at v2.6.26-rc2 843 lines 21 kB view raw
1/* 2 * Timer device implementation for SGI SN platforms. 3 * 4 * This file is subject to the terms and conditions of the GNU General Public 5 * License. See the file "COPYING" in the main directory of this archive 6 * for more details. 7 * 8 * Copyright (c) 2001-2006 Silicon Graphics, Inc. All rights reserved. 9 * 10 * This driver exports an API that should be supportable by any HPET or IA-PC 11 * multimedia timer. The code below is currently specific to the SGI Altix 12 * SHub RTC, however. 13 * 14 * 11/01/01 - jbarnes - initial revision 15 * 9/10/04 - Christoph Lameter - remove interrupt support for kernel inclusion 16 * 10/1/04 - Christoph Lameter - provide posix clock CLOCK_SGI_CYCLE 17 * 10/13/04 - Christoph Lameter, Dimitri Sivanich - provide timer interrupt 18 * support via the posix timer interface 19 */ 20 21#include <linux/types.h> 22#include <linux/kernel.h> 23#include <linux/ioctl.h> 24#include <linux/module.h> 25#include <linux/init.h> 26#include <linux/errno.h> 27#include <linux/mm.h> 28#include <linux/fs.h> 29#include <linux/mmtimer.h> 30#include <linux/miscdevice.h> 31#include <linux/posix-timers.h> 32#include <linux/interrupt.h> 33#include <linux/time.h> 34#include <linux/math64.h> 35 36#include <asm/uaccess.h> 37#include <asm/sn/addrs.h> 38#include <asm/sn/intr.h> 39#include <asm/sn/shub_mmr.h> 40#include <asm/sn/nodepda.h> 41#include <asm/sn/shubio.h> 42 43MODULE_AUTHOR("Jesse Barnes <jbarnes@sgi.com>"); 44MODULE_DESCRIPTION("SGI Altix RTC Timer"); 45MODULE_LICENSE("GPL"); 46 47/* name of the device, usually in /dev */ 48#define MMTIMER_NAME "mmtimer" 49#define MMTIMER_DESC "SGI Altix RTC Timer" 50#define MMTIMER_VERSION "2.1" 51 52#define RTC_BITS 55 /* 55 bits for this implementation */ 53 54extern unsigned long sn_rtc_cycles_per_second; 55 56#define RTC_COUNTER_ADDR ((long *)LOCAL_MMR_ADDR(SH_RTC)) 57 58#define rtc_time() (*RTC_COUNTER_ADDR) 59 60static int mmtimer_ioctl(struct inode *inode, struct file *file, 61 unsigned int cmd, unsigned long arg); 62static int mmtimer_mmap(struct file *file, struct vm_area_struct *vma); 63 64/* 65 * Period in femtoseconds (10^-15 s) 66 */ 67static unsigned long mmtimer_femtoperiod = 0; 68 69static const struct file_operations mmtimer_fops = { 70 .owner = THIS_MODULE, 71 .mmap = mmtimer_mmap, 72 .ioctl = mmtimer_ioctl, 73}; 74 75/* 76 * We only have comparison registers RTC1-4 currently available per 77 * node. RTC0 is used by SAL. 78 */ 79/* Check for an RTC interrupt pending */ 80static int mmtimer_int_pending(int comparator) 81{ 82 if (HUB_L((unsigned long *)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED)) & 83 SH_EVENT_OCCURRED_RTC1_INT_MASK << comparator) 84 return 1; 85 else 86 return 0; 87} 88 89/* Clear the RTC interrupt pending bit */ 90static void mmtimer_clr_int_pending(int comparator) 91{ 92 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED_ALIAS), 93 SH_EVENT_OCCURRED_RTC1_INT_MASK << comparator); 94} 95 96/* Setup timer on comparator RTC1 */ 97static void mmtimer_setup_int_0(int cpu, u64 expires) 98{ 99 u64 val; 100 101 /* Disable interrupt */ 102 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE), 0UL); 103 104 /* Initialize comparator value */ 105 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPB), -1L); 106 107 /* Clear pending bit */ 108 mmtimer_clr_int_pending(0); 109 110 val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC1_INT_CONFIG_IDX_SHFT) | 111 ((u64)cpu_physical_id(cpu) << 112 SH_RTC1_INT_CONFIG_PID_SHFT); 113 114 /* Set configuration */ 115 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_CONFIG), val); 116 117 /* Enable RTC interrupts */ 118 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE), 1UL); 119 120 /* Initialize comparator value */ 121 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPB), expires); 122 123 124} 125 126/* Setup timer on comparator RTC2 */ 127static void mmtimer_setup_int_1(int cpu, u64 expires) 128{ 129 u64 val; 130 131 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE), 0UL); 132 133 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPC), -1L); 134 135 mmtimer_clr_int_pending(1); 136 137 val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC2_INT_CONFIG_IDX_SHFT) | 138 ((u64)cpu_physical_id(cpu) << 139 SH_RTC2_INT_CONFIG_PID_SHFT); 140 141 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_CONFIG), val); 142 143 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE), 1UL); 144 145 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPC), expires); 146} 147 148/* Setup timer on comparator RTC3 */ 149static void mmtimer_setup_int_2(int cpu, u64 expires) 150{ 151 u64 val; 152 153 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE), 0UL); 154 155 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPD), -1L); 156 157 mmtimer_clr_int_pending(2); 158 159 val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC3_INT_CONFIG_IDX_SHFT) | 160 ((u64)cpu_physical_id(cpu) << 161 SH_RTC3_INT_CONFIG_PID_SHFT); 162 163 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_CONFIG), val); 164 165 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE), 1UL); 166 167 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPD), expires); 168} 169 170/* 171 * This function must be called with interrupts disabled and preemption off 172 * in order to insure that the setup succeeds in a deterministic time frame. 173 * It will check if the interrupt setup succeeded. 174 */ 175static int mmtimer_setup(int cpu, int comparator, unsigned long expires) 176{ 177 178 switch (comparator) { 179 case 0: 180 mmtimer_setup_int_0(cpu, expires); 181 break; 182 case 1: 183 mmtimer_setup_int_1(cpu, expires); 184 break; 185 case 2: 186 mmtimer_setup_int_2(cpu, expires); 187 break; 188 } 189 /* We might've missed our expiration time */ 190 if (rtc_time() <= expires) 191 return 1; 192 193 /* 194 * If an interrupt is already pending then its okay 195 * if not then we failed 196 */ 197 return mmtimer_int_pending(comparator); 198} 199 200static int mmtimer_disable_int(long nasid, int comparator) 201{ 202 switch (comparator) { 203 case 0: 204 nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE), 205 0UL) : REMOTE_HUB_S(nasid, SH_RTC1_INT_ENABLE, 0UL); 206 break; 207 case 1: 208 nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE), 209 0UL) : REMOTE_HUB_S(nasid, SH_RTC2_INT_ENABLE, 0UL); 210 break; 211 case 2: 212 nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE), 213 0UL) : REMOTE_HUB_S(nasid, SH_RTC3_INT_ENABLE, 0UL); 214 break; 215 default: 216 return -EFAULT; 217 } 218 return 0; 219} 220 221#define COMPARATOR 1 /* The comparator to use */ 222 223#define TIMER_OFF 0xbadcabLL /* Timer is not setup */ 224#define TIMER_SET 0 /* Comparator is set for this timer */ 225 226/* There is one of these for each timer */ 227struct mmtimer { 228 struct rb_node list; 229 struct k_itimer *timer; 230 int cpu; 231}; 232 233struct mmtimer_node { 234 spinlock_t lock ____cacheline_aligned; 235 struct rb_root timer_head; 236 struct rb_node *next; 237 struct tasklet_struct tasklet; 238}; 239static struct mmtimer_node *timers; 240 241 242/* 243 * Add a new mmtimer struct to the node's mmtimer list. 244 * This function assumes the struct mmtimer_node is locked. 245 */ 246static void mmtimer_add_list(struct mmtimer *n) 247{ 248 int nodeid = n->timer->it.mmtimer.node; 249 unsigned long expires = n->timer->it.mmtimer.expires; 250 struct rb_node **link = &timers[nodeid].timer_head.rb_node; 251 struct rb_node *parent = NULL; 252 struct mmtimer *x; 253 254 /* 255 * Find the right place in the rbtree: 256 */ 257 while (*link) { 258 parent = *link; 259 x = rb_entry(parent, struct mmtimer, list); 260 261 if (expires < x->timer->it.mmtimer.expires) 262 link = &(*link)->rb_left; 263 else 264 link = &(*link)->rb_right; 265 } 266 267 /* 268 * Insert the timer to the rbtree and check whether it 269 * replaces the first pending timer 270 */ 271 rb_link_node(&n->list, parent, link); 272 rb_insert_color(&n->list, &timers[nodeid].timer_head); 273 274 if (!timers[nodeid].next || expires < rb_entry(timers[nodeid].next, 275 struct mmtimer, list)->timer->it.mmtimer.expires) 276 timers[nodeid].next = &n->list; 277} 278 279/* 280 * Set the comparator for the next timer. 281 * This function assumes the struct mmtimer_node is locked. 282 */ 283static void mmtimer_set_next_timer(int nodeid) 284{ 285 struct mmtimer_node *n = &timers[nodeid]; 286 struct mmtimer *x; 287 struct k_itimer *t; 288 int o; 289 290restart: 291 if (n->next == NULL) 292 return; 293 294 x = rb_entry(n->next, struct mmtimer, list); 295 t = x->timer; 296 if (!t->it.mmtimer.incr) { 297 /* Not an interval timer */ 298 if (!mmtimer_setup(x->cpu, COMPARATOR, 299 t->it.mmtimer.expires)) { 300 /* Late setup, fire now */ 301 tasklet_schedule(&n->tasklet); 302 } 303 return; 304 } 305 306 /* Interval timer */ 307 o = 0; 308 while (!mmtimer_setup(x->cpu, COMPARATOR, t->it.mmtimer.expires)) { 309 unsigned long e, e1; 310 struct rb_node *next; 311 t->it.mmtimer.expires += t->it.mmtimer.incr << o; 312 t->it_overrun += 1 << o; 313 o++; 314 if (o > 20) { 315 printk(KERN_ALERT "mmtimer: cannot reschedule timer\n"); 316 t->it.mmtimer.clock = TIMER_OFF; 317 n->next = rb_next(&x->list); 318 rb_erase(&x->list, &n->timer_head); 319 kfree(x); 320 goto restart; 321 } 322 323 e = t->it.mmtimer.expires; 324 next = rb_next(&x->list); 325 326 if (next == NULL) 327 continue; 328 329 e1 = rb_entry(next, struct mmtimer, list)-> 330 timer->it.mmtimer.expires; 331 if (e > e1) { 332 n->next = next; 333 rb_erase(&x->list, &n->timer_head); 334 mmtimer_add_list(x); 335 goto restart; 336 } 337 } 338} 339 340/** 341 * mmtimer_ioctl - ioctl interface for /dev/mmtimer 342 * @inode: inode of the device 343 * @file: file structure for the device 344 * @cmd: command to execute 345 * @arg: optional argument to command 346 * 347 * Executes the command specified by @cmd. Returns 0 for success, < 0 for 348 * failure. 