at v2.6.25 42 kB view raw
1#ifndef _LINUX_MM_H 2#define _LINUX_MM_H 3 4#include <linux/errno.h> 5 6#ifdef __KERNEL__ 7 8#include <linux/gfp.h> 9#include <linux/list.h> 10#include <linux/mmzone.h> 11#include <linux/rbtree.h> 12#include <linux/prio_tree.h> 13#include <linux/debug_locks.h> 14#include <linux/mm_types.h> 15 16struct mempolicy; 17struct anon_vma; 18struct file_ra_state; 19struct user_struct; 20struct writeback_control; 21 22#ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */ 23extern unsigned long max_mapnr; 24#endif 25 26extern unsigned long num_physpages; 27extern void * high_memory; 28extern int page_cluster; 29 30#ifdef CONFIG_SYSCTL 31extern int sysctl_legacy_va_layout; 32#else 33#define sysctl_legacy_va_layout 0 34#endif 35 36extern unsigned long mmap_min_addr; 37 38#include <asm/page.h> 39#include <asm/pgtable.h> 40#include <asm/processor.h> 41 42#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 43 44/* 45 * Linux kernel virtual memory manager primitives. 46 * The idea being to have a "virtual" mm in the same way 47 * we have a virtual fs - giving a cleaner interface to the 48 * mm details, and allowing different kinds of memory mappings 49 * (from shared memory to executable loading to arbitrary 50 * mmap() functions). 51 */ 52 53extern struct kmem_cache *vm_area_cachep; 54 55/* 56 * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is 57 * disabled, then there's a single shared list of VMAs maintained by the 58 * system, and mm's subscribe to these individually 59 */ 60struct vm_list_struct { 61 struct vm_list_struct *next; 62 struct vm_area_struct *vma; 63}; 64 65#ifndef CONFIG_MMU 66extern struct rb_root nommu_vma_tree; 67extern struct rw_semaphore nommu_vma_sem; 68 69extern unsigned int kobjsize(const void *objp); 70#endif 71 72/* 73 * vm_flags.. 74 */ 75#define VM_READ 0x00000001 /* currently active flags */ 76#define VM_WRITE 0x00000002 77#define VM_EXEC 0x00000004 78#define VM_SHARED 0x00000008 79 80/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 81#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 82#define VM_MAYWRITE 0x00000020 83#define VM_MAYEXEC 0x00000040 84#define VM_MAYSHARE 0x00000080 85 86#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 87#define VM_GROWSUP 0x00000200 88#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 89#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 90 91#define VM_EXECUTABLE 0x00001000 92#define VM_LOCKED 0x00002000 93#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 94 95 /* Used by sys_madvise() */ 96#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 97#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 98 99#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 100#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 101#define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */ 102#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 103#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 104#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */ 105#define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */ 106#define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */ 107#define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */ 108 109#define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */ 110 111#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 112#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 113#endif 114 115#ifdef CONFIG_STACK_GROWSUP 116#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 117#else 118#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 119#endif 120 121#define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ) 122#define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK 123#define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK)) 124#define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ) 125#define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ) 126 127/* 128 * mapping from the currently active vm_flags protection bits (the 129 * low four bits) to a page protection mask.. 130 */ 131extern pgprot_t protection_map[16]; 132 133#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 134#define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */ 135 136 137/* 138 * vm_fault is filled by the the pagefault handler and passed to the vma's 139 * ->fault function. The vma's ->fault is responsible for returning a bitmask 140 * of VM_FAULT_xxx flags that give details about how the fault was handled. 141 * 142 * pgoff should be used in favour of virtual_address, if possible. If pgoff 143 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear 144 * mapping support. 145 */ 146struct vm_fault { 147 unsigned int flags; /* FAULT_FLAG_xxx flags */ 148 pgoff_t pgoff; /* Logical page offset based on vma */ 149 void __user *virtual_address; /* Faulting virtual address */ 150 151 struct page *page; /* ->fault handlers should return a 152 * page here, unless VM_FAULT_NOPAGE 153 * is set (which is also implied by 154 * VM_FAULT_ERROR). 155 */ 156}; 157 158/* 159 * These are the virtual MM functions - opening of an area, closing and 160 * unmapping it (needed to keep files on disk up-to-date etc), pointer 161 * to the functions called when a no-page or a wp-page exception occurs. 