at v2.6.25 1381 lines 36 kB view raw
1/* 2 * Copyright (c) International Business Machines Corp., 2006 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 12 * the GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 17 * 18 * Author: Artem Bityutskiy (Битюцкий Артём) 19 */ 20 21/* 22 * UBI scanning unit. 23 * 24 * This unit is responsible for scanning the flash media, checking UBI 25 * headers and providing complete information about the UBI flash image. 26 * 27 * The scanning information is represented by a &struct ubi_scan_info' object. 28 * Information about found volumes is represented by &struct ubi_scan_volume 29 * objects which are kept in volume RB-tree with root at the @volumes field. 30 * The RB-tree is indexed by the volume ID. 31 * 32 * Found logical eraseblocks are represented by &struct ubi_scan_leb objects. 33 * These objects are kept in per-volume RB-trees with the root at the 34 * corresponding &struct ubi_scan_volume object. To put it differently, we keep 35 * an RB-tree of per-volume objects and each of these objects is the root of 36 * RB-tree of per-eraseblock objects. 37 * 38 * Corrupted physical eraseblocks are put to the @corr list, free physical 39 * eraseblocks are put to the @free list and the physical eraseblock to be 40 * erased are put to the @erase list. 41 */ 42 43#include <linux/err.h> 44#include <linux/crc32.h> 45#include "ubi.h" 46 47#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID 48static int paranoid_check_si(struct ubi_device *ubi, struct ubi_scan_info *si); 49#else 50#define paranoid_check_si(ubi, si) 0 51#endif 52 53/* Temporary variables used during scanning */ 54static struct ubi_ec_hdr *ech; 55static struct ubi_vid_hdr *vidh; 56 57/** 58 * add_to_list - add physical eraseblock to a list. 59 * @si: scanning information 60 * @pnum: physical eraseblock number to add 61 * @ec: erase counter of the physical eraseblock 62 * @list: the list to add to 63 * 64 * This function adds physical eraseblock @pnum to free, erase, corrupted or 65 * alien lists. Returns zero in case of success and a negative error code in 66 * case of failure. 67 */ 68static int add_to_list(struct ubi_scan_info *si, int pnum, int ec, 69 struct list_head *list) 70{ 71 struct ubi_scan_leb *seb; 72 73 if (list == &si->free) 74 dbg_bld("add to free: PEB %d, EC %d", pnum, ec); 75 else if (list == &si->erase) 76 dbg_bld("add to erase: PEB %d, EC %d", pnum, ec); 77 else if (list == &si->corr) 78 dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec); 79 else if (list == &si->alien) 80 dbg_bld("add to alien: PEB %d, EC %d", pnum, ec); 81 else 82 BUG(); 83 84 seb = kmalloc(sizeof(struct ubi_scan_leb), GFP_KERNEL); 85 if (!seb) 86 return -ENOMEM; 87 88 seb->pnum = pnum; 89 seb->ec = ec; 90 list_add_tail(&seb->u.list, list); 91 return 0; 92} 93 94/** 95 * commit_to_mean_value - commit intermediate results to the final mean erase 96 * counter value. 97 * @si: scanning information 98 * 99 * This is a helper function which calculates partial mean erase counter mean 100 * value and adds it to the resulting mean value. As we can work only in 101 * integer arithmetic and we want to calculate the mean value of erase counter 102 * accurately, we first sum erase counter values in @si->ec_sum variable and 103 * count these components in @si->ec_count. If this temporary @si->ec_sum is 104 * going to overflow, we calculate the partial mean value 105 * (@si->ec_sum/@si->ec_count) and add it to @si->mean_ec. 106 */ 107static void commit_to_mean_value(struct ubi_scan_info *si) 108{ 109 si->ec_sum /= si->ec_count; 110 if (si->ec_sum % si->ec_count >= si->ec_count / 2) 111 si->mean_ec += 1; 112 si->mean_ec += si->ec_sum; 113} 114 115/** 116 * validate_vid_hdr - check that volume identifier header is correct and 117 * consistent. 118 * @vid_hdr: the volume identifier header to check 119 * @sv: information about the volume this logical eraseblock belongs to 120 * @pnum: physical eraseblock number the VID header came from 121 * 122 * This function checks that data stored in @vid_hdr is consistent. Returns 123 * non-zero if an inconsistency was found and zero if not. 124 * 125 * Note, UBI does sanity check of everything it reads from the flash media. 126 * Most of the checks are done in the I/O unit. Here we check that the 127 * information in the VID header is consistent to the information in other VID 128 * headers of the same volume. 129 */ 130static int validate_vid_hdr(const struct ubi_vid_hdr *vid_hdr, 131 const struct ubi_scan_volume *sv, int pnum) 132{ 133 int vol_type = vid_hdr->vol_type; 134 int vol_id = be32_to_cpu(vid_hdr->vol_id); 135 int used_ebs = be32_to_cpu(vid_hdr->used_ebs); 136 int data_pad = be32_to_cpu(vid_hdr->data_pad); 137 138 if (sv->leb_count != 0) { 139 int sv_vol_type; 140 141 /* 142 * This is not the first logical eraseblock belonging to this 143 * volume. Ensure that the data in its VID header is consistent 144 * to the data in previous logical eraseblock headers. 