Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * include/asm-s390/pgtable.h
3 *
4 * S390 version
5 * Copyright (C) 1999,2000 IBM Deutschland Entwicklung GmbH, IBM Corporation
6 * Author(s): Hartmut Penner (hp@de.ibm.com)
7 * Ulrich Weigand (weigand@de.ibm.com)
8 * Martin Schwidefsky (schwidefsky@de.ibm.com)
9 *
10 * Derived from "include/asm-i386/pgtable.h"
11 */
12
13#ifndef _ASM_S390_PGTABLE_H
14#define _ASM_S390_PGTABLE_H
15
16/*
17 * The Linux memory management assumes a three-level page table setup. For
18 * s390 31 bit we "fold" the mid level into the top-level page table, so
19 * that we physically have the same two-level page table as the s390 mmu
20 * expects in 31 bit mode. For s390 64 bit we use three of the five levels
21 * the hardware provides (region first and region second tables are not
22 * used).
23 *
24 * The "pgd_xxx()" functions are trivial for a folded two-level
25 * setup: the pgd is never bad, and a pmd always exists (as it's folded
26 * into the pgd entry)
27 *
28 * This file contains the functions and defines necessary to modify and use
29 * the S390 page table tree.
30 */
31#ifndef __ASSEMBLY__
32#include <linux/mm_types.h>
33#include <asm/bug.h>
34#include <asm/processor.h>
35
36extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096)));
37extern void paging_init(void);
38extern void vmem_map_init(void);
39
40/*
41 * The S390 doesn't have any external MMU info: the kernel page
42 * tables contain all the necessary information.
43 */
44#define update_mmu_cache(vma, address, pte) do { } while (0)
45
46/*
47 * ZERO_PAGE is a global shared page that is always zero: used
48 * for zero-mapped memory areas etc..
49 */
50extern char empty_zero_page[PAGE_SIZE];
51#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
52#endif /* !__ASSEMBLY__ */
53
54/*
55 * PMD_SHIFT determines the size of the area a second-level page
56 * table can map
57 * PGDIR_SHIFT determines what a third-level page table entry can map
58 */
59#ifndef __s390x__
60# define PMD_SHIFT 20
61# define PUD_SHIFT 20
62# define PGDIR_SHIFT 20
63#else /* __s390x__ */
64# define PMD_SHIFT 20
65# define PUD_SHIFT 31
66# define PGDIR_SHIFT 42
67#endif /* __s390x__ */
68
69#define PMD_SIZE (1UL << PMD_SHIFT)
70#define PMD_MASK (~(PMD_SIZE-1))
71#define PUD_SIZE (1UL << PUD_SHIFT)
72#define PUD_MASK (~(PUD_SIZE-1))
73#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
74#define PGDIR_MASK (~(PGDIR_SIZE-1))
75
76/*
77 * entries per page directory level: the S390 is two-level, so
78 * we don't really have any PMD directory physically.
79 * for S390 segment-table entries are combined to one PGD
80 * that leads to 1024 pte per pgd
81 */
82#define PTRS_PER_PTE 256
83#ifndef __s390x__
84#define PTRS_PER_PMD 1
85#define PTRS_PER_PUD 1
86#else /* __s390x__ */
87#define PTRS_PER_PMD 2048
88#define PTRS_PER_PUD 2048
89#endif /* __s390x__ */
90#define PTRS_PER_PGD 2048
91
92#define FIRST_USER_ADDRESS 0
93
94#define pte_ERROR(e) \
95 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
96#define pmd_ERROR(e) \
97 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
98#define pud_ERROR(e) \
99 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
100#define pgd_ERROR(e) \
101 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
102
103#ifndef __ASSEMBLY__
104/*
105 * The vmalloc area will always be on the topmost area of the kernel
106 * mapping. We reserve 96MB (31bit) / 1GB (64bit) for vmalloc,
107 * which should be enough for any sane case.
108 * By putting vmalloc at the top, we maximise the gap between physical
109 * memory and vmalloc to catch misplaced memory accesses. As a side
110 * effect, this also makes sure that 64 bit module code cannot be used
111 * as system call address.