162 */ 163struct vm_operations_struct { 164 void (*open)(struct vm_area_struct * area); 165 void (*close)(struct vm_area_struct * area); 166 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); 167 struct page *(*nopage)(struct vm_area_struct *area, 168 unsigned long address, int *type); 169 unsigned long (*nopfn)(struct vm_area_struct *area, 170 unsigned long address); 171 172 /* notification that a previously read-only page is about to become 173 * writable, if an error is returned it will cause a SIGBUS */ 174 int (*page_mkwrite)(struct vm_area_struct *vma, struct page *page); 175#ifdef CONFIG_NUMA 176 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 177 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 178 unsigned long addr); 179 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from, 180 const nodemask_t *to, unsigned long flags); 181#endif 182}; 183 184struct mmu_gather; 185struct inode; 186 187#define page_private(page) ((page)->private) 188#define set_page_private(page, v) ((page)->private = (v)) 189 190/* 191 * FIXME: take this include out, include page-flags.h in 192 * files which need it (119 of them) 193 */ 194#include <linux/page-flags.h> 195 196#ifdef CONFIG_DEBUG_VM 197#define VM_BUG_ON(cond) BUG_ON(cond) 198#else 199#define VM_BUG_ON(condition) do { } while(0) 200#endif 201 202/* 203 * Methods to modify the page usage count. 204 * 205 * What counts for a page usage: 206 * - cache mapping (page->mapping) 207 * - private data (page->private) 208 * - page mapped in a task's page tables, each mapping 209 * is counted separately 210 * 211 * Also, many kernel routines increase the page count before a critical 212 * routine so they can be sure the page doesn't go away from under them. 213 */ 214 215/* 216 * Drop a ref, return true if the refcount fell to zero (the page has no users) 217 */ 218static inline int put_page_testzero(struct page *page) 219{ 220 VM_BUG_ON(atomic_read(&page->_count) == 0); 221 return atomic_dec_and_test(&page->_count); 222} 223 224/* 225 * Try to grab a ref unless the page has a refcount of zero, return false if 226 * that is the case. 227 */ 228static inline int get_page_unless_zero(struct page *page) 229{ 230 VM_BUG_ON(PageTail(page)); 231 return atomic_inc_not_zero(&page->_count); 232} 233 234/* Support for virtually mapped pages */ 235struct page *vmalloc_to_page(const void *addr); 236unsigned long vmalloc_to_pfn(const void *addr); 237 238/* 239 * Determine if an address is within the vmalloc range 240 * 241 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 242 * is no special casing required. 243 */ 244static inline int is_vmalloc_addr(const void *x) 245{ 246#ifdef CONFIG_MMU 247 unsigned long addr = (unsigned long)x; 248 249 return addr >= VMALLOC_START && addr < VMALLOC_END; 250#else 251 return 0; 252#endif 253} 254 255static inline struct page *compound_head(struct page *page) 256{ 257 if (unlikely(PageTail(page))) 258 return page->first_page; 259 return page; 260} 261 262static inline int page_count(struct page *page) 263{ 264 return atomic_read(&compound_head(page)->_count); 265} 266 267static inline void get_page(struct page *page) 268{ 269 page = compound_head(page); 270 VM_BUG_ON(atomic_read(&page->_count) == 0); 271 atomic_inc(&page->_count); 272} 273 274static inline struct page *virt_to_head_page(const void *x) 275{ 276 struct page *page = virt_to_page(x); 277 return compound_head(page); 278} 279 280/* 281 * Setup the page count before being freed into the page allocator for 282 * the first time (boot or memory hotplug) 283 */ 284static inline void init_page_count(struct page *page) 285{ 286 atomic_set(&page->_count, 1); 287} 288 289void put_page(struct page *page); 290void put_pages_list(struct list_head *pages); 291 292void split_page(struct page *page, unsigned int order); 293 294/* 295 * Compound pages have a destructor function. Provide a 296 * prototype for that function and accessor functions. 297 * These are _only_ valid on the head of a PG_compound page. 298 */ 299typedef void compound_page_dtor(struct page *); 300 301static inline void set_compound_page_dtor(struct page *page, 302 compound_page_dtor *dtor) 303{ 304 page[1].lru.next = (void *)dtor; 305} 306 307static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 308{ 309 return (compound_page_dtor *)page[1].lru.next; 310} 311 312static inline int compound_order(struct page *page) 313{ 314 if (!PageHead(page)) 315 return 0; 316 return (unsigned long)page[1].lru.prev; 317} 318 319static inline void set_compound_order(struct page *page, unsigned long order) 320{ 321 page[1].lru.prev = (void *)order; 322} 323 324/* 325 * Multiple processes may "see" the same page. E.g. for untouched 326 * mappings of /dev/null, all processes see the same page full of 327 * zeroes, and text pages of executables and shared libraries have 328 * only one copy in memory, at most, normally. 329 * 330 * For the non-reserved pages, page_count(page) denotes a reference count. 331 * page_count() == 0 means the page is free. page->lru is then used for 332 * freelist management in the buddy allocator. 333 * page_count() > 0 means the page has been allocated. 334 * 335 * Pages are allocated by the slab allocator in order to provide memory 336 * to kmalloc and kmem_cache_alloc. In this case, the management of the 337 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 338 * unless a particular usage is carefully commented. (the responsibility of 339 * freeing the kmalloc memory is the caller's, of course). 340 * 341 * A page may be used by anyone else who does a __get_free_page(). 