at v2.6.25 980 lines 31 kB view raw
1/* 2 * include/asm-s390/pgtable.h 3 * 4 * S390 version 5 * Copyright (C) 1999,2000 IBM Deutschland Entwicklung GmbH, IBM Corporation 6 * Author(s): Hartmut Penner (hp@de.ibm.com) 7 * Ulrich Weigand (weigand@de.ibm.com) 8 * Martin Schwidefsky (schwidefsky@de.ibm.com) 9 * 10 * Derived from "include/asm-i386/pgtable.h" 11 */ 12 13#ifndef _ASM_S390_PGTABLE_H 14#define _ASM_S390_PGTABLE_H 15 16/* 17 * The Linux memory management assumes a three-level page table setup. For 18 * s390 31 bit we "fold" the mid level into the top-level page table, so 19 * that we physically have the same two-level page table as the s390 mmu 20 * expects in 31 bit mode. For s390 64 bit we use three of the five levels 21 * the hardware provides (region first and region second tables are not 22 * used). 23 * 24 * The "pgd_xxx()" functions are trivial for a folded two-level 25 * setup: the pgd is never bad, and a pmd always exists (as it's folded 26 * into the pgd entry) 27 * 28 * This file contains the functions and defines necessary to modify and use 29 * the S390 page table tree. 30 */ 31#ifndef __ASSEMBLY__ 32#include <linux/mm_types.h> 33#include <asm/bug.h> 34#include <asm/processor.h> 35 36extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096))); 37extern void paging_init(void); 38extern void vmem_map_init(void); 39 40/* 41 * The S390 doesn't have any external MMU info: the kernel page 42 * tables contain all the necessary information. 43 */ 44#define update_mmu_cache(vma, address, pte) do { } while (0) 45 46/* 47 * ZERO_PAGE is a global shared page that is always zero: used 48 * for zero-mapped memory areas etc.. 49 */ 50extern char empty_zero_page[PAGE_SIZE]; 51#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) 52#endif /* !__ASSEMBLY__ */ 53 54/* 55 * PMD_SHIFT determines the size of the area a second-level page 56 * table can map 57 * PGDIR_SHIFT determines what a third-level page table entry can map 58 */ 59#ifndef __s390x__ 60# define PMD_SHIFT 20 61# define PUD_SHIFT 20 62# define PGDIR_SHIFT 20 63#else /* __s390x__ */ 64# define PMD_SHIFT 20 65# define PUD_SHIFT 31 66# define PGDIR_SHIFT 42 67#endif /* __s390x__ */ 68 69#define PMD_SIZE (1UL << PMD_SHIFT) 70#define PMD_MASK (~(PMD_SIZE-1)) 71#define PUD_SIZE (1UL << PUD_SHIFT) 72#define PUD_MASK (~(PUD_SIZE-1)) 73#define PGDIR_SIZE (1UL << PGDIR_SHIFT) 74#define PGDIR_MASK (~(PGDIR_SIZE-1)) 75 76/* 77 * entries per page directory level: the S390 is two-level, so 78 * we don't really have any PMD directory physically. 79 * for S390 segment-table entries are combined to one PGD 80 * that leads to 1024 pte per pgd 81 */ 82#define PTRS_PER_PTE 256 83#ifndef __s390x__ 84#define PTRS_PER_PMD 1 85#define PTRS_PER_PUD 1 86#else /* __s390x__ */ 87#define PTRS_PER_PMD 2048 88#define PTRS_PER_PUD 2048 89#endif /* __s390x__ */ 90#define PTRS_PER_PGD 2048 91 92#define FIRST_USER_ADDRESS 0 93 94#define pte_ERROR(e) \ 95 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e)) 96#define pmd_ERROR(e) \ 97 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e)) 98#define pud_ERROR(e) \ 99 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e)) 100#define pgd_ERROR(e) \ 101 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e)) 102 103#ifndef __ASSEMBLY__ 104/* 105 * The vmalloc area will always be on the topmost area of the kernel 106 * mapping. We reserve 96MB (31bit) / 1GB (64bit) for vmalloc, 107 * which should be enough for any sane case. 108 * By putting vmalloc at the top, we maximise the gap between physical 109 * memory and vmalloc to catch misplaced memory accesses. As a side 110 * effect, this also makes sure that 64 bit module code cannot be used 111 * as system call address. 112 */ 113#ifndef __s390x__ 114#define VMALLOC_START 0x78000000UL 115#define VMALLOC_END 0x7e000000UL 116#define VMEM_MAP_END 0x80000000UL 117#else /* __s390x__ */ 118#define VMALLOC_START 0x3e000000000UL 119#define VMALLOC_END 0x3e040000000UL 120#define VMEM_MAP_END 0x40000000000UL 121#endif /* __s390x__ */ 122 123/* 124 * VMEM_MAX_PHYS is the highest physical address that can be added to the 1:1 125 * mapping. This needs to be calculated at compile time since the size of the 126 * VMEM_MAP is static but the size of struct page can change. 