at v2.6.25 612 lines 15 kB view raw
1/* 2 * General Purpose functions for the global management of the 3 * Communication Processor Module. 4 * Copyright (c) 1997 Dan error_act (dmalek@jlc.net) 5 * 6 * In addition to the individual control of the communication 7 * channels, there are a few functions that globally affect the 8 * communication processor. 9 * 10 * Buffer descriptors must be allocated from the dual ported memory 11 * space. The allocator for that is here. When the communication 12 * process is reset, we reclaim the memory available. There is 13 * currently no deallocator for this memory. 14 * The amount of space available is platform dependent. On the 15 * MBX, the EPPC software loads additional microcode into the 16 * communication processor, and uses some of the DP ram for this 17 * purpose. Current, the first 512 bytes and the last 256 bytes of 18 * memory are used. Right now I am conservative and only use the 19 * memory that can never be used for microcode. If there are 20 * applications that require more DP ram, we can expand the boundaries 21 * but then we have to be careful of any downloaded microcode. 22 */ 23#include <linux/errno.h> 24#include <linux/sched.h> 25#include <linux/kernel.h> 26#include <linux/dma-mapping.h> 27#include <linux/param.h> 28#include <linux/string.h> 29#include <linux/mm.h> 30#include <linux/interrupt.h> 31#include <linux/irq.h> 32#include <linux/module.h> 33#include <asm/page.h> 34#include <asm/pgtable.h> 35#include <asm/8xx_immap.h> 36#include <asm/cpm1.h> 37#include <asm/io.h> 38#include <asm/tlbflush.h> 39#include <asm/rheap.h> 40#include <asm/prom.h> 41#include <asm/cpm.h> 42 43#include <asm/fs_pd.h> 44 45#define CPM_MAP_SIZE (0x4000) 46 47#ifndef CONFIG_PPC_CPM_NEW_BINDING 48static void m8xx_cpm_dpinit(void); 49#endif 50cpm8xx_t __iomem *cpmp; /* Pointer to comm processor space */ 51immap_t __iomem *mpc8xx_immr; 52static cpic8xx_t __iomem *cpic_reg; 53 54static struct irq_host *cpm_pic_host; 55 56static void cpm_mask_irq(unsigned int irq) 57{ 58 unsigned int cpm_vec = (unsigned int)irq_map[irq].hwirq; 59 60 clrbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec)); 61} 62 63static void cpm_unmask_irq(unsigned int irq) 64{ 65 unsigned int cpm_vec = (unsigned int)irq_map[irq].hwirq; 66 67 setbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec)); 68} 69 70static void cpm_end_irq(unsigned int irq) 71{ 72 unsigned int cpm_vec = (unsigned int)irq_map[irq].hwirq; 73 74 out_be32(&cpic_reg->cpic_cisr, (1 << cpm_vec)); 75} 76 77static struct irq_chip cpm_pic = { 78 .typename = " CPM PIC ", 79 .mask = cpm_mask_irq, 80 .unmask = cpm_unmask_irq, 81 .eoi = cpm_end_irq, 82}; 83 84int cpm_get_irq(void) 85{ 86 int cpm_vec; 87 88 /* Get the vector by setting the ACK bit and then reading 89 * the register. 