342 * In this case, page_count still tracks the references, and should only 343 * be used through the normal accessor functions. The top bits of page->flags 344 * and page->virtual store page management information, but all other fields 345 * are unused and could be used privately, carefully. The management of this 346 * page is the responsibility of the one who allocated it, and those who have 347 * subsequently been given references to it. 348 * 349 * The other pages (we may call them "pagecache pages") are completely 350 * managed by the Linux memory manager: I/O, buffers, swapping etc. 351 * The following discussion applies only to them. 352 * 353 * A pagecache page contains an opaque `private' member, which belongs to the 354 * page's address_space. Usually, this is the address of a circular list of 355 * the page's disk buffers. PG_private must be set to tell the VM to call 356 * into the filesystem to release these pages. 357 * 358 * A page may belong to an inode's memory mapping. In this case, page->mapping 359 * is the pointer to the inode, and page->index is the file offset of the page, 360 * in units of PAGE_CACHE_SIZE. 361 * 362 * If pagecache pages are not associated with an inode, they are said to be 363 * anonymous pages. These may become associated with the swapcache, and in that 364 * case PG_swapcache is set, and page->private is an offset into the swapcache. 365 * 366 * In either case (swapcache or inode backed), the pagecache itself holds one 367 * reference to the page. Setting PG_private should also increment the 368 * refcount. The each user mapping also has a reference to the page. 369 * 370 * The pagecache pages are stored in a per-mapping radix tree, which is 371 * rooted at mapping->page_tree, and indexed by offset. 372 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 373 * lists, we instead now tag pages as dirty/writeback in the radix tree. 374 * 375 * All pagecache pages may be subject to I/O: 376 * - inode pages may need to be read from disk, 377 * - inode pages which have been modified and are MAP_SHARED may need 378 * to be written back to the inode on disk, 379 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 380 * modified may need to be swapped out to swap space and (later) to be read 381 * back into memory. 382 */ 383 384/* 385 * The zone field is never updated after free_area_init_core() 386 * sets it, so none of the operations on it need to be atomic. 387 */ 388 389 390/* 391 * page->flags layout: 392 * 393 * There are three possibilities for how page->flags get 394 * laid out. The first is for the normal case, without 395 * sparsemem. The second is for sparsemem when there is 396 * plenty of space for node and section. The last is when 397 * we have run out of space and have to fall back to an 398 * alternate (slower) way of determining the node. 399 * 400 * No sparsemem: | NODE | ZONE | ... | FLAGS | 401 * with space for node: | SECTION | NODE | ZONE | ... | FLAGS | 402 * no space for node: | SECTION | ZONE | ... | FLAGS | 403 */ 404#ifdef CONFIG_SPARSEMEM 405#define SECTIONS_WIDTH SECTIONS_SHIFT 406#else 407#define SECTIONS_WIDTH 0 408#endif 409 410#define ZONES_WIDTH ZONES_SHIFT 411 412#if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= FLAGS_RESERVED 413#define NODES_WIDTH NODES_SHIFT 414#else 415#define NODES_WIDTH 0 416#endif 417 418/* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */ 419#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 420#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 421#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 422 423/* 424 * We are going to use the flags for the page to node mapping if its in 425 * there. This includes the case where there is no node, so it is implicit. 426 */ 427#if !(NODES_WIDTH > 0 || NODES_SHIFT == 0) 428#define NODE_NOT_IN_PAGE_FLAGS 429#endif 430 431#ifndef PFN_SECTION_SHIFT 432#define PFN_SECTION_SHIFT 0 433#endif 434 435/* 436 * Define the bit shifts to access each section. For non-existant 437 * sections we define the shift as 0; that plus a 0 mask ensures 438 * the compiler will optimise away reference to them. 439 */ 440#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 441#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 442#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 443 444/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */ 445#ifdef NODE_NOT_IN_PAGEFLAGS 446#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 447#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 448 SECTIONS_PGOFF : ZONES_PGOFF) 449#else 450#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 451#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 452 NODES_PGOFF : ZONES_PGOFF) 453#endif 454 455#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 456 457#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED 458#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED 459#endif 460 461#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 462#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 463#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 464#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 465 466static inline enum zone_type page_zonenum(struct page *page) 467{ 468 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 469} 470 471/* 472 * The identification function is only used by the buddy allocator for 473 * determining if two pages could be buddies. We are not really 474 * identifying a zone since we could be using a the section number 475 * id if we have not node id available in page flags. 