at v2.6.25 370 lines 13 kB view raw
1#ifndef _ASM_X86_PGTABLE_H 2#define _ASM_X86_PGTABLE_H 3 4#define USER_PTRS_PER_PGD ((TASK_SIZE-1)/PGDIR_SIZE+1) 5#define FIRST_USER_ADDRESS 0 6 7#define _PAGE_BIT_PRESENT 0 8#define _PAGE_BIT_RW 1 9#define _PAGE_BIT_USER 2 10#define _PAGE_BIT_PWT 3 11#define _PAGE_BIT_PCD 4 12#define _PAGE_BIT_ACCESSED 5 13#define _PAGE_BIT_DIRTY 6 14#define _PAGE_BIT_FILE 6 15#define _PAGE_BIT_PSE 7 /* 4 MB (or 2MB) page */ 16#define _PAGE_BIT_PAT 7 /* on 4KB pages */ 17#define _PAGE_BIT_GLOBAL 8 /* Global TLB entry PPro+ */ 18#define _PAGE_BIT_UNUSED1 9 /* available for programmer */ 19#define _PAGE_BIT_UNUSED2 10 20#define _PAGE_BIT_UNUSED3 11 21#define _PAGE_BIT_PAT_LARGE 12 /* On 2MB or 1GB pages */ 22#define _PAGE_BIT_NX 63 /* No execute: only valid after cpuid check */ 23 24/* 25 * Note: we use _AC(1, L) instead of _AC(1, UL) so that we get a 26 * sign-extended value on 32-bit with all 1's in the upper word, 27 * which preserves the upper pte values on 64-bit ptes: 28 */ 29#define _PAGE_PRESENT (_AC(1, L)<<_PAGE_BIT_PRESENT) 30#define _PAGE_RW (_AC(1, L)<<_PAGE_BIT_RW) 31#define _PAGE_USER (_AC(1, L)<<_PAGE_BIT_USER) 32#define _PAGE_PWT (_AC(1, L)<<_PAGE_BIT_PWT) 33#define _PAGE_PCD (_AC(1, L)<<_PAGE_BIT_PCD) 34#define _PAGE_ACCESSED (_AC(1, L)<<_PAGE_BIT_ACCESSED) 35#define _PAGE_DIRTY (_AC(1, L)<<_PAGE_BIT_DIRTY) 36#define _PAGE_PSE (_AC(1, L)<<_PAGE_BIT_PSE) /* 2MB page */ 37#define _PAGE_GLOBAL (_AC(1, L)<<_PAGE_BIT_GLOBAL) /* Global TLB entry */ 38#define _PAGE_UNUSED1 (_AC(1, L)<<_PAGE_BIT_UNUSED1) 39#define _PAGE_UNUSED2 (_AC(1, L)<<_PAGE_BIT_UNUSED2) 40#define _PAGE_UNUSED3 (_AC(1, L)<<_PAGE_BIT_UNUSED3) 41#define _PAGE_PAT (_AC(1, L)<<_PAGE_BIT_PAT) 42#define _PAGE_PAT_LARGE (_AC(1, L)<<_PAGE_BIT_PAT_LARGE) 43 44#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE) 45#define _PAGE_NX (_AC(1, ULL) << _PAGE_BIT_NX) 46#else 47#define _PAGE_NX 0 48#endif 49 50/* If _PAGE_PRESENT is clear, we use these: */ 51#define _PAGE_FILE _PAGE_DIRTY /* nonlinear file mapping, saved PTE; unset:swap */ 52#define _PAGE_PROTNONE _PAGE_PSE /* if the user mapped it with PROT_NONE; 53 pte_present gives true */ 54 55#define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY) 56#define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY) 57 58#define _PAGE_CHG_MASK (PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) 59 60#define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED) 61#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_NX) 62 63#define PAGE_SHARED_EXEC __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED) 64#define PAGE_COPY_NOEXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_NX) 65#define PAGE_COPY_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED) 66#define PAGE_COPY PAGE_COPY_NOEXEC 67#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_NX) 68#define PAGE_READONLY_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED) 69 70#ifdef CONFIG_X86_32 71#define _PAGE_KERNEL_EXEC \ 72 (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED) 73#define _PAGE_KERNEL (_PAGE_KERNEL_EXEC | _PAGE_NX) 74 75#ifndef __ASSEMBLY__ 76extern pteval_t __PAGE_KERNEL, __PAGE_KERNEL_EXEC; 77#endif /* __ASSEMBLY__ */ 78#else 79#define __PAGE_KERNEL_EXEC \ 80 (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED) 81#define __PAGE_KERNEL (__PAGE_KERNEL_EXEC | _PAGE_NX) 82#endif 83 84#define __PAGE_KERNEL_RO (__PAGE_KERNEL & ~_PAGE_RW) 85#define __PAGE_KERNEL_RX (__PAGE_KERNEL_EXEC & ~_PAGE_RW) 86#define __PAGE_KERNEL_EXEC_NOCACHE (__PAGE_KERNEL_EXEC | _PAGE_PCD | _PAGE_PWT) 87#define __PAGE_KERNEL_NOCACHE (__PAGE_KERNEL | _PAGE_PCD | _PAGE_PWT) 88#define __PAGE_KERNEL_UC_MINUS (__PAGE_KERNEL | _PAGE_PCD) 89#define __PAGE_KERNEL_VSYSCALL (__PAGE_KERNEL_RX | _PAGE_USER) 90#define __PAGE_KERNEL_VSYSCALL_NOCACHE (__PAGE_KERNEL_VSYSCALL | _PAGE_PCD | _PAGE_PWT) 91#define __PAGE_KERNEL_LARGE (__PAGE_KERNEL | _PAGE_PSE) 92#define __PAGE_KERNEL_LARGE_EXEC (__PAGE_KERNEL_EXEC | _PAGE_PSE) 93 94#ifdef CONFIG_X86_32 95# define MAKE_GLOBAL(x) __pgprot((x)) 96#else 97# define MAKE_GLOBAL(x) __pgprot((x) | _PAGE_GLOBAL) 98#endif 99 100#define PAGE_KERNEL MAKE_GLOBAL(__PAGE_KERNEL) 101#define PAGE_KERNEL_RO MAKE_GLOBAL(__PAGE_KERNEL_RO) 102#define PAGE_KERNEL_EXEC MAKE_GLOBAL(__PAGE_KERNEL_EXEC) 103#define PAGE_KERNEL_RX MAKE_GLOBAL(__PAGE_KERNEL_RX) 104#define PAGE_KERNEL_NOCACHE MAKE_GLOBAL(__PAGE_KERNEL_NOCACHE) 105#define PAGE_KERNEL_UC_MINUS MAKE_GLOBAL(__PAGE_KERNEL_UC_MINUS) 106#define PAGE_KERNEL_EXEC_NOCACHE MAKE_GLOBAL(__PAGE_KERNEL_EXEC_NOCACHE) 107#define PAGE_KERNEL_LARGE MAKE_GLOBAL(__PAGE_KERNEL_LARGE) 108#define PAGE_KERNEL_LARGE_EXEC MAKE_GLOBAL(__PAGE_KERNEL_LARGE_EXEC) 109#define PAGE_KERNEL_VSYSCALL MAKE_GLOBAL(__PAGE_KERNEL_VSYSCALL) 110#define PAGE_KERNEL_VSYSCALL_NOCACHE MAKE_GLOBAL(__PAGE_KERNEL_VSYSCALL_NOCACHE) 111 112/* xwr */ 113#define __P000 PAGE_NONE 114#define __P001 PAGE_READONLY 115#define __P010 PAGE_COPY 116#define __P011 PAGE_COPY 117#define __P100 PAGE_READONLY_EXEC 118#define __P101 PAGE_READONLY_EXEC 119#define __P110 PAGE_COPY_EXEC 120#define __P111 PAGE_COPY_EXEC 121 122#define __S000 PAGE_NONE 123#define __S001 PAGE_READONLY 124#define __S010 PAGE_SHARED 125#define __S011 PAGE_SHARED 126#define __S100 PAGE_READONLY_EXEC 127#define __S101 PAGE_READONLY_EXEC 128#define __S110 PAGE_SHARED_EXEC 129#define __S111 PAGE_SHARED_EXEC 130 131#ifndef __ASSEMBLY__ 132 133/* 134 * ZERO_PAGE is a global shared page that is always zero: used 135 * for zero-mapped memory areas etc.. 136 */ 137extern unsigned long empty_zero_page[PAGE_SIZE/sizeof(unsigned long)]; 138#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) 139 140extern spinlock_t pgd_lock; 141extern struct list_head pgd_list; 142 143/* 144 * The following only work if pte_present() is true. 145 * Undefined behaviour if not.. 146 */ 147static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } 148static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } 149static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; } 150static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; } 151static inline int pte_huge(pte_t pte) { return pte_val(pte) & _PAGE_PSE; } 152static inline int pte_global(pte_t pte) { return pte_val(pte) & _PAGE_GLOBAL; } 153static inline int pte_exec(pte_t pte) { return !(pte_val(pte) & _PAGE_NX); } 154 155static inline int pmd_large(pmd_t pte) { 156 return (pmd_val(pte) & (_PAGE_PSE|_PAGE_PRESENT)) == 157 (_PAGE_PSE|_PAGE_PRESENT); 158} 159 160static inline pte_t pte_mkclean(pte_t pte) { return __pte(pte_val(pte) & ~(pteval_t)_PAGE_DIRTY); } 161static inline pte_t pte_mkold(pte_t pte) { return __pte(pte_val(pte) & ~(pteval_t)_PAGE_ACCESSED); } 162static inline pte_t pte_wrprotect(pte_t pte) { return __pte(pte_val(pte) & ~(pteval_t)_PAGE_RW); } 163static inline pte_t pte_mkexec(pte_t pte) { return __pte(pte_val(pte) & ~(pteval_t)_PAGE_NX); } 164static inline pte_t