112 */
113#ifndef __s390x__
114#define VMALLOC_START 0x78000000UL
115#define VMALLOC_END 0x7e000000UL
116#define VMEM_MAP_END 0x80000000UL
117#else /* __s390x__ */
118#define VMALLOC_START 0x3e000000000UL
119#define VMALLOC_END 0x3e040000000UL
120#define VMEM_MAP_END 0x40000000000UL
121#endif /* __s390x__ */
122
123/*
124 * VMEM_MAX_PHYS is the highest physical address that can be added to the 1:1
125 * mapping. This needs to be calculated at compile time since the size of the
126 * VMEM_MAP is static but the size of struct page can change.
127 */
128#define VMEM_MAX_PAGES ((VMEM_MAP_END - VMALLOC_END) / sizeof(struct page))
129#define VMEM_MAX_PFN min(VMALLOC_START >> PAGE_SHIFT, VMEM_MAX_PAGES)
130#define VMEM_MAX_PHYS ((VMEM_MAX_PFN << PAGE_SHIFT) & ~((16 << 20) - 1))
131#define VMEM_MAP ((struct page *) VMALLOC_END)
132
133/*
134 * A 31 bit pagetable entry of S390 has following format:
135 * | PFRA | | OS |
136 * 0 0IP0
137 * 00000000001111111111222222222233
138 * 01234567890123456789012345678901
139 *
140 * I Page-Invalid Bit: Page is not available for address-translation
141 * P Page-Protection Bit: Store access not possible for page
142 *
143 * A 31 bit segmenttable entry of S390 has following format:
144 * | P-table origin | |PTL
145 * 0 IC
146 * 00000000001111111111222222222233
147 * 01234567890123456789012345678901
148 *
149 * I Segment-Invalid Bit: Segment is not available for address-translation
150 * C Common-Segment Bit: Segment is not private (PoP 3-30)
151 * PTL Page-Table-Length: Page-table length (PTL+1*16 entries -> up to 256)
152 *
153 * The 31 bit segmenttable origin of S390 has following format:
154 *
155 * |S-table origin | | STL |
156 * X **GPS
157 * 00000000001111111111222222222233
158 * 01234567890123456789012345678901
159 *
160 * X Space-Switch event:
161 * G Segment-Invalid Bit: *
162 * P Private-Space Bit: Segment is not private (PoP 3-30)
163 * S Storage-Alteration:
164 * STL Segment-Table-Length: Segment-table length (STL+1*16 entries -> up to 2048)
165 *
166 * A 64 bit pagetable entry of S390 has following format:
167 * | PFRA |0IP0| OS |
168 * 0000000000111111111122222222223333333333444444444455555555556666
169 * 0123456789012345678901234567890123456789012345678901234567890123
170 *
171 * I Page-Invalid Bit: Page is not available for address-translation
172 * P Page-Protection Bit: Store access not possible for page
173 *
174 * A 64 bit segmenttable entry of S390 has following format:
175 * | P-table origin | TT
176 * 0000000000111111111122222222223333333333444444444455555555556666
177 * 0123456789012345678901234567890123456789012345678901234567890123
178 *
179 * I Segment-Invalid Bit: Segment is not available for address-translation
180 * C Common-Segment Bit: Segment is not private (PoP 3-30)
181 * P Page-Protection Bit: Store access not possible for page
182 * TT Type 00
183 *
184 * A 64 bit region table entry of S390 has following format:
185 * | S-table origin | TF TTTL
186 * 0000000000111111111122222222223333333333444444444455555555556666
187 * 0123456789012345678901234567890123456789012345678901234567890123
188 *
189 * I Segment-Invalid Bit: Segment is not available for address-translation
190 * TT Type 01
191 * TF
192 * TL Table length
193 *
194 * The 64 bit regiontable origin of S390 has following format:
195 * | region table origon | DTTL
196 * 0000000000111111111122222222223333333333444444444455555555556666
197 * 0123456789012345678901234567890123456789012345678901234567890123
198 *
199 * X Space-Switch event:
200 * G Segment-Invalid Bit:
201 * P Private-Space Bit:
202 * S Storage-Alteration:
203 * R Real space
204 * TL Table-Length:
205 *
206 * A storage key has the following format:
207 * | ACC |F|R|C|0|
208 * 0 3 4 5 6 7
209 * ACC: access key
210 * F : fetch protection bit
211 * R : referenced bit
212 * C : changed bit
213 */
214
215/* Hardware bits in the page table entry */
216#define _PAGE_RO 0x200 /* HW read-only bit */
217#define _PAGE_INVALID 0x400 /* HW invalid bit */
218
219/* Software bits in the page table entry */
220#define _PAGE_SWT 0x001 /* SW pte type bit t */
221#define _PAGE_SWX 0x002 /* SW pte type bit x */
222
223/* Six different types of pages. */
224#define _PAGE_TYPE_EMPTY 0x400
225#define _PAGE_TYPE_NONE 0x401
226#define _PAGE_TYPE_SWAP 0x403
227#define _PAGE_TYPE_FILE 0x601 /* bit 0x002 is used for offset !! */
228#define _PAGE_TYPE_RO 0x200
229#define _PAGE_TYPE_RW 0x000
230#define _PAGE_TYPE_EX_RO 0x202
231#define _PAGE_TYPE_EX_RW 0x002
232
233/*
234 * PTE type bits are rather complicated. handle_pte_fault uses pte_present,
235 * pte_none and pte_file to find out the pte type WITHOUT holding the page
236 * table lock. ptep_clear_flush on the other hand uses ptep_clear_flush to
237 * invalidate a given pte. ipte sets the hw invalid bit and clears all tlbs
238 * for the page. The page table entry is set to _PAGE_TYPE_EMPTY afterwards.