145 */ 146 147 if (vol_id != sv->vol_id) { 148 dbg_err("inconsistent vol_id"); 149 goto bad; 150 } 151 152 if (sv->vol_type == UBI_STATIC_VOLUME) 153 sv_vol_type = UBI_VID_STATIC; 154 else 155 sv_vol_type = UBI_VID_DYNAMIC; 156 157 if (vol_type != sv_vol_type) { 158 dbg_err("inconsistent vol_type"); 159 goto bad; 160 } 161 162 if (used_ebs != sv->used_ebs) { 163 dbg_err("inconsistent used_ebs"); 164 goto bad; 165 } 166 167 if (data_pad != sv->data_pad) { 168 dbg_err("inconsistent data_pad"); 169 goto bad; 170 } 171 } 172 173 return 0; 174 175bad: 176 ubi_err("inconsistent VID header at PEB %d", pnum); 177 ubi_dbg_dump_vid_hdr(vid_hdr); 178 ubi_dbg_dump_sv(sv); 179 return -EINVAL; 180} 181 182/** 183 * add_volume - add volume to the scanning information. 184 * @si: scanning information 185 * @vol_id: ID of the volume to add 186 * @pnum: physical eraseblock number 187 * @vid_hdr: volume identifier header 188 * 189 * If the volume corresponding to the @vid_hdr logical eraseblock is already 190 * present in the scanning information, this function does nothing. Otherwise 191 * it adds corresponding volume to the scanning information. Returns a pointer 192 * to the scanning volume object in case of success and a negative error code 193 * in case of failure. 194 */ 195static struct ubi_scan_volume *add_volume(struct ubi_scan_info *si, int vol_id, 196 int pnum, 197 const struct ubi_vid_hdr *vid_hdr) 198{ 199 struct ubi_scan_volume *sv; 200 struct rb_node **p = &si->volumes.rb_node, *parent = NULL; 201 202 ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id)); 203 204 /* Walk the volume RB-tree to look if this volume is already present */ 205 while (*p) { 206 parent = *p; 207 sv = rb_entry(parent, struct ubi_scan_volume, rb); 208 209 if (vol_id == sv->vol_id) 210 return sv; 211 212 if (vol_id > sv->vol_id) 213 p = &(*p)->rb_left; 214 else 215 p = &(*p)->rb_right; 216 } 217 218 /* The volume is absent - add it */ 219 sv = kmalloc(sizeof(struct ubi_scan_volume), GFP_KERNEL); 220 if (!sv) 221 return ERR_PTR(-ENOMEM); 222 223 sv->highest_lnum = sv->leb_count = 0; 224 sv->vol_id = vol_id; 225 sv->root = RB_ROOT; 226 sv->used_ebs = be32_to_cpu(vid_hdr->used_ebs); 227 sv->data_pad = be32_to_cpu(vid_hdr->data_pad); 228 sv->compat = vid_hdr->compat; 229 sv->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME 230 : UBI_STATIC_VOLUME; 231 if (vol_id > si->highest_vol_id) 232 si->highest_vol_id = vol_id; 233 234 rb_link_node(&sv->rb, parent, p); 235 rb_insert_color(&sv->rb, &si->volumes); 236 si->vols_found += 1; 237 dbg_bld("added volume %d", vol_id); 238 return sv; 239} 240 241/** 242 * compare_lebs - find out which logical eraseblock is newer. 243 * @ubi: UBI device description object 244 * @seb: first logical eraseblock to compare 245 * @pnum: physical eraseblock number of the second logical eraseblock to 246 * compare 247 * @vid_hdr: volume identifier header of the second logical eraseblock 248 * 249 * This function compares 2 copies of a LEB and informs which one is newer. In 250 * case of success this function returns a positive value, in case of failure, a 251 * negative error code is returned. The success return codes use the following 252 * bits: 253 * o bit 0 is cleared: the first PEB (described by @seb) is newer then the 254 * second PEB (described by @pnum and @vid_hdr); 255 * o bit 0 is set: the second PEB is newer; 256 * o bit 1 is cleared: no bit-flips were detected in the newer LEB; 257 * o bit 1 is set: bit-flips were detected in the newer LEB; 258 * o bit 2 is cleared: the older LEB is not corrupted; 259 * o bit 2 is set: the older LEB is corrupted. 260 */ 261static int compare_lebs(struct ubi_device *ubi, const struct ubi_scan_leb *seb, 262 int pnum, const struct ubi_vid_hdr *vid_hdr) 263{ 264 void *buf; 265 int len, err, second_is_newer, bitflips = 0, corrupted = 0; 266 uint32_t data_crc, crc; 267 struct ubi_vid_hdr *vh = NULL; 268 unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum); 269 270 if (seb->sqnum == 0 && sqnum2 == 0) { 271 long long abs, v1 = seb->leb_ver, v2 = be32_to_cpu(vid_hdr->leb_ver); 272 273 /* 274 * UBI constantly increases the logical eraseblock version 275 * number and it can overflow. Thus, we have to bear in mind 276 * that versions that are close to %0xFFFFFFFF are less then 277 * versions that are close to %0. 278 * 279 * The UBI WL unit guarantees that the number of pending tasks 280 * is not greater then %0x7FFFFFFF. So, if the difference 281 * between any two versions is greater or equivalent to 282 * %0x7FFFFFFF, there was an overflow and the logical 283 * eraseblock with lower version is actually newer then the one 284 * with higher version. 