at v2.6.25 51 kB view raw
1/* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <gw4pts@gw4pts.ampr.org> 6 * Florian La Roche, <rzsfl@rz.uni-sb.de> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14#ifndef _LINUX_SKBUFF_H 15#define _LINUX_SKBUFF_H 16 17#include <linux/kernel.h> 18#include <linux/compiler.h> 19#include <linux/time.h> 20#include <linux/cache.h> 21 22#include <asm/atomic.h> 23#include <asm/types.h> 24#include <linux/spinlock.h> 25#include <linux/net.h> 26#include <linux/textsearch.h> 27#include <net/checksum.h> 28#include <linux/rcupdate.h> 29#include <linux/dmaengine.h> 30#include <linux/hrtimer.h> 31 32#define HAVE_ALLOC_SKB /* For the drivers to know */ 33#define HAVE_ALIGNABLE_SKB /* Ditto 8) */ 34 35/* Don't change this without changing skb_csum_unnecessary! */ 36#define CHECKSUM_NONE 0 37#define CHECKSUM_UNNECESSARY 1 38#define CHECKSUM_COMPLETE 2 39#define CHECKSUM_PARTIAL 3 40 41#define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \ 42 ~(SMP_CACHE_BYTES - 1)) 43#define SKB_WITH_OVERHEAD(X) \ 44 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 45#define SKB_MAX_ORDER(X, ORDER) \ 46 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 47#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 48#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 49 50/* A. Checksumming of received packets by device. 51 * 52 * NONE: device failed to checksum this packet. 53 * skb->csum is undefined. 54 * 55 * UNNECESSARY: device parsed packet and wouldbe verified checksum. 56 * skb->csum is undefined. 57 * It is bad option, but, unfortunately, many of vendors do this. 58 * Apparently with secret goal to sell you new device, when you 59 * will add new protocol to your host. F.e. IPv6. 8) 60 * 61 * COMPLETE: the most generic way. Device supplied checksum of _all_ 62 * the packet as seen by netif_rx in skb->csum. 63 * NOTE: Even if device supports only some protocols, but 64 * is able to produce some skb->csum, it MUST use COMPLETE, 65 * not UNNECESSARY. 66 * 67 * PARTIAL: identical to the case for output below. This may occur 68 * on a packet received directly from another Linux OS, e.g., 69 * a virtualised Linux kernel on the same host. The packet can 70 * be treated in the same way as UNNECESSARY except that on 71 * output (i.e., forwarding) the checksum must be filled in 72 * by the OS or the hardware. 73 * 74 * B. Checksumming on output. 75 * 76 * NONE: skb is checksummed by protocol or csum is not required. 77 * 78 * PARTIAL: device is required to csum packet as seen by hard_start_xmit 79 * from skb->csum_start to the end and to record the checksum 80 * at skb->csum_start + skb->csum_offset. 81 * 82 * Device must show its capabilities in dev->features, set 83 * at device setup time. 84 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum 85 * everything. 86 * NETIF_F_NO_CSUM - loopback or reliable single hop media. 87 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only 88 * TCP/UDP over IPv4. Sigh. Vendors like this 89 * way by an unknown reason. Though, see comment above 90 * about CHECKSUM_UNNECESSARY. 8) 91 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead. 92 * 93 * Any questions? No questions, good. --ANK 94 */ 95 96struct net_device; 97struct scatterlist; 98struct pipe_inode_info; 99 100#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 101struct nf_conntrack { 102 atomic_t use; 103}; 104#endif 105 106#ifdef CONFIG_BRIDGE_NETFILTER 107struct nf_bridge_info { 108 atomic_t use; 109 struct net_device *physindev; 110 struct net_device *physoutdev; 111 unsigned int mask; 112 unsigned long data[32 / sizeof(unsigned long)]; 113}; 114#endif 115 116struct sk_buff_head { 117 /* These two members must be first. */ 118 struct sk_buff *next; 119 struct sk_buff *prev; 120 121 __u32 qlen; 122 spinlock_t lock; 123}; 124 125struct sk_buff; 126 127/* To allow 64K frame to be packed as single skb without frag_list */ 128#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2) 129 130typedef struct skb_frag_struct skb_frag_t; 131 132struct skb_frag_struct { 133 struct page *page; 134 __u32 page_offset; 135 __u32 size; 136}; 137 138/* This data is invariant across clones and lives at 139 * the end of the header data, ie. at skb->end. 140 */ 141struct skb_shared_info { 142 atomic_t dataref; 143 unsigned short nr_frags; 144 unsigned short gso_size; 145 /* Warning: this field is not always filled in (UFO)! */ 146 unsigned short gso_segs; 147 unsigned short gso_type; 148 __be32 ip6_frag_id; 149 struct sk_buff *frag_list; 150 skb_frag_t frags[MAX_SKB_FRAGS]; 151}; 152 153/* We divide dataref into two halves. The higher 16 bits hold references 154 * to the payload part of skb->data. The lower 16 bits hold references to 155 * the entire skb->data. A clone of a headerless skb holds the length of 156 * the header in skb->hdr_len. 157 * 158 * All users must obey the rule that the skb->data reference count must be 159 * greater than or equal to the payload reference count. 160 * 161 * Holding a reference to the payload part means that the user does not 162 * care about modifications to the header part of skb->data. 163 */ 164#define SKB_DATAREF_SHIFT 16 165#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 166 167 168enum { 169 SKB_FCLONE_UNAVAILABLE, 170 SKB_FCLONE_ORIG, 171 SKB_FCLONE_CLONE, 172}; 173 174enum { 175 SKB_GSO_TCPV4 = 1 << 0, 176 SKB_GSO_UDP = 1 << 1, 177 178 /* This indicates the skb is from an untrusted source. */ 179 SKB_GSO_DODGY = 1 << 2, 180 181 /* This indicates the tcp segment has CWR set. */ 182 SKB_GSO_TCP_ECN = 1 << 3, 183 184 SKB_GSO_TCPV6 = 1 << 4, 185}; 186 187#if BITS_PER_LONG > 32 188#define NET_SKBUFF_DATA_USES_OFFSET 1 189#endif 190 191#ifdef NET_SKBUFF_DATA_USES_OFFSET 192typedef unsigned int sk_buff_data_t; 193#else 194typedef unsigned char *sk_buff_data_t; 195#endif 196 197/** 198 * struct sk_buff - socket buffer 199 * @next: Next buffer in list 200 * @prev: Previous buffer in list 201 * @sk: Socket we are owned by 202 * @tstamp: Time we arrived 203 * @dev: Device we arrived on/are leaving by 204 * @transport_header: Transport layer header 205 * @network_header: Network layer header 206 * @mac_header: Link layer header 207 * @dst: destination entry 208 * @sp: the security path, used for xfrm 209 * @cb: Control buffer. Free for use by every layer. Put private vars here 210 * @len: Length of actual data 211 * @data_len: Data length 212 * @mac_len: Length of link layer header 213 * @hdr_len: writable header length of cloned skb 214 * @csum: Checksum (must include start/offset pair) 215 * @csum_start: Offset from skb->head where checksumming should start 216 * @csum_offset: Offset from csum_start where checksum should be stored 217 * @local_df: allow local fragmentation 218 * @cloned: Head may be cloned (check refcnt to be sure) 219 * @nohdr: Payload reference only, must not modify header 220 * @pkt_type: Packet class 221 * @fclone: skbuff clone status 222 * @ip_summed: Driver fed us an IP checksum 223 * @priority: Packet queueing priority 224 * @users: User count - see {datagram,tcp}.c 225 * @protocol: Packet protocol from driver 226 * @truesize: Buffer size 227 * @head: Head of buffer 228 * @data: Data head pointer 229 * @tail: Tail pointer 230 * @end: End pointer 231 * @destructor: Destruct function 232 * @mark: Generic packet mark 233 * @nfct: Associated connection, if any 234 * @ipvs_property: skbuff is owned by ipvs 235 * @peeked: this packet has been seen already, so stats have been 236 * done for it, don't do them again 237 * @nf_trace: netfilter packet trace flag 238 * @nfctinfo: Relationship of this skb to the connection 239 * @nfct_reasm: netfilter conntrack re-assembly pointer 240 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 241 * @iif: ifindex of device we arrived on 242 * @queue_mapping: Queue mapping for multiqueue devices 243 * @tc_index: Traffic control index 244 * @tc_verd: traffic control verdict 245 * @dma_cookie: a cookie to one of several possible DMA operations 246 * done by skb DMA functions 247 * @secmark: security marking 248 */ 249 250struct sk_buff { 251 /* These two members must be first. */ 252 struct sk_buff *next; 253 struct sk_buff *prev; 254 255 struct sock *sk; 256 ktime_t tstamp; 257 struct net_device *dev; 258 259 struct dst_entry *dst; 260 struct sec_path *sp; 261 262 /* 263 * This is the control buffer. It is free to use for every 264 * layer. Please put your private variables there. If you 265 * want to keep them across layers you have to do a skb_clone() 266 * first. This is owned by whoever has the skb queued ATM. 267 */ 268 char cb[48]; 269 270 unsigned int len, 271 data_len; 272 __u16 mac_len, 273 hdr_len; 274 union { 275 __wsum csum; 276 struct { 277 __u16 csum_start; 278 __u16 csum_offset; 279 }; 280 }; 281 __u32 priority; 282 __u8 local_df:1, 283 cloned:1, 284 ip_summed:2, 285 nohdr:1, 286 nfctinfo:3; 287 __u8 pkt_type:3, 288 fclone:2, 289 ipvs_property:1, 290 peeked:1, 291 nf_trace:1; 292 __be16 protocol; 293 294 void (*destructor)(struct sk_buff *skb); 295#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 296 struct nf_conntrack *nfct; 297 struct sk_buff *nfct_reasm; 298#endif 299#ifdef CONFIG_BRIDGE_NETFILTER 300 struct nf_bridge_info *nf_bridge; 301#endif 302 303 int iif; 304#ifdef CONFIG_NETDEVICES_MULTIQUEUE 305 __u16 queue_mapping; 306#endif 307#ifdef CONFIG_NET_SCHED 308 __u16 tc_index; /* traffic control index */ 309#ifdef CONFIG_NET_CLS_ACT 310 __u16 tc_verd; /* traffic control verdict */ 311#endif 312#endif 313 /* 2 byte hole */ 314 315#ifdef CONFIG_NET_DMA 316 dma_cookie_t dma_cookie; 317#endif 318#ifdef CONFIG_NETWORK_SECMARK 319 __u32 secmark; 320#endif 321 322 __u32 mark; 323 324 sk_buff_data_t transport_header; 325 sk_buff_data_t network_header; 326 sk_buff_data_t mac_header; 327 /* These elements must be at the end, see alloc_skb() for details. */ 328 sk_buff_data_t tail; 329 sk_buff_data_t end; 330 unsigned char *head, 331 *data; 332 unsigned int truesize; 333 atomic_t users; 334}; 335 336#ifdef __KERNEL__ 337/* 338 * Handling routines are only of interest to the kernel 339 */ 340#include <linux/slab.h> 341 342#include <asm/system.h> 343 344extern void kfree_skb(struct sk_buff *skb); 345extern void __kfree_skb(struct sk_buff *skb); 346extern struct sk_buff *__alloc_skb(unsigned int size, 347 gfp_t priority, int fclone, int node); 348static inline struct sk_buff *alloc_skb(unsigned int size, 349 gfp_t priority) 350{ 351 return __alloc_skb(size, priority, 0, -1); 352} 353 354static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 355 gfp_t priority) 356{ 357 return __alloc_skb(size, priority, 1, -1); 358} 359 360extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 361extern struct sk_buff *skb_clone(struct sk_buff *skb, 362 gfp_t priority); 363extern struct sk_buff *skb_copy(const struct sk_buff *skb, 364 gfp_t priority); 365extern struct sk_buff *pskb_copy(struct sk_buff *skb, 366 gfp_t gfp_mask); 367extern int pskb_expand_head(struct sk_buff *skb, 368 int nhead, int ntail, 369 gfp_t gfp_mask); 370extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 371 unsigned int headroom); 372extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 373 int newheadroom, int newtailroom, 374 gfp_t priority); 375extern int skb_to_sgvec(struct sk_buff *skb, 376 struct scatterlist *sg, int offset, 377 int len); 378extern int skb_cow_data(struct sk_buff *skb, int tailbits, 379 struct sk_buff **trailer); 380extern int skb_pad(struct sk_buff *skb, int pad); 381#define dev_kfree_skb(a) kfree_skb(a) 382extern void skb_over_panic(struct sk_buff *skb, int len, 383 void *here); 384extern void skb_under_panic(struct sk_buff *skb, int len, 385 void *here); 386extern void skb_truesize_bug(struct sk_buff *skb); 387 388static inline void skb_truesize_check(struct sk_buff *skb) 389{ 390 int len = sizeof(struct sk_buff) + skb->len; 391 392 if (unlikely((int)skb->truesize < len)) 393 skb_truesize_bug(skb); 394} 395 396extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 397 int getfrag(void *from, char *to, int offset, 398 int len,int odd, struct sk_buff *skb), 399 void *from, int length); 400 401struct skb_seq_state 402{ 403 __u32 lower_offset; 404 __u32 upper_offset; 405 __u32 frag_idx; 406 __u32 stepped_offset; 407 struct sk_buff *root_skb; 408 struct sk_buff *cur_skb; 409 __u8 *frag_data; 410}; 411 412extern void skb_prepare_seq_read(struct sk_buff *skb, 413 unsigned int from, unsigned int to, 414 struct skb_seq_state *st); 415extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 416 struct skb_seq_state *st); 417extern void skb_abort_seq_read(struct skb_seq_state *st); 418 419extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 420 unsigned int to, struct ts_config *config, 421 struct ts_state *state); 422 423#ifdef NET_SKBUFF_DATA_USES_OFFSET 424static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 425{ 426 return skb->head + skb->end; 427} 428#else 429static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 430{ 431 return skb->end; 432} 433#endif 434 435/* Internal */ 436#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 437 438/** 439 * skb_queue_empty - check if a queue is empty 440 * @list: queue head 441 * 442 * Returns true if the queue is empty, false otherwise. 443 */ 444static inline int skb_queue_empty(const struct sk_buff_head *list) 445{ 446 return list->next == (struct sk_buff *)list; 447} 448 449/** 450 * skb_get - reference buffer 451 * @skb: buffer to reference 452 * 453 * Makes another reference to a socket buffer and returns a pointer 454 * to the buffer. 