349 * 350 * Valid commands: 351 * 352 * %MMTIMER_GETOFFSET - Should return the offset (relative to the start 353 * of the page where the registers are mapped) for the counter in question. 354 * 355 * %MMTIMER_GETRES - Returns the resolution of the clock in femto (10^-15) 356 * seconds 357 * 358 * %MMTIMER_GETFREQ - Copies the frequency of the clock in Hz to the address 359 * specified by @arg 360 * 361 * %MMTIMER_GETBITS - Returns the number of bits in the clock's counter 362 * 363 * %MMTIMER_MMAPAVAIL - Returns 1 if the registers can be mmap'd into userspace 364 * 365 * %MMTIMER_GETCOUNTER - Gets the current value in the counter and places it 366 * in the address specified by @arg. 367 */ 368static int mmtimer_ioctl(struct inode *inode, struct file *file, 369 unsigned int cmd, unsigned long arg) 370{ 371 int ret = 0; 372 373 switch (cmd) { 374 case MMTIMER_GETOFFSET: /* offset of the counter */ 375 /* 376 * SN RTC registers are on their own 64k page 377 */ 378 if(PAGE_SIZE <= (1 << 16)) 379 ret = (((long)RTC_COUNTER_ADDR) & (PAGE_SIZE-1)) / 8; 380 else 381 ret = -ENOSYS; 382 break; 383 384 case MMTIMER_GETRES: /* resolution of the clock in 10^-15 s */ 385 if(copy_to_user((unsigned long __user *)arg, 386 &mmtimer_femtoperiod, sizeof(unsigned long))) 387 return -EFAULT; 388 break; 389 390 case MMTIMER_GETFREQ: /* frequency in Hz */ 391 if(copy_to_user((unsigned long __user *)arg, 392 &sn_rtc_cycles_per_second, 393 sizeof(unsigned long))) 394 return -EFAULT; 395 ret = 0; 396 break; 397 398 case MMTIMER_GETBITS: /* number of bits in the clock */ 399 ret = RTC_BITS; 400 break; 401 402 case MMTIMER_MMAPAVAIL: /* can we mmap the clock into userspace? */ 403 ret = (PAGE_SIZE <= (1 << 16)) ? 1 : 0; 404 break; 405 406 case MMTIMER_GETCOUNTER: 407 if(copy_to_user((unsigned long __user *)arg, 408 RTC_COUNTER_ADDR, sizeof(unsigned long))) 409 return -EFAULT; 410 break; 411 default: 412 ret = -ENOSYS; 413 break; 414 } 415 416 return ret; 417} 418 419/** 420 * mmtimer_mmap - maps the clock's registers into userspace 421 * @file: file structure for the device 422 * @vma: VMA to map the registers into 423 * 424 * Calls remap_pfn_range() to map the clock's registers into 425 * the calling process' address space. 426 */ 427static int mmtimer_mmap(struct file *file, struct vm_area_struct *vma) 428{ 429 unsigned long mmtimer_addr; 430 431 if (vma->vm_end - vma->vm_start != PAGE_SIZE) 432 return -EINVAL; 433 434 if (vma->vm_flags & VM_WRITE) 435 return -EPERM; 436 437 if (PAGE_SIZE > (1 << 16)) 438 return -ENOSYS; 439 440 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 441 442 mmtimer_addr = __pa(RTC_COUNTER_ADDR); 443 mmtimer_addr &= ~(PAGE_SIZE - 1); 444 mmtimer_addr &= 0xfffffffffffffffUL; 445 446 if (remap_pfn_range(vma, vma->vm_start, mmtimer_addr >> PAGE_SHIFT, 447 PAGE_SIZE, vma->vm_page_prot)) { 448 printk(KERN_ERR "remap_pfn_range failed in mmtimer.c\n"); 449 return -EAGAIN; 450 } 451 452 return 0; 453} 454 455static struct miscdevice mmtimer_miscdev = { 456 SGI_MMTIMER, 457 MMTIMER_NAME, 458 &mmtimer_fops 459}; 460 461static struct timespec sgi_clock_offset; 462static int sgi_clock_period; 463 464/* 465 * Posix Timer Interface 466 */ 467 468static struct timespec sgi_clock_offset; 469static int sgi_clock_period; 470 471static int sgi_clock_get(clockid_t clockid, struct timespec *tp) 472{ 473 u64 nsec; 474 475 nsec = rtc_time() * sgi_clock_period 476 + sgi_clock_offset.tv_nsec; 477 *tp = ns_to_timespec(nsec); 478 tp->tv_sec += sgi_clock_offset.tv_sec; 479 return 0; 480}; 481 482static int sgi_clock_set(clockid_t clockid, struct timespec *tp) 483{ 484 485 u64 nsec; 486 u32 rem; 487 488 nsec = rtc_time() * sgi_clock_period; 489 490 sgi_clock_offset.tv_sec = tp->tv_sec - div_u64_rem(nsec, NSEC_PER_SEC, &rem); 491 492 if (rem <= tp->tv_nsec) 493 sgi_clock_offset.tv_nsec = tp->tv_sec - rem; 494 else { 495 sgi_clock_offset.tv_nsec = tp->tv_sec + NSEC_PER_SEC - rem; 496 sgi_clock_offset.tv_sec--; 497 } 498 return 0; 499} 500 501/** 502 * mmtimer_interrupt - timer interrupt handler 503 * @irq: irq received 504 * @dev_id: device the irq came from 505 * 506 * Called when one of the comarators matches the counter, This 507 * routine will send signals to processes that have requested 508 * them. 509 * 510 * This interrupt is run in an interrupt context 511 * by the SHUB. It is therefore safe to locally access SHub 512 * registers. 513 */ 514static irqreturn_t 515mmtimer_interrupt(int irq, void *dev_id) 516{ 517 unsigned long expires = 0; 518 int result = IRQ_NONE; 519 unsigned indx = cpu_to_node(smp_processor_id()); 520 struct mmtimer *base; 521 522 spin_lock(&timers[indx].lock); 523 base = rb_entry(timers[indx].next, struct mmtimer, list); 524 if (base == NULL) { 525 spin_unlock(&timers[indx].lock); 526 return result; 527 } 528 529 if (base->cpu == smp_processor_id()) { 530 if (base->timer) 531 expires = base->timer->it.mmtimer.expires; 532 /* expires test won't work with shared irqs */ 533 if ((mmtimer_int_pending(COMPARATOR) > 0) || 534 (expires && (expires <= rtc_time()))) { 535 mmtimer_clr_int_pending(COMPARATOR); 536 tasklet_schedule(&timers[indx].tasklet); 537 result = IRQ_HANDLED; 538 } 539 } 540 spin_unlock(&timers[indx].lock); 541 return result; 542} 543 544static void mmtimer_tasklet(unsigned long data) 545{ 546 int nodeid = data; 547 struct mmtimer_node *mn = &timers[nodeid]; 548 struct mmtimer *x = rb_entry(mn->next, struct mmtimer, list); 549 struct k_itimer *t; 550 unsigned long flags; 551 552 /* Send signal and deal with periodic signals */ 553 spin_lock_irqsave(&mn->lock, flags); 554 if (!mn->next) 555 goto out; 556 557 x = rb_entry(mn->next, struct mmtimer, list); 558 t = x->timer; 559 560 if (t->it.mmtimer.clock == TIMER_OFF) 561 goto out; 562 563 t->it_overrun = 0; 564 565 mn->next = rb_next(&x->list); 566 rb_erase(&x->list, &mn->timer_head); 567 568 if (posix_timer_event(t, 0) != 0) 569 t->it_overrun++; 570 571 if(t->it.mmtimer.incr) { 572 t->it.mmtimer.expires += t->it.mmtimer.incr; 573 mmtimer_add_list(x); 574 } else { 575 /* Ensure we don't false trigger in mmtimer_interrupt */ 576 t->it.mmtimer.clock = TIMER_OFF; 577 t->it.mmtimer.expires = 0; 578 kfree(x); 579 } 580 /* Set comparator for next timer, if there is one */ 581 mmtimer_set_next_timer(nodeid); 582 583 t->it_overrun_last = t->it_overrun; 584out: 585 spin_unlock_irqrestore(&mn->lock, flags); 586} 587 588static int sgi_timer_create(struct k_itimer *timer) 589{ 590 /* Insure that a newly created timer is off */ 591 timer->it.mmtimer.clock = TIMER_OFF; 592 return 0; 593} 594 595/* This does not really delete a timer. It just insures 596 * that the timer is not active 597 * 598 * Assumption: it_lock is already held with irq's disabled 599 */ 600static int sgi_timer_del(struct k_itimer *timr) 601{ 602 cnodeid_t nodeid = timr->it.mmtimer.node; 603 unsigned long irqflags; 604 605 spin_lock_irqsave(&timers[nodeid].lock, irqflags); 606 if (timr->it.mmtimer.clock != TIMER_OFF) { 607 unsigned long expires = timr->it.mmtimer.expires; 608 struct rb_node *n = timers[nodeid].timer_head.rb_node; 609 struct mmtimer *uninitialized_var(t); 610 int r = 0; 611 612 timr->it.mmtimer.clock = TIMER_OFF; 613 timr->it.mmtimer.expires = 0; 614 615 while (n) { 616 t = rb_entry(n, struct mmtimer, list); 617 if (t->timer == timr) 618 break; 619 620 if (expires < t->timer->it.mmtimer.expires) 621 n = n->rb_left; 622 else 623 n = n->rb_right; 624 } 625 626 if (!n) { 627 spin_unlock_irqrestore(&timers[nodeid].lock, irqflags); 628 return 0; 629 } 630 631 if (timers[nodeid].next == n) { 632 timers[nodeid].next = rb_next(n); 633 r = 1; 634 } 635 636 rb_erase(n, &timers[nodeid].timer_head); 637 kfree(t); 638 639 if (r) { 640 mmtimer_disable_int(cnodeid_to_nasid(nodeid), 641 COMPARATOR); 642 mmtimer_set_next_timer(nodeid); 643 } 644 } 645 spin_unlock_irqrestore(&timers[nodeid].lock, irqflags); 646 return 0; 647} 648 649/* Assumption: it_lock is already held with irq's disabled */ 650static void sgi_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting) 651{ 652 653 if (timr->it.mmtimer.clock == TIMER_OFF) { 654 cur_setting->it_interval.tv_nsec = 0; 655 cur_setting->it_interval.tv_sec = 0; 656 cur_setting->it_value.tv_nsec = 0; 657 cur_setting->it_value.tv_sec =0; 658 return; 659 } 660 661 cur_setting->it_interval = ns_to_timespec(timr->it.mmtimer.incr * sgi_clock_period); 662 cur_setting->it_value = ns_to_timespec((timr->it.mmtimer.expires - rtc_time()) * sgi_clock_period); 663} 664 665 666static int sgi_timer_set(struct k_itimer *timr, int flags, 667 struct itimerspec * new_setting, 668 struct itimerspec * old_setting) 669{ 670 unsigned long when, period, irqflags; 671 int err = 0; 672 cnodeid_t nodeid; 673 struct mmtimer *base; 674 struct rb_node *n; 675 676 if (old_setting) 677 sgi_timer_get(timr, old_setting); 678 679 sgi_timer_del(timr); 680 when = timespec_to_ns(&new_setting->it_value); 681 period = timespec_to_ns(&new_setting->it_interval); 682 683 if (when == 0) 684 /* Clear timer */ 685 return 0; 686 687 base = kmalloc(sizeof(struct mmtimer), GFP_KERNEL); 688 if (base == NULL) 689 return -ENOMEM; 690 691 if (flags & TIMER_ABSTIME) { 692 struct timespec n; 693 unsigned long now; 694 695 getnstimeofday(&n); 696 now = timespec_to_ns(&n); 697 if (when > now) 698 when -= now; 699 else 700 /* Fire the timer immediately */ 701 when = 0; 702 } 703 704 /* 705 * Convert to sgi clock period. Need to keep rtc_time() as near as possible 706 * to getnstimeofday() in order to be as faithful as possible to the time 707 * specified. 708 */ 709 when = (when + sgi_clock_period - 1) / sgi_clock_period + rtc_time(); 710 period = (period + sgi_clock_period - 1) / sgi_clock_period; 711 712 /* 713 * We are allocating a local SHub comparator. If we would be moved to another 714 * cpu then another SHub may be local to us. Prohibit that by switching off 715 * preemption. 716 */ 717 preempt_disable(); 718 719 nodeid = cpu_to_node(smp_processor_id()); 720 721 /* Lock the node timer structure */ 722 spin_lock_irqsave(&timers[nodeid].lock, irqflags); 723 724 base->timer = timr; 725 base->cpu = smp_processor_id(); 726 727 timr->it.mmtimer.clock = TIMER_SET; 728 timr->it.mmtimer.node = nodeid; 729 timr->it.mmtimer.incr = period; 730 timr->it.mmtimer.expires = when; 731 732 n = timers[nodeid].next; 733 734 /* Add the new struct mmtimer to node's timer list */ 735 mmtimer_add_list(base); 736 737 if (timers[nodeid].next == n) { 738 /* No need to reprogram comparator for now */ 739 spin_unlock_irqrestore(&timers[nodeid].lock, irqflags); 740 preempt_enable(); 741 return err; 742 } 743 744 /* We need to reprogram the comparator */ 745 if (n) 746 mmtimer_disable_int(cnodeid_to_nasid(nodeid), COMPARATOR); 747 748 mmtimer_set_next_timer(nodeid); 749 750 /* Unlock the node timer structure */ 751 spin_unlock_irqrestore(&timers[nodeid].lock, irqflags); 752 753 preempt_enable(); 754 755 return err; 756} 757 758static struct k_clock sgi_clock = { 759 .res = 0, 760 .clock_set = sgi_clock_set, 761 .clock_get = sgi_clock_get, 762 .timer_create = sgi_timer_create, 763 .nsleep = do_posix_clock_nonanosleep, 764 .timer_set = sgi_timer_set, 765 .timer_del = sgi_timer_del, 766 .timer_get = sgi_timer_get 767}; 768 769/** 770 * mmtimer_init - device initialization routine 771 * 772 * Does initial setup for the mmtimer device. 773 */ 774static int __init mmtimer_init(void) 775{ 776 cnodeid_t node, maxn = -1; 777 778 if (!ia64_platform_is("sn2")) 779 return 0; 780 781 /* 782 * Sanity check the cycles/sec variable 783 */ 784 if (sn_rtc_cycles_per_second < 100000) { 785 printk(KERN_ERR "%s: unable to determine clock frequency\n", 786 MMTIMER_NAME); 787 goto out1; 788 } 789 790 mmtimer_femtoperiod = ((unsigned long)1E15 + sn_rtc_cycles_per_second / 791 2) / sn_rtc_cycles_per_second; 792 793 if (request_irq(SGI_MMTIMER_VECTOR, mmtimer_interrupt, IRQF_PERCPU, MMTIMER_NAME, NULL)) { 794 printk(KERN_WARNING "%s: unable to allocate interrupt.", 795 MMTIMER_NAME); 796 goto out1; 797 } 798 799 if (misc_register(&mmtimer_miscdev)) { 800 printk(KERN_ERR "%s: failed to register device\n", 801 MMTIMER_NAME); 802 goto out2; 803 } 804 805 /* Get max numbered node, calculate slots needed */ 806 for_each_online_node(node) { 807 maxn = node; 808 } 809 maxn++; 810 811 /* Allocate list of node ptrs to mmtimer_t's */ 812 timers = kzalloc(sizeof(struct mmtimer_node)*maxn, GFP_KERNEL); 813 if (timers == NULL) { 814 printk(KERN_ERR "%s: failed to allocate memory for device\n", 815 MMTIMER_NAME); 816 goto out3; 817 } 818 819 /* Initialize struct mmtimer's for each online node */ 820 for_each_online_node(node) { 821 spin_lock_init(&timers[node].lock); 822 tasklet_init(&timers[node].tasklet, mmtimer_tasklet, 823 (unsigned long) node); 824 } 825 826 sgi_clock_period = sgi_clock.res = NSEC_PER_SEC / sn_rtc_cycles_per_second; 827 register_posix_clock(CLOCK_SGI_CYCLE, &sgi_clock); 828 829 printk(KERN_INFO "%s: v%s, %ld MHz\n", MMTIMER_DESC, MMTIMER_VERSION, 830 sn_rtc_cycles_per_second/(unsigned long)1E6); 831 832 return 0; 833 834out3: 835 kfree(timers); 836 misc_deregister(&mmtimer_miscdev); 837out2: 838 free_irq(SGI_MMTIMER_VECTOR, NULL); 839out1: 840 return -1; 841} 842 843module_init(mmtimer_init);