285 * 286 * FIXME: but this is anyway obsolete and will be removed at 287 * some point. 288 */ 289 dbg_bld("using old crappy leb_ver stuff"); 290 291 if (v1 == v2) { 292 ubi_err("PEB %d and PEB %d have the same version %lld", 293 seb->pnum, pnum, v1); 294 return -EINVAL; 295 } 296 297 abs = v1 - v2; 298 if (abs < 0) 299 abs = -abs; 300 301 if (abs < 0x7FFFFFFF) 302 /* Non-overflow situation */ 303 second_is_newer = (v2 > v1); 304 else 305 second_is_newer = (v2 < v1); 306 } else 307 /* Obviously the LEB with lower sequence counter is older */ 308 second_is_newer = sqnum2 > seb->sqnum; 309 310 /* 311 * Now we know which copy is newer. If the copy flag of the PEB with 312 * newer version is not set, then we just return, otherwise we have to 313 * check data CRC. For the second PEB we already have the VID header, 314 * for the first one - we'll need to re-read it from flash. 315 * 316 * FIXME: this may be optimized so that we wouldn't read twice. 317 */ 318 319 if (second_is_newer) { 320 if (!vid_hdr->copy_flag) { 321 /* It is not a copy, so it is newer */ 322 dbg_bld("second PEB %d is newer, copy_flag is unset", 323 pnum); 324 return 1; 325 } 326 } else { 327 pnum = seb->pnum; 328 329 vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL); 330 if (!vh) 331 return -ENOMEM; 332 333 err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0); 334 if (err) { 335 if (err == UBI_IO_BITFLIPS) 336 bitflips = 1; 337 else { 338 dbg_err("VID of PEB %d header is bad, but it " 339 "was OK earlier", pnum); 340 if (err > 0) 341 err = -EIO; 342 343 goto out_free_vidh; 344 } 345 } 346 347 if (!vh->copy_flag) { 348 /* It is not a copy, so it is newer */ 349 dbg_bld("first PEB %d is newer, copy_flag is unset", 350 pnum); 351 err = bitflips << 1; 352 goto out_free_vidh; 353 } 354 355 vid_hdr = vh; 356 } 357 358 /* Read the data of the copy and check the CRC */ 359 360 len = be32_to_cpu(vid_hdr->data_size); 361 buf = vmalloc(len); 362 if (!buf) { 363 err = -ENOMEM; 364 goto out_free_vidh; 365 } 366 367 err = ubi_io_read_data(ubi, buf, pnum, 0, len); 368 if (err && err != UBI_IO_BITFLIPS) 369 goto out_free_buf; 370 371 data_crc = be32_to_cpu(vid_hdr->data_crc); 372 crc = crc32(UBI_CRC32_INIT, buf, len); 373 if (crc != data_crc) { 374 dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x", 375 pnum, crc, data_crc); 376 corrupted = 1; 377 bitflips = 0; 378 second_is_newer = !second_is_newer; 379 } else { 380 dbg_bld("PEB %d CRC is OK", pnum); 381 bitflips = !!err; 382 } 383 384 vfree(buf); 385 ubi_free_vid_hdr(ubi, vh); 386 387 if (second_is_newer) 388 dbg_bld("second PEB %d is newer, copy_flag is set", pnum); 389 else 390 dbg_bld("first PEB %d is newer, copy_flag is set", pnum); 391 392 return second_is_newer | (bitflips << 1) | (corrupted << 2); 393 394out_free_buf: 395 vfree(buf); 396out_free_vidh: 397 ubi_free_vid_hdr(ubi, vh); 398 return err; 399} 400 401/** 402 * ubi_scan_add_used - add information about a physical eraseblock to the 403 * scanning information. 404 * @ubi: UBI device description object 405 * @si: scanning information 406 * @pnum: the physical eraseblock number 407 * @ec: erase counter 408 * @vid_hdr: the volume identifier header 409 * @bitflips: if bit-flips were detected when this physical eraseblock was read 410 * 411 * This function adds information about a used physical eraseblock to the 412 * 'used' tree of the corresponding volume. The function is rather complex 413 * because it has to handle cases when this is not the first physical 414 * eraseblock belonging to the same logical eraseblock, and the newer one has 415 * to be picked, while the older one has to be dropped. This function returns 416 * zero in case of success and a negative error code in case of failure. 417 */ 418int ubi_scan_add_used(struct ubi_device *ubi, struct ubi_scan_info *si, 419 int pnum, int ec, const struct ubi_vid_hdr *vid_hdr, 420 int bitflips) 421{ 422 int err, vol_id, lnum; 423 uint32_t leb_ver; 424 unsigned long long sqnum; 425 struct ubi_scan_volume *sv; 426 struct ubi_scan_leb *seb; 427 struct rb_node **p, *parent = NULL; 428 429 vol_id = be32_to_cpu(vid_hdr->vol_id); 430 lnum = be32_to_cpu(vid_hdr->lnum); 431 sqnum = be64_to_cpu(vid_hdr->sqnum); 432 leb_ver = be32_to_cpu(vid_hdr->leb_ver); 433 434 dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, ver %u, bitflips %d", 435 pnum, vol_id, lnum, ec, sqnum, leb_ver, bitflips); 436 437 sv = add_volume(si, vol_id, pnum, vid_hdr); 438 if (IS_ERR(sv) < 0) 439 return PTR_ERR(sv); 440 441 if (si->max_sqnum < sqnum) 442 si->max_sqnum = sqnum; 443 444 /* 445 * Walk the RB-tree of logical eraseblocks of volume @vol_id to look 446 * if this is the first instance of this logical eraseblock or not. 447 */ 448 p = &sv->root.rb_node; 449 while (*p) { 450 int cmp_res; 451 452 parent = *p; 453 seb = rb_entry(parent, struct ubi_scan_leb, u.rb); 454 if (lnum != seb->lnum) { 455 if (lnum < seb->lnum) 456 p = &(*p)->rb_left; 457 else 458 p = &(*p)->rb_right; 459 continue; 460 } 461 462 /* 463 * There is already a physical eraseblock describing the same 464 * logical eraseblock present. 