455 */ 456static inline struct sk_buff *skb_get(struct sk_buff *skb) 457{ 458 atomic_inc(&skb->users); 459 return skb; 460} 461 462/* 463 * If users == 1, we are the only owner and are can avoid redundant 464 * atomic change. 465 */ 466 467/** 468 * skb_cloned - is the buffer a clone 469 * @skb: buffer to check 470 * 471 * Returns true if the buffer was generated with skb_clone() and is 472 * one of multiple shared copies of the buffer. Cloned buffers are 473 * shared data so must not be written to under normal circumstances. 474 */ 475static inline int skb_cloned(const struct sk_buff *skb) 476{ 477 return skb->cloned && 478 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 479} 480 481/** 482 * skb_header_cloned - is the header a clone 483 * @skb: buffer to check 484 * 485 * Returns true if modifying the header part of the buffer requires 486 * the data to be copied. 487 */ 488static inline int skb_header_cloned(const struct sk_buff *skb) 489{ 490 int dataref; 491 492 if (!skb->cloned) 493 return 0; 494 495 dataref = atomic_read(&skb_shinfo(skb)->dataref); 496 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 497 return dataref != 1; 498} 499 500/** 501 * skb_header_release - release reference to header 502 * @skb: buffer to operate on 503 * 504 * Drop a reference to the header part of the buffer. This is done 505 * by acquiring a payload reference. You must not read from the header 506 * part of skb->data after this. 507 */ 508static inline void skb_header_release(struct sk_buff *skb) 509{ 510 BUG_ON(skb->nohdr); 511 skb->nohdr = 1; 512 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref); 513} 514 515/** 516 * skb_shared - is the buffer shared 517 * @skb: buffer to check 518 * 519 * Returns true if more than one person has a reference to this 520 * buffer. 521 */ 522static inline int skb_shared(const struct sk_buff *skb) 523{ 524 return atomic_read(&skb->users) != 1; 525} 526 527/** 528 * skb_share_check - check if buffer is shared and if so clone it 529 * @skb: buffer to check 530 * @pri: priority for memory allocation 531 * 532 * If the buffer is shared the buffer is cloned and the old copy 533 * drops a reference. A new clone with a single reference is returned. 534 * If the buffer is not shared the original buffer is returned. When 535 * being called from interrupt status or with spinlocks held pri must 536 * be GFP_ATOMIC. 537 * 538 * NULL is returned on a memory allocation failure. 539 */ 540static inline struct sk_buff *skb_share_check(struct sk_buff *skb, 541 gfp_t pri) 542{ 543 might_sleep_if(pri & __GFP_WAIT); 544 if (skb_shared(skb)) { 545 struct sk_buff *nskb = skb_clone(skb, pri); 546 kfree_skb(skb); 547 skb = nskb; 548 } 549 return skb; 550} 551 552/* 553 * Copy shared buffers into a new sk_buff. We effectively do COW on 554 * packets to handle cases where we have a local reader and forward 555 * and a couple of other messy ones. The normal one is tcpdumping 556 * a packet thats being forwarded. 557 */ 558 559/** 560 * skb_unshare - make a copy of a shared buffer 561 * @skb: buffer to check 562 * @pri: priority for memory allocation 563 * 564 * If the socket buffer is a clone then this function creates a new 565 * copy of the data, drops a reference count on the old copy and returns 566 * the new copy with the reference count at 1. If the buffer is not a clone 567 * the original buffer is returned. When called with a spinlock held or 568 * from interrupt state @pri must be %GFP_ATOMIC 569 * 570 * %NULL is returned on a memory allocation failure. 571 */ 572static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 573 gfp_t pri) 574{ 575 might_sleep_if(pri & __GFP_WAIT); 576 if (skb_cloned(skb)) { 577 struct sk_buff *nskb = skb_copy(skb, pri); 578 kfree_skb(skb); /* Free our shared copy */ 579 skb = nskb; 580 } 581 return skb; 582} 583 584/** 585 * skb_peek 586 * @list_: list to peek at 587 * 588 * Peek an &sk_buff. Unlike most other operations you _MUST_ 589 * be careful with this one. A peek leaves the buffer on the 590 * list and someone else may run off with it. You must hold 591 * the appropriate locks or have a private queue to do this. 592 * 593 * Returns %NULL for an empty list or a pointer to the head element. 594 * The reference count is not incremented and the reference is therefore 595 * volatile. Use with caution. 596 */ 597static inline struct sk_buff *skb_peek(struct sk_buff_head *list_) 598{ 599 struct sk_buff *list = ((struct sk_buff *)list_)->next; 600 if (list == (struct sk_buff *)list_) 601 list = NULL; 602 return list; 603} 604 605/** 606 * skb_peek_tail 607 * @list_: list to peek at 608 * 609 * Peek an &sk_buff. Unlike most other operations you _MUST_ 610 * be careful with this one. A peek leaves the buffer on the 611 * list and someone else may run off with it. You must hold 612 * the appropriate locks or have a private queue to do this. 613 * 614 * Returns %NULL for an empty list or a pointer to the tail element. 615 * The reference count is not incremented and the reference is therefore 616 * volatile. Use with caution. 617 */ 618static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_) 619{ 620 struct sk_buff *list = ((struct sk_buff *)list_)->prev; 621 if (list == (struct sk_buff *)list_) 622 list = NULL; 623 return list; 624} 625 626/** 627 * skb_queue_len - get queue length 628 * @list_: list to measure 629 * 630 * Return the length of an &sk_buff queue. 631 */ 632static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 633{ 634 return list_->qlen; 635} 636 637/* 638 * This function creates a split out lock class for each invocation; 639 * this is needed for now since a whole lot of users of the skb-queue 640 * infrastructure in drivers have different locking usage (in hardirq) 641 * than the networking core (in softirq only). In the long run either the 642 * network layer or drivers should need annotation to consolidate the 643 * main types of usage into 3 classes. 644 */ 645static inline void skb_queue_head_init(struct sk_buff_head *list) 646{ 647 spin_lock_init(&list->lock); 648 list->prev = list->next = (struct sk_buff *)list; 649 list->qlen = 0; 650} 651 652static inline void skb_queue_head_init_class(struct sk_buff_head *list, 653 struct lock_class_key *class) 654{ 655 skb_queue_head_init(list); 656 lockdep_set_class(&list->lock, class); 657} 658 659/* 660 * Insert an sk_buff at the start of a list. 661 * 662 * The "__skb_xxxx()" functions are the non-atomic ones that 663 * can only be called with interrupts disabled. 