pte_mkdirty(pte_t pte) { return __pte(pte_val(pte) | _PAGE_DIRTY); } 165static inline pte_t pte_mkyoung(pte_t pte) { return __pte(pte_val(pte) | _PAGE_ACCESSED); } 166static inline pte_t pte_mkwrite(pte_t pte) { return __pte(pte_val(pte) | _PAGE_RW); } 167static inline pte_t pte_mkhuge(pte_t pte) { return __pte(pte_val(pte) | _PAGE_PSE); } 168static inline pte_t pte_clrhuge(pte_t pte) { return __pte(pte_val(pte) & ~(pteval_t)_PAGE_PSE); } 169static inline pte_t pte_mkglobal(pte_t pte) { return __pte(pte_val(pte) | _PAGE_GLOBAL); } 170static inline pte_t pte_clrglobal(pte_t pte) { return __pte(pte_val(pte) & ~(pteval_t)_PAGE_GLOBAL); } 171 172extern pteval_t __supported_pte_mask; 173 174static inline pte_t pfn_pte(unsigned long page_nr, pgprot_t pgprot) 175{ 176 return __pte((((phys_addr_t)page_nr << PAGE_SHIFT) | 177 pgprot_val(pgprot)) & __supported_pte_mask); 178} 179 180static inline pmd_t pfn_pmd(unsigned long page_nr, pgprot_t pgprot) 181{ 182 return __pmd((((phys_addr_t)page_nr << PAGE_SHIFT) | 183 pgprot_val(pgprot)) & __supported_pte_mask); 184} 185 186static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 187{ 188 pteval_t val = pte_val(pte); 189 190 /* 191 * Chop off the NX bit (if present), and add the NX portion of 192 * the newprot (if present): 193 */ 194 val &= _PAGE_CHG_MASK & ~_PAGE_NX; 195 val |= pgprot_val(newprot) & __supported_pte_mask; 196 197 return __pte(val); 198} 199 200#define pte_pgprot(x) __pgprot(pte_val(x) & (0xfff | _PAGE_NX)) 201 202#define canon_pgprot(p) __pgprot(pgprot_val(p) & __supported_pte_mask) 203 204#ifdef CONFIG_PARAVIRT 205#include <asm/paravirt.h> 206#else /* !CONFIG_PARAVIRT */ 207#define set_pte(ptep, pte) native_set_pte(ptep, pte) 208#define set_pte_at(mm, addr, ptep, pte) native_set_pte_at(mm, addr, ptep, pte) 209 210#define set_pte_present(mm, addr, ptep, pte) \ 211 native_set_pte_present(mm, addr, ptep, pte) 212#define set_pte_atomic(ptep, pte) \ 213 native_set_pte_atomic(ptep, pte) 214 215#define set_pmd(pmdp, pmd) native_set_pmd(pmdp, pmd) 216 217#ifndef __PAGETABLE_PUD_FOLDED 218#define set_pgd(pgdp, pgd) native_set_pgd(pgdp, pgd) 219#define pgd_clear(pgd) native_pgd_clear(pgd) 220#endif 221 222#ifndef set_pud 223# define set_pud(pudp, pud) native_set_pud(pudp, pud) 224#endif 225 226#ifndef __PAGETABLE_PMD_FOLDED 227#define pud_clear(pud) native_pud_clear(pud) 228#endif 229 230#define pte_clear(mm, addr, ptep) native_pte_clear(mm, addr, ptep) 231#define pmd_clear(pmd) native_pmd_clear(pmd) 232 233#define pte_update(mm, addr, ptep) do { } while (0) 234#define pte_update_defer(mm, addr, ptep) do { } while (0) 235#endif /* CONFIG_PARAVIRT */ 236 237#endif /* __ASSEMBLY__ */ 238 239#ifdef CONFIG_X86_32 240# include "pgtable_32.h" 241#else 242# include "pgtable_64.h" 243#endif 244 245#ifndef __ASSEMBLY__ 246 247enum { 248 PG_LEVEL_NONE, 249 PG_LEVEL_4K, 250 PG_LEVEL_2M, 251 PG_LEVEL_1G, 252}; 253 254/* 255 * Helper function that returns the kernel pagetable entry controlling 256 * the virtual address 'address'. NULL means no pagetable entry present. 