239 * This change is done while holding the lock, but the intermediate step
240 * of a previously valid pte with the hw invalid bit set can be observed by
241 * handle_pte_fault. That makes it necessary that all valid pte types with
242 * the hw invalid bit set must be distinguishable from the four pte types
243 * empty, none, swap and file.
244 *
245 * irxt ipte irxt
246 * _PAGE_TYPE_EMPTY 1000 -> 1000
247 * _PAGE_TYPE_NONE 1001 -> 1001
248 * _PAGE_TYPE_SWAP 1011 -> 1011
249 * _PAGE_TYPE_FILE 11?1 -> 11?1
250 * _PAGE_TYPE_RO 0100 -> 1100
251 * _PAGE_TYPE_RW 0000 -> 1000
252 * _PAGE_TYPE_EX_RO 0110 -> 1110
253 * _PAGE_TYPE_EX_RW 0010 -> 1010
254 *
255 * pte_none is true for bits combinations 1000, 1010, 1100, 1110
256 * pte_present is true for bits combinations 0000, 0010, 0100, 0110, 1001
257 * pte_file is true for bits combinations 1101, 1111
258 * swap pte is 1011 and 0001, 0011, 0101, 0111 are invalid.
259 */
260
261#ifndef __s390x__
262
263/* Bits in the segment table address-space-control-element */
264#define _ASCE_SPACE_SWITCH 0x80000000UL /* space switch event */
265#define _ASCE_ORIGIN_MASK 0x7ffff000UL /* segment table origin */
266#define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
267#define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
268#define _ASCE_TABLE_LENGTH 0x7f /* 128 x 64 entries = 8k */
269
270/* Bits in the segment table entry */
271#define _SEGMENT_ENTRY_ORIGIN 0x7fffffc0UL /* page table origin */
272#define _SEGMENT_ENTRY_INV 0x20 /* invalid segment table entry */
273#define _SEGMENT_ENTRY_COMMON 0x10 /* common segment bit */
274#define _SEGMENT_ENTRY_PTL 0x0f /* page table length */
275
276#define _SEGMENT_ENTRY (_SEGMENT_ENTRY_PTL)
277#define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INV)
278
279#else /* __s390x__ */
280
281/* Bits in the segment/region table address-space-control-element */
282#define _ASCE_ORIGIN ~0xfffUL/* segment table origin */
283#define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
284#define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
285#define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
286#define _ASCE_REAL_SPACE 0x20 /* real space control */
287#define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
288#define _ASCE_TYPE_REGION1 0x0c /* region first table type */
289#define _ASCE_TYPE_REGION2 0x08 /* region second table type */
290#define _ASCE_TYPE_REGION3 0x04 /* region third table type */
291#define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
292#define _ASCE_TABLE_LENGTH 0x03 /* region table length */
293
294/* Bits in the region table entry */
295#define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
296#define _REGION_ENTRY_INV 0x20 /* invalid region table entry */
297#define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */
298#define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
299#define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
300#define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
301#define _REGION_ENTRY_LENGTH 0x03 /* region third length */
302
303#define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
304#define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INV)
305#define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
306#define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INV)
307#define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
308#define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INV)
309
310/* Bits in the segment table entry */
311#define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* segment table origin */
312#define _SEGMENT_ENTRY_RO 0x200 /* page protection bit */
313#define _SEGMENT_ENTRY_INV 0x20 /* invalid segment table entry */
314
315#define _SEGMENT_ENTRY (0)
316#define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INV)
317
318#endif /* __s390x__ */
319
320/*
321 * A user page table pointer has the space-switch-event bit, the
322 * private-space-control bit and the storage-alteration-event-control
323 * bit set. A kernel page table pointer doesn't need them.