664 */ 665 666/** 667 * __skb_queue_after - queue a buffer at the list head 668 * @list: list to use 669 * @prev: place after this buffer 670 * @newsk: buffer to queue 671 * 672 * Queue a buffer int the middle of a list. This function takes no locks 673 * and you must therefore hold required locks before calling it. 674 * 675 * A buffer cannot be placed on two lists at the same time. 676 */ 677static inline void __skb_queue_after(struct sk_buff_head *list, 678 struct sk_buff *prev, 679 struct sk_buff *newsk) 680{ 681 struct sk_buff *next; 682 list->qlen++; 683 684 next = prev->next; 685 newsk->next = next; 686 newsk->prev = prev; 687 next->prev = prev->next = newsk; 688} 689 690/** 691 * __skb_queue_head - queue a buffer at the list head 692 * @list: list to use 693 * @newsk: buffer to queue 694 * 695 * Queue a buffer at the start of a list. This function takes no locks 696 * and you must therefore hold required locks before calling it. 697 * 698 * A buffer cannot be placed on two lists at the same time. 699 */ 700extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 701static inline void __skb_queue_head(struct sk_buff_head *list, 702 struct sk_buff *newsk) 703{ 704 __skb_queue_after(list, (struct sk_buff *)list, newsk); 705} 706 707/** 708 * __skb_queue_tail - queue a buffer at the list tail 709 * @list: list to use 710 * @newsk: buffer to queue 711 * 712 * Queue a buffer at the end of a list. This function takes no locks 713 * and you must therefore hold required locks before calling it. 714 * 715 * A buffer cannot be placed on two lists at the same time. 716 */ 717extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 718static inline void __skb_queue_tail(struct sk_buff_head *list, 719 struct sk_buff *newsk) 720{ 721 struct sk_buff *prev, *next; 722 723 list->qlen++; 724 next = (struct sk_buff *)list; 725 prev = next->prev; 726 newsk->next = next; 727 newsk->prev = prev; 728 next->prev = prev->next = newsk; 729} 730 731 732/** 733 * __skb_dequeue - remove from the head of the queue 734 * @list: list to dequeue from 735 * 736 * Remove the head of the list. This function does not take any locks 737 * so must be used with appropriate locks held only. The head item is 738 * returned or %NULL if the list is empty. 739 */ 740extern struct sk_buff *skb_dequeue(struct sk_buff_head *list); 741static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 742{ 743 struct sk_buff *next, *prev, *result; 744 745 prev = (struct sk_buff *) list; 746 next = prev->next; 747 result = NULL; 748 if (next != prev) { 749 result = next; 750 next = next->next; 751 list->qlen--; 752 next->prev = prev; 753 prev->next = next; 754 result->next = result->prev = NULL; 755 } 756 return result; 757} 758 759 760/* 761 * Insert a packet on a list. 762 */ 763extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list); 764static inline void __skb_insert(struct sk_buff *newsk, 765 struct sk_buff *prev, struct sk_buff *next, 766 struct sk_buff_head *list) 767{ 768 newsk->next = next; 769 newsk->prev = prev; 770 next->prev = prev->next = newsk; 771 list->qlen++; 772} 773 774/* 775 * Place a packet after a given packet in a list. 776 */ 777extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list); 778static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 779{ 780 __skb_insert(newsk, old, old->next, list); 781} 782 783/* 784 * remove sk_buff from list. _Must_ be called atomically, and with 785 * the list known.. 786 */ 787extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 788static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 789{ 790 struct sk_buff *next, *prev; 791 792 list->qlen--; 793 next = skb->next; 794 prev = skb->prev; 795 skb->next = skb->prev = NULL; 796 next->prev = prev; 797 prev->next = next; 798} 799 800 801/* XXX: more streamlined implementation */ 802 803/** 804 * __skb_dequeue_tail - remove from the tail of the queue 805 * @list: list to dequeue from 806 * 807 * Remove the tail of the list. This function does not take any locks 808 * so must be used with appropriate locks held only. The tail item is 809 * returned or %NULL if the list is empty. 810 */ 811extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 812static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 813{ 814 struct sk_buff *skb = skb_peek_tail(list); 815 if (skb) 816 __skb_unlink(skb, list); 817 return skb; 818} 819 820 821static inline int skb_is_nonlinear(const struct sk_buff *skb) 822{ 823 return skb->data_len; 824} 825 826static inline unsigned int skb_headlen(const struct sk_buff *skb) 827{ 828 return skb->len - skb->data_len; 829} 830 831static inline int skb_pagelen(const struct sk_buff *skb) 832{ 833 int i, len = 0; 834 835 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--) 836 len += skb_shinfo(skb)->frags[i].size; 837 return len + skb_headlen(skb); 838} 839 840static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 841 struct page *page, int off, int size) 842{ 843 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 844 845 frag->page = page; 846 frag->page_offset = off; 847 frag->size = size; 848 skb_shinfo(skb)->nr_frags = i + 1; 849} 850 851#define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) 852#define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list) 853#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 854 855#ifdef NET_SKBUFF_DATA_USES_OFFSET 856static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 857{ 858 return skb->head + skb->tail; 859} 860 861static inline void skb_reset_tail_pointer(struct sk_buff *skb) 862{ 863 skb->tail = skb->data - skb->head; 864} 865 866static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 867{ 868 skb_reset_tail_pointer(skb); 869 skb->tail += offset; 870} 871#else /* NET_SKBUFF_DATA_USES_OFFSET */ 872static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 873{ 874 return skb->tail; 875} 876 877static inline void skb_reset_tail_pointer(struct sk_buff *skb) 878{ 879 skb->tail = skb->data; 880} 881 882static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 883{ 884 skb->tail = skb->data + offset; 885} 886 887#endif /* NET_SKBUFF_DATA_USES_OFFSET */ 888 889/* 890 * Add data to an sk_buff 891 */ 892static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len) 893{ 894 unsigned char *tmp = skb_tail_pointer(skb); 895 SKB_LINEAR_ASSERT(skb); 896 skb->tail += len; 897 skb->len += len; 898 return tmp; 899} 900 901/** 902 * skb_put - add data to a buffer 903 * @skb: buffer to use 904 * @len: amount of data to add 905 * 906 * This function extends the used data area of the buffer. If this would 907 * exceed the total buffer size the kernel will panic. A pointer to the 908 * first byte of the extra data is returned. 