90 */ 91 out_be16(&cpic_reg->cpic_civr, 1); 92 cpm_vec = in_be16(&cpic_reg->cpic_civr); 93 cpm_vec >>= 11; 94 95 return irq_linear_revmap(cpm_pic_host, cpm_vec); 96} 97 98static int cpm_pic_host_map(struct irq_host *h, unsigned int virq, 99 irq_hw_number_t hw) 100{ 101 pr_debug("cpm_pic_host_map(%d, 0x%lx)\n", virq, hw); 102 103 get_irq_desc(virq)->status |= IRQ_LEVEL; 104 set_irq_chip_and_handler(virq, &cpm_pic, handle_fasteoi_irq); 105 return 0; 106} 107 108/* The CPM can generate the error interrupt when there is a race condition 109 * between generating and masking interrupts. All we have to do is ACK it 110 * and return. This is a no-op function so we don't need any special 111 * tests in the interrupt handler. 112 */ 113static irqreturn_t cpm_error_interrupt(int irq, void *dev) 114{ 115 return IRQ_HANDLED; 116} 117 118static struct irqaction cpm_error_irqaction = { 119 .handler = cpm_error_interrupt, 120 .mask = CPU_MASK_NONE, 121 .name = "error", 122}; 123 124static struct irq_host_ops cpm_pic_host_ops = { 125 .map = cpm_pic_host_map, 126}; 127 128unsigned int cpm_pic_init(void) 129{ 130 struct device_node *np = NULL; 131 struct resource res; 132 unsigned int sirq = NO_IRQ, hwirq, eirq; 133 int ret; 134 135 pr_debug("cpm_pic_init\n"); 136 137 np = of_find_compatible_node(NULL, NULL, "fsl,cpm1-pic"); 138 if (np == NULL) 139 np = of_find_compatible_node(NULL, "cpm-pic", "CPM"); 140 if (np == NULL) { 141 printk(KERN_ERR "CPM PIC init: can not find cpm-pic node\n"); 142 return sirq; 143 } 144 145 ret = of_address_to_resource(np, 0, &res); 146 if (ret) 147 goto end; 148 149 cpic_reg = ioremap(res.start, res.end - res.start + 1); 150 if (cpic_reg == NULL) 151 goto end; 152 153 sirq = irq_of_parse_and_map(np, 0); 154 if (sirq == NO_IRQ) 155 goto end; 156 157 /* Initialize the CPM interrupt controller. */ 158 hwirq = (unsigned int)irq_map[sirq].hwirq; 159 out_be32(&cpic_reg->cpic_cicr, 160 (CICR_SCD_SCC4 | CICR_SCC_SCC3 | CICR_SCB_SCC2 | CICR_SCA_SCC1) | 161 ((hwirq/2) << 13) | CICR_HP_MASK); 162 163 out_be32(&cpic_reg->cpic_cimr, 0); 164 165 cpm_pic_host = irq_alloc_host(of_node_get(np), IRQ_HOST_MAP_LINEAR, 166 64, &cpm_pic_host_ops, 64); 167 if (cpm_pic_host == NULL) { 168 printk(KERN_ERR "CPM2 PIC: failed to allocate irq host!