324 */
325#define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
326 _ASCE_ALT_EVENT)
327
328/* Bits int the storage key */
329#define _PAGE_CHANGED 0x02 /* HW changed bit */
330#define _PAGE_REFERENCED 0x04 /* HW referenced bit */
331
332/*
333 * Page protection definitions.
334 */
335#define PAGE_NONE __pgprot(_PAGE_TYPE_NONE)
336#define PAGE_RO __pgprot(_PAGE_TYPE_RO)
337#define PAGE_RW __pgprot(_PAGE_TYPE_RW)
338#define PAGE_EX_RO __pgprot(_PAGE_TYPE_EX_RO)
339#define PAGE_EX_RW __pgprot(_PAGE_TYPE_EX_RW)
340
341#define PAGE_KERNEL PAGE_RW
342#define PAGE_COPY PAGE_RO
343
344/*
345 * Dependent on the EXEC_PROTECT option s390 can do execute protection.
346 * Write permission always implies read permission. In theory with a
347 * primary/secondary page table execute only can be implemented but
348 * it would cost an additional bit in the pte to distinguish all the
349 * different pte types. To avoid that execute permission currently
350 * implies read permission as well.
351 */
352 /*xwr*/
353#define __P000 PAGE_NONE
354#define __P001 PAGE_RO
355#define __P010 PAGE_RO
356#define __P011 PAGE_RO
357#define __P100 PAGE_EX_RO
358#define __P101 PAGE_EX_RO
359#define __P110 PAGE_EX_RO
360#define __P111 PAGE_EX_RO
361
362#define __S000 PAGE_NONE
363#define __S001 PAGE_RO
364#define __S010 PAGE_RW
365#define __S011 PAGE_RW
366#define __S100 PAGE_EX_RO
367#define __S101 PAGE_EX_RO
368#define __S110 PAGE_EX_RW
369#define __S111 PAGE_EX_RW
370
371#ifndef __s390x__
372# define PxD_SHADOW_SHIFT 1
373#else /* __s390x__ */
374# define PxD_SHADOW_SHIFT 2
375#endif /* __s390x__ */
376
377static inline void *get_shadow_table(void *table)
378{
379 unsigned long addr, offset;
380 struct page *page;
381
382 addr = (unsigned long) table;
383 offset = addr & ((PAGE_SIZE << PxD_SHADOW_SHIFT) - 1);
384 page = virt_to_page((void *)(addr ^ offset));
385 return (void *)(addr_t)(page->index ? (page->index | offset) : 0UL);
386}
387
388/*
389 * Certain architectures need to do special things when PTEs
390 * within a page table are directly modified. Thus, the following
391 * hook is made available.
392 */
393static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
394 pte_t *ptep, pte_t entry)
395{
396 *ptep = entry;
397 if (mm->context.noexec) {
398 if (!(pte_val(entry) & _PAGE_INVALID) &&
399 (pte_val(entry) & _PAGE_SWX))
400 pte_val(entry) |= _PAGE_RO;
401 else
402 pte_val(entry) = _PAGE_TYPE_EMPTY;
403 ptep[PTRS_PER_PTE] = entry;
404 }
405}
406
407/*
408 * pgd/pmd/pte query functions
409 */
410#ifndef __s390x__
411
412static inline int pgd_present(pgd_t pgd) { return 1; }
413static inline int pgd_none(pgd_t pgd) { return 0; }
414static inline int pgd_bad(pgd_t pgd) { return 0; }
415
416static inline int pud_present(pud_t pud) { return 1; }
417static inline int pud_none(pud_t pud) { return 0; }
418static inline int pud_bad(pud_t pud) { return 0; }
419
420#else /* __s390x__ */
421
422static inline int pgd_present(pgd_t pgd)
423{
424 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
425 return 1;
426 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
427}
428
429static inline int pgd_none(pgd_t pgd)
430{
431 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
432 return 0;
433 return (pgd_val(pgd) & _REGION_ENTRY_INV) != 0UL;
434}
435
436static inline int pgd_bad(pgd_t pgd)
437{
438 /*
439 * With dynamic page table levels the pgd can be a region table
440 * entry or a segment table entry. Check for the bit that are
441 * invalid for either table entry.
