at v2.6.25-rc9 6583 lines 188 kB view raw
1/* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * Copyright (c) 2001-2002 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel implementation 10 * 11 * These functions interface with the sockets layer to implement the 12 * SCTP Extensions for the Sockets API. 13 * 14 * Note that the descriptions from the specification are USER level 15 * functions--this file is the functions which populate the struct proto 16 * for SCTP which is the BOTTOM of the sockets interface. 17 * 18 * This SCTP implementation is free software; 19 * you can redistribute it and/or modify it under the terms of 20 * the GNU General Public License as published by 21 * the Free Software Foundation; either version 2, or (at your option) 22 * any later version. 23 * 24 * This SCTP implementation is distributed in the hope that it 25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 26 * ************************ 27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 28 * See the GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with GNU CC; see the file COPYING. If not, write to 32 * the Free Software Foundation, 59 Temple Place - Suite 330, 33 * Boston, MA 02111-1307, USA. 34 * 35 * Please send any bug reports or fixes you make to the 36 * email address(es): 37 * lksctp developers <lksctp-developers@lists.sourceforge.net> 38 * 39 * Or submit a bug report through the following website: 40 * http://www.sf.net/projects/lksctp 41 * 42 * Written or modified by: 43 * La Monte H.P. Yarroll <piggy@acm.org> 44 * Narasimha Budihal <narsi@refcode.org> 45 * Karl Knutson <karl@athena.chicago.il.us> 46 * Jon Grimm <jgrimm@us.ibm.com> 47 * Xingang Guo <xingang.guo@intel.com> 48 * Daisy Chang <daisyc@us.ibm.com> 49 * Sridhar Samudrala <samudrala@us.ibm.com> 50 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 51 * Ardelle Fan <ardelle.fan@intel.com> 52 * Ryan Layer <rmlayer@us.ibm.com> 53 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 54 * Kevin Gao <kevin.gao@intel.com> 55 * 56 * Any bugs reported given to us we will try to fix... any fixes shared will 57 * be incorporated into the next SCTP release. 58 */ 59 60#include <linux/types.h> 61#include <linux/kernel.h> 62#include <linux/wait.h> 63#include <linux/time.h> 64#include <linux/ip.h> 65#include <linux/capability.h> 66#include <linux/fcntl.h> 67#include <linux/poll.h> 68#include <linux/init.h> 69#include <linux/crypto.h> 70 71#include <net/ip.h> 72#include <net/icmp.h> 73#include <net/route.h> 74#include <net/ipv6.h> 75#include <net/inet_common.h> 76 77#include <linux/socket.h> /* for sa_family_t */ 78#include <net/sock.h> 79#include <net/sctp/sctp.h> 80#include <net/sctp/sm.h> 81 82/* WARNING: Please do not remove the SCTP_STATIC attribute to 83 * any of the functions below as they are used to export functions 84 * used by a project regression testsuite. 85 */ 86 87/* Forward declarations for internal helper functions. */ 88static int sctp_writeable(struct sock *sk); 89static void sctp_wfree(struct sk_buff *skb); 90static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p, 91 size_t msg_len); 92static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p); 93static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 94static int sctp_wait_for_accept(struct sock *sk, long timeo); 95static void sctp_wait_for_close(struct sock *sk, long timeo); 96static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 97 union sctp_addr *addr, int len); 98static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 99static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 100static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 101static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 102static int sctp_send_asconf(struct sctp_association *asoc, 103 struct sctp_chunk *chunk); 104static int sctp_do_bind(struct sock *, union sctp_addr *, int); 105static int sctp_autobind(struct sock *sk); 106static void sctp_sock_migrate(struct sock *, struct sock *, 107 struct sctp_association *, sctp_socket_type_t); 108static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG; 109 110extern struct kmem_cache *sctp_bucket_cachep; 111extern int sysctl_sctp_mem[3]; 112extern int sysctl_sctp_rmem[3]; 113extern int sysctl_sctp_wmem[3]; 114 115static int sctp_memory_pressure; 116static atomic_t sctp_memory_allocated; 117static atomic_t sctp_sockets_allocated; 118 119static void sctp_enter_memory_pressure(void) 120{ 121 sctp_memory_pressure = 1; 122} 123 124 125/* Get the sndbuf space available at the time on the association. */ 126static inline int sctp_wspace(struct sctp_association *asoc) 127{ 128 int amt; 129 130 if (asoc->ep->sndbuf_policy) 131 amt = asoc->sndbuf_used; 132 else 133 amt = atomic_read(&asoc->base.sk->sk_wmem_alloc); 134 135 if (amt >= asoc->base.sk->sk_sndbuf) { 136 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK) 137 amt = 0; 138 else { 139 amt = sk_stream_wspace(asoc->base.sk); 140 if (amt < 0) 141 amt = 0; 142 } 143 } else { 144 amt = asoc->base.sk->sk_sndbuf - amt; 145 } 146 return amt; 147} 148 149/* Increment the used sndbuf space count of the corresponding association by 150 * the size of the outgoing data chunk. 151 * Also, set the skb destructor for sndbuf accounting later. 152 * 153 * Since it is always 1-1 between chunk and skb, and also a new skb is always 154 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 155 * destructor in the data chunk skb for the purpose of the sndbuf space 156 * tracking. 157 */ 158static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 159{ 160 struct sctp_association *asoc = chunk->asoc; 161 struct sock *sk = asoc->base.sk; 162 163 /* The sndbuf space is tracked per association. */ 164 sctp_association_hold(asoc); 165 166 skb_set_owner_w(chunk->skb, sk); 167 168 chunk->skb->destructor = sctp_wfree; 169 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 170 *((struct sctp_chunk **)(chunk->skb->cb)) = chunk; 171 172 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) + 173 sizeof(struct sk_buff) + 174 sizeof(struct sctp_chunk); 175 176 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 177 sk->sk_wmem_queued += chunk->skb->truesize; 178 sk_mem_charge(sk, chunk->skb->truesize); 179} 180 181/* Verify that this is a valid address. */ 182static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 183 int len) 184{ 185 struct sctp_af *af; 186 187 /* Verify basic sockaddr. */ 188 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 189 if (!af) 190 return -EINVAL; 191 192 /* Is this a valid SCTP address? */ 193 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 194 return -EINVAL; 195 196 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 197 return -EINVAL; 198 199 return 0; 200} 201 202/* Look up the association by its id. If this is not a UDP-style 203 * socket, the ID field is always ignored. 204 */ 205struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 206{ 207 struct sctp_association *asoc = NULL; 208 209 /* If this is not a UDP-style socket, assoc id should be ignored. */ 210 if (!sctp_style(sk, UDP)) { 211 /* Return NULL if the socket state is not ESTABLISHED. It 212 * could be a TCP-style listening socket or a socket which 213 * hasn't yet called connect() to establish an association. 