at v2.6.25 64 kB view raw
1#ifndef __LINUX_USB_H 2#define __LINUX_USB_H 3 4#include <linux/mod_devicetable.h> 5#include <linux/usb/ch9.h> 6 7#define USB_MAJOR 180 8#define USB_DEVICE_MAJOR 189 9 10 11#ifdef __KERNEL__ 12 13#include <linux/errno.h> /* for -ENODEV */ 14#include <linux/delay.h> /* for mdelay() */ 15#include <linux/interrupt.h> /* for in_interrupt() */ 16#include <linux/list.h> /* for struct list_head */ 17#include <linux/kref.h> /* for struct kref */ 18#include <linux/device.h> /* for struct device */ 19#include <linux/fs.h> /* for struct file_operations */ 20#include <linux/completion.h> /* for struct completion */ 21#include <linux/sched.h> /* for current && schedule_timeout */ 22#include <linux/mutex.h> /* for struct mutex */ 23 24struct usb_device; 25struct usb_driver; 26 27/*-------------------------------------------------------------------------*/ 28 29/* 30 * Host-side wrappers for standard USB descriptors ... these are parsed 31 * from the data provided by devices. Parsing turns them from a flat 32 * sequence of descriptors into a hierarchy: 33 * 34 * - devices have one (usually) or more configs; 35 * - configs have one (often) or more interfaces; 36 * - interfaces have one (usually) or more settings; 37 * - each interface setting has zero or (usually) more endpoints. 38 * 39 * And there might be other descriptors mixed in with those. 40 * 41 * Devices may also have class-specific or vendor-specific descriptors. 42 */ 43 44struct ep_device; 45 46/** 47 * struct usb_host_endpoint - host-side endpoint descriptor and queue 48 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder 49 * @urb_list: urbs queued to this endpoint; maintained by usbcore 50 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH) 51 * with one or more transfer descriptors (TDs) per urb 52 * @ep_dev: ep_device for sysfs info 53 * @extra: descriptors following this endpoint in the configuration 54 * @extralen: how many bytes of "extra" are valid 55 * @enabled: URBs may be submitted to this endpoint 56 * 57 * USB requests are always queued to a given endpoint, identified by a 58 * descriptor within an active interface in a given USB configuration. 59 */ 60struct usb_host_endpoint { 61 struct usb_endpoint_descriptor desc; 62 struct list_head urb_list; 63 void *hcpriv; 64 struct ep_device *ep_dev; /* For sysfs info */ 65 66 unsigned char *extra; /* Extra descriptors */ 67 int extralen; 68 int enabled; 69}; 70 71/* host-side wrapper for one interface setting's parsed descriptors */ 72struct usb_host_interface { 73 struct usb_interface_descriptor desc; 74 75 /* array of desc.bNumEndpoint endpoints associated with this 76 * interface setting. these will be in no particular order. 77 */ 78 struct usb_host_endpoint *endpoint; 79 80 char *string; /* iInterface string, if present */ 81 unsigned char *extra; /* Extra descriptors */ 82 int extralen; 83}; 84 85enum usb_interface_condition { 86 USB_INTERFACE_UNBOUND = 0, 87 USB_INTERFACE_BINDING, 88 USB_INTERFACE_BOUND, 89 USB_INTERFACE_UNBINDING, 90}; 91 92/** 93 * struct usb_interface - what usb device drivers talk to 94 * @altsetting: array of interface structures, one for each alternate 95 * setting that may be selected. Each one includes a set of 96 * endpoint configurations. They will be in no particular order. 97 * @cur_altsetting: the current altsetting. 98 * @num_altsetting: number of altsettings defined. 99 * @intf_assoc: interface association descriptor 100 * @minor: the minor number assigned to this interface, if this 101 * interface is bound to a driver that uses the USB major number. 102 * If this interface does not use the USB major, this field should 103 * be unused. The driver should set this value in the probe() 104 * function of the driver, after it has been assigned a minor 105 * number from the USB core by calling usb_register_dev(). 106 * @condition: binding state of the interface: not bound, binding 107 * (in probe()), bound to a driver, or unbinding (in disconnect()) 108 * @is_active: flag set when the interface is bound and not suspended. 109 * @sysfs_files_created: sysfs attributes exist 110 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup 111 * capability during autosuspend. 112 * @dev: driver model's view of this device 113 * @usb_dev: if an interface is bound to the USB major, this will point 114 * to the sysfs representation for that device. 115 * @pm_usage_cnt: PM usage counter for this interface; autosuspend is not 116 * allowed unless the counter is 0. 117 * 118 * USB device drivers attach to interfaces on a physical device. Each 119 * interface encapsulates a single high level function, such as feeding 120 * an audio stream to a speaker or reporting a change in a volume control. 121 * Many USB devices only have one interface. The protocol used to talk to 122 * an interface's endpoints can be defined in a usb "class" specification, 123 * or by a product's vendor. The (default) control endpoint is part of 124 * every interface, but is never listed among the interface's descriptors. 125 * 126 * The driver that is bound to the interface can use standard driver model 127 * calls such as dev_get_drvdata() on the dev member of this structure. 128 * 129 * Each interface may have alternate settings. The initial configuration 130 * of a device sets altsetting 0, but the device driver can change 131 * that setting using usb_set_interface(). Alternate settings are often 132 * used to control the use of periodic endpoints, such as by having 133 * different endpoints use different amounts of reserved USB bandwidth. 134 * All standards-conformant USB devices that use isochronous endpoints 135 * will use them in non-default settings. 136 * 137 * The USB specification says that alternate setting numbers must run from 138 * 0 to one less than the total number of alternate settings. But some 139 * devices manage to mess this up, and the structures aren't necessarily 140 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to 141 * look up an alternate setting in the altsetting array based on its number. 142 */ 143struct usb_interface { 144 /* array of alternate settings for this interface, 145 * stored in no particular order */ 146 struct usb_host_interface *altsetting; 147 148 struct usb_host_interface *cur_altsetting; /* the currently 149 * active alternate setting */ 150 unsigned num_altsetting; /* number of alternate settings */ 151 152 /* If there is an interface association descriptor then it will list 153 * the associated interfaces */ 154 struct usb_interface_assoc_descriptor *intf_assoc; 155 156 int minor; /* minor number this interface is 157 * bound to */ 158 enum usb_interface_condition condition; /* state of binding */ 159 unsigned is_active:1; /* the interface is not suspended */ 160 unsigned sysfs_files_created:1; /* the sysfs attributes exist */ 161 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */ 162 163 struct device dev; /* interface specific device info */ 164 struct device *usb_dev; 165 int pm_usage_cnt; /* usage counter for autosuspend */ 166}; 167#define to_usb_interface(d) container_of(d, struct usb_interface, dev) 168#define interface_to_usbdev(intf) \ 169 container_of(intf->dev.parent, struct usb_device, dev) 170 171static inline void *usb_get_intfdata(struct usb_interface *intf) 172{ 173 return dev_get_drvdata(&intf->dev); 174} 175 176static inline void usb_set_intfdata(struct usb_interface *intf, void *data) 177{ 178 dev_set_drvdata(&intf->dev, data); 179} 180 181struct usb_interface *usb_get_intf(struct usb_interface *intf); 182void usb_put_intf(struct usb_interface *intf); 183 184/* this maximum is arbitrary */ 185#define USB_MAXINTERFACES 32 186#define USB_MAXIADS USB_MAXINTERFACES/2 187 188/** 189 * struct usb_interface_cache - long-term representation of a device interface 190 * @num_altsetting: number of altsettings defined. 191 * @ref: reference counter. 192 * @altsetting: variable-length array of interface structures, one for 193 * each alternate setting that may be selected. Each one includes a 194 * set of endpoint configurations. They will be in no particular order. 