442 */
443 unsigned long mask =
444 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INV &
445 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
446 return (pgd_val(pgd) & mask) != 0;
447}
448
449static inline int pud_present(pud_t pud)
450{
451 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
452 return 1;
453 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
454}
455
456static inline int pud_none(pud_t pud)
457{
458 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
459 return 0;
460 return (pud_val(pud) & _REGION_ENTRY_INV) != 0UL;
461}
462
463static inline int pud_bad(pud_t pud)
464{
465 /*
466 * With dynamic page table levels the pud can be a region table
467 * entry or a segment table entry. Check for the bit that are
468 * invalid for either table entry.
469 */
470 unsigned long mask =
471 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INV &
472 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
473 return (pud_val(pud) & mask) != 0;
474}
475
476#endif /* __s390x__ */
477
478static inline int pmd_present(pmd_t pmd)
479{
480 return (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN) != 0UL;
481}
482
483static inline int pmd_none(pmd_t pmd)
484{
485 return (pmd_val(pmd) & _SEGMENT_ENTRY_INV) != 0UL;
486}
487
488static inline int pmd_bad(pmd_t pmd)
489{
490 unsigned long mask = ~_SEGMENT_ENTRY_ORIGIN & ~_SEGMENT_ENTRY_INV;
491 return (pmd_val(pmd) & mask) != _SEGMENT_ENTRY;
492}
493
494static inline int pte_none(pte_t pte)
495{
496 return (pte_val(pte) & _PAGE_INVALID) && !(pte_val(pte) & _PAGE_SWT);
497}
498
499static inline int pte_present(pte_t pte)
500{
501 unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT | _PAGE_SWX;
502 return (pte_val(pte) & mask) == _PAGE_TYPE_NONE ||
503 (!(pte_val(pte) & _PAGE_INVALID) &&
504 !(pte_val(pte) & _PAGE_SWT));
505}
506
507static inline int pte_file(pte_t pte)
508{
509 unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT;
510 return (pte_val(pte) & mask) == _PAGE_TYPE_FILE;
511}
512
513#define __HAVE_ARCH_PTE_SAME
514#define pte_same(a,b) (pte_val(a) == pte_val(b))
515
516/*
517 * query functions pte_write/pte_dirty/pte_young only work if
518 * pte_present() is true. Undefined behaviour if not..
519 */
520static inline int pte_write(pte_t pte)
521{
522 return (pte_val(pte) & _PAGE_RO) == 0;
523}
524
525static inline int pte_dirty(pte_t pte)
526{
527 /* A pte is neither clean nor dirty on s/390. The dirty bit
528 * is in the storage key. See page_test_and_clear_dirty for
529 * details.
530 */
531 return 0;
532}
533
534static inline int pte_young(pte_t pte)
535{
536 /* A pte is neither young nor old on s/390. The young bit
537 * is in the storage key. See page_test_and_clear_young for
538 * details.
539 */
540 return 0;
541}
542
543/*
544 * pgd/pmd/pte modification functions
545 */
546
547#ifndef __s390x__
548
549#define pgd_clear(pgd) do { } while (0)
550#define pud_clear(pud) do { } while (0)
551
552#else /* __s390x__ */
553
554static inline void pgd_clear_kernel(pgd_t * pgd)
555{
556 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
557 pgd_val(*pgd) = _REGION2_ENTRY_EMPTY;
558}
559
560static inline void pgd_clear(pgd_t * pgd)
561{
562 pgd_t *shadow = get_shadow_table(pgd);
563
564 pgd_clear_kernel(pgd);
565 if (shadow)
566 pgd_clear_kernel(shadow);
567}
568
569static inline void pud_clear_kernel(pud_t *pud)
570{
571 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
572 pud_val(*pud) = _REGION3_ENTRY_EMPTY;
573}
574
575static inline void pud_clear(pud_t *pud)
576{
577 pud_t *shadow = get_shadow_table(pud);
578
579 pud_clear_kernel(pud);
580 if (shadow)
581 pud_clear_kernel(shadow);
582}
583
584#endif /* __s390x__ */
585
586static inline void pmd_clear_kernel(pmd_t * pmdp)
587{
588 pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
589}
590
591static inline void pmd_clear(pmd_t *pmd)
592{
593 pmd_t *shadow = get_shadow_table(pmd);
594
595 pmd_clear_kernel(pmd);
596 if (shadow)
597 pmd_clear_kernel(shadow);
598}
599
600static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
601{
602 pte_val(*ptep) = _PAGE_TYPE_EMPTY;
603 if (mm->context.noexec)
604 pte_val(ptep[PTRS_PER_PTE]) = _PAGE_TYPE_EMPTY;
605}
606
607/*
608 * The following pte modification functions only work if
609 * pte_present() is true. Undefined behaviour if not..