909 */ 910static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len) 911{ 912 unsigned char *tmp = skb_tail_pointer(skb); 913 SKB_LINEAR_ASSERT(skb); 914 skb->tail += len; 915 skb->len += len; 916 if (unlikely(skb->tail > skb->end)) 917 skb_over_panic(skb, len, current_text_addr()); 918 return tmp; 919} 920 921static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len) 922{ 923 skb->data -= len; 924 skb->len += len; 925 return skb->data; 926} 927 928/** 929 * skb_push - add data to the start of a buffer 930 * @skb: buffer to use 931 * @len: amount of data to add 932 * 933 * This function extends the used data area of the buffer at the buffer 934 * start. If this would exceed the total buffer headroom the kernel will 935 * panic. A pointer to the first byte of the extra data is returned. 936 */ 937static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len) 938{ 939 skb->data -= len; 940 skb->len += len; 941 if (unlikely(skb->data<skb->head)) 942 skb_under_panic(skb, len, current_text_addr()); 943 return skb->data; 944} 945 946static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len) 947{ 948 skb->len -= len; 949 BUG_ON(skb->len < skb->data_len); 950 return skb->data += len; 951} 952 953/** 954 * skb_pull - remove data from the start of a buffer 955 * @skb: buffer to use 956 * @len: amount of data to remove 957 * 958 * This function removes data from the start of a buffer, returning 959 * the memory to the headroom. A pointer to the next data in the buffer 960 * is returned. Once the data has been pulled future pushes will overwrite 961 * the old data. 962 */ 963static inline unsigned char *skb_pull(struct sk_buff *skb, unsigned int len) 964{ 965 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 966} 967 968extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta); 969 970static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len) 971{ 972 if (len > skb_headlen(skb) && 973 !__pskb_pull_tail(skb, len-skb_headlen(skb))) 974 return NULL; 975 skb->len -= len; 976 return skb->data += len; 977} 978 979static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len) 980{ 981 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 982} 983 984static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 985{ 986 if (likely(len <= skb_headlen(skb))) 987 return 1; 988 if (unlikely(len > skb->len)) 989 return 0; 990 return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL; 991} 992 993/** 994 * skb_headroom - bytes at buffer head 995 * @skb: buffer to check 996 * 997 * Return the number of bytes of free space at the head of an &sk_buff. 998 */ 999static inline unsigned int skb_headroom(const struct sk_buff *skb) 1000{ 1001 return skb->data - skb->head; 1002} 1003 1004/** 1005 * skb_tailroom - bytes at buffer end 1006 * @skb: buffer to check 1007 * 1008 * Return the number of bytes of free space at the tail of an sk_buff 1009 */ 1010static inline int skb_tailroom(const struct sk_buff *skb) 1011{ 1012 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 1013} 1014 1015/** 1016 * skb_reserve - adjust headroom 1017 * @skb: buffer to alter 1018 * @len: bytes to move 1019 * 1020 * Increase the headroom of an empty &sk_buff by reducing the tail 1021 * room. This is only allowed for an empty buffer. 1022 */ 1023static inline void skb_reserve(struct sk_buff *skb, int len) 1024{ 1025 skb->data += len; 1026 skb->tail += len; 1027} 1028 1029#ifdef NET_SKBUFF_DATA_USES_OFFSET 1030static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1031{ 1032 return skb->head + skb->transport_header; 1033} 1034 1035static inline void skb_reset_transport_header(struct sk_buff *skb) 1036{ 1037 skb->transport_header = skb->data - skb->head; 1038} 1039 1040static inline void skb_set_transport_header(struct sk_buff *skb, 1041 const int offset) 1042{ 1043 skb_reset_transport_header(skb); 1044 skb->transport_header += offset; 1045} 1046 1047static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1048{ 1049 return skb->head + skb->network_header; 1050} 1051 1052static inline void skb_reset_network_header(struct sk_buff *skb) 1053{ 1054 skb->network_header = skb->data - skb->head; 1055} 1056 1057static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1058{ 1059 skb_reset_network_header(skb); 1060 skb->network_header += offset; 1061} 1062 1063static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1064{ 1065 return skb->head + skb->mac_header; 1066} 1067 1068static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1069{ 1070 return skb->mac_header != ~0U; 1071} 1072 1073static inline void skb_reset_mac_header(struct sk_buff *skb) 1074{ 1075 skb->mac_header = skb->data - skb->head; 1076} 1077 1078static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1079{ 1080 skb_reset_mac_header(skb); 1081 skb->mac_header += offset; 1082} 1083 1084#else /* NET_SKBUFF_DATA_USES_OFFSET */ 1085 1086static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1087{ 1088 return skb->transport_header; 1089} 1090 1091static inline void skb_reset_transport_header(struct sk_buff *skb) 1092{ 1093 skb->transport_header = skb->data; 1094} 1095 1096static inline void skb_set_transport_header(struct sk_buff *skb, 1097 const int offset) 1098{ 1099 skb->transport_header = skb->data + offset; 1100} 1101 1102static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1103{ 1104 return skb->network_header; 1105} 1106 1107static inline void skb_reset_network_header(struct sk_buff *skb) 1108{ 1109 skb->network_header = skb->data; 1110} 1111 1112static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1113{ 1114 skb->network_header = skb->data + offset; 1115} 1116 1117static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1118{ 1119 return skb->mac_header; 1120} 1121 1122static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1123{ 1124 return skb->mac_header != NULL; 1125} 1126 1127static inline void skb_reset_mac_header(struct sk_buff *skb) 1128{ 1129 skb->mac_header = skb->data; 1130} 1131 1132static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1133{ 1134 skb->mac_header = skb->data + offset; 1135} 1136#endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1137 1138static inline int skb_transport_offset(const struct sk_buff *skb) 1139{ 1140 return skb_transport_header(skb) - skb->data; 1141} 1142 1143static inline u32 skb_network_header_len(const struct sk_buff *skb) 1144{ 1145 return skb->transport_header - skb->network_header; 1146} 1147 1148static inline int skb_network_offset(const struct sk_buff *skb) 1149{ 1150 return skb_network_header(skb) - skb->data; 1151} 1152 1153/* 1154 * CPUs often take a performance hit when accessing unaligned memory 1155 * locations. The actual performance hit varies, it can be small if the 1156 * hardware handles it or large if we have to take an exception and fix it 1157 * in software. 1158 * 1159 * Since an ethernet header is 14 bytes network drivers often end up with 1160 * the IP header at an unaligned offset. The IP header can be aligned by 1161 * shifting the start of the packet by 2 bytes. Drivers should do this 1162 * with: 1163 * 1164 * skb_reserve(NET_IP_ALIGN); 1165 * 1166 * The downside to this alignment of the IP header is that the DMA is now 1167 * unaligned. On some architectures the cost of an unaligned DMA is high 1168 * and this cost outweighs the gains made by aligning the IP header. 