127 */ 128#define VMEM_MAX_PAGES ((VMEM_MAP_END - VMALLOC_END) / sizeof(struct page)) 129#define VMEM_MAX_PFN min(VMALLOC_START >> PAGE_SHIFT, VMEM_MAX_PAGES) 130#define VMEM_MAX_PHYS ((VMEM_MAX_PFN << PAGE_SHIFT) & ~((16 << 20) - 1)) 131#define VMEM_MAP ((struct page *) VMALLOC_END) 132 133/* 134 * A 31 bit pagetable entry of S390 has following format: 135 * | PFRA | | OS | 136 * 0 0IP0 137 * 00000000001111111111222222222233 138 * 01234567890123456789012345678901 139 * 140 * I Page-Invalid Bit: Page is not available for address-translation 141 * P Page-Protection Bit: Store access not possible for page 142 * 143 * A 31 bit segmenttable entry of S390 has following format: 144 * | P-table origin | |PTL 145 * 0 IC 146 * 00000000001111111111222222222233 147 * 01234567890123456789012345678901 148 * 149 * I Segment-Invalid Bit: Segment is not available for address-translation 150 * C Common-Segment Bit: Segment is not private (PoP 3-30) 151 * PTL Page-Table-Length: Page-table length (PTL+1*16 entries -> up to 256) 152 * 153 * The 31 bit segmenttable origin of S390 has following format: 154 * 155 * |S-table origin | | STL | 156 * X **GPS 157 * 00000000001111111111222222222233 158 * 01234567890123456789012345678901 159 * 160 * X Space-Switch event: 161 * G Segment-Invalid Bit: * 162 * P Private-Space Bit: Segment is not private (PoP 3-30) 163 * S Storage-Alteration: 164 * STL Segment-Table-Length: Segment-table length (STL+1*16 entries -> up to 2048) 165 * 166 * A 64 bit pagetable entry of S390 has following format: 167 * | PFRA |0IP0| OS | 168 * 0000000000111111111122222222223333333333444444444455555555556666 169 * 0123456789012345678901234567890123456789012345678901234567890123 170 * 171 * I Page-Invalid Bit: Page is not available for address-translation 172 * P Page-Protection Bit: Store access not possible for page 173 * 174 * A 64 bit segmenttable entry of S390 has following format: 175 * | P-table origin | TT 176 * 0000000000111111111122222222223333333333444444444455555555556666 177 * 0123456789012345678901234567890123456789012345678901234567890123 178 * 179 * I Segment-Invalid Bit: Segment is not available for address-translation 180 * C Common-Segment Bit: Segment is not private (PoP 3-30) 181 * P Page-Protection Bit: Store access not possible for page 182 * TT Type 00 183 * 184 * A 64 bit region table entry of S390 has following format: 185 * | S-table origin | TF TTTL 186 * 0000000000111111111122222222223333333333444444444455555555556666 187 * 0123456789012345678901234567890123456789012345678901234567890123 188 * 189 * I Segment-Invalid Bit: Segment is not available for address-translation 190 * TT Type 01 191 * TF 192 * TL Table length 193 * 194 * The 64 bit regiontable origin of S390 has following format: 195 * | region table origon | DTTL 196 * 0000000000111111111122222222223333333333444444444455555555556666 197 * 0123456789012345678901234567890123456789012345678901234567890123 198 * 199 * X Space-Switch event: 200 * G Segment-Invalid Bit: 201 * P Private-Space Bit: 202 * S Storage-Alteration: 203 * R Real space 204 * TL Table-Length: 205 * 206 * A storage key has the following format: 207 * | ACC |F|R|C|0| 208 * 0 3 4 5 6 7 209 * ACC: access key 210 * F : fetch protection bit 211 * R : referenced bit 212 * C : changed bit 213 */ 214 215/* Hardware bits in the page table entry */ 216#define _PAGE_RO 0x200 /* HW read-only bit */ 217#define _PAGE_INVALID 0x400 /* HW invalid bit */ 218 219/* Software bits in the page table entry */ 220#define _PAGE_SWT 0x001 /* SW pte type bit t */ 221#define _PAGE_SWX 0x002 /* SW pte type bit x */ 222 223/* Six different types of pages. */ 224#define _PAGE_TYPE_EMPTY 0x400 225#define _PAGE_TYPE_NONE 0x401 226#define _PAGE_TYPE_SWAP 0x403 227#define _PAGE_TYPE_FILE 0x601 /* bit 0x002 is used for offset !! */ 228#define _PAGE_TYPE_RO 0x200 229#define _PAGE_TYPE_RW 0x000 230#define _PAGE_TYPE_EX_RO 0x202 231#define _PAGE_TYPE_EX_RW 0x002 232 233/* 234 * PTE type bits are rather complicated. handle_pte_fault uses pte_present, 235 * pte_none and pte_file to find out the pte type WITHOUT holding the page 236 * table lock. ptep_clear_flush on the other hand uses ptep_clear_flush to 237 * invalidate a given pte. ipte sets the hw invalid bit and clears all tlbs 238 * for the page. The page table entry is set to _PAGE_TYPE_EMPTY afterwards. 