610 */
611static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
612{
613 pte_val(pte) &= PAGE_MASK;
614 pte_val(pte) |= pgprot_val(newprot);
615 return pte;
616}
617
618static inline pte_t pte_wrprotect(pte_t pte)
619{
620 /* Do not clobber _PAGE_TYPE_NONE pages! */
621 if (!(pte_val(pte) & _PAGE_INVALID))
622 pte_val(pte) |= _PAGE_RO;
623 return pte;
624}
625
626static inline pte_t pte_mkwrite(pte_t pte)
627{
628 pte_val(pte) &= ~_PAGE_RO;
629 return pte;
630}
631
632static inline pte_t pte_mkclean(pte_t pte)
633{
634 /* The only user of pte_mkclean is the fork() code.
635 We must *not* clear the *physical* page dirty bit
636 just because fork() wants to clear the dirty bit in
637 *one* of the page's mappings. So we just do nothing. */
638 return pte;
639}
640
641static inline pte_t pte_mkdirty(pte_t pte)
642{
643 /* We do not explicitly set the dirty bit because the
644 * sske instruction is slow. It is faster to let the
645 * next instruction set the dirty bit.
646 */
647 return pte;
648}
649
650static inline pte_t pte_mkold(pte_t pte)
651{
652 /* S/390 doesn't keep its dirty/referenced bit in the pte.
653 * There is no point in clearing the real referenced bit.
654 */
655 return pte;
656}
657
658static inline pte_t pte_mkyoung(pte_t pte)
659{
660 /* S/390 doesn't keep its dirty/referenced bit in the pte.
661 * There is no point in setting the real referenced bit.
662 */
663 return pte;
664}
665
666#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
667static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
668 unsigned long addr, pte_t *ptep)
669{
670 return 0;
671}
672
673#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
674static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
675 unsigned long address, pte_t *ptep)
676{
677 /* No need to flush TLB; bits are in storage key */
678 return 0;
679}
680
681static inline void __ptep_ipte(unsigned long address, pte_t *ptep)
682{
683 if (!(pte_val(*ptep) & _PAGE_INVALID)) {
684#ifndef __s390x__
685 /* pto must point to the start of the segment table */
686 pte_t *pto = (pte_t *) (((unsigned long) ptep) & 0x7ffffc00);
687#else
688 /* ipte in zarch mode can do the math */
689 pte_t *pto = ptep;
690#endif
691 asm volatile(
692 " ipte %2,%3"
693 : "=m" (*ptep) : "m" (*ptep),
694 "a" (pto), "a" (address));
695 }
696 pte_val(*ptep) = _PAGE_TYPE_EMPTY;
697}
698
699static inline void ptep_invalidate(struct mm_struct *mm,
700 unsigned long address, pte_t *ptep)
701{
702 __ptep_ipte(address, ptep);
703 if (mm->context.noexec)
704 __ptep_ipte(address, ptep + PTRS_PER_PTE);
705}
706
707/*
708 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
709 * both clear the TLB for the unmapped pte. The reason is that
710 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
711 * to modify an active pte. The sequence is
712 * 1) ptep_get_and_clear
713 * 2) set_pte_at
714 * 3) flush_tlb_range
715 * On s390 the tlb needs to get flushed with the modification of the pte
716 * if the pte is active. The only way how this can be implemented is to
717 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
718 * is a nop.