465 */ 466 467 dbg_bld("this LEB already exists: PEB %d, sqnum %llu, " 468 "LEB ver %u, EC %d", seb->pnum, seb->sqnum, 469 seb->leb_ver, seb->ec); 470 471 /* 472 * Make sure that the logical eraseblocks have different 473 * versions. Otherwise the image is bad. 474 */ 475 if (seb->leb_ver == leb_ver && leb_ver != 0) { 476 ubi_err("two LEBs with same version %u", leb_ver); 477 ubi_dbg_dump_seb(seb, 0); 478 ubi_dbg_dump_vid_hdr(vid_hdr); 479 return -EINVAL; 480 } 481 482 /* 483 * Make sure that the logical eraseblocks have different 484 * sequence numbers. Otherwise the image is bad. 485 * 486 * FIXME: remove 'sqnum != 0' check when leb_ver is removed. 487 */ 488 if (seb->sqnum == sqnum && sqnum != 0) { 489 ubi_err("two LEBs with same sequence number %llu", 490 sqnum); 491 ubi_dbg_dump_seb(seb, 0); 492 ubi_dbg_dump_vid_hdr(vid_hdr); 493 return -EINVAL; 494 } 495 496 /* 497 * Now we have to drop the older one and preserve the newer 498 * one. 499 */ 500 cmp_res = compare_lebs(ubi, seb, pnum, vid_hdr); 501 if (cmp_res < 0) 502 return cmp_res; 503 504 if (cmp_res & 1) { 505 /* 506 * This logical eraseblock is newer then the one 507 * found earlier. 508 */ 509 err = validate_vid_hdr(vid_hdr, sv, pnum); 510 if (err) 511 return err; 512 513 if (cmp_res & 4) 514 err = add_to_list(si, seb->pnum, seb->ec, 515 &si->corr); 516 else 517 err = add_to_list(si, seb->pnum, seb->ec, 518 &si->erase); 519 if (err) 520 return err; 521 522 seb->ec = ec; 523 seb->pnum = pnum; 524 seb->scrub = ((cmp_res & 2) || bitflips); 525 seb->sqnum = sqnum; 526 seb->leb_ver = leb_ver; 527 528 if (sv->highest_lnum == lnum) 529 sv->last_data_size = 530 be32_to_cpu(vid_hdr->data_size); 531 532 return 0; 533 } else { 534 /* 535 * This logical eraseblock is older then the one found 536 * previously. 537 */ 538 if (cmp_res & 4) 539 return add_to_list(si, pnum, ec, &si->corr); 540 else 541 return add_to_list(si, pnum, ec, &si->erase); 542 } 543 } 544 545 /* 546 * We've met this logical eraseblock for the first time, add it to the 547 * scanning information. 548 */ 549 550 err = validate_vid_hdr(vid_hdr, sv, pnum); 551 if (err) 552 return err; 553 554 seb = kmalloc(sizeof(struct ubi_scan_leb), GFP_KERNEL); 555 if (!seb) 556 return -ENOMEM; 557 558 seb->ec = ec; 559 seb->pnum = pnum; 560 seb->lnum = lnum; 561 seb->sqnum = sqnum; 562 seb->scrub = bitflips; 563 seb->leb_ver = leb_ver; 564 565 if (sv->highest_lnum <= lnum) { 566 sv->highest_lnum = lnum; 567 sv->last_data_size = be32_to_cpu(vid_hdr->data_size); 568 } 569 570 sv->leb_count += 1; 571 rb_link_node(&seb->u.rb, parent, p); 572 rb_insert_color(&seb->u.rb, &sv->root); 573 return 0; 574} 575 576/** 577 * ubi_scan_find_sv - find information about a particular volume in the 578 * scanning information. 579 * @si: scanning information 580 * @vol_id: the requested volume ID 581 * 582 * This function returns a pointer to the volume description or %NULL if there 583 * are no data about this volume in the scanning information. 584 */ 585struct ubi_scan_volume *ubi_scan_find_sv(const struct ubi_scan_info *si, 586 int vol_id) 587{ 588 struct ubi_scan_volume *sv; 589 struct rb_node *p = si->volumes.rb_node; 590 591 while (p) { 592 sv = rb_entry(p, struct ubi_scan_volume, rb); 593 594 if (vol_id == sv->vol_id) 595 return sv; 596 597 if (vol_id > sv->vol_id) 598 p = p->rb_left; 599 else 600 p = p->rb_right; 601 } 602 603 return NULL; 604} 605 606/** 607 * ubi_scan_find_seb - find information about a particular logical 608 * eraseblock in the volume scanning information. 609 * @sv: a pointer to the volume scanning information 610 * @lnum: the requested logical eraseblock 611 * 612 * This function returns a pointer to the scanning logical eraseblock or %NULL 613 * if there are no data about it in the scanning volume information. 614 */ 615struct ubi_scan_leb *ubi_scan_find_seb(const struct ubi_scan_volume *sv, 616 int lnum) 617{ 618 struct ubi_scan_leb *seb; 619 struct rb_node *p = sv->root.rb_node; 620 621 while (p) { 622 seb = rb_entry(p, struct ubi_scan_leb, u.rb); 623 624 if (lnum == seb->lnum) 625 return seb; 626 627 if (lnum > seb->lnum) 628 p = p->rb_left; 629 else 630 p = p->rb_right; 631 } 632 633 return NULL; 634} 635 636/** 637 * ubi_scan_rm_volume - delete scanning information about a volume. 