195 * 196 * These structures persist for the lifetime of a usb_device, unlike 197 * struct usb_interface (which persists only as long as its configuration 198 * is installed). The altsetting arrays can be accessed through these 199 * structures at any time, permitting comparison of configurations and 200 * providing support for the /proc/bus/usb/devices pseudo-file. 201 */ 202struct usb_interface_cache { 203 unsigned num_altsetting; /* number of alternate settings */ 204 struct kref ref; /* reference counter */ 205 206 /* variable-length array of alternate settings for this interface, 207 * stored in no particular order */ 208 struct usb_host_interface altsetting[0]; 209}; 210#define ref_to_usb_interface_cache(r) \ 211 container_of(r, struct usb_interface_cache, ref) 212#define altsetting_to_usb_interface_cache(a) \ 213 container_of(a, struct usb_interface_cache, altsetting[0]) 214 215/** 216 * struct usb_host_config - representation of a device's configuration 217 * @desc: the device's configuration descriptor. 218 * @string: pointer to the cached version of the iConfiguration string, if 219 * present for this configuration. 220 * @intf_assoc: list of any interface association descriptors in this config 221 * @interface: array of pointers to usb_interface structures, one for each 222 * interface in the configuration. The number of interfaces is stored 223 * in desc.bNumInterfaces. These pointers are valid only while the 224 * the configuration is active. 225 * @intf_cache: array of pointers to usb_interface_cache structures, one 226 * for each interface in the configuration. These structures exist 227 * for the entire life of the device. 228 * @extra: pointer to buffer containing all extra descriptors associated 229 * with this configuration (those preceding the first interface 230 * descriptor). 231 * @extralen: length of the extra descriptors buffer. 232 * 233 * USB devices may have multiple configurations, but only one can be active 234 * at any time. Each encapsulates a different operational environment; 235 * for example, a dual-speed device would have separate configurations for 236 * full-speed and high-speed operation. The number of configurations 237 * available is stored in the device descriptor as bNumConfigurations. 238 * 239 * A configuration can contain multiple interfaces. Each corresponds to 240 * a different function of the USB device, and all are available whenever 241 * the configuration is active. The USB standard says that interfaces 242 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot 243 * of devices get this wrong. In addition, the interface array is not 244 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to 245 * look up an interface entry based on its number. 246 * 247 * Device drivers should not attempt to activate configurations. The choice 248 * of which configuration to install is a policy decision based on such 249 * considerations as available power, functionality provided, and the user's 250 * desires (expressed through userspace tools). However, drivers can call 251 * usb_reset_configuration() to reinitialize the current configuration and 252 * all its interfaces. 253 */ 254struct usb_host_config { 255 struct usb_config_descriptor desc; 256 257 char *string; /* iConfiguration string, if present */ 258 259 /* List of any Interface Association Descriptors in this 260 * configuration. */ 261 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS]; 262 263 /* the interfaces associated with this configuration, 264 * stored in no particular order */ 265 struct usb_interface *interface[USB_MAXINTERFACES]; 266 267 /* Interface information available even when this is not the 268 * active configuration */ 269 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES]; 270 271 unsigned char *extra; /* Extra descriptors */ 272 int extralen; 273}; 274 275int __usb_get_extra_descriptor(char *buffer, unsigned size, 276 unsigned char type, void **ptr); 277#define usb_get_extra_descriptor(ifpoint, type, ptr) \ 278 __usb_get_extra_descriptor((ifpoint)->extra, \ 279 (ifpoint)->extralen, \ 280 type, (void **)ptr) 281 282/* ----------------------------------------------------------------------- */ 283 284/* USB device number allocation bitmap */ 285struct usb_devmap { 286 unsigned long devicemap[128 / (8*sizeof(unsigned long))]; 287}; 288 289/* 290 * Allocated per bus (tree of devices) we have: 291 */ 292struct usb_bus { 293 struct device *controller; /* host/master side hardware */ 294 int busnum; /* Bus number (in order of reg) */ 295 char *bus_name; /* stable id (PCI slot_name etc) */ 296 u8 uses_dma; /* Does the host controller use DMA? */ 297 u8 otg_port; /* 0, or number of OTG/HNP port */ 298 unsigned is_b_host:1; /* true during some HNP roleswitches */ 299 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */ 300 301 int devnum_next; /* Next open device number in 302 * round-robin allocation */ 303 304 struct usb_devmap devmap; /* device address allocation map */ 305 struct usb_device *root_hub; /* Root hub */ 306 struct list_head bus_list; /* list of busses */ 307 308 int bandwidth_allocated; /* on this bus: how much of the time 309 * reserved for periodic (intr/iso) 310 * requests is used, on average? 311 * Units: microseconds/frame. 312 * Limits: Full/low speed reserve 90%, 313 * while high speed reserves 80%. 314 */ 315 int bandwidth_int_reqs; /* number of Interrupt requests */ 316 int bandwidth_isoc_reqs; /* number of Isoc. requests */ 317 318#ifdef CONFIG_USB_DEVICEFS 319 struct dentry *usbfs_dentry; /* usbfs dentry entry for the bus */ 320#endif 321 struct device *dev; /* device for this bus */ 322 323#if defined(CONFIG_USB_MON) 324 struct mon_bus *mon_bus; /* non-null when associated */ 325 int monitored; /* non-zero when monitored */ 326#endif 327}; 328 329/* ----------------------------------------------------------------------- */ 330 331/* This is arbitrary. 332 * From USB 2.0 spec Table 11-13, offset 7, a hub can 333 * have up to 255 ports. The most yet reported is 10. 334 * 335 * Current Wireless USB host hardware (Intel i1480 for example) allows 336 * up to 22 devices to connect. Upcoming hardware might raise that 337 * limit. Because the arrays need to add a bit for hub status data, we 338 * do 31, so plus one evens out to four bytes. 339 */ 340#define USB_MAXCHILDREN (31) 341 342struct usb_tt; 343 344/* 345 * struct usb_device - kernel's representation of a USB device 346 * 347 * FIXME: Write the kerneldoc! 348 * 349 * Usbcore drivers should not set usbdev->state directly. Instead use 350 * usb_set_device_state(). 351 * 352 * @authorized: (user space) policy determines if we authorize this 353 * device to be used or not. By default, wired USB 354 * devices are authorized. WUSB devices are not, until we 355 * authorize them from user space. FIXME -- complete doc 356 */ 357struct usb_device { 358 int devnum; /* Address on USB bus */ 359 char devpath [16]; /* Use in messages: /port/port/... */ 360 enum usb_device_state state; /* configured, not attached, etc */ 361 enum usb_device_speed speed; /* high/full/low (or error) */ 362 363 struct usb_tt *tt; /* low/full speed dev, highspeed hub */ 364 int ttport; /* device port on that tt hub */ 365 366 unsigned int toggle[2]; /* one bit for each endpoint 367 * ([0] = IN, [1] = OUT) */ 368 369 struct usb_device *parent; /* our hub, unless we're the root */ 370 struct usb_bus *bus; /* Bus we're part of */ 371 struct usb_host_endpoint ep0; 372 373 struct device dev; /* Generic device interface */ 374 375 struct usb_device_descriptor descriptor;/* Descriptor */ 376 struct usb_host_config *config; /* All of the configs */ 377 378 struct usb_host_config *actconfig;/* the active configuration */ 379 struct usb_host_endpoint *ep_in[16]; 380 struct usb_host_endpoint *ep_out[16]; 381 382 char **rawdescriptors; /* Raw descriptors for each config */ 383 384 unsigned short bus_mA; /* Current available from the bus */ 385 u8 portnum; /* Parent port number (origin 1) */ 386 u8 level; /* Number of USB hub ancestors */ 387 388 unsigned can_submit:1; /* URBs may be submitted */ 389 unsigned discon_suspended:1; /* Disconnected while suspended */ 390 unsigned have_langid:1; /* whether string_langid is valid */ 391 unsigned authorized:1; /* Policy has said we can use it */ 392 unsigned wusb:1; /* Device is Wireless USB */ 393 int string_langid; /* language ID for strings */ 394 395 /* static strings from the device */ 396 char *product; /* iProduct string, if present */ 397 char *manufacturer; /* iManufacturer string, if present */ 398 char *serial; /* iSerialNumber string, if present */ 399 400 struct list_head filelist; 401#ifdef CONFIG_USB_DEVICE_CLASS 402 struct device *usb_classdev; 403#endif 404#ifdef CONFIG_USB_DEVICEFS 405 struct dentry *usbfs_dentry; /* usbfs dentry entry for the device */ 406#endif 407 /* 408 * Child devices - these can be either new devices 409 * (if this is a hub device), or different instances 410 * of this same device. 