239 * This change is done while holding the lock, but the intermediate step 240 * of a previously valid pte with the hw invalid bit set can be observed by 241 * handle_pte_fault. That makes it necessary that all valid pte types with 242 * the hw invalid bit set must be distinguishable from the four pte types 243 * empty, none, swap and file. 244 * 245 * irxt ipte irxt 246 * _PAGE_TYPE_EMPTY 1000 -> 1000 247 * _PAGE_TYPE_NONE 1001 -> 1001 248 * _PAGE_TYPE_SWAP 1011 -> 1011 249 * _PAGE_TYPE_FILE 11?1 -> 11?1 250 * _PAGE_TYPE_RO 0100 -> 1100 251 * _PAGE_TYPE_RW 0000 -> 1000 252 * _PAGE_TYPE_EX_RO 0110 -> 1110 253 * _PAGE_TYPE_EX_RW 0010 -> 1010 254 * 255 * pte_none is true for bits combinations 1000, 1010, 1100, 1110 256 * pte_present is true for bits combinations 0000, 0010, 0100, 0110, 1001 257 * pte_file is true for bits combinations 1101, 1111 258 * swap pte is 1011 and 0001, 0011, 0101, 0111 are invalid. 259 */ 260 261#ifndef __s390x__ 262 263/* Bits in the segment table address-space-control-element */ 264#define _ASCE_SPACE_SWITCH 0x80000000UL /* space switch event */ 265#define _ASCE_ORIGIN_MASK 0x7ffff000UL /* segment table origin */ 266#define _ASCE_PRIVATE_SPACE 0x100 /* private space control */ 267#define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */ 268#define _ASCE_TABLE_LENGTH 0x7f /* 128 x 64 entries = 8k */ 269 270/* Bits in the segment table entry */ 271#define _SEGMENT_ENTRY_ORIGIN 0x7fffffc0UL /* page table origin */ 272#define _SEGMENT_ENTRY_INV 0x20 /* invalid segment table entry */ 273#define _SEGMENT_ENTRY_COMMON 0x10 /* common segment bit */ 274#define _SEGMENT_ENTRY_PTL 0x0f /* page table length */ 275 276#define _SEGMENT_ENTRY (_SEGMENT_ENTRY_PTL) 277#define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INV) 278 279#else /* __s390x__ */ 280 281/* Bits in the segment/region table address-space-control-element */ 282#define _ASCE_ORIGIN ~0xfffUL/* segment table origin */ 283#define _ASCE_PRIVATE_SPACE 0x100 /* private space control */ 284#define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */ 285#define _ASCE_SPACE_SWITCH 0x40 /* space switch event */ 286#define _ASCE_REAL_SPACE 0x20 /* real space control */ 287#define _ASCE_TYPE_MASK 0x0c /* asce table type mask */ 288#define _ASCE_TYPE_REGION1 0x0c /* region first table type */ 289#define _ASCE_TYPE_REGION2 0x08 /* region second table type */ 290#define _ASCE_TYPE_REGION3 0x04 /* region third table type */ 291#define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */ 292#define _ASCE_TABLE_LENGTH 0x03 /* region table length */ 293 294/* Bits in the region table entry */ 295#define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */ 296#define _REGION_ENTRY_INV 0x20 /* invalid region table entry */ 297#define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */ 298#define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */ 299#define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */ 300#define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */ 301#define _REGION_ENTRY_LENGTH 0x03 /* region third length */ 302 303#define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH) 304#define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INV) 305#define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH) 306#define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INV) 307#define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH) 308#define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INV) 309 310/* Bits in the segment table entry */ 311#define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* segment table origin */ 312#define _SEGMENT_ENTRY_RO 0x200 /* page protection bit */ 313#define _SEGMENT_ENTRY_INV 0x20 /* invalid segment