1169 * 1170 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 1171 * to be overridden. 1172 */ 1173#ifndef NET_IP_ALIGN 1174#define NET_IP_ALIGN 2 1175#endif 1176 1177/* 1178 * The networking layer reserves some headroom in skb data (via 1179 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 1180 * the header has to grow. In the default case, if the header has to grow 1181 * 16 bytes or less we avoid the reallocation. 1182 * 1183 * Unfortunately this headroom changes the DMA alignment of the resulting 1184 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 1185 * on some architectures. An architecture can override this value, 1186 * perhaps setting it to a cacheline in size (since that will maintain 1187 * cacheline alignment of the DMA). It must be a power of 2. 1188 * 1189 * Various parts of the networking layer expect at least 16 bytes of 1190 * headroom, you should not reduce this. 1191 */ 1192#ifndef NET_SKB_PAD 1193#define NET_SKB_PAD 16 1194#endif 1195 1196extern int ___pskb_trim(struct sk_buff *skb, unsigned int len); 1197 1198static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 1199{ 1200 if (unlikely(skb->data_len)) { 1201 WARN_ON(1); 1202 return; 1203 } 1204 skb->len = len; 1205 skb_set_tail_pointer(skb, len); 1206} 1207 1208/** 1209 * skb_trim - remove end from a buffer 1210 * @skb: buffer to alter 1211 * @len: new length 1212 * 1213 * Cut the length of a buffer down by removing data from the tail. If 1214 * the buffer is already under the length specified it is not modified. 1215 * The skb must be linear. 1216 */ 1217static inline void skb_trim(struct sk_buff *skb, unsigned int len) 1218{ 1219 if (skb->len > len) 1220 __skb_trim(skb, len); 1221} 1222 1223 1224static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 1225{ 1226 if (skb->data_len) 1227 return ___pskb_trim(skb, len); 1228 __skb_trim(skb, len); 1229 return 0; 1230} 1231 1232static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 1233{ 1234 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 1235} 1236 1237/** 1238 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 1239 * @skb: buffer to alter 1240 * @len: new length 1241 * 1242 * This is identical to pskb_trim except that the caller knows that 1243 * the skb is not cloned so we should never get an error due to out- 1244 * of-memory. 1245 */ 1246static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 1247{ 1248 int err = pskb_trim(skb, len); 1249 BUG_ON(err); 1250} 1251 1252/** 1253 * skb_orphan - orphan a buffer 1254 * @skb: buffer to orphan 1255 * 1256 * If a buffer currently has an owner then we call the owner's 1257 * destructor function and make the @skb unowned. The buffer continues 1258 * to exist but is no longer charged to its former owner. 1259 */ 1260static inline void skb_orphan(struct sk_buff *skb) 1261{ 1262 if (skb->destructor) 1263 skb->destructor(skb); 1264 skb->destructor = NULL; 1265 skb->sk = NULL; 1266} 1267 1268/** 1269 * __skb_queue_purge - empty a list 1270 * @list: list to empty 1271 * 1272 * Delete all buffers on an &sk_buff list. Each buffer is removed from 1273 * the list and one reference dropped. This function does not take the 1274 * list lock and the caller must hold the relevant locks to use it. 1275 */ 1276extern void skb_queue_purge(struct sk_buff_head *list); 1277static inline void __skb_queue_purge(struct sk_buff_head *list) 1278{ 1279 struct sk_buff *skb; 1280 while ((skb = __skb_dequeue(list)) != NULL) 1281 kfree_skb(skb); 1282} 1283 1284/** 1285 * __dev_alloc_skb - allocate an skbuff for receiving 1286 * @length: length to allocate 1287 * @gfp_mask: get_free_pages mask, passed to alloc_skb 1288 * 1289 * Allocate a new &sk_buff and assign it a usage count of one. The 1290 * buffer has unspecified headroom built in. Users should allocate 1291 * the headroom they think they need without accounting for the 1292 * built in space. The built in space is used for optimisations. 1293 * 1294 * %NULL is returned if there is no free memory. 1295 */ 1296static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 1297 gfp_t gfp_mask) 1298{ 1299 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask); 1300 if (likely(skb)) 1301 skb_reserve(skb, NET_SKB_PAD); 1302 return skb; 1303} 1304 1305/** 1306 * dev_alloc_skb - allocate an skbuff for receiving 1307 * @length: length to allocate 1308 * 1309 * Allocate a new &sk_buff and assign it a usage count of one. The 1310 * buffer has unspecified headroom built in. Users should allocate 1311 * the headroom they think they need without accounting for the 1312 * built in space. The built in space is used for optimisations. 1313 * 1314 * %NULL is returned if there is no free memory. Although this function 1315 * allocates memory it can be called from an interrupt. 1316 */ 1317static inline struct sk_buff *dev_alloc_skb(unsigned int length) 1318{ 1319 return __dev_alloc_skb(length, GFP_ATOMIC); 1320} 1321 1322extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev, 1323 unsigned int length, gfp_t gfp_mask); 1324 1325/** 1326 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 1327 * @dev: network device to receive on 1328 * @length: length to allocate 1329 * 1330 * Allocate a new &sk_buff and assign it a usage count of one. The 1331 * buffer has unspecified headroom built in. Users should allocate 1332 * the headroom they think they need without accounting for the 1333 * built in space. The built in space is used for optimisations. 1334 * 1335 * %NULL is returned if there is no free memory. Although this function 1336 * allocates memory it can be called from an interrupt. 1337 */ 1338static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 1339 unsigned int length) 1340{ 1341 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 1342} 1343 1344/** 1345 * skb_clone_writable - is the header of a clone writable 1346 * @skb: buffer to check 1347 * @len: length up to which to write 1348 * 1349 * Returns true if modifying the header part of the cloned buffer 1350 * does not requires the data to be copied. 1351 */ 1352static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len) 1353{ 1354 return !skb_header_cloned(skb) && 1355 skb_headroom(skb) + len <= skb->hdr_len; 1356} 1357 1358static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 1359 int cloned) 1360{ 1361 int delta = 0; 1362 1363 if (headroom < NET_SKB_PAD) 1364 headroom = NET_SKB_PAD; 1365 if (headroom > skb_headroom(skb)) 1366 delta = headroom - skb_headroom(skb); 1367 1368 if (delta || cloned) 1369 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 1370 GFP_ATOMIC); 1371 return 0; 1372} 1373 1374/** 1375 * skb_cow - copy header of skb when it is required 1376 * @skb: buffer to cow 1377 * @headroom: needed headroom 1378 * 1379 * If the skb passed lacks sufficient headroom or its data part 1380 * is shared, data is reallocated. If reallocation fails, an error 1381 * is returned and original skb is not changed. 