719 */
720#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
721#define ptep_get_and_clear(__mm, __address, __ptep) \
722({ \
723 pte_t __pte = *(__ptep); \
724 if (atomic_read(&(__mm)->mm_users) > 1 || \
725 (__mm) != current->active_mm) \
726 ptep_invalidate(__mm, __address, __ptep); \
727 else \
728 pte_clear((__mm), (__address), (__ptep)); \
729 __pte; \
730})
731
732#define __HAVE_ARCH_PTEP_CLEAR_FLUSH
733static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
734 unsigned long address, pte_t *ptep)
735{
736 pte_t pte = *ptep;
737 ptep_invalidate(vma->vm_mm, address, ptep);
738 return pte;
739}
740
741/*
742 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
743 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
744 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
745 * cannot be accessed while the batched unmap is running. In this case
746 * full==1 and a simple pte_clear is enough. See tlb.h.
747 */
748#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
749static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
750 unsigned long addr,
751 pte_t *ptep, int full)
752{
753 pte_t pte = *ptep;
754
755 if (full)
756 pte_clear(mm, addr, ptep);
757 else
758 ptep_invalidate(mm, addr, ptep);
759 return pte;
760}
761
762#define __HAVE_ARCH_PTEP_SET_WRPROTECT
763#define ptep_set_wrprotect(__mm, __addr, __ptep) \
764({ \
765 pte_t __pte = *(__ptep); \
766 if (pte_write(__pte)) { \
767 if (atomic_read(&(__mm)->mm_users) > 1 || \
768 (__mm) != current->active_mm) \
769 ptep_invalidate(__mm, __addr, __ptep); \
770 set_pte_at(__mm, __addr, __ptep, pte_wrprotect(__pte)); \
771 } \
772})
773
774#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
775#define ptep_set_access_flags(__vma, __addr, __ptep, __entry, __dirty) \
776({ \
777 int __changed = !pte_same(*(__ptep), __entry); \
778 if (__changed) { \
779 ptep_invalidate((__vma)->vm_mm, __addr, __ptep); \
780 set_pte_at((__vma)->vm_mm, __addr, __ptep, __entry); \
781 } \
782 __changed; \
783})
784
785/*
786 * Test and clear dirty bit in storage key.
787 * We can't clear the changed bit atomically. This is a potential
788 * race against modification of the referenced bit. This function
789 * should therefore only be called if it is not mapped in any
790 * address space.
791 */
792#define __HAVE_ARCH_PAGE_TEST_DIRTY
793static inline int page_test_dirty(struct page *page)
794{
795 return (page_get_storage_key(page_to_phys(page)) & _PAGE_CHANGED) != 0;
796}
797
798#define __HAVE_ARCH_PAGE_CLEAR_DIRTY
799static inline void page_clear_dirty(struct page *page)
800{
801 page_set_storage_key(page_to_phys(page), PAGE_DEFAULT_KEY);
802}
803
804/*
805 * Test and clear referenced bit in storage key.
806 */
807#define __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG
808static inline int page_test_and_clear_young(struct page *page)
809{
810 unsigned long physpage = page_to_phys(page);
811 int ccode;
812
813 asm volatile(
814 " rrbe 0,%1\n"
815 " ipm %0\n"
816 " srl %0,28\n"
817 : "=d" (ccode) : "a" (physpage) : "cc" );
818 return ccode & 2;
819}
820
821/*
822 * Conversion functions: convert a page and protection to a page entry,
823 * and a page entry and page directory to the page they refer to.
824 */
825static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
826{
827 pte_t __pte;
828 pte_val(__pte) = physpage + pgprot_val(pgprot);
829 return __pte;
830}
831
832static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
833{
834 unsigned long physpage = page_to_phys(page);
835
836 return mk_pte_phys(physpage, pgprot);
837}
838
839#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
840#define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
841#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
842#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
843
844#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
845#define pgd_offset_k(address) pgd_offset(&init_mm, address)
846
847#ifndef __s390x__
848
849#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
850#define pud_deref(pmd) ({ BUG(); 0UL; })
851#define pgd_deref(pmd) ({ BUG(); 0UL; })
852
853#define pud_offset(pgd, address) ((pud_t *) pgd)
854#define pmd_offset(pud, address) ((pmd_t *) pud + pmd_index(address))
855
856#else /* __s390x__ */
857
858#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
859#define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
860#define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
861
862static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
863{
864 pud_t *pud = (pud_t *) pgd;
865 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
866 pud = (pud_t *) pgd_deref(*pgd);
867 return pud + pud_index(address);
868}
869
870static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
871{
872 pmd_t *pmd = (pmd_t *) pud;
873 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
874 pmd = (pmd_t *) pud_deref(*pud);
875 return pmd + pmd_index(address);
876}
877
878#endif /* __s390x__ */
879
880#define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
881#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
882#define pte_page(x) pfn_to_page(pte_pfn(x))
883
884#define pmd_page(pmd) pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
885
886/* Find an entry in the lowest level page table.. */
887#define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
888#define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
889#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
890#define pte_offset_map_nested(pmd, address) pte_offset_kernel(pmd, address)
891#define pte_unmap(pte) do { } while (0)
892#define pte_unmap_nested(pte) do { } while (0)
893
894/*
895 * 31 bit swap entry format:
896 * A page-table entry has some bits we have to treat in a special way.