214 */ 215 if (!sctp_sstate(sk, ESTABLISHED)) 216 return NULL; 217 218 /* Get the first and the only association from the list. */ 219 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 220 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 221 struct sctp_association, asocs); 222 return asoc; 223 } 224 225 /* Otherwise this is a UDP-style socket. */ 226 if (!id || (id == (sctp_assoc_t)-1)) 227 return NULL; 228 229 spin_lock_bh(&sctp_assocs_id_lock); 230 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 231 spin_unlock_bh(&sctp_assocs_id_lock); 232 233 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead) 234 return NULL; 235 236 return asoc; 237} 238 239/* Look up the transport from an address and an assoc id. If both address and 240 * id are specified, the associations matching the address and the id should be 241 * the same. 242 */ 243static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 244 struct sockaddr_storage *addr, 245 sctp_assoc_t id) 246{ 247 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 248 struct sctp_transport *transport; 249 union sctp_addr *laddr = (union sctp_addr *)addr; 250 251 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 252 laddr, 253 &transport); 254 255 if (!addr_asoc) 256 return NULL; 257 258 id_asoc = sctp_id2assoc(sk, id); 259 if (id_asoc && (id_asoc != addr_asoc)) 260 return NULL; 261 262 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 263 (union sctp_addr *)addr); 264 265 return transport; 266} 267 268/* API 3.1.2 bind() - UDP Style Syntax 269 * The syntax of bind() is, 270 * 271 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 272 * 273 * sd - the socket descriptor returned by socket(). 274 * addr - the address structure (struct sockaddr_in or struct 275 * sockaddr_in6 [RFC 2553]), 276 * addr_len - the size of the address structure. 277 */ 278SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 279{ 280 int retval = 0; 281 282 sctp_lock_sock(sk); 283 284 SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n", 285 sk, addr, addr_len); 286 287 /* Disallow binding twice. */ 288 if (!sctp_sk(sk)->ep->base.bind_addr.port) 289 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 290 addr_len); 291 else 292 retval = -EINVAL; 293 294 sctp_release_sock(sk); 295 296 return retval; 297} 298 299static long sctp_get_port_local(struct sock *, union sctp_addr *); 300 301/* Verify this is a valid sockaddr. */ 302static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 303 union sctp_addr *addr, int len) 304{ 305 struct sctp_af *af; 306 307 /* Check minimum size. */ 308 if (len < sizeof (struct sockaddr)) 309 return NULL; 310 311 /* Does this PF support this AF? */ 312 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 313 return NULL; 314 315 /* If we get this far, af is valid. */ 316 af = sctp_get_af_specific(addr->sa.sa_family); 317 318 if (len < af->sockaddr_len) 319 return NULL; 320 321 return af; 322} 323 324/* Bind a local address either to an endpoint or to an association. */ 325SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 326{ 327 struct sctp_sock *sp = sctp_sk(sk); 328 struct sctp_endpoint *ep = sp->ep; 329 struct sctp_bind_addr *bp = &ep->base.bind_addr; 330 struct sctp_af *af; 331 unsigned short snum; 332 int ret = 0; 333 334 /* Common sockaddr verification. */ 335 af = sctp_sockaddr_af(sp, addr, len); 336 if (!af) { 337 SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n", 338 sk, addr, len); 339 return -EINVAL; 340 } 341 342 snum = ntohs(addr->v4.sin_port); 343 344 SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ", 345 ", port: %d, new port: %d, len: %d)\n", 346 sk, 347 addr, 348 bp->port, snum, 349 len); 350 351 /* PF specific bind() address verification. */ 352 if (!sp->pf->bind_verify(sp, addr)) 353 return -EADDRNOTAVAIL; 354 355 /* We must either be unbound, or bind to the same port. 356 * It's OK to allow 0 ports if we are already bound. 357 * We'll just inhert an already bound port in this case 358 */ 359 if (bp->port) { 360 if (!snum) 361 snum = bp->port; 362 else if (snum != bp->port) { 363 SCTP_DEBUG_PRINTK("sctp_do_bind:" 364 " New port %d does not match existing port " 365 "%d.\n", snum, bp->port); 366 return -EINVAL; 367 } 368 } 369 370 if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE)) 371 return -EACCES; 372 373 /* Make sure we are allowed to bind here. 374 * The function sctp_get_port_local() does duplicate address 375 * detection. 376 */ 377 addr->v4.sin_port = htons(snum); 378 if ((ret = sctp_get_port_local(sk, addr))) { 379 if (ret == (long) sk) { 380 /* This endpoint has a conflicting address. */ 381 return -EINVAL; 382 } else { 383 return -EADDRINUSE; 384 } 385 } 386 387 /* Refresh ephemeral port. */ 388 if (!bp->port) 389 bp->port = inet_sk(sk)->num; 390 391 /* Add the address to the bind address list. 392 * Use GFP_ATOMIC since BHs will be disabled. 393 */ 394 ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC); 395 396 /* Copy back into socket for getsockname() use. */ 397 if (!ret) { 398 inet_sk(sk)->sport = htons(inet_sk(sk)->num); 399 af->to_sk_saddr(addr, sk); 400 } 401 402 return ret; 403} 404 405 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 406 * 407 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 408 * at any one time. If a sender, after sending an ASCONF chunk, decides 409 * it needs to transfer another ASCONF Chunk, it MUST wait until the 410 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 411 * subsequent ASCONF. Note this restriction binds each side, so at any 412 * time two ASCONF may be in-transit on any given association (one sent 413 * from each endpoint). 414 */ 415static int sctp_send_asconf(struct sctp_association *asoc, 416 struct sctp_chunk *chunk) 417{ 418 int retval = 0; 419 420 /* If there is an outstanding ASCONF chunk, queue it for later 421 * transmission. 422 */ 423 if (asoc->addip_last_asconf) { 424 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 425 goto out; 426 } 427 428 /* Hold the chunk until an ASCONF_ACK is received. */ 429 sctp_chunk_hold(chunk); 430 retval = sctp_primitive_ASCONF(asoc, chunk); 431 if (retval) 432 sctp_chunk_free(chunk); 433 else 434 asoc->addip_last_asconf = chunk; 435 436out: 437 return retval; 438} 439 440/* Add a list of addresses as bind addresses to local endpoint or 441 * association. 442 * 443 * Basically run through each address specified in the addrs/addrcnt 444 * array/length pair, determine if it is IPv6 or IPv4 and call 445 * sctp_do_bind() on it. 446 * 447 * If any of them fails, then the operation will be reversed and the 448 * ones that were added will be removed. 449 * 450 * Only sctp_setsockopt_bindx() is supposed to call this function. 451 */ 452static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 453{ 454 int cnt; 455 int retval = 0; 456 void *addr_buf; 457 struct sockaddr *sa_addr; 458 struct sctp_af *af; 459 460 SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n", 461 sk, addrs, addrcnt); 462 463 addr_buf = addrs; 464 for (cnt = 0; cnt < addrcnt; cnt++) { 465 /* The list may contain either IPv4 or IPv6 address; 466 * determine the address length for walking thru the list. 467 */ 468 sa_addr = (struct sockaddr *)addr_buf; 469 af = sctp_get_af_specific(sa_addr->sa_family); 470 if (!af) { 471 retval = -EINVAL; 472 goto err_bindx_add; 473 } 474 475 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 476 af->sockaddr_len); 477 478 addr_buf += af->sockaddr_len; 479 480err_bindx_add: 481 if (retval < 0) { 482 /* Failed. Cleanup the ones that have been added */ 483 if (cnt > 0) 484 sctp_bindx_rem(sk, addrs, cnt); 485 return retval; 486 } 487 } 488 489 return retval; 490} 491 492/* Send an ASCONF chunk with Add IP address parameters to all the peers of the 493 * associations that are part of the endpoint indicating that a list of local 494 * addresses are added to the endpoint. 495 * 496 * If any of the addresses is already in the bind address list of the 497 * association, we do not send the chunk for that association. But it will not 498 * affect other associations. 499 * 500 * Only sctp_setsockopt_bindx() is supposed to call this function. 