table entry */ 314 315#define _SEGMENT_ENTRY (0) 316#define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INV) 317 318#endif /* __s390x__ */ 319 320/* 321 * A user page table pointer has the space-switch-event bit, the 322 * private-space-control bit and the storage-alteration-event-control 323 * bit set. A kernel page table pointer doesn't need them. 324 */ 325#define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \ 326 _ASCE_ALT_EVENT) 327 328/* Bits int the storage key */ 329#define _PAGE_CHANGED 0x02 /* HW changed bit */ 330#define _PAGE_REFERENCED 0x04 /* HW referenced bit */ 331 332/* 333 * Page protection definitions. 334 */ 335#define PAGE_NONE __pgprot(_PAGE_TYPE_NONE) 336#define PAGE_RO __pgprot(_PAGE_TYPE_RO) 337#define PAGE_RW __pgprot(_PAGE_TYPE_RW) 338#define PAGE_EX_RO __pgprot(_PAGE_TYPE_EX_RO) 339#define PAGE_EX_RW __pgprot(_PAGE_TYPE_EX_RW) 340 341#define PAGE_KERNEL PAGE_RW 342#define PAGE_COPY PAGE_RO 343 344/* 345 * Dependent on the EXEC_PROTECT option s390 can do execute protection. 346 * Write permission always implies read permission. In theory with a 347 * primary/secondary page table execute only can be implemented but 348 * it would cost an additional bit in the pte to distinguish all the 349 * different pte types. To avoid that execute permission currently 350 * implies read permission as well. 351 */ 352 /*xwr*/ 353#define __P000 PAGE_NONE 354#define __P001 PAGE_RO 355#define __P010 PAGE_RO 356#define __P011 PAGE_RO 357#define __P100 PAGE_EX_RO 358#define __P101 PAGE_EX_RO 359#define __P110 PAGE_EX_RO 360#define __P111 PAGE_EX_RO 361 362#define __S000 PAGE_NONE 363#define __S001 PAGE_RO 364#define __S010 PAGE_RW 365#define __S011 PAGE_RW 366#define __S100 PAGE_EX_RO 367#define __S101 PAGE_EX_RO 368#define __S110 PAGE_EX_RW 369#define __S111 PAGE_EX_RW 370 371#ifndef __s390x__ 372# define PxD_SHADOW_SHIFT 1 373#else /* __s390x__ */ 374# define PxD_SHADOW_SHIFT 2 375#endif /* __s390x__ */ 376 377static inline void *get_shadow_table(void *table) 378{ 379 unsigned long addr, offset; 380 struct page *page; 381 382 addr = (unsigned long) table; 383 offset = addr & ((PAGE_SIZE << PxD_SHADOW_SHIFT) - 1); 384 page = virt_to_page((void *)(addr ^ offset)); 385 return (void *)(addr_t)(page->index ? (page->index | offset) : 0UL); 386} 387 388/* 389 * Certain architectures need to do special things when PTEs 390 * within a page table are directly modified. Thus, the following 391 * hook is made available. 392 */ 393static inline void set_pte_at(struct mm_struct *mm, unsigned long addr, 394 pte_t *ptep, pte_t entry) 395{ 396 *ptep = entry; 397 if (mm->context.noexec) { 398 if (!(pte_val(entry) & _PAGE_INVALID) && 399 (pte_val(entry) & _PAGE_SWX)) 400 pte_val(entry) |= _PAGE_RO; 401 else 402 pte_val(entry) = _PAGE_TYPE_EMPTY; 403 ptep[PTRS_PER_PTE] = entry; 404 } 405} 406 407/* 408 * pgd/pmd/pte query functions 409 */ 410#ifndef __s390x__ 411 412static inline int pgd_present(pgd_t pgd) { return 1; } 413static inline int pgd_none(pgd_t pgd) { return 0; } 414static inline int pgd_bad(pgd_t pgd) { return 0; } 415 416static inline int pud_present(pud_t pud) { return 1; } 417static inline int pud_none(pud_t pud) { return 0; } 418static inline int pud_bad(pud_t pud) { return 0; } 419 420#else /* __s390x__ */ 421 422static inline int pgd_present(pgd_t pgd) 423{ 424 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2) 425 return 1; 426 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL; 427} 428 429static inline int pgd_none(pgd_t pgd) 430{ 431 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2) 432 return 0; 433 return (pgd_val(pgd) & _REGION_ENTRY_INV) != 0UL; 434} 435 436static inline int pgd_bad(pgd_t pgd) 437{ 438 /* 439 * With dynamic page table levels the pgd can be a region table 440 * entry or a segment table entry. Check for the bit that are 441 * invalid for either table entry. 