476 * We guarantee only that it will return the same value for two 477 * combinable pages in a zone. 478 */ 479static inline int page_zone_id(struct page *page) 480{ 481 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 482} 483 484static inline int zone_to_nid(struct zone *zone) 485{ 486#ifdef CONFIG_NUMA 487 return zone->node; 488#else 489 return 0; 490#endif 491} 492 493#ifdef NODE_NOT_IN_PAGE_FLAGS 494extern int page_to_nid(struct page *page); 495#else 496static inline int page_to_nid(struct page *page) 497{ 498 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 499} 500#endif 501 502static inline struct zone *page_zone(struct page *page) 503{ 504 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 505} 506 507static inline unsigned long page_to_section(struct page *page) 508{ 509 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 510} 511 512static inline void set_page_zone(struct page *page, enum zone_type zone) 513{ 514 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 515 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 516} 517 518static inline void set_page_node(struct page *page, unsigned long node) 519{ 520 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 521 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 522} 523 524static inline void set_page_section(struct page *page, unsigned long section) 525{ 526 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 527 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 528} 529 530static inline void set_page_links(struct page *page, enum zone_type zone, 531 unsigned long node, unsigned long pfn) 532{ 533 set_page_zone(page, zone); 534 set_page_node(page, node); 535 set_page_section(page, pfn_to_section_nr(pfn)); 536} 537 538/* 539 * If a hint addr is less than mmap_min_addr change hint to be as 540 * low as possible but still greater than mmap_min_addr 541 */ 542static inline unsigned long round_hint_to_min(unsigned long hint) 543{ 544#ifdef CONFIG_SECURITY 545 hint &= PAGE_MASK; 546 if (((void *)hint != NULL) && 547 (hint < mmap_min_addr)) 548 return PAGE_ALIGN(mmap_min_addr); 549#endif 550 return hint; 551} 552 553/* 554 * Some inline functions in vmstat.h depend on page_zone() 555 */ 556#include <linux/vmstat.h> 557 558static __always_inline void *lowmem_page_address(struct page *page) 559{ 560 return __va(page_to_pfn(page) << PAGE_SHIFT); 561} 562 563#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 564#define HASHED_PAGE_VIRTUAL 565#endif 566 567#if defined(WANT_PAGE_VIRTUAL) 568#define page_address(page) ((page)->virtual) 569#define set_page_address(page, address) \ 570 do { \ 571 (page)->virtual = (address); \ 572 } while(0) 573#define page_address_init() do { } while(0) 574#endif 575 576#if defined(HASHED_PAGE_VIRTUAL) 577void *page_address(struct page *page); 578void set_page_address(struct page *page, void *virtual); 579void page_address_init(void); 580#endif 581 582#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 583#define page_address(page) lowmem_page_address(page) 584#define set_page_address(page, address) do { } while(0) 585#define page_address_init() do { } while(0) 586#endif 587 588/* 589 * On an anonymous page mapped into a user virtual memory area, 590 * page->mapping points to its anon_vma, not to a struct address_space; 591 * with the PAGE_MAPPING_ANON bit set to distinguish it. 592 * 593 * Please note that, confusingly, "page_mapping" refers to the inode 594 * address_space which maps the page from disk; whereas "page_mapped" 595 * refers to user virtual address space into which the page is mapped. 596 */ 597#define PAGE_MAPPING_ANON 1 598 599extern struct address_space swapper_space; 600static inline struct address_space *page_mapping(struct page *page) 601{ 602 struct address_space *mapping = page->mapping; 603 604 VM_BUG_ON(PageSlab(page)); 605 if (unlikely(PageSwapCache(page))) 606 mapping = &swapper_space; 607 else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON)) 608 mapping = NULL; 609 return mapping; 610} 611 612static inline int PageAnon(struct page *page) 613{ 614 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 615} 616 617/* 618 * Return the pagecache index of the passed page. Regular pagecache pages 619 * use ->index whereas swapcache pages use ->private 620 */ 621static inline pgoff_t page_index(struct page *page) 622{ 623 if (unlikely(PageSwapCache(page))) 624 return page_private(page); 625 return page->index; 626} 627 628/* 629 * The atomic page->_mapcount, like _count, starts from -1: 630 * so that transitions both from it and to it can be tracked, 631 * using atomic_inc_and_test and atomic_add_negative(-1). 632 */ 633static inline void reset_page_mapcount(struct page *page) 634{ 635 atomic_set(&(page)->_mapcount, -1); 636} 637 638static inline int page_mapcount(struct page *page) 639{ 640 return atomic_read(&(page)->_mapcount) + 1; 641} 642 643/* 644 * Return true if this page is mapped into pagetables. 645 */ 646static inline int page_mapped(struct page *page) 647{ 648 return atomic_read(&(page)->_mapcount) >= 0; 649} 650 651/* 652 * Error return values for the *_nopage functions 653 */ 654#define NOPAGE_SIGBUS (NULL) 655#define NOPAGE_OOM ((struct page *) (-1)) 656 657/* 658 * Error return values for the *_nopfn functions 659 */ 660#define NOPFN_SIGBUS ((unsigned long) -1) 661#define NOPFN_OOM ((unsigned long) -2) 662#define NOPFN_REFAULT ((unsigned long) -3) 663 664/* 665 * Different kinds of faults, as returned by handle_mm_fault(). 