501 */ 502static int sctp_send_asconf_add_ip(struct sock *sk, 503 struct sockaddr *addrs, 504 int addrcnt) 505{ 506 struct sctp_sock *sp; 507 struct sctp_endpoint *ep; 508 struct sctp_association *asoc; 509 struct sctp_bind_addr *bp; 510 struct sctp_chunk *chunk; 511 struct sctp_sockaddr_entry *laddr; 512 union sctp_addr *addr; 513 union sctp_addr saveaddr; 514 void *addr_buf; 515 struct sctp_af *af; 516 struct list_head *pos; 517 struct list_head *p; 518 int i; 519 int retval = 0; 520 521 if (!sctp_addip_enable) 522 return retval; 523 524 sp = sctp_sk(sk); 525 ep = sp->ep; 526 527 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n", 528 __FUNCTION__, sk, addrs, addrcnt); 529 530 list_for_each(pos, &ep->asocs) { 531 asoc = list_entry(pos, struct sctp_association, asocs); 532 533 if (!asoc->peer.asconf_capable) 534 continue; 535 536 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 537 continue; 538 539 if (!sctp_state(asoc, ESTABLISHED)) 540 continue; 541 542 /* Check if any address in the packed array of addresses is 543 * in the bind address list of the association. If so, 544 * do not send the asconf chunk to its peer, but continue with 545 * other associations. 546 */ 547 addr_buf = addrs; 548 for (i = 0; i < addrcnt; i++) { 549 addr = (union sctp_addr *)addr_buf; 550 af = sctp_get_af_specific(addr->v4.sin_family); 551 if (!af) { 552 retval = -EINVAL; 553 goto out; 554 } 555 556 if (sctp_assoc_lookup_laddr(asoc, addr)) 557 break; 558 559 addr_buf += af->sockaddr_len; 560 } 561 if (i < addrcnt) 562 continue; 563 564 /* Use the first valid address in bind addr list of 565 * association as Address Parameter of ASCONF CHUNK. 566 */ 567 bp = &asoc->base.bind_addr; 568 p = bp->address_list.next; 569 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 570 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 571 addrcnt, SCTP_PARAM_ADD_IP); 572 if (!chunk) { 573 retval = -ENOMEM; 574 goto out; 575 } 576 577 retval = sctp_send_asconf(asoc, chunk); 578 if (retval) 579 goto out; 580 581 /* Add the new addresses to the bind address list with 582 * use_as_src set to 0. 583 */ 584 addr_buf = addrs; 585 for (i = 0; i < addrcnt; i++) { 586 addr = (union sctp_addr *)addr_buf; 587 af = sctp_get_af_specific(addr->v4.sin_family); 588 memcpy(&saveaddr, addr, af->sockaddr_len); 589 retval = sctp_add_bind_addr(bp, &saveaddr, 590 SCTP_ADDR_NEW, GFP_ATOMIC); 591 addr_buf += af->sockaddr_len; 592 } 593 } 594 595out: 596 return retval; 597} 598 599/* Remove a list of addresses from bind addresses list. Do not remove the 600 * last address. 601 * 602 * Basically run through each address specified in the addrs/addrcnt 603 * array/length pair, determine if it is IPv6 or IPv4 and call 604 * sctp_del_bind() on it. 605 * 606 * If any of them fails, then the operation will be reversed and the 607 * ones that were removed will be added back. 608 * 609 * At least one address has to be left; if only one address is 610 * available, the operation will return -EBUSY. 611 * 612 * Only sctp_setsockopt_bindx() is supposed to call this function. 613 */ 614static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 615{ 616 struct sctp_sock *sp = sctp_sk(sk); 617 struct sctp_endpoint *ep = sp->ep; 618 int cnt; 619 struct sctp_bind_addr *bp = &ep->base.bind_addr; 620 int retval = 0; 621 void *addr_buf; 622 union sctp_addr *sa_addr; 623 struct sctp_af *af; 624 625 SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n", 626 sk, addrs, addrcnt); 627 628 addr_buf = addrs; 629 for (cnt = 0; cnt < addrcnt; cnt++) { 630 /* If the bind address list is empty or if there is only one 631 * bind address, there is nothing more to be removed (we need 632 * at least one address here). 633 */ 634 if (list_empty(&bp->address_list) || 635 (sctp_list_single_entry(&bp->address_list))) { 636 retval = -EBUSY; 637 goto err_bindx_rem; 638 } 639 640 sa_addr = (union sctp_addr *)addr_buf; 641 af = sctp_get_af_specific(sa_addr->sa.sa_family); 642 if (!af) { 643 retval = -EINVAL; 644 goto err_bindx_rem; 645 } 646 647 if (!af->addr_valid(sa_addr, sp, NULL)) { 648 retval = -EADDRNOTAVAIL; 649 goto err_bindx_rem; 650 } 651 652 if (sa_addr->v4.sin_port != htons(bp->port)) { 653 retval = -EINVAL; 654 goto err_bindx_rem; 655 } 656 657 /* FIXME - There is probably a need to check if sk->sk_saddr and 658 * sk->sk_rcv_addr are currently set to one of the addresses to 659 * be removed. This is something which needs to be looked into 660 * when we are fixing the outstanding issues with multi-homing 661 * socket routing and failover schemes. Refer to comments in 662 * sctp_do_bind(). -daisy 663 */ 664 retval = sctp_del_bind_addr(bp, sa_addr); 665 666 addr_buf += af->sockaddr_len; 667err_bindx_rem: 668 if (retval < 0) { 669 /* Failed. Add the ones that has been removed back */ 670 if (cnt > 0) 671 sctp_bindx_add(sk, addrs, cnt); 672 return retval; 673 } 674 } 675 676 return retval; 677} 678 679/* Send an ASCONF chunk with Delete IP address parameters to all the peers of 680 * the associations that are part of the endpoint indicating that a list of 681 * local addresses are removed from the endpoint. 682 * 683 * If any of the addresses is already in the bind address list of the 684 * association, we do not send the chunk for that association. But it will not 685 * affect other associations. 686 * 687 * Only sctp_setsockopt_bindx() is supposed to call this function. 688 */ 689static int sctp_send_asconf_del_ip(struct sock *sk, 690 struct sockaddr *addrs, 691 int addrcnt) 692{ 693 struct sctp_sock *sp; 694 struct sctp_endpoint *ep; 695 struct sctp_association *asoc; 696 struct sctp_transport *transport; 697 struct sctp_bind_addr *bp; 698 struct sctp_chunk *chunk; 699 union sctp_addr *laddr; 700 void *addr_buf; 701 struct sctp_af *af; 702 struct list_head *pos, *pos1; 703 struct sctp_sockaddr_entry *saddr; 704 int i; 705 int retval = 0; 706 707 if (!sctp_addip_enable) 708 return retval; 709 710 sp = sctp_sk(sk); 711 ep = sp->ep; 712 713 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n", 714 __FUNCTION__, sk, addrs, addrcnt); 715 716 list_for_each(pos, &ep->asocs) { 717 asoc = list_entry(pos, struct sctp_association, asocs); 718 719 if (!asoc->peer.asconf_capable) 720 continue; 721 722 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 723 continue; 724 725 if (!sctp_state(asoc, ESTABLISHED)) 726 continue; 727 728 /* Check if any address in the packed array of addresses is 729 * not present in the bind address list of the association. 730 * If so, do not send the asconf chunk to its peer, but 731 * continue with other associations. 732 */ 733 addr_buf = addrs; 734 for (i = 0; i < addrcnt; i++) { 735 laddr = (union sctp_addr *)addr_buf; 736 af = sctp_get_af_specific(laddr->v4.sin_family); 737 if (!af) { 738 retval = -EINVAL; 739 goto out; 740 } 741 742 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 743 break; 744 745 addr_buf += af->sockaddr_len; 746 } 747 if (i < addrcnt) 748 continue; 749 750 /* Find one address in the association's bind address list 751 * that is not in the packed array of addresses. This is to 752 * make sure that we do not delete all the addresses in the 753 * association. 754 */ 755 bp = &asoc->base.bind_addr; 756 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 757 addrcnt, sp); 758 if (!laddr) 759 continue; 760 761 /* We do not need RCU protection throughout this loop 762 * because this is done under a socket lock from the 763 * setsockopt call. 764 */ 765 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 766 SCTP_PARAM_DEL_IP); 767 if (!chunk) { 768 retval = -ENOMEM; 769 goto out; 770 } 771 772 /* Reset use_as_src flag for the addresses in the bind address 773 * list that are to be deleted. 