\n"); 169 sirq = NO_IRQ; 170 goto end; 171 } 172 173 /* Install our own error handler. */ 174 np = of_find_compatible_node(NULL, NULL, "fsl,cpm1"); 175 if (np == NULL) 176 np = of_find_node_by_type(NULL, "cpm"); 177 if (np == NULL) { 178 printk(KERN_ERR "CPM PIC init: can not find cpm node\n"); 179 goto end; 180 } 181 182 eirq = irq_of_parse_and_map(np, 0); 183 if (eirq == NO_IRQ) 184 goto end; 185 186 if (setup_irq(eirq, &cpm_error_irqaction)) 187 printk(KERN_ERR "Could not allocate CPM error IRQ!"); 188 189 setbits32(&cpic_reg->cpic_cicr, CICR_IEN); 190 191end: 192 of_node_put(np); 193 return sirq; 194} 195 196void __init cpm_reset(void) 197{ 198 sysconf8xx_t __iomem *siu_conf; 199 200 mpc8xx_immr = ioremap(get_immrbase(), 0x4000); 201 if (!mpc8xx_immr) { 202 printk(KERN_CRIT "Could not map IMMR\n"); 203 return; 204 } 205 206 cpmp = &mpc8xx_immr->im_cpm; 207 208#ifndef CONFIG_PPC_EARLY_DEBUG_CPM 209 /* Perform a reset. 210 */ 211 out_be16(&cpmp->cp_cpcr, CPM_CR_RST | CPM_CR_FLG); 212 213 /* Wait for it. 214 */ 215 while (in_be16(&cpmp->cp_cpcr) & CPM_CR_FLG); 216#endif 217 218#ifdef CONFIG_UCODE_PATCH 219 cpm_load_patch(cpmp); 220#endif 221 222 /* Set SDMA Bus Request priority 5. 223 * On 860T, this also enables FEC priority 6. I am not sure 224 * this is what we realy want for some applications, but the 225 * manual recommends it. 226 * Bit 25, FAM can also be set to use FEC aggressive mode (860T). 227 */ 228 siu_conf = immr_map(im_siu_conf); 229 out_be32(&siu_conf->sc_sdcr, 1); 230 immr_unmap(siu_conf); 231 232#ifdef CONFIG_PPC_CPM_NEW_BINDING 233 cpm_muram_init(); 234#else 235 /* Reclaim the DP memory for our use. */ 236 m8xx_cpm_dpinit(); 237#endif 238} 239 240static DEFINE_SPINLOCK(cmd_lock); 241 242#define MAX_CR_CMD_LOOPS 10000 243 244int cpm_command(u32 command, u8 opcode) 245{ 246 int i, ret; 247 unsigned long flags; 248 249 if (command & 0xffffff0f) 250 return -EINVAL; 251 252 spin_lock_irqsave(&cmd_lock, flags); 253 254 ret = 0; 255 out_be16(&cpmp->cp_cpcr, command | CPM_CR_FLG | (opcode << 8)); 256 for (i = 0; i < MAX_CR_CMD_LOOPS; i++) 257 if ((in_be16(&cpmp->cp_cpcr) & CPM_CR_FLG) == 0) 258 goto out; 259 260 printk(KERN_ERR "%s(): Not able to issue CPM command\n", __FUNCTION__); 261 ret = -EIO; 262out: 263 spin_unlock_irqrestore(&cmd_lock, flags); 264 return ret; 265} 266EXPORT_SYMBOL(cpm_command); 267 268/* Set a baud rate generator. This needs lots of work. There are 269 * four BRGs, any of which can be wired to any channel. 270 * The internal baud rate clock is the system clock divided by 16. 271 * This assumes the baudrate is 16x oversampled by the uart. 272 */ 273#define BRG_INT_CLK (get_brgfreq()) 274#define BRG_UART_CLK (BRG_INT_CLK/16) 275#define BRG_UART_CLK_DIV16 (BRG_UART_CLK/16) 276 277void 278cpm_setbrg(uint brg, uint rate) 279{ 280 u32 __iomem *bp; 281 282 /* This is good enough to get SMCs running..... 283 */ 284 bp = &cpmp->cp_brgc1; 285 bp += brg; 286 /* The BRG has a 12-bit counter. For really slow baud rates (or 287 * really fast processors), we may have to further divide by 16. 