1382 * 1383 * The result is skb with writable area skb->head...skb->tail 1384 * and at least @headroom of space at head. 1385 */ 1386static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 1387{ 1388 return __skb_cow(skb, headroom, skb_cloned(skb)); 1389} 1390 1391/** 1392 * skb_cow_head - skb_cow but only making the head writable 1393 * @skb: buffer to cow 1394 * @headroom: needed headroom 1395 * 1396 * This function is identical to skb_cow except that we replace the 1397 * skb_cloned check by skb_header_cloned. It should be used when 1398 * you only need to push on some header and do not need to modify 1399 * the data. 1400 */ 1401static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 1402{ 1403 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 1404} 1405 1406/** 1407 * skb_padto - pad an skbuff up to a minimal size 1408 * @skb: buffer to pad 1409 * @len: minimal length 1410 * 1411 * Pads up a buffer to ensure the trailing bytes exist and are 1412 * blanked. If the buffer already contains sufficient data it 1413 * is untouched. Otherwise it is extended. Returns zero on 1414 * success. The skb is freed on error. 1415 */ 1416 1417static inline int skb_padto(struct sk_buff *skb, unsigned int len) 1418{ 1419 unsigned int size = skb->len; 1420 if (likely(size >= len)) 1421 return 0; 1422 return skb_pad(skb, len-size); 1423} 1424 1425static inline int skb_add_data(struct sk_buff *skb, 1426 char __user *from, int copy) 1427{ 1428 const int off = skb->len; 1429 1430 if (skb->ip_summed == CHECKSUM_NONE) { 1431 int err = 0; 1432 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy), 1433 copy, 0, &err); 1434 if (!err) { 1435 skb->csum = csum_block_add(skb->csum, csum, off); 1436 return 0; 1437 } 1438 } else if (!copy_from_user(skb_put(skb, copy), from, copy)) 1439 return 0; 1440 1441 __skb_trim(skb, off); 1442 return -EFAULT; 1443} 1444 1445static inline int skb_can_coalesce(struct sk_buff *skb, int i, 1446 struct page *page, int off) 1447{ 1448 if (i) { 1449 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 1450 1451 return page == frag->page && 1452 off == frag->page_offset + frag->size; 1453 } 1454 return 0; 1455} 1456 1457static inline int __skb_linearize(struct sk_buff *skb) 1458{ 1459 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 1460} 1461 1462/** 1463 * skb_linearize - convert paged skb to linear one 1464 * @skb: buffer to linarize 1465 * 1466 * If there is no free memory -ENOMEM is returned, otherwise zero 1467 * is returned and the old skb data released. 1468 */ 1469static inline int skb_linearize(struct sk_buff *skb) 1470{ 1471 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 1472} 1473 1474/** 1475 * skb_linearize_cow - make sure skb is linear and writable 1476 * @skb: buffer to process 1477 * 1478 * If there is no free memory -ENOMEM is returned, otherwise zero 1479 * is returned and the old skb data released. 1480 */ 1481static inline int skb_linearize_cow(struct sk_buff *skb) 1482{ 1483 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 1484 __skb_linearize(skb) : 0; 1485} 1486 1487/** 1488 * skb_postpull_rcsum - update checksum for received skb after pull 1489 * @skb: buffer to update 1490 * @start: start of data before pull 1491 * @len: length of data pulled 1492 * 1493 * After doing a pull on a received packet, you need to call this to 1494 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 1495 * CHECKSUM_NONE so that it can be recomputed from scratch. 1496 */ 1497 1498static inline void skb_postpull_rcsum(struct sk_buff *skb, 1499 const void *start, unsigned int len) 1500{ 1501 if (skb->ip_summed == CHECKSUM_COMPLETE) 1502 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0)); 1503} 1504 1505unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 1506 1507/** 1508 * pskb_trim_rcsum - trim received skb and update checksum 1509 * @skb: buffer to trim 1510 * @len: new length 1511 * 1512 * This is exactly the same as pskb_trim except that it ensures the 1513 * checksum of received packets are still valid after the operation. 1514 */ 1515 1516static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 1517{ 1518 if (likely(len >= skb->len)) 1519 return 0; 1520 if (skb->ip_summed == CHECKSUM_COMPLETE) 1521 skb->ip_summed = CHECKSUM_NONE; 1522 return __pskb_trim(skb, len); 1523} 1524 1525#define skb_queue_walk(queue, skb) \ 1526 for (skb = (queue)->next; \ 1527 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \ 1528 skb = skb->next) 1529 1530#define skb_queue_walk_safe(queue, skb, tmp) \ 1531 for (skb = (queue)->next, tmp = skb->next; \ 1532 skb != (struct sk_buff *)(queue); \ 1533 skb = tmp, tmp = skb->next) 1534 1535#define skb_queue_reverse_walk(queue, skb) \ 1536 for (skb = (queue)->prev; \ 1537 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \ 1538 skb = skb->prev) 1539 1540 1541extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags, 1542 int *peeked, int *err); 1543extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, 1544 int noblock, int *err); 1545extern unsigned int datagram_poll(struct file *file, struct socket *sock, 1546 struct poll_table_struct *wait); 1547extern int skb_copy_datagram_iovec(const struct sk_buff *from, 1548 int offset, struct iovec *to, 1549 int size); 1550extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb, 1551 int hlen, 1552 struct iovec *iov); 1553extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 1554extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, 1555 unsigned int flags); 1556extern __wsum skb_checksum(const struct sk_buff *skb, int offset, 1557 int len, __wsum csum); 1558extern int skb_copy_bits(const struct sk_buff *skb, int offset, 1559 void *to, int len); 1560extern int skb_store_bits(struct sk_buff *skb, int offset, 1561 const void *from, int len); 1562extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, 1563 int offset, u8 *to, int len, 1564 __wsum csum); 1565extern int skb_splice_bits(struct sk_buff *skb, 1566 unsigned int offset, 1567 struct pipe_inode_info *pipe, 1568 unsigned int len, 1569 unsigned int flags); 1570extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 1571extern void skb_split(struct sk_buff *skb, 1572 struct sk_buff *skb1, const u32 len); 1573 1574extern struct sk_buff *skb_segment(struct sk_buff *skb, int features); 1575 1576static inline void *skb_header_pointer(const struct sk_buff *skb, int offset, 1577 int len, void *buffer) 1578{ 