638 * @si: scanning information 639 * @sv: the volume scanning information to delete 640 */ 641void ubi_scan_rm_volume(struct ubi_scan_info *si, struct ubi_scan_volume *sv) 642{ 643 struct rb_node *rb; 644 struct ubi_scan_leb *seb; 645 646 dbg_bld("remove scanning information about volume %d", sv->vol_id); 647 648 while ((rb = rb_first(&sv->root))) { 649 seb = rb_entry(rb, struct ubi_scan_leb, u.rb); 650 rb_erase(&seb->u.rb, &sv->root); 651 list_add_tail(&seb->u.list, &si->erase); 652 } 653 654 rb_erase(&sv->rb, &si->volumes); 655 kfree(sv); 656 si->vols_found -= 1; 657} 658 659/** 660 * ubi_scan_erase_peb - erase a physical eraseblock. 661 * @ubi: UBI device description object 662 * @si: scanning information 663 * @pnum: physical eraseblock number to erase; 664 * @ec: erase counter value to write (%UBI_SCAN_UNKNOWN_EC if it is unknown) 665 * 666 * This function erases physical eraseblock 'pnum', and writes the erase 667 * counter header to it. This function should only be used on UBI device 668 * initialization stages, when the EBA unit had not been yet initialized. This 669 * function returns zero in case of success and a negative error code in case 670 * of failure. 671 */ 672int ubi_scan_erase_peb(struct ubi_device *ubi, const struct ubi_scan_info *si, 673 int pnum, int ec) 674{ 675 int err; 676 struct ubi_ec_hdr *ec_hdr; 677 678 if ((long long)ec >= UBI_MAX_ERASECOUNTER) { 679 /* 680 * Erase counter overflow. Upgrade UBI and use 64-bit 681 * erase counters internally. 682 */ 683 ubi_err("erase counter overflow at PEB %d, EC %d", pnum, ec); 684 return -EINVAL; 685 } 686 687 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); 688 if (!ec_hdr) 689 return -ENOMEM; 690 691 ec_hdr->ec = cpu_to_be64(ec); 692 693 err = ubi_io_sync_erase(ubi, pnum, 0); 694 if (err < 0) 695 goto out_free; 696 697 err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr); 698 699out_free: 700 kfree(ec_hdr); 701 return err; 702} 703 704/** 705 * ubi_scan_get_free_peb - get a free physical eraseblock. 706 * @ubi: UBI device description object 707 * @si: scanning information 708 * 709 * This function returns a free physical eraseblock. It is supposed to be 710 * called on the UBI initialization stages when the wear-leveling unit is not 711 * initialized yet. This function picks a physical eraseblocks from one of the 712 * lists, writes the EC header if it is needed, and removes it from the list. 713 * 714 * This function returns scanning physical eraseblock information in case of 715 * success and an error code in case of failure. 716 */ 717struct ubi_scan_leb *ubi_scan_get_free_peb(struct ubi_device *ubi, 718 struct ubi_scan_info *si) 719{ 720 int err = 0, i; 721 struct ubi_scan_leb *seb; 722 723 if (!list_empty(&si->free)) { 724 seb = list_entry(si->free.next, struct ubi_scan_leb, u.list); 725 list_del(&seb->u.list); 726 dbg_bld("return free PEB %d, EC %d", seb->pnum, seb->ec); 727 return seb; 728 } 729 730 for (i = 0; i < 2; i++) { 731 struct list_head *head; 732 struct ubi_scan_leb *tmp_seb; 733 734 if (i == 0) 735 head = &si->erase; 736 else 737 head = &si->corr; 738 739 /* 740 * We try to erase the first physical eraseblock from the @head 741 * list and pick it if we succeed, or try to erase the 742 * next one if not. And so forth. We don't want to take care 743 * about bad eraseblocks here - they'll be handled later. 744 */ 745 list_for_each_entry_safe(seb, tmp_seb, head, u.list) { 746 if (seb->ec == UBI_SCAN_UNKNOWN_EC) 747 seb->ec = si->mean_ec; 748 749 err = ubi_scan_erase_peb(ubi, si, seb->pnum, seb->ec+1); 750 if (err) 751 continue; 752 753 seb->ec += 1; 754 list_del(&seb->u.list); 755 dbg_bld("return PEB %d, EC %d", seb->pnum, seb->ec); 756 return seb; 757 } 758 } 759 760 ubi_err("no eraseblocks found"); 761 return ERR_PTR(-ENOSPC); 762} 763 764/** 765 * process_eb - read UBI headers, check them and add corresponding data 766 * to the scanning information. 767 * @ubi: UBI device description object 768 * @si: scanning information 769 * @pnum: the physical eraseblock number 770 * 771 * This function returns a zero if the physical eraseblock was successfully 772 * handled and a negative error code in case of failure. 773 */ 774static int process_eb(struct ubi_device *ubi, struct ubi_scan_info *si, int pnum) 775{ 776 long long uninitialized_var(ec); 777 int err, bitflips = 0, vol_id, ec_corr = 0; 778 779 dbg_bld("scan PEB %d", pnum); 780 781 /* Skip bad physical eraseblocks */ 782 err = ubi_io_is_bad(ubi, pnum); 783 if (err < 0) 784 return err; 785 else if (err) { 786 /* 787 * FIXME: this is actually duty of the I/O unit to initialize 788 * this, but MTD does not provide enough information. 789 */ 790 si->bad_peb_count += 1; 791 return 0; 792 } 793 794 err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0); 795 if (err < 0) 796 return err; 797 else if (err == UBI_IO_BITFLIPS) 798 bitflips = 1; 799 else if (err == UBI_IO_PEB_EMPTY) 800 return add_to_list(si, pnum, UBI_SCAN_UNKNOWN_EC, &si->erase); 801 else if (err == UBI_IO_BAD_EC_HDR) { 802 /* 803 * We have to also look at the VID header, possibly it is not 804 * corrupted. Set %bitflips flag in order to make this PEB be 805 * moved and EC be re-created. 