442 */ 443 unsigned long mask = 444 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INV & 445 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH; 446 return (pgd_val(pgd) & mask) != 0; 447} 448 449static inline int pud_present(pud_t pud) 450{ 451 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3) 452 return 1; 453 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL; 454} 455 456static inline int pud_none(pud_t pud) 457{ 458 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3) 459 return 0; 460 return (pud_val(pud) & _REGION_ENTRY_INV) != 0UL; 461} 462 463static inline int pud_bad(pud_t pud) 464{ 465 /* 466 * With dynamic page table levels the pud can be a region table 467 * entry or a segment table entry. Check for the bit that are 468 * invalid for either table entry. 469 */ 470 unsigned long mask = 471 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INV & 472 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH; 473 return (pud_val(pud) & mask) != 0; 474} 475 476#endif /* __s390x__ */ 477 478static inline int pmd_present(pmd_t pmd) 479{ 480 return (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN) != 0UL; 481} 482 483static inline int pmd_none(pmd_t pmd) 484{ 485 return (pmd_val(pmd) & _SEGMENT_ENTRY_INV) != 0UL; 486} 487 488static inline int pmd_bad(pmd_t pmd) 489{ 490 unsigned long mask = ~_SEGMENT_ENTRY_ORIGIN & ~_SEGMENT_ENTRY_INV; 491 return (pmd_val(pmd) & mask) != _SEGMENT_ENTRY; 492} 493 494static inline int pte_none(pte_t pte) 495{ 496 return (pte_val(pte) & _PAGE_INVALID) && !(pte_val(pte) & _PAGE_SWT); 497} 498 499static inline int pte_present(pte_t pte) 500{ 501 unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT | _PAGE_SWX; 502 return (pte_val(pte) & mask) == _PAGE_TYPE_NONE || 503 (!(pte_val(pte) & _PAGE_INVALID) && 504 !(pte_val(pte) & _PAGE_SWT)); 505} 506 507static inline int pte_file(pte_t pte) 508{ 509 unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT; 510 return (pte_val(pte) & mask) == _PAGE_TYPE_FILE; 511} 512 513#define __HAVE_ARCH_PTE_SAME 514#define pte_same(a,b) (pte_val(a) == pte_val(b)) 515 516/* 517 * query functions pte_write/pte_dirty/pte_young only work if 518 * pte_present() is true. Undefined behaviour if not.. 519 */ 520static inline int pte_write(pte_t pte) 521{ 522 return (pte_val(pte) & _PAGE_RO) == 0; 523} 524 525static inline int pte_dirty(pte_t pte) 526{ 527 /* A pte is neither clean nor dirty on s/390. The dirty bit 528 * is in the storage key. See page_test_and_clear_dirty for 529 * details. 530 */ 531 return 0; 532} 533 534static inline int pte_young(pte_t pte) 535{ 536 /* A pte is neither young nor old on s/390. The young bit 537 * is in the storage key. See page_test_and_clear_young for 538 * details. 539 */ 540 return 0; 541} 542 543/* 544 * pgd/pmd/pte modification functions 545 */ 546 547#ifndef __s390x__ 548 549#define pgd_clear(pgd) do { } while (0) 550#define pud_clear(pud) do { } while (0) 551 552#else /* __s390x__ */ 553 554static inline void pgd_clear_kernel(pgd_t * pgd) 555{ 556 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2) 557 pgd_val(*pgd) = _REGION2_ENTRY_EMPTY; 558} 559 560static inline void pgd_clear(pgd_t * pgd) 561{ 562 pgd_t *shadow = get_shadow_table(pgd); 563 564 pgd_clear_kernel(pgd); 565 if (shadow) 566 pgd_clear_kernel(shadow); 567} 568 569static inline void pud_clear_kernel(pud_t *pud) 570{ 571 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3) 572 pud_val(*pud) = _REGION3_ENTRY_EMPTY; 573} 574 575static inline void pud_clear(pud_t *pud) 576{ 577 pud_t *shadow = get_shadow_table(pud); 578 579 pud_clear_kernel(pud); 580 if (shadow) 581 pud_clear_kernel(shadow); 582} 583 584#endif /* __s390x__ */ 585 586static inline void pmd_clear_kernel(pmd_t * pmdp) 587{ 588 pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY; 589} 590 591static inline void pmd_clear(pmd_t *pmd) 592{ 593 pmd_t *shadow = get_shadow_table(pmd); 594 595 pmd_clear_kernel(pmd); 596 if (shadow) 597 pmd_clear_kernel(shadow); 598} 599 600static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 601{ 602 pte_val(*ptep) = _PAGE_TYPE_EMPTY; 603 if (mm->context.noexec) 604 pte_val(ptep[PTRS_PER_PTE]) = _PAGE_TYPE_EMPTY; 605} 606 607/* 608 * The following pte modification functions only work if 609 * pte_present() is true. Undefined behaviour if not.. 610 */ 611static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 612{ 613 pte_val(pte) &= PAGE_MASK; 614 pte_val(pte) |= pgprot_val(newprot); 615 return pte; 616} 617 618static inline pte_t pte_wrprotect(pte_t pte) 619{ 620 /* Do not clobber _PAGE_TYPE_NONE pages! */ 621 if (!