1579 int hlen = skb_headlen(skb); 1580 1581 if (hlen - offset >= len) 1582 return skb->data + offset; 1583 1584 if (skb_copy_bits(skb, offset, buffer, len) < 0) 1585 return NULL; 1586 1587 return buffer; 1588} 1589 1590static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 1591 void *to, 1592 const unsigned int len) 1593{ 1594 memcpy(to, skb->data, len); 1595} 1596 1597static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 1598 const int offset, void *to, 1599 const unsigned int len) 1600{ 1601 memcpy(to, skb->data + offset, len); 1602} 1603 1604static inline void skb_copy_to_linear_data(struct sk_buff *skb, 1605 const void *from, 1606 const unsigned int len) 1607{ 1608 memcpy(skb->data, from, len); 1609} 1610 1611static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 1612 const int offset, 1613 const void *from, 1614 const unsigned int len) 1615{ 1616 memcpy(skb->data + offset, from, len); 1617} 1618 1619extern void skb_init(void); 1620 1621/** 1622 * skb_get_timestamp - get timestamp from a skb 1623 * @skb: skb to get stamp from 1624 * @stamp: pointer to struct timeval to store stamp in 1625 * 1626 * Timestamps are stored in the skb as offsets to a base timestamp. 1627 * This function converts the offset back to a struct timeval and stores 1628 * it in stamp. 1629 */ 1630static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp) 1631{ 1632 *stamp = ktime_to_timeval(skb->tstamp); 1633} 1634 1635static inline void __net_timestamp(struct sk_buff *skb) 1636{ 1637 skb->tstamp = ktime_get_real(); 1638} 1639 1640static inline ktime_t net_timedelta(ktime_t t) 1641{ 1642 return ktime_sub(ktime_get_real(), t); 1643} 1644 1645static inline ktime_t net_invalid_timestamp(void) 1646{ 1647 return ktime_set(0, 0); 1648} 1649 1650extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 1651extern __sum16 __skb_checksum_complete(struct sk_buff *skb); 1652 1653static inline int skb_csum_unnecessary(const struct sk_buff *skb) 1654{ 1655 return skb->ip_summed & CHECKSUM_UNNECESSARY; 1656} 1657 1658/** 1659 * skb_checksum_complete - Calculate checksum of an entire packet 1660 * @skb: packet to process 1661 * 1662 * This function calculates the checksum over the entire packet plus 1663 * the value of skb->csum. The latter can be used to supply the 1664 * checksum of a pseudo header as used by TCP/UDP. It returns the 1665 * checksum. 1666 * 1667 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 1668 * this function can be used to verify that checksum on received 1669 * packets. In that case the function should return zero if the 1670 * checksum is correct. In particular, this function will return zero 1671 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 1672 * hardware has already verified the correctness of the checksum. 1673 */ 1674static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 1675{ 1676 return skb_csum_unnecessary(skb) ? 1677 0 : __skb_checksum_complete(skb); 1678} 1679 1680#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 1681extern void nf_conntrack_destroy(struct nf_conntrack *nfct); 1682static inline void nf_conntrack_put(struct nf_conntrack *nfct) 1683{ 1684 if (nfct && atomic_dec_and_test(&nfct->use)) 1685 nf_conntrack_destroy(nfct); 1686} 1687static inline void nf_conntrack_get(struct nf_conntrack *nfct) 1688{ 1689 if (nfct) 1690 atomic_inc(&nfct->use); 1691} 1692static inline void nf_conntrack_get_reasm(struct sk_buff *skb) 1693{ 1694 if (skb) 1695 atomic_inc(&skb->users); 1696} 1697static inline void nf_conntrack_put_reasm(struct sk_buff *skb) 1698{ 1699 if (skb) 1700 kfree_skb(skb); 1701} 1702#endif 1703#ifdef CONFIG_BRIDGE_NETFILTER 1704static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) 1705{ 1706 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use)) 1707 kfree(nf_bridge); 1708} 1709static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) 1710{ 1711 if (nf_bridge) 1712 atomic_inc(&nf_bridge->use); 1713} 1714#endif /* CONFIG_BRIDGE_NETFILTER */ 1715static inline void nf_reset(struct sk_buff *skb) 1716{ 1717#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 1718 nf_conntrack_put(skb->nfct); 1719 skb->nfct = NULL; 1720 nf_conntrack_put_reasm(skb->nfct_reasm); 1721 skb->nfct_reasm = NULL; 1722#endif 1723#ifdef CONFIG_BRIDGE_NETFILTER 1724 nf_bridge_put(skb->nf_bridge); 1725 skb->nf_bridge = NULL; 1726#endif 1727} 1728 1729/* Note: This doesn't put any conntrack and bridge info in dst. */ 1730static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src) 1731{ 1732#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 1733 dst->nfct = src->nfct; 1734 nf_conntrack_get(src->nfct); 1735 dst->nfctinfo = src->nfctinfo; 1736 dst->nfct_reasm = src->nfct_reasm; 1737 nf_conntrack_get_reasm(src->nfct_reasm); 1738#endif 1739#ifdef CONFIG_BRIDGE_NETFILTER 1740 dst->nf_bridge = src->nf_bridge; 1741 nf_bridge_get(src->nf_bridge); 1742#endif 1743} 1744 1745static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 1746{ 1747#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 1748 nf_conntrack_put(dst->nfct); 1749 nf_conntrack_put_reasm(dst->nfct_reasm); 1750#endif 1751#ifdef CONFIG_BRIDGE_NETFILTER 1752 nf_bridge_put(dst->nf_bridge); 1753#endif 1754 __nf_copy(dst, src); 1755} 1756 1757#ifdef CONFIG_NETWORK_SECMARK 1758static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 1759{ 1760 to->secmark = from->secmark; 1761} 1762 1763static inline void skb_init_secmark(struct sk_buff *skb) 1764{ 1765 skb->secmark = 0; 1766} 1767#else 1768static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 1769{ } 1770 1771static inline void skb_init_secmark(struct sk_buff *skb) 1772{ } 1773#endif 1774 1775static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 1776{ 1777#ifdef CONFIG_NETDEVICES_MULTIQUEUE 1778 skb->queue_mapping = queue_mapping; 1779#endif 1780} 1781 1782static inline u16 skb_get_queue_mapping(struct sk_buff *skb) 1783{ 1784#ifdef CONFIG_NETDEVICES_MULTIQUEUE 1785 return skb->queue_mapping; 1786#else 1787 return 0; 1788#endif 1789} 1790 1791static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 1792{ 1793#ifdef CONFIG_NETDEVICES_MULTIQUEUE 1794 to->queue_mapping = from->queue_mapping; 1795#endif 1796} 1797 1798static inline int skb_is_gso(const struct sk_buff *skb) 1799{ 1800 return skb_shinfo(skb)->gso_size; 1801} 1802 1803static inline int skb_is_gso_v6(const struct sk_buff *skb) 1804{ 1805 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 1806} 1807 1808static inline void skb_forward_csum(struct sk_buff *skb) 1809{ 1810 /* Unfortunately we don't support this one. Any brave souls? */ 1811 if (skb->ip_summed == CHECKSUM_COMPLETE) 1812 skb->ip_summed = CHECKSUM_NONE; 1813} 1814 1815bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 1816#endif /* __KERNEL__ */ 1817#endif /* _LINUX_SKBUFF_H */