774 */ 775 addr_buf = addrs; 776 for (i = 0; i < addrcnt; i++) { 777 laddr = (union sctp_addr *)addr_buf; 778 af = sctp_get_af_specific(laddr->v4.sin_family); 779 list_for_each_entry(saddr, &bp->address_list, list) { 780 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 781 saddr->state = SCTP_ADDR_DEL; 782 } 783 addr_buf += af->sockaddr_len; 784 } 785 786 /* Update the route and saddr entries for all the transports 787 * as some of the addresses in the bind address list are 788 * about to be deleted and cannot be used as source addresses. 789 */ 790 list_for_each(pos1, &asoc->peer.transport_addr_list) { 791 transport = list_entry(pos1, struct sctp_transport, 792 transports); 793 dst_release(transport->dst); 794 sctp_transport_route(transport, NULL, 795 sctp_sk(asoc->base.sk)); 796 } 797 798 retval = sctp_send_asconf(asoc, chunk); 799 } 800out: 801 return retval; 802} 803 804/* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 805 * 806 * API 8.1 807 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 808 * int flags); 809 * 810 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 811 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 812 * or IPv6 addresses. 813 * 814 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 815 * Section 3.1.2 for this usage. 816 * 817 * addrs is a pointer to an array of one or more socket addresses. Each 818 * address is contained in its appropriate structure (i.e. struct 819 * sockaddr_in or struct sockaddr_in6) the family of the address type 820 * must be used to distinguish the address length (note that this 821 * representation is termed a "packed array" of addresses). The caller 822 * specifies the number of addresses in the array with addrcnt. 823 * 824 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 825 * -1, and sets errno to the appropriate error code. 826 * 827 * For SCTP, the port given in each socket address must be the same, or 828 * sctp_bindx() will fail, setting errno to EINVAL. 829 * 830 * The flags parameter is formed from the bitwise OR of zero or more of 831 * the following currently defined flags: 832 * 833 * SCTP_BINDX_ADD_ADDR 834 * 835 * SCTP_BINDX_REM_ADDR 836 * 837 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 838 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 839 * addresses from the association. The two flags are mutually exclusive; 840 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 841 * not remove all addresses from an association; sctp_bindx() will 842 * reject such an attempt with EINVAL. 843 * 844 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 845 * additional addresses with an endpoint after calling bind(). Or use 846 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 847 * socket is associated with so that no new association accepted will be 848 * associated with those addresses. If the endpoint supports dynamic 849 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 850 * endpoint to send the appropriate message to the peer to change the 851 * peers address lists. 852 * 853 * Adding and removing addresses from a connected association is 854 * optional functionality. Implementations that do not support this 855 * functionality should return EOPNOTSUPP. 856 * 857 * Basically do nothing but copying the addresses from user to kernel 858 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 859 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 860 * from userspace. 861 * 862 * We don't use copy_from_user() for optimization: we first do the 863 * sanity checks (buffer size -fast- and access check-healthy 864 * pointer); if all of those succeed, then we can alloc the memory 865 * (expensive operation) needed to copy the data to kernel. Then we do 866 * the copying without checking the user space area 867 * (__copy_from_user()). 868 * 869 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 870 * it. 871 * 872 * sk The sk of the socket 873 * addrs The pointer to the addresses in user land 874 * addrssize Size of the addrs buffer 875 * op Operation to perform (add or remove, see the flags of 876 * sctp_bindx) 877 * 878 * Returns 0 if ok, <0 errno code on error. 879 */ 880SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk, 881 struct sockaddr __user *addrs, 882 int addrs_size, int op) 883{ 884 struct sockaddr *kaddrs; 885 int err; 886 int addrcnt = 0; 887 int walk_size = 0; 888 struct sockaddr *sa_addr; 889 void *addr_buf; 890 struct sctp_af *af; 891 892 SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p" 893 " addrs_size %d opt %d\n", sk, addrs, addrs_size, op); 894 895 if (unlikely(addrs_size <= 0)) 896 return -EINVAL; 897 898 /* Check the user passed a healthy pointer. */ 899 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 900 return -EFAULT; 901 902 /* Alloc space for the address array in kernel memory. */ 903 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 904 if (unlikely(!kaddrs)) 905 return -ENOMEM; 906 907 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 908 kfree(kaddrs); 909 return -EFAULT; 910 } 911 912 /* Walk through the addrs buffer and count the number of addresses. */ 913 addr_buf = kaddrs; 914 while (walk_size < addrs_size) { 915 sa_addr = (struct sockaddr *)addr_buf; 916 af = sctp_get_af_specific(sa_addr->sa_family); 917 918 /* If the address family is not supported or if this address 919 * causes the address buffer to overflow return EINVAL. 920 */ 921 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 922 kfree(kaddrs); 923 return -EINVAL; 924 } 925 addrcnt++; 926 addr_buf += af->sockaddr_len; 927 walk_size += af->sockaddr_len; 928 } 929 930 /* Do the work. */ 931 switch (op) { 932 case SCTP_BINDX_ADD_ADDR: 933 err = sctp_bindx_add(sk, kaddrs, addrcnt); 934 if (err) 935 goto out; 936 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 937 break; 938 939 case SCTP_BINDX_REM_ADDR: 940 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 941 if (err) 942 goto out; 943 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 944 break; 945 946 default: 947 err = -EINVAL; 948 break; 949 } 950 951out: 952 kfree(kaddrs); 953 954 return err; 955} 956 957/* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 958 * 959 * Common routine for handling connect() and sctp_connectx(). 960 * Connect will come in with just a single address. 961 */ 962static int __sctp_connect(struct sock* sk, 963 struct sockaddr *kaddrs, 964 int addrs_size) 965{ 966 struct sctp_sock *sp; 967 struct sctp_endpoint *ep; 968 struct sctp_association *asoc = NULL; 969 struct sctp_association *asoc2; 970 struct sctp_transport *transport; 971 union sctp_addr to; 972 struct sctp_af *af; 973 sctp_scope_t scope; 974 long timeo; 975 int err = 0; 976 int addrcnt = 0; 977 int walk_size = 0; 978 union sctp_addr *sa_addr = NULL; 979 void *addr_buf; 980 unsigned short port; 981 unsigned int f_flags = 0; 982 983 sp = sctp_sk(sk); 984 ep = sp->ep; 985 986 /* connect() cannot be done on a socket that is already in ESTABLISHED 987 * state - UDP-style peeled off socket or a TCP-style socket that 988 * is already connected. 989 * It cannot be done even on a TCP-style listening socket. 990 */ 991 if (sctp_sstate(sk, ESTABLISHED) || 992 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 993 err = -EISCONN; 994 goto out_free; 995 } 996 997 /* Walk through the addrs buffer and count the number of addresses. */ 998 addr_buf = kaddrs; 999 while (walk_size < addrs_size) { 1000 sa_addr = (union sctp_addr *)addr_buf; 1001 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1002 port = ntohs(sa_addr->v4.sin_port); 1003 1004 /* If the address family is not supported or if this address 1005 * causes the address buffer to overflow return EINVAL. 1006 */ 1007 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1008 err = -EINVAL; 1009 goto out_free; 1010 } 1011 1012 /* Save current address so we can work with it */ 1013 memcpy(&to, sa_addr, af->sockaddr_len); 1014 1015 err = sctp_verify_addr(sk, &to, af->sockaddr_len); 1016 if (err) 1017 goto out_free; 1018 1019 /* Make sure the destination port is correctly set 1020 * in all addresses. 