(pte_val(pte) & _PAGE_INVALID)) 622 pte_val(pte) |= _PAGE_RO; 623 return pte; 624} 625 626static inline pte_t pte_mkwrite(pte_t pte) 627{ 628 pte_val(pte) &= ~_PAGE_RO; 629 return pte; 630} 631 632static inline pte_t pte_mkclean(pte_t pte) 633{ 634 /* The only user of pte_mkclean is the fork() code. 635 We must *not* clear the *physical* page dirty bit 636 just because fork() wants to clear the dirty bit in 637 *one* of the page's mappings. So we just do nothing. */ 638 return pte; 639} 640 641static inline pte_t pte_mkdirty(pte_t pte) 642{ 643 /* We do not explicitly set the dirty bit because the 644 * sske instruction is slow. It is faster to let the 645 * next instruction set the dirty bit. 646 */ 647 return pte; 648} 649 650static inline pte_t pte_mkold(pte_t pte) 651{ 652 /* S/390 doesn't keep its dirty/referenced bit in the pte. 653 * There is no point in clearing the real referenced bit. 654 */ 655 return pte; 656} 657 658static inline pte_t pte_mkyoung(pte_t pte) 659{ 660 /* S/390 doesn't keep its dirty/referenced bit in the pte. 661 * There is no point in setting the real referenced bit. 662 */ 663 return pte; 664} 665 666#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 667static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, 668 unsigned long addr, pte_t *ptep) 669{ 670 return 0; 671} 672 673#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 674static inline int ptep_clear_flush_young(struct vm_area_struct *vma, 675 unsigned long address, pte_t *ptep) 676{ 677 /* No need to flush TLB; bits are in storage key */ 678 return 0; 679} 680 681static inline void __ptep_ipte(unsigned long address, pte_t *ptep) 682{ 683 if (!(pte_val(*ptep) & _PAGE_INVALID)) { 684#ifndef __s390x__ 685 /* pto must point to the start of the segment table */ 686 pte_t *pto = (pte_t *) (((unsigned long) ptep) & 0x7ffffc00); 687#else 688 /* ipte in zarch mode can do the math */ 689 pte_t *pto = ptep; 690#endif 691 asm volatile( 692 " ipte %2,%3" 693 : "=m" (*ptep) : "m" (*ptep), 694 "a" (pto), "a" (address)); 695 } 696 pte_val(*ptep) = _PAGE_TYPE_EMPTY; 697} 698 699static inline void ptep_invalidate(struct mm_struct *mm, 700 unsigned long address, pte_t *ptep) 701{ 702 __ptep_ipte(address, ptep); 703 if (mm->context.noexec) 704 __ptep_ipte(address, ptep + PTRS_PER_PTE); 705} 706 707/* 708 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush 709 * both clear the TLB for the unmapped pte. The reason is that 710 * ptep_get_and_clear is used in common code (e.g. change_pte_range) 711 * to modify an active pte. The sequence is 712 * 1) ptep_get_and_clear 713 * 2) set_pte_at 714 * 3) flush_tlb_range 715 * On s390 the tlb needs to get flushed with the modification of the pte 716 * if the pte is active. The only way how this can be implemented is to 717 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range 718 * is a nop. 719 */ 720#define __HAVE_ARCH_PTEP_GET_AND_CLEAR 721#define ptep_get_and_clear(__mm, __address, __ptep) \ 722({ \ 723 pte_t __pte = *(__ptep); \ 724 if (atomic_read(&(__mm)->mm_users) > 1 || \ 725 (__mm) != current->active_mm) \ 726 ptep_invalidate(__mm, __address, __ptep); \ 727 else \ 728 pte_clear((__mm), (__address), (__ptep)); \ 729 __pte; \ 730}) 731 732#define __HAVE_ARCH_PTEP_CLEAR_FLUSH 733static inline pte_t ptep_clear_flush(struct vm_area_struct *vma, 734 unsigned long address, pte_t *ptep) 735{ 736 pte_t pte = *ptep; 737 ptep_invalidate(vma->vm_mm, address, ptep); 738 return pte; 739} 740 741/* 742 * The batched pte unmap code uses ptep_get_and_clear_full to clear the 743 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all 744 * tlbs of an mm if it can guarantee that the ptes of the mm_struct 745 * cannot be accessed while the batched unmap is running. In this case 746 * full==1 and a simple pte_clear is enough. See tlb.h. 747 */ 