288 */ 289 if (((BRG_UART_CLK / rate) - 1) < 4096) 290 out_be32(bp, (((BRG_UART_CLK / rate) - 1) << 1) | CPM_BRG_EN); 291 else 292 out_be32(bp, (((BRG_UART_CLK_DIV16 / rate) - 1) << 1) | 293 CPM_BRG_EN | CPM_BRG_DIV16); 294} 295 296#ifndef CONFIG_PPC_CPM_NEW_BINDING 297/* 298 * dpalloc / dpfree bits. 299 */ 300static spinlock_t cpm_dpmem_lock; 301/* 302 * 16 blocks should be enough to satisfy all requests 303 * until the memory subsystem goes up... 304 */ 305static rh_block_t cpm_boot_dpmem_rh_block[16]; 306static rh_info_t cpm_dpmem_info; 307 308#define CPM_DPMEM_ALIGNMENT 8 309static u8 __iomem *dpram_vbase; 310static phys_addr_t dpram_pbase; 311 312static void m8xx_cpm_dpinit(void) 313{ 314 spin_lock_init(&cpm_dpmem_lock); 315 316 dpram_vbase = cpmp->cp_dpmem; 317 dpram_pbase = get_immrbase() + offsetof(immap_t, im_cpm.cp_dpmem); 318 319 /* Initialize the info header */ 320 rh_init(&cpm_dpmem_info, CPM_DPMEM_ALIGNMENT, 321 sizeof(cpm_boot_dpmem_rh_block) / 322 sizeof(cpm_boot_dpmem_rh_block[0]), 323 cpm_boot_dpmem_rh_block); 324 325 /* 326 * Attach the usable dpmem area. 327 * XXX: This is actually crap. CPM_DATAONLY_BASE and 328 * CPM_DATAONLY_SIZE are a subset of the available dparm. It varies 329 * with the processor and the microcode patches applied / activated. 330 * But the following should be at least safe. 331 */ 332 rh_attach_region(&cpm_dpmem_info, CPM_DATAONLY_BASE, CPM_DATAONLY_SIZE); 333} 334 335/* 336 * Allocate the requested size worth of DP memory. 337 * This function returns an offset into the DPRAM area. 338 * Use cpm_dpram_addr() to get the virtual address of the area. 339 */ 340unsigned long cpm_dpalloc(uint size, uint align) 341{ 342 unsigned long start; 343 unsigned long flags; 344 345 spin_lock_irqsave(&cpm_dpmem_lock, flags); 346 cpm_dpmem_info.alignment = align; 347 start = rh_alloc(&cpm_dpmem_info, size, "commproc"); 348 spin_unlock_irqrestore(&cpm_dpmem_lock, flags); 349 350 return (uint)start; 351} 352EXPORT_SYMBOL(cpm_dpalloc); 353 354int cpm_dpfree(unsigned long offset) 355{ 356 int ret; 357 unsigned long flags; 358 359 spin_lock_irqsave(&cpm_dpmem_lock, flags); 360 ret = rh_free(&cpm_dpmem_info, offset); 361 spin_unlock_irqrestore(&cpm_dpmem_lock, flags); 362 363 return ret; 364} 365EXPORT_SYMBOL(cpm_dpfree); 366 367unsigned long cpm_dpalloc_fixed(unsigned long offset, uint size, uint align) 368{ 369 unsigned long start; 370 unsigned long flags; 371 372 spin_lock_irqsave(&cpm_dpmem_lock, flags); 373 cpm_dpmem_info.alignment = align; 374 start = rh_alloc_fixed(&cpm_dpmem_info, offset, size, "commproc"); 375 spin_unlock_irqrestore(&cpm_dpmem_lock, flags); 376 377 return start; 378} 379EXPORT_SYMBOL(cpm_dpalloc_fixed); 380 381void cpm_dpdump(void) 382{ 383 rh_dump(&cpm_dpmem_info); 384} 385EXPORT_SYMBOL(cpm_dpdump); 