1021 */ 1022 if (asoc && asoc->peer.port && asoc->peer.port != port) 1023 goto out_free; 1024 1025 1026 /* Check if there already is a matching association on the 1027 * endpoint (other than the one created here). 1028 */ 1029 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1030 if (asoc2 && asoc2 != asoc) { 1031 if (asoc2->state >= SCTP_STATE_ESTABLISHED) 1032 err = -EISCONN; 1033 else 1034 err = -EALREADY; 1035 goto out_free; 1036 } 1037 1038 /* If we could not find a matching association on the endpoint, 1039 * make sure that there is no peeled-off association matching 1040 * the peer address even on another socket. 1041 */ 1042 if (sctp_endpoint_is_peeled_off(ep, &to)) { 1043 err = -EADDRNOTAVAIL; 1044 goto out_free; 1045 } 1046 1047 if (!asoc) { 1048 /* If a bind() or sctp_bindx() is not called prior to 1049 * an sctp_connectx() call, the system picks an 1050 * ephemeral port and will choose an address set 1051 * equivalent to binding with a wildcard address. 1052 */ 1053 if (!ep->base.bind_addr.port) { 1054 if (sctp_autobind(sk)) { 1055 err = -EAGAIN; 1056 goto out_free; 1057 } 1058 } else { 1059 /* 1060 * If an unprivileged user inherits a 1-many 1061 * style socket with open associations on a 1062 * privileged port, it MAY be permitted to 1063 * accept new associations, but it SHOULD NOT 1064 * be permitted to open new associations. 1065 */ 1066 if (ep->base.bind_addr.port < PROT_SOCK && 1067 !capable(CAP_NET_BIND_SERVICE)) { 1068 err = -EACCES; 1069 goto out_free; 1070 } 1071 } 1072 1073 scope = sctp_scope(&to); 1074 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1075 if (!asoc) { 1076 err = -ENOMEM; 1077 goto out_free; 1078 } 1079 } 1080 1081 /* Prime the peer's transport structures. */ 1082 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, 1083 SCTP_UNKNOWN); 1084 if (!transport) { 1085 err = -ENOMEM; 1086 goto out_free; 1087 } 1088 1089 addrcnt++; 1090 addr_buf += af->sockaddr_len; 1091 walk_size += af->sockaddr_len; 1092 } 1093 1094 err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL); 1095 if (err < 0) { 1096 goto out_free; 1097 } 1098 1099 err = sctp_primitive_ASSOCIATE(asoc, NULL); 1100 if (err < 0) { 1101 goto out_free; 1102 } 1103 1104 /* Initialize sk's dport and daddr for getpeername() */ 1105 inet_sk(sk)->dport = htons(asoc->peer.port); 1106 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1107 af->to_sk_daddr(sa_addr, sk); 1108 sk->sk_err = 0; 1109 1110 /* in-kernel sockets don't generally have a file allocated to them 1111 * if all they do is call sock_create_kern(). 1112 */ 1113 if (sk->sk_socket->file) 1114 f_flags = sk->sk_socket->file->f_flags; 1115 1116 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK); 1117 1118 err = sctp_wait_for_connect(asoc, &timeo); 1119 1120 /* Don't free association on exit. */ 1121 asoc = NULL; 1122 1123out_free: 1124 1125 SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p" 1126 " kaddrs: %p err: %d\n", 1127 asoc, kaddrs, err); 1128 if (asoc) 1129 sctp_association_free(asoc); 1130 return err; 1131} 1132 1133/* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1134 * 1135 * API 8.9 1136 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt); 1137 * 1138 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1139 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1140 * or IPv6 addresses. 1141 * 1142 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1143 * Section 3.1.2 for this usage. 1144 * 1145 * addrs is a pointer to an array of one or more socket addresses. Each 1146 * address is contained in its appropriate structure (i.e. struct 1147 * sockaddr_in or struct sockaddr_in6) the family of the address type 1148 * must be used to distengish the address length (note that this 1149 * representation is termed a "packed array" of addresses). The caller 1150 * specifies the number of addresses in the array with addrcnt. 1151 * 1152 * On success, sctp_connectx() returns 0. On failure, sctp_connectx() returns 1153 * -1, and sets errno to the appropriate error code. 1154 * 1155 * For SCTP, the port given in each socket address must be the same, or 1156 * sctp_connectx() will fail, setting errno to EINVAL. 1157 * 1158 * An application can use sctp_connectx to initiate an association with 1159 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1160 * allows a caller to specify multiple addresses at which a peer can be 1161 * reached. The way the SCTP stack uses the list of addresses to set up 1162 * the association is implementation dependant. This function only 1163 * specifies that the stack will try to make use of all the addresses in 1164 * the list when needed. 1165 * 1166 * Note that the list of addresses passed in is only used for setting up 1167 * the association. It does not necessarily equal the set of addresses 1168 * the peer uses for the resulting association. If the caller wants to 1169 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1170 * retrieve them after the association has been set up. 1171 * 1172 * Basically do nothing but copying the addresses from user to kernel 1173 * land and invoking either sctp_connectx(). This is used for tunneling 1174 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1175 * 1176 * We don't use copy_from_user() for optimization: we first do the 1177 * sanity checks (buffer size -fast- and access check-healthy 1178 * pointer); if all of those succeed, then we can alloc the memory 1179 * (expensive operation) needed to copy the data to kernel. Then we do 1180 * the copying without checking the user space area 1181 * (__copy_from_user()). 1182 * 1183 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1184 * it. 1185 * 1186 * sk The sk of the socket 1187 * addrs The pointer to the addresses in user land 1188 * addrssize Size of the addrs buffer 1189 * 1190 * Returns 0 if ok, <0 errno code on error. 1191 */ 1192SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk, 1193 struct sockaddr __user *addrs, 1194 int addrs_size) 1195{ 1196 int err = 0; 1197 struct sockaddr *kaddrs; 1198 1199 SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n", 1200 __FUNCTION__, sk, addrs, addrs_size); 1201 1202 if (unlikely(addrs_size <= 0)) 1203 return -EINVAL; 1204 1205 /* Check the user passed a healthy pointer. */ 1206 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 1207 return -EFAULT; 1208 1209 /* Alloc space for the address array in kernel memory. */ 1210 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 1211 if (unlikely(!kaddrs)) 1212 return -ENOMEM; 1213 1214 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 1215 err = -EFAULT; 1216 } else { 1217 err = __sctp_connect(sk, kaddrs, addrs_size); 1218 } 1219 1220 kfree(kaddrs); 1221 return err; 1222} 1223 1224/* API 3.1.4 close() - UDP Style Syntax 1225 * Applications use close() to perform graceful shutdown (as described in 1226 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1227 * by a UDP-style socket. 1228 * 1229 * The syntax is 1230 * 1231 * ret = close(int sd); 1232 * 1233 * sd - the socket descriptor of the associations to be closed. 1234 * 1235 * To gracefully shutdown a specific association represented by the 1236 * UDP-style socket, an application should use the sendmsg() call, 1237 * passing no user data, but including the appropriate flag in the 1238 * ancillary data (see Section xxxx). 1239 * 1240 * If sd in the close() call is a branched-off socket representing only 1241 * one association, the shutdown is performed on that association only. 1242 * 1243 * 4.1.6 close() - TCP Style Syntax 1244 * 1245 * Applications use close() to gracefully close down an association. 1246 * 1247 * The syntax is: 1248 * 1249 * int close(int sd); 1250 * 1251 * sd - the socket descriptor of the association to be closed. 