748#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL 749static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, 750 unsigned long addr, 751 pte_t *ptep, int full) 752{ 753 pte_t pte = *ptep; 754 755 if (full) 756 pte_clear(mm, addr, ptep); 757 else 758 ptep_invalidate(mm, addr, ptep); 759 return pte; 760} 761 762#define __HAVE_ARCH_PTEP_SET_WRPROTECT 763#define ptep_set_wrprotect(__mm, __addr, __ptep) \ 764({ \ 765 pte_t __pte = *(__ptep); \ 766 if (pte_write(__pte)) { \ 767 if (atomic_read(&(__mm)->mm_users) > 1 || \ 768 (__mm) != current->active_mm) \ 769 ptep_invalidate(__mm, __addr, __ptep); \ 770 set_pte_at(__mm, __addr, __ptep, pte_wrprotect(__pte)); \ 771 } \ 772}) 773 774#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 775#define ptep_set_access_flags(__vma, __addr, __ptep, __entry, __dirty) \ 776({ \ 777 int __changed = !pte_same(*(__ptep), __entry); \ 778 if (__changed) { \ 779 ptep_invalidate((__vma)->vm_mm, __addr, __ptep); \ 780 set_pte_at((__vma)->vm_mm, __addr, __ptep, __entry); \ 781 } \ 782 __changed; \ 783}) 784 785/* 786 * Test and clear dirty bit in storage key. 787 * We can't clear the changed bit atomically. This is a potential 788 * race against modification of the referenced bit. This function 789 * should therefore only be called if it is not mapped in any 790 * address space. 791 */ 792#define __HAVE_ARCH_PAGE_TEST_DIRTY 793static inline int page_test_dirty(struct page *page) 794{ 795 return (page_get_storage_key(page_to_phys(page)) & _PAGE_CHANGED) != 0; 796} 797 798#define __HAVE_ARCH_PAGE_CLEAR_DIRTY 799static inline void page_clear_dirty(struct page *page) 800{ 801 page_set_storage_key(page_to_phys(page), PAGE_DEFAULT_KEY); 802} 803 804/* 805 * Test and clear referenced bit in storage key. 806 */ 807#define __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG 808static inline int page_test_and_clear_young(struct page *page) 809{ 810 unsigned long physpage = page_to_phys(page); 811 int ccode; 812 813 asm volatile( 814 " rrbe 0,%1\n" 815 " ipm %0\n" 816 " srl %0,28\n" 817 : "=d" (ccode) : "a" (physpage) : "cc" ); 818 return ccode & 2; 819} 820 821/* 822 * Conversion functions: convert a page and protection to a page entry, 823 * and a page entry and page directory to the page they refer to. 824 */ 825static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot) 826{ 827 pte_t __pte; 828 pte_val(__pte) = physpage + pgprot_val(pgprot); 829 return __pte; 830} 831 832static inline pte_t mk_pte(struct page *page, pgprot_t pgprot) 833{ 834 unsigned long physpage = page_to_phys(page); 835 836 return mk_pte_phys(physpage, pgprot); 837} 838 839#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) 840#define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1)) 841#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1)) 842#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1)) 843 844#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address)) 845#define pgd_offset_k(address) pgd_offset(&init_mm, address) 846 847#ifndef __s390x__ 848 849#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN) 850#define pud_deref(pmd) ({ BUG(); 0UL; }) 851#define pgd_deref(pmd) ({ BUG(); 0UL; }) 852 853#define pud_offset(pgd, address) ((pud_t *) pgd) 854#define pmd_offset(pud, address) ((pmd_t *) pud + pmd_index(address)) 855 856#else /* __s390x__ */ 857 858#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN) 859#define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN) 860#define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) 861 862static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address) 863{ 864 pud_t *pud = (pud_t *) pgd; 865 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2) 866 pud = (pud_t *) pgd_deref(*pgd); 867 return pud + pud_index(address); 868} 869 870static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address) 871{ 872 pmd_t *pmd = (pmd_t *) pud; 873 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3) 874 pmd = (pmd_t *) pud_deref(*pud); 875 return pmd + pmd_index(address); 876} 877 878#endif /* __s390x__ */ 879 880#define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot)) 881#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT) 882#define pte_page(x) pfn_to_page(pte_pfn(x)) 883 884#define pmd_page(pmd) pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT) 885 886/* Find an entry in the lowest level page table.. */ 887#define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr)) 888#define pte_offset_kernel(pmd, address) pte_offset(pmd,address) 889#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address) 890#define pte_offset_map_nested(pmd, address) pte_offset_kernel(pmd, address) 891#define pte_unmap(pte) do { } while (0) 892#define pte_unmap_nested(pte) do { } while (0) 893 894/* 895 * 31 bit swap entry format: 896 * A page-table entry has some bits we have to treat in a special way. 897 * Bits 0, 20 and bit 23 have to be zero, otherwise an specification 898 * exception will occur instead of a page translation exception. The 899 * specifiation exception has the bad habit not to store necessary 900 * information in the lowcore. 901 * Bit 21 and bit 22 are the page invalid bit and the page protection 902 * bit. We set both to indicate a swapped page. 903 * Bit 30 and 31 are used to distinguish the different page types. For 904 * a swapped page these bits need to be zero. 905 * This leaves the bits 1-19 and bits 24-29 to store type and offset. 906 * We use the 5 bits from 25-29 for the type and the 20 bits from 1-19 907 * plus 24 for the offset. 908 * 0| offset |0110|o|type |00| 909 * 0 0000000001111111111 2222 2 22222 33 910 * 0 1234567890123456789 0123 4 56789 01 911 * 912 * 64 bit swap entry format: 913 * A page-table entry has some bits we have to treat in a special way. 914 * Bits 52 and bit 55 have to be zero, otherwise an specification 915 * exception will occur instead of a page translation exception. The 916 * specifiation exception has the bad habit not to store necessary 917 * information in the lowcore. 918 * Bit 53 and bit 54 are the page invalid bit and the page protection 919 * bit. We set both to indicate a swapped page. 920 * Bit 62 and 63 are used to distinguish the different page types. For 921 * a swapped page these bits need to be zero. 922 * This leaves the bits 0-51 and bits 56-61 to store type and offset. 923 * We use the 5 bits from 57-61 for the type and the 53 bits from 0-51 924 * plus 56 for the offset. 925 * | offset |0110|o|type |00| 926 * 0000000000111111111122222222223333333333444444444455 5555 5 55566 66 927 * 0123456789012345678901234567890123456789012345678901 2345 6 78901 23 928 */ 929#ifndef __s390x__ 930#define __SWP_OFFSET_MASK (~0UL >> 12) 931#else 932#define __SWP_OFFSET_MASK (~0UL >> 11) 933#endif 934static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset) 935{ 936 pte_t pte; 937 offset &= __SWP_OFFSET_MASK; 938 pte_val(pte) = _PAGE_TYPE_SWAP | ((type & 0x1f) << 2) | 939 ((offset & 1UL) << 7) | ((offset & ~1UL) << 11); 940 return pte; 941} 942 943#define __swp_type(entry) (((entry).val >> 2) & 0x1f) 944#define __swp_offset(entry) (((entry).val >> 11) | (((entry).val >> 7) & 1)) 945#define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) }) 946 947#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 948#define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 949 950#ifndef __s390x__ 951# define PTE_FILE_MAX_BITS 26 952#else /* __s390x__ */ 953# define PTE_FILE_MAX_BITS 59 954#endif /* __s390x__ */ 955 956#define pte_to_pgoff(__pte) \ 957 ((((__pte).pte >> 12) << 7) + (((__pte).pte >> 1) & 0x7f)) 958 959#define pgoff_to_pte(__off) \ 960 ((pte_t) { ((((__off) & 0x7f) << 1) + (((__off) >> 7) << 12)) \ 961 | _PAGE_TYPE_FILE }) 962 963#endif /* !__ASSEMBLY__ */ 964 965#define kern_addr_valid(addr) (1) 966 967extern int add_shared_memory(unsigned long start, unsigned long size); 968extern int remove_shared_memory(unsigned long start, unsigned long size); 969 970/* 971 * No page table caches to initialise 972 */ 973#define pgtable_cache_init() do { } while (0) 974 975#define __HAVE_ARCH_MEMMAP_INIT 976extern void memmap_init(unsigned long, int, unsigned long, unsigned long); 977 978#include <asm-generic/pgtable.h> 979 980#endif /* _S390_PAGE_H */