897 * Bits 0, 20 and bit 23 have to be zero, otherwise an specification
898 * exception will occur instead of a page translation exception. The
899 * specifiation exception has the bad habit not to store necessary
900 * information in the lowcore.
901 * Bit 21 and bit 22 are the page invalid bit and the page protection
902 * bit. We set both to indicate a swapped page.
903 * Bit 30 and 31 are used to distinguish the different page types. For
904 * a swapped page these bits need to be zero.
905 * This leaves the bits 1-19 and bits 24-29 to store type and offset.
906 * We use the 5 bits from 25-29 for the type and the 20 bits from 1-19
907 * plus 24 for the offset.
908 * 0| offset |0110|o|type |00|
909 * 0 0000000001111111111 2222 2 22222 33
910 * 0 1234567890123456789 0123 4 56789 01
911 *
912 * 64 bit swap entry format:
913 * A page-table entry has some bits we have to treat in a special way.
914 * Bits 52 and bit 55 have to be zero, otherwise an specification
915 * exception will occur instead of a page translation exception. The
916 * specifiation exception has the bad habit not to store necessary
917 * information in the lowcore.
918 * Bit 53 and bit 54 are the page invalid bit and the page protection
919 * bit. We set both to indicate a swapped page.
920 * Bit 62 and 63 are used to distinguish the different page types. For
921 * a swapped page these bits need to be zero.
922 * This leaves the bits 0-51 and bits 56-61 to store type and offset.
923 * We use the 5 bits from 57-61 for the type and the 53 bits from 0-51
924 * plus 56 for the offset.
925 * | offset |0110|o|type |00|
926 * 0000000000111111111122222222223333333333444444444455 5555 5 55566 66
927 * 0123456789012345678901234567890123456789012345678901 2345 6 78901 23
928 */
929#ifndef __s390x__
930#define __SWP_OFFSET_MASK (~0UL >> 12)
931#else
932#define __SWP_OFFSET_MASK (~0UL >> 11)
933#endif
934static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
935{
936 pte_t pte;
937 offset &= __SWP_OFFSET_MASK;
938 pte_val(pte) = _PAGE_TYPE_SWAP | ((type & 0x1f) << 2) |
939 ((offset & 1UL) << 7) | ((offset & ~1UL) << 11);
940 return pte;
941}
942
943#define __swp_type(entry) (((entry).val >> 2) & 0x1f)
944#define __swp_offset(entry) (((entry).val >> 11) | (((entry).val >> 7) & 1))
945#define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) })
946
947#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
948#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
949
950#ifndef __s390x__
951# define PTE_FILE_MAX_BITS 26
952#else /* __s390x__ */
953# define PTE_FILE_MAX_BITS 59
954#endif /* __s390x__ */
955
956#define pte_to_pgoff(__pte) \
957 ((((__pte).pte >> 12) << 7) + (((__pte).pte >> 1) & 0x7f))
958
959#define pgoff_to_pte(__off) \
960 ((pte_t) { ((((__off) & 0x7f) << 1) + (((__off) >> 7) << 12)) \
961 | _PAGE_TYPE_FILE })
962
963#endif /* !__ASSEMBLY__ */
964
965#define kern_addr_valid(addr) (1)
966
967extern int add_shared_memory(unsigned long start, unsigned long size);
968extern int remove_shared_memory(unsigned long start, unsigned long size);
969
970/*
971 * No page table caches to initialise
972 */
973#define pgtable_cache_init() do { } while (0)
974
975#define __HAVE_ARCH_MEMMAP_INIT
976extern void memmap_init(unsigned long, int, unsigned long, unsigned long);
977
978#include <asm-generic/pgtable.h>
979
980#endif /* _S390_PAGE_H */