1252 * 1253 * After an application calls close() on a socket descriptor, no further 1254 * socket operations will succeed on that descriptor. 1255 * 1256 * API 7.1.4 SO_LINGER 1257 * 1258 * An application using the TCP-style socket can use this option to 1259 * perform the SCTP ABORT primitive. The linger option structure is: 1260 * 1261 * struct linger { 1262 * int l_onoff; // option on/off 1263 * int l_linger; // linger time 1264 * }; 1265 * 1266 * To enable the option, set l_onoff to 1. If the l_linger value is set 1267 * to 0, calling close() is the same as the ABORT primitive. If the 1268 * value is set to a negative value, the setsockopt() call will return 1269 * an error. If the value is set to a positive value linger_time, the 1270 * close() can be blocked for at most linger_time ms. If the graceful 1271 * shutdown phase does not finish during this period, close() will 1272 * return but the graceful shutdown phase continues in the system. 1273 */ 1274SCTP_STATIC void sctp_close(struct sock *sk, long timeout) 1275{ 1276 struct sctp_endpoint *ep; 1277 struct sctp_association *asoc; 1278 struct list_head *pos, *temp; 1279 1280 SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout); 1281 1282 sctp_lock_sock(sk); 1283 sk->sk_shutdown = SHUTDOWN_MASK; 1284 1285 ep = sctp_sk(sk)->ep; 1286 1287 /* Walk all associations on an endpoint. */ 1288 list_for_each_safe(pos, temp, &ep->asocs) { 1289 asoc = list_entry(pos, struct sctp_association, asocs); 1290 1291 if (sctp_style(sk, TCP)) { 1292 /* A closed association can still be in the list if 1293 * it belongs to a TCP-style listening socket that is 1294 * not yet accepted. If so, free it. If not, send an 1295 * ABORT or SHUTDOWN based on the linger options. 1296 */ 1297 if (sctp_state(asoc, CLOSED)) { 1298 sctp_unhash_established(asoc); 1299 sctp_association_free(asoc); 1300 continue; 1301 } 1302 } 1303 1304 if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 1305 struct sctp_chunk *chunk; 1306 1307 chunk = sctp_make_abort_user(asoc, NULL, 0); 1308 if (chunk) 1309 sctp_primitive_ABORT(asoc, chunk); 1310 } else 1311 sctp_primitive_SHUTDOWN(asoc, NULL); 1312 } 1313 1314 /* Clean up any skbs sitting on the receive queue. */ 1315 sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1316 sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1317 1318 /* On a TCP-style socket, block for at most linger_time if set. */ 1319 if (sctp_style(sk, TCP) && timeout) 1320 sctp_wait_for_close(sk, timeout); 1321 1322 /* This will run the backlog queue. */ 1323 sctp_release_sock(sk); 1324 1325 /* Supposedly, no process has access to the socket, but 1326 * the net layers still may. 1327 */ 1328 sctp_local_bh_disable(); 1329 sctp_bh_lock_sock(sk); 1330 1331 /* Hold the sock, since sk_common_release() will put sock_put() 1332 * and we have just a little more cleanup. 1333 */ 1334 sock_hold(sk); 1335 sk_common_release(sk); 1336 1337 sctp_bh_unlock_sock(sk); 1338 sctp_local_bh_enable(); 1339 1340 sock_put(sk); 1341 1342 SCTP_DBG_OBJCNT_DEC(sock); 1343} 1344 1345/* Handle EPIPE error. */ 1346static int sctp_error(struct sock *sk, int flags, int err) 1347{ 1348 if (err == -EPIPE) 1349 err = sock_error(sk) ? : -EPIPE; 1350 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1351 send_sig(SIGPIPE, current, 0); 1352 return err; 1353} 1354 1355/* API 3.1.3 sendmsg() - UDP Style Syntax 1356 * 1357 * An application uses sendmsg() and recvmsg() calls to transmit data to 1358 * and receive data from its peer. 1359 * 1360 * ssize_t sendmsg(int socket, const struct msghdr *message, 1361 * int flags); 1362 * 1363 * socket - the socket descriptor of the endpoint. 1364 * message - pointer to the msghdr structure which contains a single 1365 * user message and possibly some ancillary data. 1366 * 1367 * See Section 5 for complete description of the data 1368 * structures. 1369 * 1370 * flags - flags sent or received with the user message, see Section 1371 * 5 for complete description of the flags. 1372 * 1373 * Note: This function could use a rewrite especially when explicit 1374 * connect support comes in. 1375 */ 1376/* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1377 1378SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *); 1379 1380SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk, 1381 struct msghdr *msg, size_t msg_len) 1382{ 1383 struct sctp_sock *sp; 1384 struct sctp_endpoint *ep; 1385 struct sctp_association *new_asoc=NULL, *asoc=NULL; 1386 struct sctp_transport *transport, *chunk_tp; 1387 struct sctp_chunk *chunk; 1388 union sctp_addr to; 1389 struct sockaddr *msg_name = NULL; 1390 struct sctp_sndrcvinfo default_sinfo = { 0 }; 1391 struct sctp_sndrcvinfo *sinfo; 1392 struct sctp_initmsg *sinit; 1393 sctp_assoc_t associd = 0; 1394 sctp_cmsgs_t cmsgs = { NULL }; 1395 int err; 1396 sctp_scope_t scope; 1397 long timeo; 1398 __u16 sinfo_flags = 0; 1399 struct sctp_datamsg *datamsg; 1400 struct list_head *pos; 1401 int msg_flags = msg->msg_flags; 1402 1403 SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n", 1404 sk, msg, msg_len); 1405 1406 err = 0; 1407 sp = sctp_sk(sk); 1408 ep = sp->ep; 1409 1410 SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep); 1411 1412 /* We cannot send a message over a TCP-style listening socket. */ 1413 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) { 1414 err = -EPIPE; 1415 goto out_nounlock; 1416 } 1417 1418 /* Parse out the SCTP CMSGs. */ 1419 err = sctp_msghdr_parse(msg, &cmsgs); 1420 1421 if (err) { 1422 SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err); 1423 goto out_nounlock; 1424 } 1425 1426 /* Fetch the destination address for this packet. This 1427 * address only selects the association--it is not necessarily 1428 * the address we will send to. 1429 * For a peeled-off socket, msg_name is ignored. 1430 */ 1431 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1432 int msg_namelen = msg->msg_namelen; 1433 1434 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name, 1435 msg_namelen); 1436 if (err) 1437 return err; 1438 1439 if (msg_namelen > sizeof(to)) 1440 msg_namelen = sizeof(to); 1441 memcpy(&to, msg->msg_name, msg_namelen); 1442 msg_name = msg->msg_name; 1443 } 1444 1445 sinfo = cmsgs.info; 1446 sinit = cmsgs.init; 1447 1448 /* Did the user specify SNDRCVINFO? */ 1449 if (sinfo) { 1450 sinfo_flags = sinfo->sinfo_flags; 1451 associd = sinfo->sinfo_assoc_id; 1452 } 1453 1454 SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n", 1455 msg_len, sinfo_flags); 1456 1457 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */ 1458 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) { 1459 err = -EINVAL; 1460 goto out_nounlock; 1461 } 1462 1463 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero 1464 * length messages when SCTP_EOF|SCTP_ABORT is not set. 1465 * If SCTP_ABORT is set, the message length could be non zero with 1466 * the msg_iov set to the user abort reason. 1467 */ 1468 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) || 1469 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) { 1470 err = -EINVAL; 1471 goto out_nounlock; 1472 } 1473 1474 /* If SCTP_ADDR_OVER is set, there must be an address 1475 * specified in msg_name. 1476 */ 1477 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) { 1478 err = -EINVAL; 1479 goto out_nounlock; 1480 } 1481 1482 transport = NULL; 1483 1484 SCTP_DEBUG_PRINTK("About to look up association.\n"); 1485 1486 sctp_lock_sock(sk); 1487 1488 /* If a msg_name has been specified, assume this is to be used. */ 1489 if (msg_name) { 1490 /* Look for a matching association on the endpoint. */ 1491 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1492 if (!asoc) { 1493 /* If we could not find a matching association on the 1494 * endpoint, make sure that it is not a TCP-style 1495 * socket that already has an association or there is 1496 * no peeled-off association on another socket. 