411 * 412 * Each instance needs its own set of data structures. 413 */ 414 415 int maxchild; /* Number of ports if hub */ 416 struct usb_device *children[USB_MAXCHILDREN]; 417 418 int pm_usage_cnt; /* usage counter for autosuspend */ 419 u32 quirks; /* quirks of the whole device */ 420 atomic_t urbnum; /* number of URBs submitted for 421 the whole device */ 422 423 unsigned long active_duration; /* total time device is not suspended */ 424 425#ifdef CONFIG_PM 426 struct delayed_work autosuspend; /* for delayed autosuspends */ 427 struct mutex pm_mutex; /* protects PM operations */ 428 429 unsigned long last_busy; /* time of last use */ 430 int autosuspend_delay; /* in jiffies */ 431 unsigned long connect_time; /* time device was first connected */ 432 433 unsigned auto_pm:1; /* autosuspend/resume in progress */ 434 unsigned do_remote_wakeup:1; /* remote wakeup should be enabled */ 435 unsigned reset_resume:1; /* needs reset instead of resume */ 436 unsigned persist_enabled:1; /* USB_PERSIST enabled for this dev */ 437 unsigned autosuspend_disabled:1; /* autosuspend and autoresume */ 438 unsigned autoresume_disabled:1; /* disabled by the user */ 439 unsigned skip_sys_resume:1; /* skip the next system resume */ 440#endif 441}; 442#define to_usb_device(d) container_of(d, struct usb_device, dev) 443 444extern struct usb_device *usb_get_dev(struct usb_device *dev); 445extern void usb_put_dev(struct usb_device *dev); 446 447/* USB device locking */ 448#define usb_lock_device(udev) down(&(udev)->dev.sem) 449#define usb_unlock_device(udev) up(&(udev)->dev.sem) 450#define usb_trylock_device(udev) down_trylock(&(udev)->dev.sem) 451extern int usb_lock_device_for_reset(struct usb_device *udev, 452 const struct usb_interface *iface); 453 454/* USB port reset for device reinitialization */ 455extern int usb_reset_device(struct usb_device *dev); 456extern int usb_reset_composite_device(struct usb_device *dev, 457 struct usb_interface *iface); 458 459extern struct usb_device *usb_find_device(u16 vendor_id, u16 product_id); 460 461/* USB autosuspend and autoresume */ 462#ifdef CONFIG_USB_SUSPEND 463extern int usb_autopm_set_interface(struct usb_interface *intf); 464extern int usb_autopm_get_interface(struct usb_interface *intf); 465extern void usb_autopm_put_interface(struct usb_interface *intf); 466 467static inline void usb_autopm_enable(struct usb_interface *intf) 468{ 469 intf->pm_usage_cnt = 0; 470 usb_autopm_set_interface(intf); 471} 472 473static inline void usb_autopm_disable(struct usb_interface *intf) 474{ 475 intf->pm_usage_cnt = 1; 476 usb_autopm_set_interface(intf); 477} 478 479static inline void usb_mark_last_busy(struct usb_device *udev) 480{ 481 udev->last_busy = jiffies; 482} 483 484#else 485 486static inline int usb_autopm_set_interface(struct usb_interface *intf) 487{ return 0; } 488 489static inline int usb_autopm_get_interface(struct usb_interface *intf) 490{ return 0; } 491 492static inline void usb_autopm_put_interface(struct usb_interface *intf) 493{ } 494static inline void usb_autopm_enable(struct usb_interface *intf) 495{ } 496static inline void usb_autopm_disable(struct usb_interface *intf) 497{ } 498static inline void usb_mark_last_busy(struct usb_device *udev) 499{ } 500#endif 501 502/*-------------------------------------------------------------------------*/ 503 504/* for drivers using iso endpoints */ 505extern int usb_get_current_frame_number(struct usb_device *usb_dev); 506 507/* used these for multi-interface device registration */ 508extern int usb_driver_claim_interface(struct usb_driver *driver, 509 struct usb_interface *iface, void *priv); 510 511/** 512 * usb_interface_claimed - returns true iff an interface is claimed 513 * @iface: the interface being checked 514 * 515 * Returns true (nonzero) iff the interface is claimed, else false (zero). 516 * Callers must own the driver model's usb bus readlock. So driver 517 * probe() entries don't need extra locking, but other call contexts 518 * may need to explicitly claim that lock. 519 * 520 */ 521static inline int usb_interface_claimed(struct usb_interface *iface) 522{ 523 return (iface->dev.driver != NULL); 524} 525 526extern void usb_driver_release_interface(struct usb_driver *driver, 527 struct usb_interface *iface); 528const struct usb_device_id *usb_match_id(struct usb_interface *interface, 529 const struct usb_device_id *id); 530extern int usb_match_one_id(struct usb_interface *interface, 531 const struct usb_device_id *id); 532 533extern struct usb_interface *usb_find_interface(struct usb_driver *drv, 534 int minor); 535extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev, 536 unsigned ifnum); 537extern struct usb_host_interface *usb_altnum_to_altsetting( 538 const struct usb_interface *intf, unsigned int altnum); 539 540 541/** 542 * usb_make_path - returns stable device path in the usb tree 543 * @dev: the device whose path is being constructed 544 * @buf: where to put the string 545 * @size: how big is "buf"? 546 * 547 * Returns length of the string (> 0) or negative if size was too small. 548 * 549 * This identifier is intended to be "stable", reflecting physical paths in 550 * hardware such as physical bus addresses for host controllers or ports on 551 * USB hubs. That makes it stay the same until systems are physically 552 * reconfigured, by re-cabling a tree of USB devices or by moving USB host 553 * controllers. Adding and removing devices, including virtual root hubs 554 * in host controller driver modules, does not change these path identifers; 555 * neither does rebooting or re-enumerating. These are more useful identifiers 556 * than changeable ("unstable") ones like bus numbers or device addresses. 557 * 558 * With a partial exception for devices connected to USB 2.0 root hubs, these 559 * identifiers are also predictable. So long as the device tree isn't changed, 560 * plugging any USB device into a given hub port always gives it the same path. 561 * Because of the use of "companion" controllers, devices connected to ports on 562 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are 563 * high speed, and a different one if they are full or low speed. 564 */ 565static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size) 566{ 567 int actual; 568 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name, 569 dev->devpath); 570 return (actual >= (int)size) ? -1 : actual; 571} 572 573/*-------------------------------------------------------------------------*/ 574 575/** 576 * usb_endpoint_num - get the endpoint's number 577 * @epd: endpoint to be checked 578 * 579 * Returns @epd's number: 0 to 15. 580 */ 581static inline int usb_endpoint_num(const struct usb_endpoint_descriptor *epd) 582{ 583 return epd->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK; 584} 585 586/** 587 * usb_endpoint_type - get the endpoint's transfer type 588 * @epd: endpoint to be checked 589 * 590 * Returns one of USB_ENDPOINT_XFER_{CONTROL, ISOC, BULK, INT} according 591 * to @epd's transfer type. 592 */ 593static inline int usb_endpoint_type(const struct usb_endpoint_descriptor *epd) 594{ 595 return epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK; 596} 597 598/** 599 * usb_endpoint_dir_in - check if the endpoint has IN direction 600 * @epd: endpoint to be checked 601 * 602 * Returns true if the endpoint is of type IN, otherwise it returns false. 603 */ 604static inline int usb_endpoint_dir_in(const struct usb_endpoint_descriptor *epd) 605{ 606 return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN); 607} 608 609/** 610 * usb_endpoint_dir_out - check if the endpoint has OUT direction 611 * @epd: endpoint to be checked 612 * 613 * Returns true if the endpoint is of type OUT, otherwise it returns false. 614 */ 615static inline int usb_endpoint_dir_out( 616 const struct usb_endpoint_descriptor *epd) 617{ 618 return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT); 619} 620 621/** 622 * usb_endpoint_xfer_bulk - check if the endpoint has bulk transfer type 623 * @epd: endpoint to be checked 624 * 625 * Returns true if the endpoint is of type bulk, otherwise it returns false. 626 */ 627static inline int usb_endpoint_xfer_bulk( 628 const struct usb_endpoint_descriptor *epd) 629{ 630 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 631 USB_ENDPOINT_XFER_BULK); 632} 633 634/** 635 * usb_endpoint_xfer_control - check if the endpoint has control transfer type 636 * @epd: endpoint to be checked 637 * 638 * Returns true if the endpoint is of type control, otherwise it returns false. 