806 */ 807 ec_corr = 1; 808 ec = UBI_SCAN_UNKNOWN_EC; 809 bitflips = 1; 810 } 811 812 si->is_empty = 0; 813 814 if (!ec_corr) { 815 /* Make sure UBI version is OK */ 816 if (ech->version != UBI_VERSION) { 817 ubi_err("this UBI version is %d, image version is %d", 818 UBI_VERSION, (int)ech->version); 819 return -EINVAL; 820 } 821 822 ec = be64_to_cpu(ech->ec); 823 if (ec > UBI_MAX_ERASECOUNTER) { 824 /* 825 * Erase counter overflow. The EC headers have 64 bits 826 * reserved, but we anyway make use of only 31 bit 827 * values, as this seems to be enough for any existing 828 * flash. Upgrade UBI and use 64-bit erase counters 829 * internally. 830 */ 831 ubi_err("erase counter overflow, max is %d", 832 UBI_MAX_ERASECOUNTER); 833 ubi_dbg_dump_ec_hdr(ech); 834 return -EINVAL; 835 } 836 } 837 838 /* OK, we've done with the EC header, let's look at the VID header */ 839 840 err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0); 841 if (err < 0) 842 return err; 843 else if (err == UBI_IO_BITFLIPS) 844 bitflips = 1; 845 else if (err == UBI_IO_BAD_VID_HDR || 846 (err == UBI_IO_PEB_FREE && ec_corr)) { 847 /* VID header is corrupted */ 848 err = add_to_list(si, pnum, ec, &si->corr); 849 if (err) 850 return err; 851 goto adjust_mean_ec; 852 } else if (err == UBI_IO_PEB_FREE) { 853 /* No VID header - the physical eraseblock is free */ 854 err = add_to_list(si, pnum, ec, &si->free); 855 if (err) 856 return err; 857 goto adjust_mean_ec; 858 } 859 860 vol_id = be32_to_cpu(vidh->vol_id); 861 if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOLUME_ID) { 862 int lnum = be32_to_cpu(vidh->lnum); 863 864 /* Unsupported internal volume */ 865 switch (vidh->compat) { 866 case UBI_COMPAT_DELETE: 867 ubi_msg("\"delete\" compatible internal volume %d:%d" 868 " found, remove it", vol_id, lnum); 869 err = add_to_list(si, pnum, ec, &si->corr); 870 if (err) 871 return err; 872 break; 873 874 case UBI_COMPAT_RO: 875 ubi_msg("read-only compatible internal volume %d:%d" 876 " found, switch to read-only mode", 877 vol_id, lnum); 878 ubi->ro_mode = 1; 879 break; 880 881 case UBI_COMPAT_PRESERVE: 882 ubi_msg("\"preserve\" compatible internal volume %d:%d" 883 " found", vol_id, lnum); 884 err = add_to_list(si, pnum, ec, &si->alien); 885 if (err) 886 return err; 887 si->alien_peb_count += 1; 888 return 0; 889 890 case UBI_COMPAT_REJECT: 891 ubi_err("incompatible internal volume %d:%d found", 892 vol_id, lnum); 893 return -EINVAL; 894 } 895 } 896 897 /* Both UBI headers seem to be fine */ 898 err = ubi_scan_add_used(ubi, si, pnum, ec, vidh, bitflips); 899 if (err) 900 return err; 901 902adjust_mean_ec: 903 if (!ec_corr) { 904 if (si->ec_sum + ec < ec) { 905 commit_to_mean_value(si); 906 si->ec_sum = 0; 907 si->ec_count = 0; 908 } else { 909 si->ec_sum += ec; 910 si->ec_count += 1; 911 } 912 913 if (ec > si->max_ec) 914 si->max_ec = ec; 915 if (ec < si->min_ec) 916 si->min_ec = ec; 917 } 918 919 return 0; 920} 921 922/** 923 * ubi_scan - scan an MTD device. 924 * @ubi: UBI device description object 925 * 926 * This function does full scanning of an MTD device and returns complete 927 * information about it. In case of failure, an error code is returned. 928 */ 929struct ubi_scan_info *ubi_scan(struct ubi_device *ubi) 930{ 931 int err, pnum; 932 struct rb_node *rb1, *rb2; 933 struct ubi_scan_volume *sv; 934 struct ubi_scan_leb *seb; 935 struct ubi_scan_info *si; 936 937 si = kzalloc(sizeof(struct ubi_scan_info), GFP_KERNEL); 938 if (!si) 939 return ERR_PTR(-ENOMEM); 940 941 INIT_LIST_HEAD(&si->corr); 942 INIT_LIST_HEAD(&si->free); 943 INIT_LIST_HEAD(&si->erase); 944 INIT_LIST_HEAD(&si->alien); 945 si->volumes = RB_ROOT; 946 si->is_empty = 1; 947 948 err = -ENOMEM; 949 ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); 950 if (!ech) 951 goto out_si; 952 953 vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL); 954 if (!vidh) 955 goto out_ech; 956 957 for (pnum = 0; pnum < ubi->peb_count; pnum++) { 958 cond_resched(); 959 960 dbg_msg("process PEB %d", pnum); 961 err = process_eb(ubi, si, pnum); 962 if (err < 0) 963 goto out_vidh; 964 } 965 966 dbg_msg("scanning is finished"); 967 968 /* Finish mean erase counter calculations */ 969 if (si->ec_count) 970 commit_to_mean_value(si); 971 972 if (si->is_empty) 973 ubi_msg("empty MTD device detected"); 974 975 /* 976 * In case of unknown erase counter we use the mean erase counter 977 * value. 