1497 */ 1498 if ((sctp_style(sk, TCP) && 1499 sctp_sstate(sk, ESTABLISHED)) || 1500 sctp_endpoint_is_peeled_off(ep, &to)) { 1501 err = -EADDRNOTAVAIL; 1502 goto out_unlock; 1503 } 1504 } 1505 } else { 1506 asoc = sctp_id2assoc(sk, associd); 1507 if (!asoc) { 1508 err = -EPIPE; 1509 goto out_unlock; 1510 } 1511 } 1512 1513 if (asoc) { 1514 SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc); 1515 1516 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED 1517 * socket that has an association in CLOSED state. This can 1518 * happen when an accepted socket has an association that is 1519 * already CLOSED. 1520 */ 1521 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) { 1522 err = -EPIPE; 1523 goto out_unlock; 1524 } 1525 1526 if (sinfo_flags & SCTP_EOF) { 1527 SCTP_DEBUG_PRINTK("Shutting down association: %p\n", 1528 asoc); 1529 sctp_primitive_SHUTDOWN(asoc, NULL); 1530 err = 0; 1531 goto out_unlock; 1532 } 1533 if (sinfo_flags & SCTP_ABORT) { 1534 1535 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1536 if (!chunk) { 1537 err = -ENOMEM; 1538 goto out_unlock; 1539 } 1540 1541 SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc); 1542 sctp_primitive_ABORT(asoc, chunk); 1543 err = 0; 1544 goto out_unlock; 1545 } 1546 } 1547 1548 /* Do we need to create the association? */ 1549 if (!asoc) { 1550 SCTP_DEBUG_PRINTK("There is no association yet.\n"); 1551 1552 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) { 1553 err = -EINVAL; 1554 goto out_unlock; 1555 } 1556 1557 /* Check for invalid stream against the stream counts, 1558 * either the default or the user specified stream counts. 1559 */ 1560 if (sinfo) { 1561 if (!sinit || (sinit && !sinit->sinit_num_ostreams)) { 1562 /* Check against the defaults. */ 1563 if (sinfo->sinfo_stream >= 1564 sp->initmsg.sinit_num_ostreams) { 1565 err = -EINVAL; 1566 goto out_unlock; 1567 } 1568 } else { 1569 /* Check against the requested. */ 1570 if (sinfo->sinfo_stream >= 1571 sinit->sinit_num_ostreams) { 1572 err = -EINVAL; 1573 goto out_unlock; 1574 } 1575 } 1576 } 1577 1578 /* 1579 * API 3.1.2 bind() - UDP Style Syntax 1580 * If a bind() or sctp_bindx() is not called prior to a 1581 * sendmsg() call that initiates a new association, the 1582 * system picks an ephemeral port and will choose an address 1583 * set equivalent to binding with a wildcard address. 1584 */ 1585 if (!ep->base.bind_addr.port) { 1586 if (sctp_autobind(sk)) { 1587 err = -EAGAIN; 1588 goto out_unlock; 1589 } 1590 } else { 1591 /* 1592 * If an unprivileged user inherits a one-to-many 1593 * style socket with open associations on a privileged 1594 * port, it MAY be permitted to accept new associations, 1595 * but it SHOULD NOT be permitted to open new 1596 * associations. 1597 */ 1598 if (ep->base.bind_addr.port < PROT_SOCK && 1599 !capable(CAP_NET_BIND_SERVICE)) { 1600 err = -EACCES; 1601 goto out_unlock; 1602 } 1603 } 1604 1605 scope = sctp_scope(&to); 1606 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1607 if (!new_asoc) { 1608 err = -ENOMEM; 1609 goto out_unlock; 1610 } 1611 asoc = new_asoc; 1612 1613 /* If the SCTP_INIT ancillary data is specified, set all 1614 * the association init values accordingly. 1615 */ 1616 if (sinit) { 1617 if (sinit->sinit_num_ostreams) { 1618 asoc->c.sinit_num_ostreams = 1619 sinit->sinit_num_ostreams; 1620 } 1621 if (sinit->sinit_max_instreams) { 1622 asoc->c.sinit_max_instreams = 1623 sinit->sinit_max_instreams; 1624 } 1625 if (sinit->sinit_max_attempts) { 1626 asoc->max_init_attempts 1627 = sinit->sinit_max_attempts; 1628 } 1629 if (sinit->sinit_max_init_timeo) { 1630 asoc->max_init_timeo = 1631 msecs_to_jiffies(sinit->sinit_max_init_timeo); 1632 } 1633 } 1634 1635 /* Prime the peer's transport structures. */ 1636 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN); 1637 if (!transport) { 1638 err = -ENOMEM; 1639 goto out_free; 1640 } 1641 err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL); 1642 if (err < 0) { 1643 err = -ENOMEM; 1644 goto out_free; 1645 } 1646 } 1647 1648 /* ASSERT: we have a valid association at this point. */ 1649 SCTP_DEBUG_PRINTK("We have a valid association.\n"); 1650 1651 if (!sinfo) { 1652 /* If the user didn't specify SNDRCVINFO, make up one with 1653 * some defaults. 1654 */ 1655 default_sinfo.sinfo_stream = asoc->default_stream; 1656 default_sinfo.sinfo_flags = asoc->default_flags; 1657 default_sinfo.sinfo_ppid = asoc->default_ppid; 1658 default_sinfo.sinfo_context = asoc->default_context; 1659 default_sinfo.sinfo_timetolive = asoc->default_timetolive; 1660 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc); 1661 sinfo = &default_sinfo; 1662 } 1663 1664 /* API 7.1.7, the sndbuf size per association bounds the 1665 * maximum size of data that can be sent in a single send call. 1666 */ 1667 if (msg_len > sk->sk_sndbuf) { 1668 err = -EMSGSIZE; 1669 goto out_free; 1670 } 1671 1672 if (asoc->pmtu_pending) 1673 sctp_assoc_pending_pmtu(asoc); 1674 1675 /* If fragmentation is disabled and the message length exceeds the 1676 * association fragmentation point, return EMSGSIZE. The I-D 1677 * does not specify what this error is, but this looks like 1678 * a great fit. 1679 */ 1680 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) { 1681 err = -EMSGSIZE; 1682 goto out_free; 1683 } 1684 1685 if (sinfo) { 1686 /* Check for invalid stream. */ 1687 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) { 1688 err = -EINVAL; 1689 goto out_free; 1690 } 1691 } 1692 1693 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1694 if (!sctp_wspace(asoc)) { 1695 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1696 if (err) 1697 goto out_free; 1698 } 1699 1700 /* If an address is passed with the sendto/sendmsg call, it is used 1701 * to override the primary destination address in the TCP model, or 1702 * when SCTP_ADDR_OVER flag is set in the UDP model. 1703 */ 1704 if ((sctp_style(sk, TCP) && msg_name) || 1705 (sinfo_flags & SCTP_ADDR_OVER)) { 1706 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to); 1707 if (!chunk_tp) { 1708 err = -EINVAL; 1709 goto out_free; 1710 } 1711 } else 1712 chunk_tp = NULL; 1713 1714 /* Auto-connect, if we aren't connected already. */ 1715 if (sctp_state(asoc, CLOSED)) { 1716 err = sctp_primitive_ASSOCIATE(asoc, NULL); 1717 if (err < 0) 1718 goto out_free; 1719 SCTP_DEBUG_PRINTK("We associated primitively.\n"); 1720 } 1721 1722 /* Break the message into multiple chunks of maximum size. */ 1723 datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len); 1724 if (!datamsg) { 1725 err = -ENOMEM; 1726 goto out_free; 1727 } 1728 1729 /* Now send the (possibly) fragmented message. */ 1730 list_for_each(pos, &datamsg->chunks) { 1731 chunk = list_entry(pos, struct sctp_chunk, frag_list); 1732 sctp_datamsg_track(chunk); 1733 1734 /* Do accounting for the write space. */ 1735 sctp_set_owner_w(chunk); 1736 1737 chunk->transport = chunk_tp; 1738 1739 /* Send it to the lower layers. Note: all chunks 1740 * must either fail or succeed. The lower layer 1741 * works that way today. Keep it that way or this 1742 * breaks. 1743 */ 1744 err = sctp_primitive_SEND(asoc, chunk); 1745 /* Did the lower layer accept the chunk? */ 1746 if (err) 1747 sctp_chunk_free(chunk); 1748 SCTP_DEBUG_PRINTK("We sent primitively.\n"); 1749 } 1750 1751 sctp_datamsg_free(datamsg); 1752 if (err) 1753 goto out_free; 1754 else 1755 err = msg_len; 1756 1757 /* If we are already past ASSOCIATE, the lower 1758 * layers are responsible for association cleanup. 