666 * Used to decide whether a process gets delivered SIGBUS or 667 * just gets major/minor fault counters bumped up. 668 */ 669 670#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */ 671 672#define VM_FAULT_OOM 0x0001 673#define VM_FAULT_SIGBUS 0x0002 674#define VM_FAULT_MAJOR 0x0004 675#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 676 677#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 678#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 679 680#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS) 681 682#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 683 684extern void show_free_areas(void); 685 686#ifdef CONFIG_SHMEM 687int shmem_lock(struct file *file, int lock, struct user_struct *user); 688#else 689static inline int shmem_lock(struct file *file, int lock, 690 struct user_struct *user) 691{ 692 return 0; 693} 694#endif 695struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags); 696 697int shmem_zero_setup(struct vm_area_struct *); 698 699#ifndef CONFIG_MMU 700extern unsigned long shmem_get_unmapped_area(struct file *file, 701 unsigned long addr, 702 unsigned long len, 703 unsigned long pgoff, 704 unsigned long flags); 705#endif 706 707extern int can_do_mlock(void); 708extern int user_shm_lock(size_t, struct user_struct *); 709extern void user_shm_unlock(size_t, struct user_struct *); 710 711/* 712 * Parameter block passed down to zap_pte_range in exceptional cases. 713 */ 714struct zap_details { 715 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */ 716 struct address_space *check_mapping; /* Check page->mapping if set */ 717 pgoff_t first_index; /* Lowest page->index to unmap */ 718 pgoff_t last_index; /* Highest page->index to unmap */ 719 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */ 720 unsigned long truncate_count; /* Compare vm_truncate_count */ 721}; 722 723struct page *vm_normal_page(struct vm_area_struct *, unsigned long, pte_t); 724unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, 725 unsigned long size, struct zap_details *); 726unsigned long unmap_vmas(struct mmu_gather **tlb, 727 struct vm_area_struct *start_vma, unsigned long start_addr, 728 unsigned long end_addr, unsigned long *nr_accounted, 729 struct zap_details *); 730 731/** 732 * mm_walk - callbacks for walk_page_range 733 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry 734 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry 735 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 736 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 737 * @pte_hole: if set, called for each hole at all levels 738 * 739 * (see walk_page_range for more details) 740 */ 741struct mm_walk { 742 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, void *); 743 int (*pud_entry)(pud_t *, unsigned long, unsigned long, void *); 744 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, void *); 745 int (*pte_entry)(pte_t *, unsigned long, unsigned long, void *); 746 int (*pte_hole)(unsigned long, unsigned long, void *); 747}; 748 749int walk_page_range(const struct mm_struct *, unsigned long addr, 750 unsigned long end, const struct mm_walk *walk, 751 void *private); 752void free_pgd_range(struct mmu_gather **tlb, unsigned long addr, 753 unsigned long end, unsigned long floor, unsigned long ceiling); 754void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma, 755 unsigned long floor, unsigned long ceiling); 756int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 757 struct vm_area_struct *vma); 758void unmap_mapping_range(struct address_space *mapping, 759 loff_t const holebegin, loff_t const holelen, int even_cows); 760 761static inline void unmap_shared_mapping_range(struct address_space *mapping, 762 loff_t const holebegin, loff_t const holelen) 763{ 764 unmap_mapping_range(mapping, holebegin, holelen, 0); 765} 766 767extern int vmtruncate(struct inode * inode, loff_t offset); 768extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end); 769 770#ifdef CONFIG_MMU 771extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 772 unsigned long address, int write_access); 773#else 774static inline int handle_mm_fault(struct mm_struct *mm, 775 struct vm_area_struct *vma, unsigned long address, 776 int write_access) 777{ 778 /* should never happen if there's no MMU */ 779 BUG(); 780 return VM_FAULT_SIGBUS; 781} 782#endif 783 784extern int make_pages_present(unsigned long addr, unsigned long end); 785extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 786 787int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start, 788 int len, int write, int force, struct page **pages, struct vm_area_struct **vmas); 789void print_bad_pte(struct vm_area_struct *, pte_t, unsigned long); 790 791extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 792extern void do_invalidatepage(struct page *page, unsigned long offset); 793 794int __set_page_dirty_nobuffers(struct page *page); 795int __set_page_dirty_no_writeback(struct page *page); 796int redirty_page_for_writepage(struct writeback_control *wbc, 797 struct page *page); 798int set_page_dirty(struct page *page); 799int set_page_dirty_lock(struct page *page); 800int clear_page_dirty_for_io(struct page *page); 801 802extern unsigned long move_page_tables(struct vm_area_struct *vma, 803 unsigned long old_addr, struct vm_area_struct *new_vma, 804 unsigned long new_addr, unsigned long len); 805extern unsigned long do_mremap(unsigned long addr, 806 unsigned long old_len, unsigned long new_len, 807 unsigned long flags, unsigned long new_addr); 808extern int mprotect_fixup(struct vm_area_struct *vma, 809 struct vm_area_struct **pprev, unsigned long start, 810 unsigned long end, unsigned long newflags); 811 812/* 813 * A callback you can register to apply pressure to ageable caches. 