978 */ 979 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) { 980 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) 981 if (seb->ec == UBI_SCAN_UNKNOWN_EC) 982 seb->ec = si->mean_ec; 983 } 984 985 list_for_each_entry(seb, &si->free, u.list) { 986 if (seb->ec == UBI_SCAN_UNKNOWN_EC) 987 seb->ec = si->mean_ec; 988 } 989 990 list_for_each_entry(seb, &si->corr, u.list) 991 if (seb->ec == UBI_SCAN_UNKNOWN_EC) 992 seb->ec = si->mean_ec; 993 994 list_for_each_entry(seb, &si->erase, u.list) 995 if (seb->ec == UBI_SCAN_UNKNOWN_EC) 996 seb->ec = si->mean_ec; 997 998 err = paranoid_check_si(ubi, si); 999 if (err) { 1000 if (err > 0) 1001 err = -EINVAL; 1002 goto out_vidh; 1003 } 1004 1005 ubi_free_vid_hdr(ubi, vidh); 1006 kfree(ech); 1007 1008 return si; 1009 1010out_vidh: 1011 ubi_free_vid_hdr(ubi, vidh); 1012out_ech: 1013 kfree(ech); 1014out_si: 1015 ubi_scan_destroy_si(si); 1016 return ERR_PTR(err); 1017} 1018 1019/** 1020 * destroy_sv - free the scanning volume information 1021 * @sv: scanning volume information 1022 * 1023 * This function destroys the volume RB-tree (@sv->root) and the scanning 1024 * volume information. 1025 */ 1026static void destroy_sv(struct ubi_scan_volume *sv) 1027{ 1028 struct ubi_scan_leb *seb; 1029 struct rb_node *this = sv->root.rb_node; 1030 1031 while (this) { 1032 if (this->rb_left) 1033 this = this->rb_left; 1034 else if (this->rb_right) 1035 this = this->rb_right; 1036 else { 1037 seb = rb_entry(this, struct ubi_scan_leb, u.rb); 1038 this = rb_parent(this); 1039 if (this) { 1040 if (this->rb_left == &seb->u.rb) 1041 this->rb_left = NULL; 1042 else 1043 this->rb_right = NULL; 1044 } 1045 1046 kfree(seb); 1047 } 1048 } 1049 kfree(sv); 1050} 1051 1052/** 1053 * ubi_scan_destroy_si - destroy scanning information. 1054 * @si: scanning information 1055 */ 1056void ubi_scan_destroy_si(struct ubi_scan_info *si) 1057{ 1058 struct ubi_scan_leb *seb, *seb_tmp; 1059 struct ubi_scan_volume *sv; 1060 struct rb_node *rb; 1061 1062 list_for_each_entry_safe(seb, seb_tmp, &si->alien, u.list) { 1063 list_del(&seb->u.list); 1064 kfree(seb); 1065 } 1066 list_for_each_entry_safe(seb, seb_tmp, &si->erase, u.list) { 1067 list_del(&seb->u.list); 1068 kfree(seb); 1069 } 1070 list_for_each_entry_safe(seb, seb_tmp, &si->corr, u.list) { 1071 list_del(&seb->u.list); 1072 kfree(seb); 1073 } 1074 list_for_each_entry_safe(seb, seb_tmp, &si->free, u.list) { 1075 list_del(&seb->u.list); 1076 kfree(seb); 1077 } 1078 1079 /* Destroy the volume RB-tree */ 1080 rb = si->volumes.rb_node; 1081 while (rb) { 1082 if (rb->rb_left) 1083 rb = rb->rb_left; 1084 else if (rb->rb_right) 1085 rb = rb->rb_right; 1086 else { 1087 sv = rb_entry(rb, struct ubi_scan_volume, rb); 1088 1089 rb = rb_parent(rb); 1090 if (rb) { 1091 if (rb->rb_left == &sv->rb) 1092 rb->rb_left = NULL; 1093 else 1094 rb->rb_right = NULL; 1095 } 1096 1097 destroy_sv(sv); 1098 } 1099 } 1100 1101 kfree(si); 1102} 1103 1104#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID 1105 1106/** 1107 * paranoid_check_si - check if the scanning information is correct and 1108 * consistent. 1109 * @ubi: UBI device description object 1110 * @si: scanning information 1111 * 1112 * This function returns zero if the scanning information is all right, %1 if 1113 * not and a negative error code if an error occurred. 1114 */ 1115static int paranoid_check_si(struct ubi_device *ubi, struct ubi_scan_info *si) 1116{ 1117 int pnum, err, vols_found = 0; 1118 struct rb_node *rb1, *rb2; 1119 struct ubi_scan_volume *sv; 1120 struct ubi_scan_leb *seb, *last_seb; 1121 uint8_t *buf; 1122 1123 /* 1124 * At first, check that scanning information is OK. 1125 */ 1126 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) { 1127 int leb_count = 0; 1128 1129 cond_resched(); 1130 1131 vols_found += 1; 1132 1133 if (si->is_empty) { 1134 ubi_err("bad is_empty flag"); 1135 goto bad_sv; 1136 } 1137 1138 if (sv->vol_id < 0 || sv->highest_lnum < 0 || 1139 sv->leb_count < 0 || sv->vol_type < 0 || sv->used_ebs < 0 || 1140 sv->data_pad < 0 || sv->last_data_size < 0) { 1141 ubi_err("negative values"); 1142 goto bad_sv; 1143 } 1144 1145 if (sv->vol_id >= UBI_MAX_VOLUMES && 1146 sv->vol_id < UBI_INTERNAL_VOL_START) { 1147 ubi_err("bad vol_id"); 1148 goto bad_sv; 1149 } 1150 1151 if (sv->vol_id > si->highest_vol_id) { 1152 ubi_err("highest_vol_id is %d, but vol_id %d is there", 1153 si->highest_vol_id, sv->vol_id); 1154 goto out; 1155 } 1156 1157 if (sv->vol_type != UBI_DYNAMIC_VOLUME && 1158 sv->vol_type != UBI_STATIC_VOLUME) { 1159 ubi_err("bad vol_type"); 1160 goto bad_sv; 1161 } 1162 1163 if (sv->data_pad > ubi->leb_size / 2) { 1164 ubi_err("bad data_pad"); 1165 goto bad_sv; 1166 } 1167 1168 last_seb = NULL; 1169 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) { 1170 cond_resched(); 1171 1172 last_seb = seb; 1173 leb_count += 1; 1174 1175 if (seb->pnum < 0 || seb->ec < 0) { 1176 ubi_err("negative values"); 1177 goto bad_seb; 1178 } 1179 1180 if (seb->ec < si->min_ec) { 1181 ubi_err("bad si->min_ec (%d), %d found", 1182 si->min_ec, seb->ec); 1183 goto