386 387void *cpm_dpram_addr(unsigned long offset) 388{ 389 return (void *)(dpram_vbase + offset); 390} 391EXPORT_SYMBOL(cpm_dpram_addr); 392 393uint cpm_dpram_phys(u8 *addr) 394{ 395 return (dpram_pbase + (uint)(addr - dpram_vbase)); 396} 397EXPORT_SYMBOL(cpm_dpram_phys); 398#endif /* !CONFIG_PPC_CPM_NEW_BINDING */ 399 400struct cpm_ioport16 { 401 __be16 dir, par, odr_sor, dat, intr; 402 __be16 res[3]; 403}; 404 405struct cpm_ioport32 { 406 __be32 dir, par, sor; 407}; 408 409static void cpm1_set_pin32(int port, int pin, int flags) 410{ 411 struct cpm_ioport32 __iomem *iop; 412 pin = 1 << (31 - pin); 413 414 if (port == CPM_PORTB) 415 iop = (struct cpm_ioport32 __iomem *) 416 &mpc8xx_immr->im_cpm.cp_pbdir; 417 else 418 iop = (struct cpm_ioport32 __iomem *) 419 &mpc8xx_immr->im_cpm.cp_pedir; 420 421 if (flags & CPM_PIN_OUTPUT) 422 setbits32(&iop->dir, pin); 423 else 424 clrbits32(&iop->dir, pin); 425 426 if (!(flags & CPM_PIN_GPIO)) 427 setbits32(&iop->par, pin); 428 else 429 clrbits32(&iop->par, pin); 430 431 if (port == CPM_PORTB) { 432 if (flags & CPM_PIN_OPENDRAIN) 433 setbits16(&mpc8xx_immr->im_cpm.cp_pbodr, pin); 434 else 435 clrbits16(&mpc8xx_immr->im_cpm.cp_pbodr, pin); 436 } 437 438 if (port == CPM_PORTE) { 439 if (flags & CPM_PIN_SECONDARY) 440 setbits32(&iop->sor, pin); 441 else 442 clrbits32(&iop->sor, pin); 443 444 if (flags & CPM_PIN_OPENDRAIN) 445 setbits32(&mpc8xx_immr->im_cpm.cp_peodr, pin); 446 else 447 clrbits32(&mpc8xx_immr->im_cpm.cp_peodr, pin); 448 } 449} 450 451static void cpm1_set_pin16(int port, int pin, int flags) 452{ 453 struct cpm_ioport16 __iomem *iop = 454 (struct cpm_ioport16 __iomem *)&mpc8xx_immr->im_ioport; 455 456 pin = 1 << (15 - pin); 457 458 if (port != 0) 459 iop += port - 1; 460 461 if (flags & CPM_PIN_OUTPUT) 462 setbits16(&iop->dir, pin); 463 else 464 clrbits16(&iop->dir, pin); 465 466 if (!(flags & CPM_PIN_GPIO)) 467 setbits16(&iop->par, pin); 468 else 469 clrbits16(&iop->par, pin); 470 471 if (port == CPM_PORTA) { 472 if (flags & CPM_PIN_OPENDRAIN) 473 setbits16(&iop->odr_sor, pin); 474 else 475 clrbits16(&iop->odr_sor, pin); 476 } 477 if (port == CPM_PORTC) { 478 if (flags & CPM_PIN_SECONDARY) 479 setbits16(&iop->odr_sor, pin); 480 else 481 clrbits16(&iop->odr_sor, pin); 482 } 483} 484 485void cpm1_set_pin(enum cpm_port port, int pin, int flags) 486{ 487 if (port == CPM_PORTB || port == CPM_PORTE) 488 cpm1_set_pin32(port, pin, flags); 489 else 490 cpm1_set_pin16(port, pin, flags); 491} 492 493int cpm1_clk_setup(enum cpm_clk_target target, int clock, int mode) 494{ 495 int shift; 496 int i, bits = 0; 497 u32 __iomem *reg; 498 u32 mask = 7; 499 500 u8 clk_map[][3] = { 501 {CPM_CLK_SCC1, CPM_BRG1, 0}, 502 {CPM_CLK_SCC1, CPM_BRG2, 1}, 503 {CPM_CLK_SCC1, CPM_BRG3, 2}, 504 {CPM_CLK_SCC1, CPM_BRG4, 3}, 505 {CPM_CLK_SCC1, CPM_CLK1, 4}, 506 {CPM_CLK_SCC1, CPM_CLK2, 5}, 507 {CPM_CLK_SCC1, CPM_CLK3, 6}, 508 {CPM_CLK_SCC1, CPM_CLK4, 7}, 509 510 {CPM_CLK_SCC2, CPM_BRG1, 0}, 511 {CPM_CLK_SCC2, CPM_BRG2, 1}, 512 {CPM_CLK_SCC2, CPM_BRG3, 2}, 513 {CPM_CLK_SCC2, CPM_BRG4, 3}, 514 {CPM_CLK_SCC2, CPM_CLK1, 4}, 515 {CPM_CLK_SCC2, CPM_CLK2, 5}, 516 {CPM_CLK_SCC2, CPM_CLK3, 6}, 517 {CPM_CLK_SCC2, CPM_CLK4, 7}, 518 519 {CPM_CLK_SCC3, CPM_BRG1, 0}, 520 {CPM_CLK_SCC3, CPM_BRG2, 1}, 521 {CPM_CLK_SCC3, CPM_BRG3, 2}, 522 {CPM_CLK_SCC3, CPM_BRG4, 3}, 523 {CPM_CLK_SCC3, CPM_CLK5, 4}, 524 {CPM_CLK_SCC3, CPM_CLK6, 5}, 525 {CPM_CLK_SCC3, CPM_CLK7, 6}, 526 {CPM_CLK_SCC3, CPM_CLK8, 7}, 527 528 {CPM_CLK_SCC4, CPM_BRG1, 0}, 529 {CPM_CLK_SCC4, CPM_BRG2, 1}, 530 {CPM_CLK_SCC4, CPM_BRG3, 2}, 531 {CPM_CLK_SCC4, CPM_BRG4, 3}, 532 {CPM_CLK_SCC4, CPM_CLK5, 4}, 533 {CPM_CLK_SCC4, CPM_CLK6, 5}, 534 {CPM_CLK_SCC4, CPM_CLK7, 6}, 535 {CPM_CLK_SCC4, CPM_CLK8, 7}, 536 537 {CPM_CLK_SMC1, CPM_BRG1, 0}, 538 {CPM_CLK_SMC1, CPM_BRG2, 1}, 539 {CPM_CLK_SMC1, CPM_BRG3, 2}, 540 {CPM_CLK_SMC1, CPM_BRG4, 3}, 541 {CPM_CLK_SMC1, CPM_CLK1, 4}, 542 {CPM_CLK_SMC1, CPM_CLK2, 5}, 543 {CPM_CLK_SMC1, CPM_CLK3, 6}, 544 {CPM_CLK_SMC1, CPM_CLK4, 7}, 545 546 {CPM_CLK_SMC2, CPM_BRG1, 0}, 547 {CPM_CLK_SMC2, CPM_BRG2, 1}, 548 {CPM_CLK_SMC2, CPM_BRG3, 2}, 549 {CPM_CLK_SMC2, CPM_BRG4, 3}, 550 {CPM_CLK_SMC2, CPM_CLK5, 4}, 551 {CPM_CLK_SMC2, CPM_CLK6, 5}, 552 {CPM_CLK_SMC2, CPM_CLK7, 6}, 553 {CPM_CLK_SMC2, CPM_CLK8, 7}, 554 }; 555 556 switch (target) { 557 case CPM_CLK_SCC1: 558 reg = &mpc8xx_immr->im_cpm.cp_sicr; 559 shift = 0; 560 break; 561 562 case CPM_CLK_SCC2: 563 reg = &mpc8xx_immr->im_cpm.cp_sicr; 564 shift = 8; 565 break; 566 567 case CPM_CLK_SCC3: 568 reg = &mpc8xx_immr->im_cpm.cp_sicr; 569 shift = 16; 570 break; 571 572 case CPM_CLK_SCC4: 573 reg = &mpc8xx_immr->im_cpm.cp_sicr; 574 shift = 24; 575 break; 576 577 case CPM_CLK_SMC1: 578 reg = &mpc8xx_immr->im_cpm.cp_simode; 579 shift = 12; 580 break; 581 582 case CPM_CLK_SMC2: 583 reg = &mpc8xx_immr->im_cpm.cp_simode; 584 shift = 28; 585 break; 586 587 default: 588 printk(KERN_ERR "cpm1_clock_setup: invalid clock target\n"); 589 return -EINVAL; 590 } 591 592 if (reg == &mpc8xx_immr->im_cpm.cp_sicr && mode == CPM_CLK_RX) 593 shift += 3; 594 595 for (i = 0; i < ARRAY_SIZE(clk_map); i++) { 596 if (clk_map[i][0] == target && clk_map[i][1] == clock) { 597 bits = clk_map[i][2]; 598 break; 599 } 600 } 601 602 if (i == ARRAY_SIZE(clk_map)) { 603 printk(KERN_ERR "cpm1_clock_setup: invalid clock combination\n"); 604 return -EINVAL; 605 } 606 607 bits <<= shift; 608 mask <<= shift; 609 out_be32(reg, (in_be32(reg) & ~mask) | bits); 610 611 return 0; 612}