257 * NOTE: the return type is pte_t but if the pmd is PSE then we return it 258 * as a pte too. 259 */ 260extern pte_t *lookup_address(unsigned long address, unsigned int *level); 261 262/* local pte updates need not use xchg for locking */ 263static inline pte_t native_local_ptep_get_and_clear(pte_t *ptep) 264{ 265 pte_t res = *ptep; 266 267 /* Pure native function needs no input for mm, addr */ 268 native_pte_clear(NULL, 0, ptep); 269 return res; 270} 271 272static inline void native_set_pte_at(struct mm_struct *mm, unsigned long addr, 273 pte_t *ptep , pte_t pte) 274{ 275 native_set_pte(ptep, pte); 276} 277 278#ifndef CONFIG_PARAVIRT 279/* 280 * Rules for using pte_update - it must be called after any PTE update which 281 * has not been done using the set_pte / clear_pte interfaces. It is used by 282 * shadow mode hypervisors to resynchronize the shadow page tables. Kernel PTE 283 * updates should either be sets, clears, or set_pte_atomic for P->P 284 * transitions, which means this hook should only be called for user PTEs. 285 * This hook implies a P->P protection or access change has taken place, which 286 * requires a subsequent TLB flush. The notification can optionally be delayed 287 * until the TLB flush event by using the pte_update_defer form of the 288 * interface, but care must be taken to assure that the flush happens while 289 * still holding the same page table lock so that the shadow and primary pages 290 * do not become out of sync on SMP. 291 */ 292#define pte_update(mm, addr, ptep) do { } while (0) 293#define pte_update_defer(mm, addr, ptep) do { } while (0) 294#endif 295 296/* 297 * We only update the dirty/accessed state if we set 298 * the dirty bit by hand in the kernel, since the hardware 299 * will do the accessed bit for us, and we don't want to 300 * race with other CPU's that might be updating the dirty 301 * bit at the same time. 302 */ 303#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 304#define ptep_set_access_flags(vma, address, ptep, entry, dirty) \ 305({ \ 306 int __changed = !pte_same(*(ptep), entry); \ 307 if (__changed && dirty) { \ 308 *ptep = entry; \ 309 pte_update_defer((vma)->vm_mm, (address), (ptep)); \ 310 flush_tlb_page(vma, address); \ 311 } \ 312 __changed; \ 313}) 314 315#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 316#define ptep_test_and_clear_young(vma, addr, ptep) ({ \ 317 int __ret = 0; \ 318 if (pte_young(*(ptep))) \ 319 __ret = test_and_clear_bit(_PAGE_BIT_ACCESSED, \ 320 &(ptep)->pte); \ 321 if (__ret) \ 322 pte_update((vma)->vm_mm, addr, ptep); \ 323 __ret; \ 324}) 325 326#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 327#define ptep_clear_flush_young(vma, address, ptep) \ 328({ \ 329 int __young; \ 330 __young = ptep_test_and_clear_young((vma), (address), (ptep)); \ 331 if (__young) \ 332 flush_tlb_page(vma, address); \ 333 __young; \ 334}) 335 336#define __HAVE_ARCH_PTEP_GET_AND_CLEAR 337static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 338{ 339 pte_t pte = native_ptep_get_and_clear(ptep); 340 pte_update(mm, addr, ptep); 341 return pte; 342} 343 344#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL 345static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, unsigned long addr, pte_t *ptep, int full) 346{ 347 pte_t pte; 348 if (full) { 349 /* 350 * Full address destruction in progress; paravirt does not 351 * care about updates and native needs no locking 352 */ 353 pte = native_local_ptep_get_and_clear(ptep); 354 } else { 355 pte = ptep_get_and_clear(mm, addr, ptep); 356 } 357 return pte; 358} 359 360#define __HAVE_ARCH_PTEP_SET_WRPROTECT 361static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 362{ 363 clear_bit(_PAGE_BIT_RW, (unsigned long *)&ptep->pte); 364 pte_update(mm, addr, ptep); 365} 366 367#include <asm-generic/pgtable.h> 368#endif /* __ASSEMBLY__ */ 369 370#endif /* _ASM_X86_PGTABLE_H */