639 */ 640static inline int usb_endpoint_xfer_control( 641 const struct usb_endpoint_descriptor *epd) 642{ 643 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 644 USB_ENDPOINT_XFER_CONTROL); 645} 646 647/** 648 * usb_endpoint_xfer_int - check if the endpoint has interrupt transfer type 649 * @epd: endpoint to be checked 650 * 651 * Returns true if the endpoint is of type interrupt, otherwise it returns 652 * false. 653 */ 654static inline int usb_endpoint_xfer_int( 655 const struct usb_endpoint_descriptor *epd) 656{ 657 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 658 USB_ENDPOINT_XFER_INT); 659} 660 661/** 662 * usb_endpoint_xfer_isoc - check if the endpoint has isochronous transfer type 663 * @epd: endpoint to be checked 664 * 665 * Returns true if the endpoint is of type isochronous, otherwise it returns 666 * false. 667 */ 668static inline int usb_endpoint_xfer_isoc( 669 const struct usb_endpoint_descriptor *epd) 670{ 671 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 672 USB_ENDPOINT_XFER_ISOC); 673} 674 675/** 676 * usb_endpoint_is_bulk_in - check if the endpoint is bulk IN 677 * @epd: endpoint to be checked 678 * 679 * Returns true if the endpoint has bulk transfer type and IN direction, 680 * otherwise it returns false. 681 */ 682static inline int usb_endpoint_is_bulk_in( 683 const struct usb_endpoint_descriptor *epd) 684{ 685 return (usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_in(epd)); 686} 687 688/** 689 * usb_endpoint_is_bulk_out - check if the endpoint is bulk OUT 690 * @epd: endpoint to be checked 691 * 692 * Returns true if the endpoint has bulk transfer type and OUT direction, 693 * otherwise it returns false. 694 */ 695static inline int usb_endpoint_is_bulk_out( 696 const struct usb_endpoint_descriptor *epd) 697{ 698 return (usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_out(epd)); 699} 700 701/** 702 * usb_endpoint_is_int_in - check if the endpoint is interrupt IN 703 * @epd: endpoint to be checked 704 * 705 * Returns true if the endpoint has interrupt transfer type and IN direction, 706 * otherwise it returns false. 707 */ 708static inline int usb_endpoint_is_int_in( 709 const struct usb_endpoint_descriptor *epd) 710{ 711 return (usb_endpoint_xfer_int(epd) && usb_endpoint_dir_in(epd)); 712} 713 714/** 715 * usb_endpoint_is_int_out - check if the endpoint is interrupt OUT 716 * @epd: endpoint to be checked 717 * 718 * Returns true if the endpoint has interrupt transfer type and OUT direction, 719 * otherwise it returns false. 720 */ 721static inline int usb_endpoint_is_int_out( 722 const struct usb_endpoint_descriptor *epd) 723{ 724 return (usb_endpoint_xfer_int(epd) && usb_endpoint_dir_out(epd)); 725} 726 727/** 728 * usb_endpoint_is_isoc_in - check if the endpoint is isochronous IN 729 * @epd: endpoint to be checked 730 * 731 * Returns true if the endpoint has isochronous transfer type and IN direction, 732 * otherwise it returns false. 733 */ 734static inline int usb_endpoint_is_isoc_in( 735 const struct usb_endpoint_descriptor *epd) 736{ 737 return (usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_in(epd)); 738} 739 740/** 741 * usb_endpoint_is_isoc_out - check if the endpoint is isochronous OUT 742 * @epd: endpoint to be checked 743 * 744 * Returns true if the endpoint has isochronous transfer type and OUT direction, 745 * otherwise it returns false. 746 */ 747static inline int usb_endpoint_is_isoc_out( 748 const struct usb_endpoint_descriptor *epd) 749{ 750 return (usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_out(epd)); 751} 752 753/*-------------------------------------------------------------------------*/ 754 755#define USB_DEVICE_ID_MATCH_DEVICE \ 756 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT) 757#define USB_DEVICE_ID_MATCH_DEV_RANGE \ 758 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI) 759#define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \ 760 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE) 761#define USB_DEVICE_ID_MATCH_DEV_INFO \ 762 (USB_DEVICE_ID_MATCH_DEV_CLASS | \ 763 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \ 764 USB_DEVICE_ID_MATCH_DEV_PROTOCOL) 765#define USB_DEVICE_ID_MATCH_INT_INFO \ 766 (USB_DEVICE_ID_MATCH_INT_CLASS | \ 767 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \ 768 USB_DEVICE_ID_MATCH_INT_PROTOCOL) 769 770/** 771 * USB_DEVICE - macro used to describe a specific usb device 772 * @vend: the 16 bit USB Vendor ID 773 * @prod: the 16 bit USB Product ID 774 * 775 * This macro is used to create a struct usb_device_id that matches a 776 * specific device. 777 */ 778#define USB_DEVICE(vend,prod) \ 779 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \ 780 .idVendor = (vend), \ 781 .idProduct = (prod) 782/** 783 * USB_DEVICE_VER - describe a specific usb device with a version range 784 * @vend: the 16 bit USB Vendor ID 785 * @prod: the 16 bit USB Product ID 786 * @lo: the bcdDevice_lo value 787 * @hi: the bcdDevice_hi value 788 * 789 * This macro is used to create a struct usb_device_id that matches a 790 * specific device, with a version range. 791 */ 792#define USB_DEVICE_VER(vend, prod, lo, hi) \ 793 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \ 794 .idVendor = (vend), \ 795 .idProduct = (prod), \ 796 .bcdDevice_lo = (lo), \ 797 .bcdDevice_hi = (hi) 798 799/** 800 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol 801 * @vend: the 16 bit USB Vendor ID 802 * @prod: the 16 bit USB Product ID 803 * @pr: bInterfaceProtocol value 804 * 805 * This macro is used to create a struct usb_device_id that matches a 806 * specific interface protocol of devices. 807 */ 808#define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \ 809 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 810 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \ 811 .idVendor = (vend), \ 812 .idProduct = (prod), \ 813 .bInterfaceProtocol = (pr) 814 815/** 816 * USB_DEVICE_INFO - macro used to describe a class of usb devices 817 * @cl: bDeviceClass value 818 * @sc: bDeviceSubClass value 819 * @pr: bDeviceProtocol value 820 * 821 * This macro is used to create a struct usb_device_id that matches a 822 * specific class of devices. 823 */ 824#define USB_DEVICE_INFO(cl, sc, pr) \ 825 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \ 826 .bDeviceClass = (cl), \ 827 .bDeviceSubClass = (sc), \ 828 .bDeviceProtocol = (pr) 829 830/** 831 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces 832 * @cl: bInterfaceClass value 833 * @sc: bInterfaceSubClass value 834 * @pr: bInterfaceProtocol value 835 * 836 * This macro is used to create a struct usb_device_id that matches a 837 * specific class of interfaces. 838 */ 839#define USB_INTERFACE_INFO(cl, sc, pr) \ 840 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \ 841 .bInterfaceClass = (cl), \ 842 .bInterfaceSubClass = (sc), \ 843 .bInterfaceProtocol = (pr) 844 845/** 846 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces 847 * @vend: the 16 bit USB Vendor ID 848 * @prod: the 16 bit USB Product ID 849 * @cl: bInterfaceClass value 850 * @sc: bInterfaceSubClass value 851 * @pr: bInterfaceProtocol value 852 * 853 * This macro is used to create a struct usb_device_id that matches a 854 * specific device with a specific class of interfaces. 855 * 856 * This is especially useful when explicitly matching devices that have 857 * vendor specific bDeviceClass values, but standards-compliant interfaces. 858 */ 859#define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \ 860 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \ 861 | USB_DEVICE_ID_MATCH_DEVICE, \ 862 .idVendor = (vend), \ 863 .idProduct = (prod), \ 864 .bInterfaceClass = (cl), \ 865 .bInterfaceSubClass = (sc), \ 866 .bInterfaceProtocol = (pr) 867 868/* ----------------------------------------------------------------------- */ 869 870/* Stuff for dynamic usb ids */ 871struct usb_dynids { 872 spinlock_t lock; 873 struct list_head list; 874}; 875 876struct usb_dynid { 877 struct list_head node; 878 struct usb_device_id id; 879}; 880 881extern ssize_t usb_store_new_id(struct usb_dynids *dynids, 882 struct device_driver *driver, 883 const char *buf, size_t count); 884 885/** 886 * struct usbdrv_wrap - wrapper for driver-model structure 887 * @driver: The driver-model core driver structure. 888 * @for_devices: Non-zero for device drivers, 0 for interface drivers. 889 */ 890struct usbdrv_wrap { 891 struct device_driver driver; 892 int for_devices; 893}; 894 895/** 896 * struct usb_driver - identifies USB interface driver to usbcore 897 * @name: The driver name should be unique among USB drivers, 898 * and should normally be the same as the module name. 899 * @probe: Called to see if the driver is willing to manage a particular 900 * interface on a device. If it is, probe returns zero and uses 901 * dev_set_drvdata() to associate driver-specific data with the 902 * interface. It may also use usb_set_interface() to specify the 903 * appropriate altsetting. If unwilling to manage the interface, 904 * return a negative errno value. 905 * @disconnect: Called when the interface is no longer accessible, usually 906 * because its device has been (or is being) disconnected or the 907 * driver module is being unloaded. 908 * @ioctl: Used for drivers that want to talk to userspace through 909 * the "usbfs" filesystem. This lets devices provide ways to 910 * expose information to user space regardless of where they 911 * do (or don't) show up otherwise in the filesystem. 912 * @suspend: Called when the device is going to be suspended by the system. 913 * @resume: Called when the device is being resumed by the system. 914 * @reset_resume: Called when the suspended device has been reset instead 915 * of being resumed. 916 * @pre_reset: Called by usb_reset_composite_device() when the device 917 * is about to be reset. 918 * @post_reset: Called by usb_reset_composite_device() after the device 919 * has been reset, or in lieu of @resume following a reset-resume 920 * (i.e., the device is reset instead of being resumed, as might 921 * happen if power was lost). The second argument tells which is 922 * the reason. 923 * @id_table: USB drivers use ID table to support hotplugging. 924 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set 925 * or your driver's probe function will never get called. 926 * @dynids: used internally to hold the list of dynamically added device 927 * ids for this driver. 928 * @drvwrap: Driver-model core structure wrapper. 929 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be 930 * added to this driver by preventing the sysfs file from being created. 931 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 932 * for interfaces bound to this driver. 933 * 934 * USB interface drivers must provide a name, probe() and disconnect() 935 * methods, and an id_table. Other driver fields are optional. 936 * 937 * The id_table is used in hotplugging. It holds a set of descriptors, 938 * and specialized data may be associated with each entry. That table 939 * is used by both user and kernel mode hotplugging support. 940 * 941 * The probe() and disconnect() methods are called in a context where 942 * they can sleep, but they should avoid abusing the privilege. Most 943 * work to connect to a device should be done when the device is opened, 944 * and undone at the last close. The disconnect code needs to address 945 * concurrency issues with respect to open() and close() methods, as 946 * well as forcing all pending I/O requests to complete (by unlinking 947 * them as necessary, and blocking until the unlinks complete). 948 */ 949struct usb_driver { 950 const char *name; 951 952 int (*probe) (struct usb_interface *intf, 953 const struct usb_device_id *id); 954 955 void (*disconnect) (struct usb_interface *intf); 956 957 int (*ioctl) (struct usb_interface *intf, unsigned int code, 958 void *buf); 959 960 int (*suspend) (struct usb_interface *intf, pm_message_t message); 961 int (*resume) (struct usb_interface *intf); 962 int (*reset_resume)(struct usb_interface *intf); 963 964 int (*pre_reset)(struct usb_interface *intf); 965 int (*post_reset)(struct usb_interface *intf); 966 967 const struct usb_device_id *id_table; 968 969 struct usb_dynids dynids; 970 struct usbdrv_wrap drvwrap; 971 unsigned int no_dynamic_id:1; 972 unsigned int supports_autosuspend:1; 973}; 974#define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver) 975 976/** 977 * struct usb_device_driver - identifies USB device driver to usbcore 978 * @name: The driver name should be unique among USB drivers, 979 * and should normally be the same as the module name. 980 * @probe: Called to see if the driver is willing to manage a particular 981 * device. If it is, probe returns zero and uses dev_set_drvdata() 982 * to associate driver-specific data with the device. If unwilling 983 * to manage the device, return a negative errno value. 984 * @disconnect: Called when the device is no longer accessible, usually 985 * because it has been (or is being) disconnected or the driver's 986 * module is being unloaded. 987 * @suspend: Called when the device is going to be suspended by the system. 988 * @resume: Called when the device is being resumed by the system. 989 * @drvwrap: Driver-model core structure wrapper. 990 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 991 * for devices bound to this driver. 992 * 993 * USB drivers must provide all the fields listed above except drvwrap. 994 */ 995struct usb_device_driver { 996 const char *name; 997 998 int (*probe) (struct usb_device *udev); 999 void (*disconnect) (struct usb_device *udev); 1000 1001 int (*suspend) (struct usb_device *udev, pm_message_t message); 1002 int (*resume) (struct usb_device *udev); 1003 struct usbdrv_wrap drvwrap; 1004 unsigned int supports_autosuspend:1; 1005}; 1006#define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \ 1007 drvwrap.driver) 1008 1009extern struct bus_type usb_bus_type; 1010 1011/** 1012 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number 1013 * @name: the usb class device name for this driver. Will show up in sysfs. 1014 * @fops: pointer to the struct file_operations of this driver. 1015 * @minor_base: the start of the minor range for this driver. 1016 * 1017 * This structure is used for the usb_register_dev() and 1018 * usb_unregister_dev() functions, to consolidate a number of the 1019 * parameters used for them. 1020 */ 1021struct usb_class_driver { 1022 char *name; 1023 const struct file_operations *fops; 1024 int minor_base; 1025}; 1026 1027/* 1028 * use these in module_init()/module_exit() 1029 * and don't forget MODULE_DEVICE_TABLE(usb, ...) 1030 */ 1031extern int usb_register_driver(struct usb_driver *, struct module *, 1032 const char *); 1033static inline int usb_register(struct usb_driver *driver) 1034{ 1035 return usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME); 1036} 1037extern void usb_deregister(struct usb_driver *); 1038 1039extern int usb_register_device_driver(struct usb_device_driver *, 1040 struct module *); 1041extern void usb_deregister_device_driver(struct usb_device_driver *); 1042 1043extern int usb_register_dev(struct usb_interface *intf, 1044 struct usb_class_driver *class_driver); 1045extern void usb_deregister_dev(struct usb_interface *intf, 1046 struct usb_class_driver *class_driver); 1047 1048extern int usb_disabled(void); 1049 1050/* ----------------------------------------------------------------------- */ 1051 1052/* 1053 * URB support, for asynchronous request completions 1054 */ 1055 1056/* 1057 * urb->transfer_flags: 1058 * 1059 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb(). 1060 */ 1061#define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */ 1062#define URB_ISO_ASAP 0x0002 /* iso-only, urb->start_frame 1063 * ignored */ 1064#define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */ 1065#define URB_NO_SETUP_DMA_MAP 0x0008 /* urb->setup_dma valid on submit */ 1066#define URB_NO_FSBR 0x0020 /* UHCI-specific */ 1067#define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */ 1068#define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt 1069 * needed */ 1070#define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */ 1071 1072#define URB_DIR_IN 0x0200 /* Transfer from device to host */ 1073#define URB_DIR_OUT 0 1074#define URB_DIR_MASK URB_DIR_IN 1075 1076struct usb_iso_packet_descriptor { 1077 unsigned int offset; 1078 unsigned int length; /* expected length */ 1079 unsigned int actual_length; 1080 int status; 1081}; 1082 1083struct urb; 1084 1085struct usb_anchor { 1086 struct list_head urb_list; 1087 wait_queue_head_t wait; 1088 spinlock_t lock; 1089}; 1090 1091static inline void init_usb_anchor(struct usb_anchor *anchor) 1092{ 1093 INIT_LIST_HEAD(&anchor->urb_list); 1094 init_waitqueue_head(&anchor->wait); 1095 spin_lock_init(&anchor->lock); 1096} 1097 1098typedef void (*usb_complete_t)(struct urb *); 1099 1100/** 1101 * struct urb - USB Request Block 1102 * @urb_list: For use by current owner of the URB. 1103 * @anchor_list: membership in the list of an anchor 1104 * @anchor: to anchor URBs to a common mooring 1105 * @ep: Points to the endpoint's data structure. Will eventually 1106 * replace @pipe. 1107 * @pipe: Holds endpoint number, direction, type, and more. 1108 * Create these values with the eight macros available; 1109 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl" 1110 * (control), "bulk", "int" (interrupt), or "iso" (isochronous). 1111 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint 1112 * numbers range from zero to fifteen. Note that "in" endpoint two 1113 * is a different endpoint (and pipe) from "out" endpoint two. 1114 * The current configuration controls the existence, type, and 1115 * maximum packet size of any given endpoint. 1116 * @dev: Identifies the USB device to perform the request. 1117 * @status: This is read in non-iso completion functions to get the 1118 * status of the particular request. ISO requests only use it 1119 * to tell whether the URB was unlinked; detailed status for 1120 * each frame is in the fields of the iso_frame-desc. 1121 * @transfer_flags: A variety of flags may be used to affect how URB 1122 * submission, unlinking, or operation are handled. Different 1123 * kinds of URB can use different flags. 1124 * @transfer_buffer: This identifies the buffer to (or from) which 1125 * the I/O request will be performed (unless URB_NO_TRANSFER_DMA_MAP 1126 * is set). This buffer must be suitable for DMA; allocate it with 1127 * kmalloc() or equivalent. For transfers to "in" endpoints, contents 1128 * of this buffer will be modified. This buffer is used for the data 1129 * stage of control transfers. 1130 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP, 1131 * the device driver is saying that it provided this DMA address, 1132 * which the host controller driver should use in preference to the 1133 * transfer_buffer. 1134 * @transfer_buffer_length: How big is transfer_buffer. The transfer may 1135 * be broken up into chunks according to the current maximum packet 1136 * size for the endpoint, which is a function of the configuration 1137 * and is encoded in the pipe. When the length is zero, neither 1138 * transfer_buffer nor transfer_dma is used. 1139 * @actual_length: This is read in non-iso completion functions, and 1140 * it tells how many bytes (out of transfer_buffer_length) were 1141 * transferred. It will normally be the same as requested, unless 1142 * either an error was reported or a short read was performed. 1143 * The URB_SHORT_NOT_OK transfer flag may be used to make such 1144 * short reads be reported as errors. 1145 * @setup_packet: Only used for control transfers, this points to eight bytes 1146 * of setup data. Control transfers always start by sending this data 1147 * to the device. Then transfer_buffer is read or written, if needed. 1148 * @setup_dma: For control transfers with URB_NO_SETUP_DMA_MAP set, the 1149 * device driver has provided this DMA address for the setup packet. 1150 * The host controller driver should use this in preference to 1151 * setup_packet. 1152 * @start_frame: Returns the initial frame for isochronous transfers. 1153 * @number_of_packets: Lists the number of ISO transfer buffers. 1154 * @interval: Specifies the polling interval for interrupt or isochronous 1155 * transfers. The units are frames (milliseconds) for for full and low 1156 * speed devices, and microframes (1/8 millisecond) for highspeed ones. 1157 * @error_count: Returns the number of ISO transfers that reported errors. 1158 * @context: For use in completion functions. This normally points to 1159 * request-specific driver context. 1160 * @complete: Completion handler. This URB is passed as the parameter to the 1161 * completion function. The completion function may then do what 1162 * it likes with the URB, including resubmitting or freeing it. 1163 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to 1164 * collect the transfer status for each buffer. 1165 * 1166 * This structure identifies USB transfer requests. URBs must be allocated by 1167 * calling usb_alloc_urb() and freed with a call to usb_free_urb(). 1168 * Initialization may be done using various usb_fill_*_urb() functions. URBs 1169 * are submitted using usb_submit_urb(), and pending requests may be canceled 1170 * using usb_unlink_urb() or usb_kill_urb(). 1171 * 1172 * Data Transfer Buffers: 1173 * 1174 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise 1175 * taken from the general page pool. That is provided by transfer_buffer 1176 * (control requests also use setup_packet), and host controller drivers 1177 * perform a dma mapping (and unmapping) for each buffer transferred. Those 1178 * mapping operations can be expensive on some platforms (perhaps using a dma 1179 * bounce buffer or talking to an IOMMU), 1180 * although they're cheap on commodity x86 and ppc hardware. 1181 * 1182 * Alternatively, drivers may pass the URB_NO_xxx_DMA_MAP transfer flags, 1183 * which tell the host controller driver that no such mapping is needed since 1184 * the device driver is DMA-aware. For example, a device driver might 1185 * allocate a DMA buffer with usb_buffer_alloc() or call usb_buffer_map(). 1186 * When these transfer flags are provided, host controller drivers will 1187 * attempt to use the dma addresses found in the transfer_dma and/or 1188 * setup_dma fields rather than determining a dma address themselves. (Note 1189 * that transfer_buffer and setup_packet must still be set because not all 1190 * host controllers use DMA, nor do virtual root hubs). 1191 * 1192 * Initialization: 1193 * 1194 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be 1195 * zero), and complete fields. All URBs must also initialize 1196 * transfer_buffer and transfer_buffer_length. They may provide the 1197 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are 1198 * to be treated as errors; that flag is invalid for write requests. 1199 * 1200 * Bulk URBs may 1201 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers 1202 * should always terminate with a short packet, even if it means adding an 1203 * extra zero length packet. 1204 * 1205 * Control URBs must provide a setup_packet. The setup_packet and 1206 * transfer_buffer may each be mapped for DMA or not, independently of 1207 * the other. The transfer_flags bits URB_NO_TRANSFER_DMA_MAP and 1208 * URB_NO_SETUP_DMA_MAP indicate which buffers have already been mapped. 1209 * URB_NO_SETUP_DMA_MAP is ignored for non-control URBs. 1210 * 1211 * Interrupt URBs must provide an interval, saying how often (in milliseconds 1212 * or, for highspeed devices, 125 microsecond units) 1213 * to poll for transfers. After the URB has been submitted, the interval 1214 * field reflects how the transfer was actually scheduled. 1215 * The polling interval may be more frequent than requested. 1216 * For example, some controllers have a maximum interval of 32 milliseconds, 1217 * while others support intervals of up to 1024 milliseconds. 1218 * Isochronous URBs also have transfer intervals. (Note that for isochronous 1219 * endpoints, as well as high speed interrupt endpoints, the encoding of 1220 * the transfer interval in the endpoint descriptor is logarithmic. 1221 * Device drivers must convert that value to linear units themselves.) 1222 * 1223 * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling 1224 * the host controller to schedule the transfer as soon as bandwidth 1225 * utilization allows, and then set start_frame to reflect the actual frame 1226 * selected during submission. Otherwise drivers must specify the start_frame 1227 * and handle the case where the transfer can't begin then. However, drivers 1228 * won't know how bandwidth is currently allocated, and while they can 1229 * find the current frame using usb_get_current_frame_number () they can't 1230 * know the range for that frame number. (Ranges for frame counter values 1231 * are HC-specific, and can go from 256 to 65536 frames from "now".) 1232 * 1233 * Isochronous URBs have a different data transfer model, in part because 1234 * the quality of service is only "best effort". Callers provide specially 1235 * allocated URBs, with number_of_packets worth of iso_frame_desc structures 1236 * at the end. Each such packet is an individual ISO transfer. Isochronous 1237 * URBs are normally queued, submitted by drivers to arrange that 1238 * transfers are at least double buffered, and then explicitly resubmitted 1239 * in completion handlers, so 1240 * that data (such as audio or video) streams at as constant a rate as the 1241 * host controller scheduler can support. 1242 * 1243 * Completion Callbacks: 1244 * 1245 * The completion callback is made in_interrupt(), and one of the first 1246 * things that a completion handler should do is check the status field. 1247 * The status field is provided for all URBs. It is used to report 1248 * unlinked URBs, and status for all non-ISO transfers. It should not 1249 * be examined before the URB is returned to the completion handler. 1250 * 1251 * The context field is normally used to link URBs back to the relevant 1252 * driver or request state. 1253 * 1254 * When the completion callback is invoked for non-isochronous URBs, the 1255 * actual_length field tells how many bytes were transferred. This field 1256 * is updated even when the URB terminated with an error or was unlinked. 1257 * 1258 * ISO transfer status is reported in the status and actual_length fields 1259 * of the iso_frame_desc array, and the number of errors is reported in 1260 * error_count. Completion callbacks for ISO transfers will normally 1261 * (re)submit URBs to ensure a constant transfer rate. 1262 * 1263 * Note that even fields marked "public" should not be touched by the driver 1264 * when the urb is owned by the hcd, that is, since the call to 1265 * usb_submit_urb() till the entry into the completion routine. 1266 */ 1267struct urb { 1268 /* private: usb core and host controller only fields in the urb */ 1269 struct kref kref; /* reference count of the URB */ 1270 void *hcpriv; /* private data for host controller */ 1271 atomic_t use_count; /* concurrent submissions counter */ 1272 u8 reject; /* submissions will fail */ 1273 int unlinked; /* unlink error code */ 1274 1275 /* public: documented fields in the urb that can be used by drivers */ 1276 struct list_head urb_list; /* list head for use by the urb's 1277 * current owner */ 1278 struct list_head anchor_list; /* the URB may be anchored */ 1279 struct usb_anchor *anchor; 1280 struct usb_device *dev; /* (in) pointer to associated device */ 1281 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */ 1282 unsigned int pipe; /* (in) pipe information */ 1283 int status; /* (return) non-ISO status */ 1284 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/ 1285 void *transfer_buffer; /* (in) associated data buffer */ 1286 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */ 1287 int transfer_buffer_length; /* (in) data buffer length */ 1288 int actual_length; /* (return) actual transfer length */ 1289 unsigned char *setup_packet; /* (in) setup packet (control only) */ 1290 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */ 1291 int start_frame; /* (modify) start frame (ISO) */ 1292 int number_of_packets; /* (in) number of ISO packets */ 1293 int interval; /* (modify) transfer interval 1294 * (INT/ISO) */ 1295 int error_count; /* (return) number of ISO errors */ 1296 void *context; /* (in) context for completion */ 1297 usb_complete_t complete; /* (in) completion routine */ 1298 struct usb_iso_packet_descriptor iso_frame_desc[0]; 1299 /* (in) ISO ONLY */ 1300}; 1301 1302/* ----------------------------------------------------------------------- */ 1303 1304/** 1305 * usb_fill_control_urb - initializes a control urb 1306 * @urb: pointer to the urb to initialize. 1307 * @dev: pointer to the struct usb_device for this urb. 1308 * @pipe: the endpoint pipe 1309 * @setup_packet: pointer to the setup_packet buffer 1310 * @transfer_buffer: pointer to the transfer buffer 1311 * @buffer_length: length of the transfer buffer 1312 * @complete_fn: pointer to the usb_complete_t function 1313 * @context: what to set the urb context to. 1314 * 1315 * Initializes a control urb with the proper information needed to submit 1316 * it to a device. 1317 */ 1318static inline void usb_fill_control_urb(struct urb *urb, 1319 struct usb_device *dev, 1320 unsigned int pipe, 1321 unsigned char *setup_packet, 1322 void *transfer_buffer, 1323 int buffer_length, 1324 usb_complete_t complete_fn, 1325 void *context) 1326{ 1327 urb->dev = dev; 1328 urb->pipe = pipe; 1329 urb->setup_packet = setup_packet; 1330 urb->transfer_buffer = transfer_buffer; 1331 urb->transfer_buffer_length = buffer_length; 1332 urb->complete = complete_fn; 1333 urb->context = context; 1334} 1335 1336/** 1337 * usb_fill_bulk_urb - macro to help initialize a bulk urb 1338 * @urb: pointer to the urb to initialize. 1339 * @dev: pointer to the struct usb_device for this urb. 1340 * @pipe: the endpoint pipe 1341 * @transfer_buffer: pointer to the transfer buffer 1342 * @buffer_length: length of the transfer buffer 1343 * @complete_fn: pointer to the usb_complete_t function 1344 * @context: what to set the urb context to. 1345 * 1346 * Initializes a bulk urb with the proper information needed to submit it 1347 * to a device. 1348 */ 1349static inline void usb_fill_bulk_urb(struct urb *urb, 1350 struct usb_device *dev, 1351 unsigned int pipe, 1352 void *transfer_buffer, 1353 int buffer_length, 1354 usb_complete_t complete_fn, 1355 void *context) 1356{ 1357 urb->dev = dev; 1358 urb->pipe = pipe; 1359 urb->transfer_buffer = transfer_buffer; 1360 urb->transfer_buffer_length = buffer_length; 1361 urb->complete = complete_fn; 1362 urb->context = context; 1363} 1364 1365/** 1366 * usb_fill_int_urb - macro to help initialize a interrupt urb 1367 * @urb: pointer to the urb to initialize. 1368 * @dev: pointer to the struct usb_device for this urb. 1369 * @pipe: the endpoint pipe 1370 * @transfer_buffer: pointer to the transfer buffer 1371 * @buffer_length: length of the transfer buffer 1372 * @complete_fn: pointer to the usb_complete_t function 1373 * @context: what to set the urb context to. 1374 * @interval: what to set the urb interval to, encoded like 1375 * the endpoint descriptor's bInterval value. 1376 * 1377 * Initializes a interrupt urb with the proper information needed to submit 1378 * it to a device. 1379 * Note that high speed interrupt endpoints use a logarithmic encoding of 1380 * the endpoint interval, and express polling intervals in microframes 1381 * (eight per millisecond) rather than in frames (one per millisecond). 1382 */ 1383static inline void usb_fill_int_urb(struct urb *urb, 1384 struct usb_device *dev, 1385 unsigned int pipe, 1386 void *transfer_buffer, 1387 int buffer_length, 1388 usb_complete_t complete_fn, 1389 void *context, 1390 int interval) 1391{ 1392 urb->dev = dev; 1393 urb->pipe = pipe; 1394 urb->transfer_buffer = transfer_buffer; 1395 urb->transfer_buffer_length = buffer_length; 1396 urb->complete = complete_fn; 1397 urb->context = context; 1398 if (dev->speed == USB_SPEED_HIGH) 1399 urb->interval = 1 << (interval - 1); 1400 else 1401 urb->interval = interval; 1402 urb->start_frame = -1; 1403} 1404 1405extern void usb_init_urb(struct urb *urb); 1406extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags); 1407extern void usb_free_urb(struct urb *urb); 1408#define usb_put_urb usb_free_urb 1409extern struct urb *usb_get_urb(struct urb *urb); 1410extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags); 1411extern int usb_unlink_urb(struct urb *urb); 1412extern void usb_kill_urb(struct urb *urb); 1413extern void usb_kill_anchored_urbs(struct usb_anchor *anchor); 1414extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor); 1415extern void usb_unanchor_urb(struct urb *urb); 1416extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor, 1417 unsigned int timeout); 1418 1419/** 1420 * usb_urb_dir_in - check if an URB describes an IN transfer 1421 * @urb: URB to be checked 1422 * 1423 * Returns 1 if @urb describes an IN transfer (device-to-host), 1424 * otherwise 0. 1425 */ 1426static inline int usb_urb_dir_in(struct urb *urb) 1427{ 1428 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN; 1429} 1430 1431/** 1432 * usb_urb_dir_out - check if an URB describes an OUT transfer 1433 * @urb: URB to be checked 1434 * 1435 * Returns 1 if @urb describes an OUT transfer (host-to-device), 1436 * otherwise 0. 1437 */ 1438static inline int usb_urb_dir_out(struct urb *urb) 1439{ 1440 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT; 1441} 1442 1443void *usb_buffer_alloc(struct usb_device *dev, size_t size, 1444 gfp_t mem_flags, dma_addr_t *dma); 1445void usb_buffer_free(struct usb_device *dev, size_t size, 1446 void *addr, dma_addr_t dma); 1447 1448#if 0 1449struct urb *usb_buffer_map(struct urb *urb); 1450void usb_buffer_dmasync(struct urb *urb); 1451void usb_buffer_unmap(struct urb *urb); 1452#endif 1453 1454struct scatterlist; 1455int usb_buffer_map_sg(const struct usb_device *dev, int is_in, 1456 struct scatterlist *sg, int nents); 1457#if 0 1458void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in, 1459 struct scatterlist *sg, int n_hw_ents); 1460#endif 1461void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in, 1462 struct scatterlist *sg, int n_hw_ents); 1463 1464/*-------------------------------------------------------------------* 1465 * SYNCHRONOUS CALL SUPPORT * 1466 *-------------------------------------------------------------------*/ 1467 1468extern int usb_control_msg(struct usb_device *dev, unsigned int pipe, 1469 __u8 request, __u8 requesttype, __u16 value, __u16 index, 1470 void *data, __u16 size, int timeout); 1471extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 1472 void *data, int len, int *actual_length, int timeout); 1473extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 1474 void *data, int len, int *actual_length, 1475 int timeout); 1476 1477/* wrappers around usb_control_msg() for the most common standard requests */ 1478extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype, 1479 unsigned char descindex, void *buf, int size); 1480extern int usb_get_status(struct usb_device *dev, 1481 int type, int target, void *data); 1482extern int usb_string(struct usb_device *dev, int index, 1483 char *buf, size_t size); 1484 1485/* wrappers that also update important state inside usbcore */ 1486extern int usb_clear_halt(struct usb_device *dev, int pipe); 1487extern int usb_reset_configuration(struct usb_device *dev); 1488extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate); 1489 1490/* this request isn't really synchronous, but it belongs with the others */ 1491extern int usb_driver_set_configuration(struct usb_device *udev, int config); 1492 1493/* 1494 * timeouts, in milliseconds, used for sending/receiving control messages 1495 * they typically complete within a few frames (msec) after they're issued 1496 * USB identifies 5 second timeouts, maybe more in a few cases, and a few 1497 * slow devices (like some MGE Ellipse UPSes) actually push that limit. 1498 */ 1499#define USB_CTRL_GET_TIMEOUT 5000 1500#define USB_CTRL_SET_TIMEOUT 5000 1501 1502 1503/** 1504 * struct usb_sg_request - support for scatter/gather I/O 1505 * @status: zero indicates success, else negative errno 1506 * @bytes: counts bytes transferred. 1507 * 1508 * These requests are initialized using usb_sg_init(), and then are used 1509 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most 1510 * members of the request object aren't for driver access. 1511 * 1512 * The status and bytecount values are valid only after usb_sg_wait() 1513 * returns. If the status is zero, then the bytecount matches the total 1514 * from the request. 1515 * 1516 * After an error completion, drivers may need to clear a halt condition 1517 * on the endpoint. 1518 */ 1519struct usb_sg_request { 1520 int status; 1521 size_t bytes; 1522 1523 /* 1524 * members below are private: to usbcore, 1525 * and are not provided for driver access! 1526 */ 1527 spinlock_t lock; 1528 1529 struct usb_device *dev; 1530 int pipe; 1531 struct scatterlist *sg; 1532 int nents; 1533 1534 int entries; 1535 struct urb **urbs; 1536 1537 int count; 1538 struct completion complete; 1539}; 1540 1541int usb_sg_init( 1542 struct usb_sg_request *io, 1543 struct usb_device *dev, 1544 unsigned pipe, 1545 unsigned period, 1546 struct scatterlist *sg, 1547 int nents, 1548 size_t length, 1549 gfp_t mem_flags 1550); 1551void usb_sg_cancel(struct usb_sg_request *io); 1552void usb_sg_wait(struct usb_sg_request *io); 1553 1554 1555/* ----------------------------------------------------------------------- */ 1556 1557/* 1558 * For various legacy reasons, Linux has a small cookie that's paired with 1559 * a struct usb_device to identify an endpoint queue. Queue characteristics 1560 * are defined by the endpoint's descriptor. This cookie is called a "pipe", 1561 * an unsigned int encoded as: 1562 * 1563 * - direction: bit 7 (0 = Host-to-Device [Out], 1564 * 1 = Device-to-Host [In] ... 1565 * like endpoint bEndpointAddress) 1566 * - device address: bits 8-14 ... bit positions known to uhci-hcd 1567 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd 1568 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt, 1569 * 10 = control, 11 = bulk) 1570 * 1571 * Given the device address and endpoint descriptor, pipes are redundant. 1572 */ 1573 1574/* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */ 1575/* (yet ... they're the values used by usbfs) */ 1576#define PIPE_ISOCHRONOUS 0 1577#define PIPE_INTERRUPT 1 1578#define PIPE_CONTROL 2 1579#define PIPE_BULK 3 1580 1581#define usb_pipein(pipe) ((pipe) & USB_DIR_IN) 1582#define usb_pipeout(pipe) (!usb_pipein(pipe)) 1583 1584#define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f) 1585#define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf) 1586 1587#define usb_pipetype(pipe) (((pipe) >> 30) & 3) 1588#define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS) 1589#define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT) 1590#define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL) 1591#define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK) 1592 1593/* The D0/D1 toggle bits ... USE WITH CAUTION (they're almost hcd-internal) */ 1594#define usb_gettoggle(dev, ep, out) (((dev)->toggle[out] >> (ep)) & 1) 1595#define usb_dotoggle(dev, ep, out) ((dev)->toggle[out] ^= (1 << (ep))) 1596#define usb_settoggle(dev, ep, out, bit) \ 1597 ((dev)->toggle[out] = ((dev)->toggle[out] & ~(1 << (ep))) | \ 1598 ((bit) << (ep))) 1599 1600 1601static inline unsigned int __create_pipe(struct usb_device *dev, 1602 unsigned int endpoint) 1603{ 1604 return (dev->devnum << 8) | (endpoint << 15); 1605} 1606 1607/* Create various pipes... */ 1608#define usb_sndctrlpipe(dev,endpoint) \ 1609 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint)) 1610#define usb_rcvctrlpipe(dev,endpoint) \ 1611 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1612#define usb_sndisocpipe(dev,endpoint) \ 1613 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint)) 1614#define usb_rcvisocpipe(dev,endpoint) \ 1615 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1616#define usb_sndbulkpipe(dev,endpoint) \ 1617 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint)) 1618#define usb_rcvbulkpipe(dev,endpoint) \ 1619 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1620#define usb_sndintpipe(dev,endpoint) \ 1621 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint)) 1622#define usb_rcvintpipe(dev,endpoint) \ 1623 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1624 1625/*-------------------------------------------------------------------------*/ 1626 1627static inline __u16 1628usb_maxpacket(struct usb_device *udev, int pipe, int is_out) 1629{ 1630 struct usb_host_endpoint *ep; 1631 unsigned epnum = usb_pipeendpoint(pipe); 1632 1633 if (is_out) { 1634 WARN_ON(usb_pipein(pipe)); 1635 ep = udev->ep_out[epnum]; 1636 } else { 1637 WARN_ON(usb_pipeout(pipe)); 1638 ep = udev->ep_in[epnum]; 1639 } 1640 if (!ep) 1641 return 0; 1642 1643 /* NOTE: only 0x07ff bits are for packet size... */ 1644 return le16_to_cpu(ep->desc.wMaxPacketSize); 1645} 1646 1647/* ----------------------------------------------------------------------- */ 1648 1649/* Events from the usb core */ 1650#define USB_DEVICE_ADD 0x0001 1651#define USB_DEVICE_REMOVE 0x0002 1652#define USB_BUS_ADD 0x0003 1653#define USB_BUS_REMOVE 0x0004 1654extern void usb_register_notify(struct notifier_block *nb); 1655extern void usb_unregister_notify(struct notifier_block *nb); 1656 1657#ifdef DEBUG 1658#define dbg(format, arg...) printk(KERN_DEBUG "%s: " format "\n" , \ 1659 __FILE__ , ## arg) 1660#else 1661#define dbg(format, arg...) do {} while (0) 1662#endif 1663 1664#define err(format, arg...) printk(KERN_ERR "%s: " format "\n" , \ 1665 __FILE__ , ## arg) 1666#define info(format, arg...) printk(KERN_INFO "%s: " format "\n" , \ 1667 __FILE__ , ## arg) 1668#define warn(format, arg...) printk(KERN_WARNING "%s: " format "\n" , \ 1669 __FILE__ , ## arg) 1670 1671 1672#endif /* __KERNEL__ */ 1673 1674#endif