814 * 815 * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should 816 * look through the least-recently-used 'nr_to_scan' entries and 817 * attempt to free them up. It should return the number of objects 818 * which remain in the cache. If it returns -1, it means it cannot do 819 * any scanning at this time (eg. there is a risk of deadlock). 820 * 821 * The 'gfpmask' refers to the allocation we are currently trying to 822 * fulfil. 823 * 824 * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is 825 * querying the cache size, so a fastpath for that case is appropriate. 826 */ 827struct shrinker { 828 int (*shrink)(int nr_to_scan, gfp_t gfp_mask); 829 int seeks; /* seeks to recreate an obj */ 830 831 /* These are for internal use */ 832 struct list_head list; 833 long nr; /* objs pending delete */ 834}; 835#define DEFAULT_SEEKS 2 /* A good number if you don't know better. */ 836extern void register_shrinker(struct shrinker *); 837extern void unregister_shrinker(struct shrinker *); 838 839int vma_wants_writenotify(struct vm_area_struct *vma); 840 841extern pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl); 842 843#ifdef __PAGETABLE_PUD_FOLDED 844static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, 845 unsigned long address) 846{ 847 return 0; 848} 849#else 850int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 851#endif 852 853#ifdef __PAGETABLE_PMD_FOLDED 854static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 855 unsigned long address) 856{ 857 return 0; 858} 859#else 860int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 861#endif 862 863int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address); 864int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 865 866/* 867 * The following ifdef needed to get the 4level-fixup.h header to work. 868 * Remove it when 4level-fixup.h has been removed. 869 */ 870#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 871static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 872{ 873 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 874 NULL: pud_offset(pgd, address); 875} 876 877static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 878{ 879 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 880 NULL: pmd_offset(pud, address); 881} 882#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 883 884#if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS 885/* 886 * We tuck a spinlock to guard each pagetable page into its struct page, 887 * at page->private, with BUILD_BUG_ON to make sure that this will not 888 * overflow into the next struct page (as it might with DEBUG_SPINLOCK). 889 * When freeing, reset page->mapping so free_pages_check won't complain. 890 */ 891#define __pte_lockptr(page) &((page)->ptl) 892#define pte_lock_init(_page) do { \ 893 spin_lock_init(__pte_lockptr(_page)); \ 894} while (0) 895#define pte_lock_deinit(page) ((page)->mapping = NULL) 896#define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));}) 897#else 898/* 899 * We use mm->page_table_lock to guard all pagetable pages of the mm. 900 */ 901#define pte_lock_init(page) do {} while (0) 902#define pte_lock_deinit(page) do {} while (0) 903#define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;}) 904#endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */ 905 906static inline void pgtable_page_ctor(struct page *page) 907{ 908 pte_lock_init(page); 909 inc_zone_page_state(page, NR_PAGETABLE); 910} 911 912static inline void pgtable_page_dtor(struct page *page) 913{ 914 pte_lock_deinit(page); 915 dec_zone_page_state(page, NR_PAGETABLE); 916} 917 918#define pte_offset_map_lock(mm, pmd, address, ptlp) \ 919({ \ 920 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 921 pte_t *__pte = pte_offset_map(pmd, address); \ 922 *(ptlp) = __ptl; \ 923 spin_lock(__ptl); \ 924 __pte; \ 925}) 926 927#define pte_unmap_unlock(pte, ptl) do { \ 928 spin_unlock(ptl); \ 929 pte_unmap(pte); \ 930} while (0) 931 932#define pte_alloc_map(mm, pmd, address) \ 933 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \ 934 NULL: pte_offset_map(pmd, address)) 935 936#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 937 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \ 938 NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) 939 940#define pte_alloc_kernel(pmd, address) \ 941 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 942 NULL: pte_offset_kernel(pmd, address)) 943 944extern void free_area_init(unsigned long * zones_size); 945extern void free_area_init_node(int nid, pg_data_t *pgdat, 946 unsigned long * zones_size, unsigned long zone_start_pfn, 947 unsigned long *zholes_size); 948#ifdef CONFIG_ARCH_POPULATES_NODE_MAP 949/* 950 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its 951 * zones, allocate the backing mem_map and account for memory holes in a more 952 * architecture independent manner. This is a substitute for creating the 953 * zone_sizes[] and zholes_size[] arrays and passing them to 954 * free_area_init_node() 955 * 956 * An architecture is expected to register range of page frames backed by 957 * physical memory with add_active_range() before calling 958 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 959 * usage, an architecture is expected to do something like 960 * 961 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 962 * max_highmem_pfn}; 963 * for_each_valid_physical_page_range() 964 * add_active_range(node_id, start_pfn, end_pfn) 965 * free_area_init_nodes(max_zone_pfns); 966 * 967 * If the architecture guarantees that there are no holes in the ranges 968 * registered with add_active_range(), free_bootmem_active_regions() 969 * will call free_bootmem_node() for each registered physical page range. 970 * Similarly sparse_memory_present_with_active_regions() calls 971 * memory_present() for each range when SPARSEMEM is enabled. 972 * 973 * See mm/page_alloc.c for more information on each function exposed by 974 * CONFIG_ARCH_POPULATES_NODE_MAP 975 */ 976extern void free_area_init_nodes(unsigned long *max_zone_pfn); 977extern void add_active_range(unsigned int nid, unsigned long start_pfn, 978 unsigned long end_pfn); 979extern void shrink_active_range(unsigned int nid, unsigned long old_end_pfn, 980 unsigned long new_end_pfn); 981extern void push_node_boundaries(unsigned int nid, unsigned long start_pfn, 982 unsigned long end_pfn); 983extern void remove_all_active_ranges(void); 984extern unsigned long absent_pages_in_range(unsigned long start_pfn, 985 unsigned long end_pfn); 986extern void get_pfn_range_for_nid(unsigned int nid, 987 unsigned long *start_pfn, unsigned long *end_pfn); 988extern unsigned long find_min_pfn_with_active_regions(void); 989extern unsigned long find_max_pfn_with_active_regions(void); 990extern void free_bootmem_with_active_regions(int nid, 991 unsigned long max_low_pfn); 992extern void sparse_memory_present_with_active_regions(int nid); 993#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 994extern int early_pfn_to_nid(unsigned long pfn); 995#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 996#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 997extern void set_dma_reserve(unsigned long new_dma_reserve); 998extern void memmap_init_zone(unsigned long, int, unsigned long, 999 unsigned long, enum memmap_context); 1000extern void setup_per_zone_pages_min(void); 1001extern void mem_init(void); 1002extern void show_mem(void); 1003extern void si_meminfo(struct sysinfo * val); 1004extern void si_meminfo_node(struct sysinfo *val, int nid); 1005 1006#ifdef CONFIG_NUMA 1007extern void setup_per_cpu_pageset(void); 1008#else 1009static inline void setup_per_cpu_pageset(void) {} 1010#endif 1011 1012/* prio_tree.c */ 1013void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old); 1014void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *); 1015void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *); 1016struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma, 1017 struct prio_tree_iter *iter); 1018 1019#define vma_prio_tree_foreach(vma, iter, root, begin, end) \ 1020 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \ 1021 (vma = vma_prio_tree_next(vma, iter)); ) 1022 1023static inline void vma_nonlinear_insert(struct vm_area_struct *vma, 1024 struct list_head *list) 1025{ 1026 vma->shared.vm_set.parent = NULL; 1027 list_add_tail(&vma->shared.vm_set.list, list); 1028} 1029 1030/* mmap.c */ 1031extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 1032extern void vma_adjust(struct vm_area_struct *vma, unsigned long start, 1033 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 1034extern struct vm_area_struct *vma_merge(struct mm_struct *, 1035 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 1036 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 1037 struct mempolicy *); 1038extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 1039extern int split_vma(struct mm_struct *, 1040 struct vm_area_struct *, unsigned long addr, int new_below); 1041extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 1042extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 1043 struct rb_node **, struct rb_node *); 1044extern void unlink_file_vma(struct vm_area_struct *); 1045extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 1046 unsigned long addr, unsigned long len, pgoff_t pgoff); 1047extern void exit_mmap(struct mm_struct *); 1048extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); 1049extern int install_special_mapping(struct mm_struct *mm, 1050 unsigned long addr, unsigned long len, 1051 unsigned long flags, struct page **pages); 1052 1053extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 1054 1055extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 1056 unsigned long len, unsigned long prot, 1057 unsigned long flag, unsigned long pgoff); 1058extern unsigned long mmap_region(struct file *file, unsigned long addr, 1059 unsigned long len, unsigned long flags, 1060 unsigned int vm_flags, unsigned long pgoff, 1061 int accountable); 1062 1063static inline unsigned long do_mmap(struct file *file, unsigned long addr, 1064 unsigned long len, unsigned long prot, 1065 unsigned long flag, unsigned long offset) 1066{ 1067 unsigned long ret = -EINVAL; 1068 if ((offset + PAGE_ALIGN(len)) < offset) 1069 goto out; 1070 if (!(offset & ~PAGE_MASK)) 1071 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); 1072out: 1073 return ret; 1074} 1075 1076extern int do_munmap(struct mm_struct *, unsigned long, size_t); 1077 1078extern unsigned long do_brk(unsigned long, unsigned long); 1079 1080/* filemap.c */ 1081extern unsigned long page_unuse(struct page *); 1082extern void truncate_inode_pages(struct address_space *, loff_t); 1083extern void truncate_inode_pages_range(struct address_space *, 1084 loff_t lstart, loff_t lend); 1085 1086/* generic vm_area_ops exported for stackable file systems */ 1087extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); 1088 1089/* mm/page-writeback.c */ 1090int write_one_page(struct page *page, int wait); 1091 1092/* readahead.c */ 1093#define VM_MAX_READAHEAD 128 /* kbytes */ 1094#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 1095 1096int do_page_cache_readahead(struct address_space *mapping, struct file *filp, 1097 pgoff_t offset, unsigned long nr_to_read); 1098int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 1099 pgoff_t offset, unsigned long nr_to_read); 1100 1101void page_cache_sync_readahead(struct address_space *mapping, 1102 struct file_ra_state *ra, 1103 struct file *filp, 1104 pgoff_t offset, 1105 unsigned long size); 1106 1107void page_cache_async_readahead(struct address_space *mapping, 1108 struct file_ra_state *ra, 1109 struct file *filp, 1110 struct page *pg, 1111 pgoff_t offset, 1112 unsigned long size); 1113 1114unsigned long max_sane_readahead(unsigned long nr); 1115 1116/* Do stack extension */ 1117extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 1118#ifdef CONFIG_IA64 1119extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 1120#endif 1121extern int expand_stack_downwards(struct vm_area_struct *vma, 1122 unsigned long address); 1123 1124/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1125extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 1126extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 1127 struct vm_area_struct **pprev); 1128 1129/* Look up the first VMA which intersects the interval start_addr..end_addr-1, 1130 NULL if none. Assume start_addr < end_addr. */ 1131static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 1132{ 1133 struct vm_area_struct * vma = find_vma(mm,start_addr); 1134 1135 if (vma && end_addr <= vma->vm_start) 1136 vma = NULL; 1137 return vma; 1138} 1139 1140static inline unsigned long vma_pages(struct vm_area_struct *vma) 1141{ 1142 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 1143} 1144 1145pgprot_t vm_get_page_prot(unsigned long vm_flags); 1146struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 1147int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 1148 unsigned long pfn, unsigned long size, pgprot_t); 1149int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 1150int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1151 unsigned long pfn); 1152 1153struct page *follow_page(struct vm_area_struct *, unsigned long address, 1154 unsigned int foll_flags); 1155#define FOLL_WRITE 0x01 /* check pte is writable */ 1156#define FOLL_TOUCH 0x02 /* mark page accessed */ 1157#define FOLL_GET 0x04 /* do get_page on page */ 1158#define FOLL_ANON 0x08 /* give ZERO_PAGE if no pgtable */ 1159 1160typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 1161 void *data); 1162extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 1163 unsigned long size, pte_fn_t fn, void *data); 1164 1165#ifdef CONFIG_PROC_FS 1166void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); 1167#else 1168static inline void vm_stat_account(struct mm_struct *mm, 1169 unsigned long flags, struct file *file, long pages) 1170{ 1171} 1172#endif /* CONFIG_PROC_FS */ 1173 1174#ifdef CONFIG_DEBUG_PAGEALLOC 1175extern int debug_pagealloc_enabled; 1176 1177extern void kernel_map_pages(struct page *page, int numpages, int enable); 1178 1179static inline void enable_debug_pagealloc(void) 1180{ 1181 debug_pagealloc_enabled = 1; 1182} 1183#ifdef CONFIG_HIBERNATION 1184extern bool kernel_page_present(struct page *page); 1185#endif /* CONFIG_HIBERNATION */ 1186#else 1187static inline void 1188kernel_map_pages(struct page *page, int numpages, int enable) {} 1189static inline void enable_debug_pagealloc(void) 1190{ 1191} 1192#ifdef CONFIG_HIBERNATION 1193static inline bool kernel_page_present(struct page *page) { return true; } 1194#endif /* CONFIG_HIBERNATION */ 1195#endif 1196 1197extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk); 1198#ifdef __HAVE_ARCH_GATE_AREA 1199int in_gate_area_no_task(unsigned long addr); 1200int in_gate_area(struct task_struct *task, unsigned long addr); 1201#else 1202int in_gate_area_no_task(unsigned long addr); 1203#define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);}) 1204#endif /* __HAVE_ARCH_GATE_AREA */ 1205 1206int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *, 1207 void __user *, size_t *, loff_t *); 1208unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask, 1209 unsigned long lru_pages); 1210void drop_pagecache(void); 1211void drop_slab(void); 1212 1213#ifndef CONFIG_MMU 1214#define randomize_va_space 0 1215#else 1216extern int randomize_va_space; 1217#endif 1218 1219const char * arch_vma_name(struct vm_area_struct *vma); 1220void print_vma_addr(char *prefix, unsigned long rip); 1221 1222struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 1223pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 1224pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); 1225pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 1226pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 1227void *vmemmap_alloc_block(unsigned long size, int node); 1228void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 1229int vmemmap_populate_basepages(struct page *start_page, 1230 unsigned long pages, int node); 1231int vmemmap_populate(struct page *start_page, unsigned long pages, int node); 1232 1233#endif /* __KERNEL__ */ 1234#endif /* _LINUX_MM_H */