bad_seb; 1184 } 1185 1186 if (seb->ec > si->max_ec) { 1187 ubi_err("bad si->max_ec (%d), %d found", 1188 si->max_ec, seb->ec); 1189 goto bad_seb; 1190 } 1191 1192 if (seb->pnum >= ubi->peb_count) { 1193 ubi_err("too high PEB number %d, total PEBs %d", 1194 seb->pnum, ubi->peb_count); 1195 goto bad_seb; 1196 } 1197 1198 if (sv->vol_type == UBI_STATIC_VOLUME) { 1199 if (seb->lnum >= sv->used_ebs) { 1200 ubi_err("bad lnum or used_ebs"); 1201 goto bad_seb; 1202 } 1203 } else { 1204 if (sv->used_ebs != 0) { 1205 ubi_err("non-zero used_ebs"); 1206 goto bad_seb; 1207 } 1208 } 1209 1210 if (seb->lnum > sv->highest_lnum) { 1211 ubi_err("incorrect highest_lnum or lnum"); 1212 goto bad_seb; 1213 } 1214 } 1215 1216 if (sv->leb_count != leb_count) { 1217 ubi_err("bad leb_count, %d objects in the tree", 1218 leb_count); 1219 goto bad_sv; 1220 } 1221 1222 if (!last_seb) 1223 continue; 1224 1225 seb = last_seb; 1226 1227 if (seb->lnum != sv->highest_lnum) { 1228 ubi_err("bad highest_lnum"); 1229 goto bad_seb; 1230 } 1231 } 1232 1233 if (vols_found != si->vols_found) { 1234 ubi_err("bad si->vols_found %d, should be %d", 1235 si->vols_found, vols_found); 1236 goto out; 1237 } 1238 1239 /* Check that scanning information is correct */ 1240 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) { 1241 last_seb = NULL; 1242 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) { 1243 int vol_type; 1244 1245 cond_resched(); 1246 1247 last_seb = seb; 1248 1249 err = ubi_io_read_vid_hdr(ubi, seb->pnum, vidh, 1); 1250 if (err && err != UBI_IO_BITFLIPS) { 1251 ubi_err("VID header is not OK (%d)", err); 1252 if (err > 0) 1253 err = -EIO; 1254 return err; 1255 } 1256 1257 vol_type = vidh->vol_type == UBI_VID_DYNAMIC ? 1258 UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME; 1259 if (sv->vol_type != vol_type) { 1260 ubi_err("bad vol_type"); 1261 goto bad_vid_hdr; 1262 } 1263 1264 if (seb->sqnum != be64_to_cpu(vidh->sqnum)) { 1265 ubi_err("bad sqnum %llu", seb->sqnum); 1266 goto bad_vid_hdr; 1267 } 1268 1269 if (sv->vol_id != be32_to_cpu(vidh->vol_id)) { 1270 ubi_err("bad vol_id %d", sv->vol_id); 1271 goto bad_vid_hdr; 1272 } 1273 1274 if (sv->compat != vidh->compat) { 1275 ubi_err("bad compat %d", vidh->compat); 1276 goto bad_vid_hdr; 1277 } 1278 1279 if (seb->lnum != be32_to_cpu(vidh->lnum)) { 1280 ubi_err("bad lnum %d", seb->lnum); 1281 goto bad_vid_hdr; 1282 } 1283 1284 if (sv->used_ebs != be32_to_cpu(vidh->used_ebs)) { 1285 ubi_err("bad used_ebs %d", sv->used_ebs); 1286 goto bad_vid_hdr; 1287 } 1288 1289 if (sv->data_pad != be32_to_cpu(vidh->data_pad)) { 1290 ubi_err("bad data_pad %d", sv->data_pad); 1291 goto bad_vid_hdr; 1292 } 1293 1294 if (seb->leb_ver != be32_to_cpu(vidh->leb_ver)) { 1295 ubi_err("bad leb_ver %u", seb->leb_ver); 1296 goto bad_vid_hdr; 1297 } 1298 } 1299 1300 if (!last_seb) 1301 continue; 1302 1303 if (sv->highest_lnum != be32_to_cpu(vidh->lnum)) { 1304 ubi_err("bad highest_lnum %d", sv->highest_lnum); 1305 goto bad_vid_hdr; 1306 } 1307 1308 if (sv->last_data_size != be32_to_cpu(vidh->data_size)) { 1309 ubi_err("bad last_data_size %d", sv->last_data_size); 1310 goto bad_vid_hdr; 1311 } 1312 } 1313 1314 /* 1315 * Make sure that all the physical eraseblocks are in one of the lists 1316 * or trees. 1317 */ 1318 buf = kzalloc(ubi->peb_count, GFP_KERNEL); 1319 if (!buf) 1320 return -ENOMEM; 1321 1322 for (pnum = 0; pnum < ubi->peb_count; pnum++) { 1323 err = ubi_io_is_bad(ubi, pnum); 1324 if (err < 0) { 1325 kfree(buf); 1326 return err; 1327 } 1328 else if (err) 1329 buf[pnum] = 1; 1330 } 1331 1332 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) 1333 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) 1334 buf[seb->pnum] = 1; 1335 1336 list_for_each_entry(seb, &si->free, u.list) 1337 buf[seb->pnum] = 1; 1338 1339 list_for_each_entry(seb, &si->corr, u.list) 1340 buf[seb->pnum] = 1; 1341 1342 list_for_each_entry(seb, &si->erase, u.list) 1343 buf[seb->pnum] = 1; 1344 1345 list_for_each_entry(seb, &si->alien, u.list) 1346 buf[seb->pnum] = 1; 1347 1348 err = 0; 1349 for (pnum = 0; pnum < ubi->peb_count; pnum++) 1350 if (!buf[pnum]) { 1351 ubi_err("PEB %d is not referred", pnum); 1352 err = 1; 1353 } 1354 1355 kfree(buf); 1356 if (err) 1357 goto out; 1358 return 0; 1359 1360bad_seb: 1361 ubi_err("bad scanning information about LEB %d", seb->lnum); 1362 ubi_dbg_dump_seb(seb, 0); 1363 ubi_dbg_dump_sv(sv); 1364 goto out; 1365 1366bad_sv: 1367 ubi_err("bad scanning information about volume %d", sv->vol_id); 1368 ubi_dbg_dump_sv(sv); 1369 goto out; 1370 1371bad_vid_hdr: 1372 ubi_err("bad scanning information about volume %d", sv->vol_id); 1373 ubi_dbg_dump_sv(sv); 1374 ubi_dbg_dump_vid_hdr(vidh); 1375 1376out: 1377 ubi_dbg_dump_stack(); 1378 return 1; 1379} 1380 1381#endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */