: No range checking on any of the parameters is done. 2837 2838 No context switches are allowed while executing this function. 2839*/ 2840static int sInitChan(CONTROLLER_T * CtlP, CHANNEL_T * ChP, int AiopNum, 2841 int ChanNum) 2842{ 2843 int i; 2844 WordIO_t AiopIO; 2845 WordIO_t ChIOOff; 2846 Byte_t *ChR; 2847 Word_t ChOff; 2848 static Byte_t R[4]; 2849 int brd9600; 2850 2851 if (ChanNum >= CtlP->AiopNumChan[AiopNum]) 2852 return 0; /* exceeds num chans in AIOP */ 2853 2854 /* Channel, AIOP, and controller identifiers */ 2855 ChP->CtlP = CtlP; 2856 ChP->ChanID = CtlP->AiopID[AiopNum]; 2857 ChP->AiopNum = AiopNum; 2858 ChP->ChanNum = ChanNum; 2859 2860 /* Global direct addresses */ 2861 AiopIO = CtlP->AiopIO[AiopNum]; 2862 ChP->Cmd = (ByteIO_t) AiopIO + _CMD_REG; 2863 ChP->IntChan = (ByteIO_t) AiopIO + _INT_CHAN; 2864 ChP->IntMask = (ByteIO_t) AiopIO + _INT_MASK; 2865 ChP->IndexAddr = (DWordIO_t) AiopIO + _INDX_ADDR; 2866 ChP->IndexData = AiopIO + _INDX_DATA; 2867 2868 /* Channel direct addresses */ 2869 ChIOOff = AiopIO + ChP->ChanNum * 2; 2870 ChP->TxRxData = ChIOOff + _TD0; 2871 ChP->ChanStat = ChIOOff + _CHN_STAT0; 2872 ChP->TxRxCount = ChIOOff + _FIFO_CNT0; 2873 ChP->IntID = (ByteIO_t) AiopIO + ChP->ChanNum + _INT_ID0; 2874 2875 /* Initialize the channel from the RData array */ 2876 for (i = 0; i < RDATASIZE; i += 4) { 2877 R[0] = RData[i]; 2878 R[1] = RData[i + 1] + 0x10 * ChanNum; 2879 R[2] = RData[i + 2]; 2880 R[3] = RData[i + 3]; 2881 out32(ChP->IndexAddr, R); 2882 } 2883 2884 ChR = ChP->R; 2885 for (i = 0; i < RREGDATASIZE; i += 4) { 2886 ChR[i] = RRegData[i]; 2887 ChR[i + 1] = RRegData[i + 1] + 0x10 * ChanNum; 2888 ChR[i + 2] = RRegData[i + 2]; 2889 ChR[i + 3] = RRegData[i + 3]; 2890 } 2891 2892 /* Indexed registers */ 2893 ChOff = (Word_t) ChanNum *0x1000; 2894 2895 if (sClockPrescale == 0x14) 2896 brd9600 = 47; 2897 else 2898 brd9600 = 23; 2899 2900 ChP->BaudDiv[0] = (Byte_t) (ChOff + _BAUD); 2901 ChP->BaudDiv[1] = (Byte_t) ((ChOff + _BAUD) >> 8); 2902 ChP->BaudDiv[2] = (Byte_t) brd9600; 2903 ChP->BaudDiv[3] = (Byte_t) (brd9600 >> 8); 2904 out32(ChP->IndexAddr, ChP->BaudDiv); 2905 2906 ChP->TxControl[0] = (Byte_t) (ChOff + _TX_CTRL); 2907 ChP->TxControl[1] = (Byte_t) ((ChOff + _TX_CTRL) >> 8); 2908 ChP->TxControl[2] = 0; 2909 ChP->TxControl[3] = 0; 2910 out32(ChP->IndexAddr, ChP->TxControl); 2911 2912 ChP->RxControl[0] = (Byte_t) (ChOff + _RX_CTRL); 2913 ChP->RxControl[1] = (Byte_t) ((ChOff + _RX_CTRL) >> 8); 2914 ChP->RxControl[2] = 0; 2915 ChP->RxControl[3] = 0; 2916 out32(ChP->IndexAddr, ChP->RxControl); 2917 2918 ChP->TxEnables[0] = (Byte_t) (ChOff + _TX_ENBLS); 2919 ChP->TxEnables[1] = (Byte_t) ((ChOff + _TX_ENBLS) >> 8); 2920 ChP->TxEnables[2] = 0; 2921 ChP->TxEnables[3] = 0; 2922 out32(ChP->IndexAddr, ChP->TxEnables); 2923 2924 ChP->TxCompare[0] = (Byte_t) (ChOff + _TXCMP1); 2925 ChP->TxCompare[1] = (Byte_t) ((ChOff + _TXCMP1) >> 8); 2926 ChP->TxCompare[2] = 0; 2927 ChP->TxCompare[3] = 0; 2928 out32(ChP->IndexAddr, ChP->TxCompare); 2929 2930 ChP->TxReplace1[0] = (Byte_t) (ChOff + _TXREP1B1); 2931 ChP->TxReplace1[1] = (Byte_t) ((ChOff + _TXREP1B1) >> 8); 2932 ChP->TxReplace1[2] = 0; 2933 ChP->TxReplace1[3] = 0; 2934 out32(ChP->IndexAddr, ChP->TxReplace1); 2935 2936 ChP->TxReplace2[0] = (Byte_t) (ChOff + _TXREP2); 2937 ChP->TxReplace2[1] = (Byte_t) ((ChOff + _TXREP2) >> 8); 2938 ChP->TxReplace2[2] = 0; 2939 ChP->TxReplace2[3] = 0; 2940 out32(ChP->IndexAddr, ChP->TxReplace2); 2941 2942 ChP->TxFIFOPtrs = ChOff + _TXF_OUTP; 2943 ChP->TxFIFO = ChOff + _TX_FIFO; 2944 2945 sOutB(ChP->Cmd, (Byte_t) ChanNum | RESTXFCNT); /* apply reset Tx FIFO count */ 2946 sOutB(ChP->Cmd, (Byte_t) ChanNum); /* remove reset Tx FIFO count */ 2947 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxFIFOPtrs); /* clear Tx in/out ptrs */ 2948 sOutW(ChP->IndexData, 0); 2949 ChP->RxFIFOPtrs = ChOff + _RXF_OUTP; 2950 ChP->RxFIFO = ChOff + _RX_FIFO; 2951 2952 sOutB(ChP->Cmd, (Byte_t) ChanNum | RESRXFCNT); /* apply reset Rx FIFO count */ 2953 sOutB(ChP->Cmd, (Byte_t) ChanNum); /* remove reset Rx FIFO count */ 2954 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs); /* clear Rx out ptr */ 2955 sOutW(ChP->IndexData, 0); 2956 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs + 2); /* clear Rx in ptr */ 2957 sOutW(ChP->IndexData, 0); 2958 ChP->TxPrioCnt = ChOff + _TXP_CNT; 2959 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxPrioCnt); 2960 sOutB(ChP->IndexData, 0); 2961 ChP->TxPrioPtr = ChOff + _TXP_PNTR; 2962 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxPrioPtr); 2963 sOutB(ChP->IndexData, 0); 2964 ChP->TxPrioBuf = ChOff + _TXP_BUF; 2965 sEnRxProcessor(ChP); /* start the Rx processor */ 2966 2967 return 1; 2968} 2969 2970/*************************************************************************** 2971Function: sStopRxProcessor 2972Purpose: Stop the receive processor from processing a channel. 2973Call: sStopRxProcessor(ChP) 2974 CHANNEL_T *ChP; Ptr to channel structure 2975 2976Comments: The receive processor can be started again with sStartRxProcessor(). 2977 This function causes the receive processor to skip over the 2978 stopped channel. It does not stop it from processing other channels. 2979 2980Warnings: No context switches are allowed while executing this function. 2981 2982 Do not leave the receive processor stopped for more than one 2983 character time. 2984 2985 After calling this function a delay of 4 uS is required to ensure 2986 that the receive processor is no longer processing this channel. 2987*/ 2988static void sStopRxProcessor(CHANNEL_T * ChP) 2989{ 2990 Byte_t R[4]; 2991 2992 R[0] = ChP->R[0]; 2993 R[1] = ChP->R[1]; 2994 R[2] = 0x0a; 2995 R[3] = ChP->R[3]; 2996 out32(ChP->IndexAddr, R); 2997} 2998 2999/*************************************************************************** 3000Function: sFlushRxFIFO 3001Purpose: Flush the Rx FIFO 3002Call: sFlushRxFIFO(ChP) 3003 CHANNEL_T *ChP; Ptr to channel structure 3004Return: void 3005Comments: To prevent data from being enqueued or dequeued in the Tx FIFO 3006 while it is being flushed the receive processor is stopped 3007 and the transmitter is disabled. After these operations a 3008 4 uS delay is done before clearing the pointers to allow 3009 the receive processor to stop. These items are handled inside 3010 this function. 3011Warnings: No context switches are allowed while executing this function. 3012*/ 3013static void sFlushRxFIFO(CHANNEL_T * ChP) 3014{ 3015 int i; 3016 Byte_t Ch; /* channel number within AIOP */ 3017 int RxFIFOEnabled; /* 1 if Rx FIFO enabled */ 3018 3019 if (sGetRxCnt(ChP) == 0) /* Rx FIFO empty */ 3020 return; /* don't need to flush */ 3021 3022 RxFIFOEnabled = 0; 3023 if (ChP->R[0x32] == 0x08) { /* Rx FIFO is enabled */ 3024 RxFIFOEnabled = 1; 3025 sDisRxFIFO(ChP); /* disable it */ 3026 for (i = 0; i < 2000 / 200; i++) /* delay 2 uS to allow proc to disable FIFO */ 3027 sInB(ChP->IntChan); /* depends on bus i/o timing */ 3028 } 3029 sGetChanStatus(ChP); /* clear any pending Rx errors in chan stat */ 3030 Ch = (Byte_t) sGetChanNum(ChP); 3031 sOutB(ChP->Cmd, Ch | RESRXFCNT); /* apply reset Rx FIFO count */ 3032 sOutB(ChP->Cmd, Ch); /* remove reset Rx FIFO count */ 3033 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs); /* clear Rx out ptr */ 3034 sOutW(ChP->IndexData, 0); 3035 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs + 2); /* clear Rx in ptr */ 3036 sOutW(ChP->IndexData, 0); 3037 if (RxFIFOEnabled) 3038 sEnRxFIFO(ChP); /* enable Rx FIFO */ 3039} 3040 3041/*************************************************************************** 3042Function: sFlushTxFIFO 3043Purpose: Flush the Tx FIFO 3044Call: sFlushTxFIFO(ChP) 3045 CHANNEL_T *ChP; Ptr to channel structure 3046Return: void 3047Comments: To prevent data from being enqueued or dequeued in the Tx FIFO 3048 while it is being flushed the receive processor is stopped 3049 and the transmitter is disabled. After these operations a 3050 4 uS delay is done before clearing the pointers to allow 3051 the receive processor to stop. These items are handled inside 3052 this function. 3053Warnings: No context switches are allowed while executing this function. 3054*/ 3055static void sFlushTxFIFO(CHANNEL_T * ChP) 3056{ 3057 int i; 3058 Byte_t Ch; /* channel number within AIOP */ 3059 int TxEnabled; /* 1 if transmitter enabled */ 3060 3061 if (sGetTxCnt(ChP) == 0) /* Tx FIFO empty */ 3062 return; /* don't need to flush */ 3063 3064 TxEnabled = 0; 3065 if (ChP->TxControl[3] & TX_ENABLE) { 3066 TxEnabled = 1; 3067 sDisTransmit(ChP); /* disable transmitter */ 3068 } 3069 sStopRxProcessor(ChP); /* stop Rx processor */ 3070 for (i = 0; i < 4000 / 200; i++) /* delay 4 uS to allow proc to stop */ 3071 sInB(ChP->IntChan); /* depends on bus i/o timing */ 3072 Ch = (Byte_t) sGetChanNum(ChP); 3073 sOutB(ChP->Cmd, Ch | RESTXFCNT); /* apply reset Tx FIFO count */ 3074 sOutB(ChP->Cmd, Ch); /* remove reset Tx FIFO count */ 3075 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxFIFOPtrs); /* clear Tx in/out ptrs */ 3076 sOutW(ChP->IndexData, 0); 3077 if (TxEnabled) 3078 sEnTransmit(ChP); /* enable transmitter */ 3079 sStartRxProcessor(ChP); /* restart Rx processor */ 3080} 3081 3082/*************************************************************************** 3083Function: sWriteTxPrioByte 3084Purpose: Write a byte of priority transmit data to a channel 3085Call: sWriteTxPrioByte(ChP,Data) 3086 CHANNEL_T *ChP; Ptr to channel structure 3087 Byte_t Data; The transmit data byte 3088 3089Return: int: 1 if the bytes is successfully written, otherwise 0. 3090 3091Comments: The priority byte is transmitted before any data in the Tx FIFO. 3092 3093Warnings: No context switches are allowed while executing this function. 3094*/ 3095static int sWriteTxPrioByte(CHANNEL_T * ChP, Byte_t Data) 3096{ 3097 Byte_t DWBuf[4]; /* buffer for double word writes */ 3098 Word_t *WordPtr; /* must be far because Win SS != DS */ 3099 register DWordIO_t IndexAddr; 3100 3101 if (sGetTxCnt(ChP) > 1) { /* write it to Tx priority buffer */ 3102 IndexAddr = ChP->IndexAddr; 3103 sOutW((WordIO_t) IndexAddr, ChP->TxPrioCnt); /* get priority buffer status */ 3104 if (sInB((ByteIO_t) ChP->IndexData) & PRI_PEND) /* priority buffer busy */ 3105 return (0); /* nothing sent */ 3106 3107 WordPtr = (Word_t *) (&DWBuf[0]); 3108 *WordPtr = ChP->TxPrioBuf; /* data byte address */ 3109 3110 DWBuf[2] = Data; /* data byte value */ 3111 out32(IndexAddr, DWBuf); /* write it out */ 3112 3113 *WordPtr = ChP->TxPrioCnt; /* Tx priority count address */ 3114 3115 DWBuf[2] = PRI_PEND + 1; /* indicate 1 byte pending */ 3116 DWBuf[3] = 0; /* priority buffer pointer */ 3117 out32(IndexAddr, DWBuf); /* write it out */ 3118 } else { /* write it to Tx FIFO */ 3119 3120 sWriteTxByte(sGetTxRxDataIO(ChP), Data); 3121 } 3122 return (1); /* 1 byte sent */ 3123} 3124 3125/*************************************************************************** 3126Function: sEnInterrupts 3127Purpose: Enable one or more interrupts for a channel 3128Call: sEnInterrupts(ChP,Flags) 3129 CHANNEL_T *ChP; Ptr to channel structure 3130 Word_t Flags: Interrupt enable flags, can be any combination 3131 of the following flags: 3132 TXINT_EN: Interrupt on Tx FIFO empty 3133 RXINT_EN: Interrupt on Rx FIFO at trigger level (see 3134 sSetRxTrigger()) 3135 SRCINT_EN: Interrupt on SRC (Special Rx Condition) 3136 MCINT_EN: Interrupt on modem input change 3137 CHANINT_EN: Allow channel interrupt signal to the AIOP's 3138 Interrupt Channel Register. 3139Return: void 3140Comments: If an interrupt enable flag is set in Flags, that interrupt will be 3141 enabled. If an interrupt enable flag is not set in Flags, that 3142 interrupt will not be changed. Interrupts can be disabled with 3143 function sDisInterrupts(). 3144 3145 This function sets the appropriate bit for the channel in the AIOP's 3146 Interrupt Mask Register if the CHANINT_EN flag is set. This allows 3147 this channel's bit to be set in the AIOP's Interrupt Channel Register. 3148 3149 Interrupts must also be globally enabled before channel interrupts 3150 will be passed on to the host. This is done with function 3151 sEnGlobalInt(). 3152 3153 In some cases it may be desirable to disable interrupts globally but 3154 enable channel interrupts. This would allow the global interrupt 3155 status register to be used to determine which AIOPs need service. 3156*/ 3157static void sEnInterrupts(CHANNEL_T * ChP, Word_t Flags) 3158{ 3159 Byte_t Mask; /* Interrupt Mask Register */ 3160 3161 ChP->RxControl[2] |= 3162 ((Byte_t) Flags & (RXINT_EN | SRCINT_EN | MCINT_EN)); 3163 3164 out32(ChP->IndexAddr, ChP->RxControl); 3165 3166 ChP->TxControl[2] |= ((Byte_t) Flags & TXINT_EN); 3167 3168 out32(ChP->IndexAddr, ChP->TxControl); 3169 3170 if (Flags & CHANINT_EN) { 3171 Mask = sInB(ChP->IntMask) | sBitMapSetTbl[ChP->ChanNum]; 3172 sOutB(ChP->IntMask, Mask); 3173 } 3174} 3175 3176/*************************************************************************** 3177Function: sDisInterrupts 3178Purpose: Disable one or more interrupts for a channel 3179Call: sDisInterrupts(ChP,Flags) 3180 CHANNEL_T *ChP; Ptr to channel structure 3181 Word_t Flags: Interrupt flags, can be any combination 3182 of the following flags: 3183 TXINT_EN: Interrupt on Tx FIFO empty 3184 RXINT_EN: Interrupt on Rx FIFO at trigger level (see 3185 sSetRxTrigger()) 3186 SRCINT_EN: Interrupt on SRC (Special Rx Condition) 3187 MCINT_EN: Interrupt on modem input change 3188 CHANINT_EN: Disable channel interrupt signal to the 3189 AIOP's Interrupt Channel Register. 3190Return: void 3191Comments: If an interrupt flag is set in Flags, that interrupt will be 3192 disabled. If an interrupt flag is not set in Flags, that 3193 interrupt will not be changed. Interrupts can be enabled with 3194 function sEnInterrupts(). 3195 3196 This function clears the appropriate bit for the channel in the AIOP's 3197 Interrupt Mask Register if the CHANINT_EN flag is set. This blocks 3198 this channel's bit from being set in the AIOP's Interrupt Channel 3199 Register. 3200*/ 3201static void sDisInterrupts(CHANNEL_T * ChP, Word_t Flags) 3202{ 3203 Byte_t Mask; /* Interrupt Mask Register */ 3204 3205 ChP->RxControl[2] &= 3206 ~((Byte_t) Flags & (RXINT_EN | SRCINT_EN | MCINT_EN)); 3207 out32(ChP->IndexAddr, ChP->RxControl); 3208 ChP->TxControl[2] &= ~((Byte_t) Flags & TXINT_EN); 3209 out32(ChP->IndexAddr, ChP->TxControl); 3210 3211 if (Flags & CHANINT_EN) { 3212 Mask = sInB(ChP->IntMask) & sBitMapClrTbl[ChP->ChanNum]; 3213 sOutB(ChP->IntMask, Mask); 3214 } 3215} 3216 3217static void sSetInterfaceMode(CHANNEL_T * ChP, Byte_t mode) 3218{ 3219 sOutB(ChP->CtlP->AiopIO[2], (mode & 0x18) | ChP->ChanNum); 3220} 3221 3222/* 3223 * Not an official SSCI function, but how to reset RocketModems. 3224 * ISA bus version 3225 */ 3226static void sModemReset(CONTROLLER_T * CtlP, int chan, int on) 3227{ 3228 ByteIO_t addr; 3229 Byte_t val; 3230 3231 addr = CtlP->AiopIO[0] + 0x400; 3232 val = sInB(CtlP->MReg3IO); 3233 /* if AIOP[1] is not enabled, enable it */ 3234 if ((val & 2) == 0) { 3235 val = sInB(CtlP->MReg2IO); 3236 sOutB(CtlP->MReg2IO, (val & 0xfc) | (1 & 0x03)); 3237 sOutB(CtlP->MBaseIO, (unsigned char) (addr >> 6)); 3238 } 3239 3240 sEnAiop(CtlP, 1); 3241 if (!on) 3242 addr += 8; 3243 sOutB(addr + chan, 0); /* apply or remove reset */ 3244 sDisAiop(CtlP, 1); 3245} 3246 3247/* 3248 * Not an official SSCI function, but how to reset RocketModems. 3249 * PCI bus version 3250 */ 3251static void sPCIModemReset(CONTROLLER_T * CtlP, int chan, int on) 3252{ 3253 ByteIO_t addr; 3254 3255 addr = CtlP->AiopIO[0] + 0x40; /* 2nd AIOP */ 3256 if (!on) 3257 addr += 8; 3258 sOutB(addr + chan, 0); /* apply or remove reset */ 3259} 3260 3261/* Resets the speaker controller on RocketModem II and III devices */ 3262static void rmSpeakerReset(CONTROLLER_T * CtlP, unsigned long model) 3263{ 3264 ByteIO_t addr; 3265 3266 /* RocketModem II speaker control is at the 8th port location of offset 0x40 */ 3267 if ((model == MODEL_RP4M) || (model == MODEL_RP6M)) { 3268 addr = CtlP->AiopIO[0] + 0x4F; 3269 sOutB(addr, 0); 3270 } 3271 3272 /* RocketModem III speaker control is at the 1st port location of offset 0x80 */ 3273 if ((model == MODEL_UPCI_RM3_8PORT) 3274 || (model == MODEL_UPCI_RM3_4PORT)) { 3275 addr = CtlP->AiopIO[0] + 0x88; 3276 sOutB(addr, 0); 3277 } 3278} 3279 3280/* Returns the line number given the controller (board), aiop and channel number */ 3281static unsigned char GetLineNumber(int ctrl, int aiop, int ch) 3282{ 3283 return lineNumbers[(ctrl << 5) | (aiop << 3) | ch]; 3284} 3285 3286/* 3287 * Stores the line number associated with a given controller (board), aiop 3288 * and channel number. 3289 * Returns: The line number assigned 3290 */ 3291static unsigned char SetLineNumber(int ctrl, int aiop, int ch) 3292{ 3293 lineNumbers[(ctrl << 5) | (aiop << 3) | ch] = nextLineNumber++; 3294 return (nextLineNumber - 1); 3295}