1759 */ 1760 goto out_unlock; 1761 1762out_free: 1763 if (new_asoc) 1764 sctp_association_free(asoc); 1765out_unlock: 1766 sctp_release_sock(sk); 1767 1768out_nounlock: 1769 return sctp_error(sk, msg_flags, err); 1770 1771#if 0 1772do_sock_err: 1773 if (msg_len) 1774 err = msg_len; 1775 else 1776 err = sock_error(sk); 1777 goto out; 1778 1779do_interrupted: 1780 if (msg_len) 1781 err = msg_len; 1782 goto out; 1783#endif /* 0 */ 1784} 1785 1786/* This is an extended version of skb_pull() that removes the data from the 1787 * start of a skb even when data is spread across the list of skb's in the 1788 * frag_list. len specifies the total amount of data that needs to be removed. 1789 * when 'len' bytes could be removed from the skb, it returns 0. 1790 * If 'len' exceeds the total skb length, it returns the no. of bytes that 1791 * could not be removed. 1792 */ 1793static int sctp_skb_pull(struct sk_buff *skb, int len) 1794{ 1795 struct sk_buff *list; 1796 int skb_len = skb_headlen(skb); 1797 int rlen; 1798 1799 if (len <= skb_len) { 1800 __skb_pull(skb, len); 1801 return 0; 1802 } 1803 len -= skb_len; 1804 __skb_pull(skb, skb_len); 1805 1806 for (list = skb_shinfo(skb)->frag_list; list; list = list->next) { 1807 rlen = sctp_skb_pull(list, len); 1808 skb->len -= (len-rlen); 1809 skb->data_len -= (len-rlen); 1810 1811 if (!rlen) 1812 return 0; 1813 1814 len = rlen; 1815 } 1816 1817 return len; 1818} 1819 1820/* API 3.1.3 recvmsg() - UDP Style Syntax 1821 * 1822 * ssize_t recvmsg(int socket, struct msghdr *message, 1823 * int flags); 1824 * 1825 * socket - the socket descriptor of the endpoint. 1826 * message - pointer to the msghdr structure which contains a single 1827 * user message and possibly some ancillary data. 1828 * 1829 * See Section 5 for complete description of the data 1830 * structures. 1831 * 1832 * flags - flags sent or received with the user message, see Section 1833 * 5 for complete description of the flags. 1834 */ 1835static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *); 1836 1837SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk, 1838 struct msghdr *msg, size_t len, int noblock, 1839 int flags, int *addr_len) 1840{ 1841 struct sctp_ulpevent *event = NULL; 1842 struct sctp_sock *sp = sctp_sk(sk); 1843 struct sk_buff *skb; 1844 int copied; 1845 int err = 0; 1846 int skb_len; 1847 1848 SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: " 1849 "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg, 1850 "len", len, "knoblauch", noblock, 1851 "flags", flags, "addr_len", addr_len); 1852 1853 sctp_lock_sock(sk); 1854 1855 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) { 1856 err = -ENOTCONN; 1857 goto out; 1858 } 1859 1860 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 1861 if (!skb) 1862 goto out; 1863 1864 /* Get the total length of the skb including any skb's in the 1865 * frag_list. 1866 */ 1867 skb_len = skb->len; 1868 1869 copied = skb_len; 1870 if (copied > len) 1871 copied = len; 1872 1873 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied); 1874 1875 event = sctp_skb2event(skb); 1876 1877 if (err) 1878 goto out_free; 1879 1880 sock_recv_timestamp(msg, sk, skb); 1881 if (sctp_ulpevent_is_notification(event)) { 1882 msg->msg_flags |= MSG_NOTIFICATION; 1883 sp->pf->event_msgname(event, msg->msg_name, addr_len); 1884 } else { 1885 sp->pf->skb_msgname(skb, msg->msg_name, addr_len); 1886 } 1887 1888 /* Check if we allow SCTP_SNDRCVINFO. */ 1889 if (sp->subscribe.sctp_data_io_event) 1890 sctp_ulpevent_read_sndrcvinfo(event, msg); 1891#if 0 1892 /* FIXME: we should be calling IP/IPv6 layers. */ 1893 if (sk->sk_protinfo.af_inet.cmsg_flags) 1894 ip_cmsg_recv(msg, skb); 1895#endif 1896 1897 err = copied; 1898 1899 /* If skb's length exceeds the user's buffer, update the skb and 1900 * push it back to the receive_queue so that the next call to 1901 * recvmsg() will return the remaining data. Don't set MSG_EOR. 1902 */ 1903 if (skb_len > copied) { 1904 msg->msg_flags &= ~MSG_EOR; 1905 if (flags & MSG_PEEK) 1906 goto out_free; 1907 sctp_skb_pull(skb, copied); 1908 skb_queue_head(&sk->sk_receive_queue, skb); 1909 1910 /* When only partial message is copied to the user, increase 1911 * rwnd by that amount. If all the data in the skb is read, 1912 * rwnd is updated when the event is freed. 1913 */ 1914 if (!sctp_ulpevent_is_notification(event)) 1915 sctp_assoc_rwnd_increase(event->asoc, copied); 1916 goto out; 1917 } else if ((event->msg_flags & MSG_NOTIFICATION) || 1918 (event->msg_flags & MSG_EOR)) 1919 msg->msg_flags |= MSG_EOR; 1920 else 1921 msg->msg_flags &= ~MSG_EOR; 1922 1923out_free: 1924 if (flags & MSG_PEEK) { 1925 /* Release the skb reference acquired after peeking the skb in 1926 * sctp_skb_recv_datagram(). 1927 */ 1928 kfree_skb(skb); 1929 } else { 1930 /* Free the event which includes releasing the reference to 1931 * the owner of the skb, freeing the skb and updating the 1932 * rwnd. 1933 */ 1934 sctp_ulpevent_free(event); 1935 } 1936out: 1937 sctp_release_sock(sk); 1938 return err; 1939} 1940 1941/* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 1942 * 1943 * This option is a on/off flag. If enabled no SCTP message 1944 * fragmentation will be performed. Instead if a message being sent 1945 * exceeds the current PMTU size, the message will NOT be sent and 1946 * instead a error will be indicated to the user. 1947 */ 1948static int sctp_setsockopt_disable_fragments(struct sock *sk, 1949 char __user *optval, int optlen) 1950{ 1951 int val; 1952 1953 if (optlen < sizeof(int)) 1954 return -EINVAL; 1955 1956 if (get_user(val, (int __user *)optval)) 1957 return -EFAULT; 1958 1959 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 1960 1961 return 0; 1962} 1963 1964static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 1965 int optlen) 1966{ 1967 if (optlen > sizeof(struct sctp_event_subscribe)) 1968 return -EINVAL; 1969 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen)) 1970 return -EFAULT; 1971 return 0; 1972} 1973 1974/* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 1975 * 1976 * This socket option is applicable to the UDP-style socket only. When 1977 * set it will cause associations that are idle for more than the 1978 * specified number of seconds to automatically close. An association 1979 * being idle is defined an association that has NOT sent or received 1980 * user data. The special value of '0' indicates that no automatic 1981 * close of any associations should be performed. The option expects an 1982 * integer defining the number of seconds of idle time before an 1983 * association is closed. 1984 */ 1985static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 1986 int optlen) 1987{ 1988 struct sctp_sock *sp = sctp_sk(sk); 1989 1990 /* Applicable to UDP-style socket only */ 1991 if (sctp_style(sk, TCP)) 1992 return -EOPNOTSUPP; 1993 if (optlen != sizeof(int)) 1994 return -EINVAL; 1995 if (copy_from_user(&sp->autoclose, optval, optlen)) 1996 return -EFAULT; 1997 1998 return 0; 1999} 2000 2001/* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2002 * 2003 * Applications can enable or disable heartbeats for any peer address of 2004 * an association, modify an address's heartbeat interval, force a 2005 * heartbeat to be sent immediately, and adjust the address's maximum 2006 * number of retransmissions sent before an address is considered 2007 * unreachable. The following structure is used to access and modify an 2008 * address's parameters: 2009 * 2010 * struct sctp_paddrparams { 2011 * sctp_assoc_t spp_assoc_id; 2012 * struct sockaddr_storage spp_address; 2013 * uint32_t spp_hbinterval; 2014 * uint16_t spp_pathmaxrxt; 2015 * uint32_t spp_pathmtu; 2016 * uint32_t spp_sackdelay; 2017 * uint32_t spp_flags; 2018 * }; 2019 * 2020 * spp_assoc_id - (one-to-many style socket) This is filled in the 2021 * application, and identifies the association for 2022 * this query. 2023 * spp_address - This specifies which address is of interest. 2024 * spp_hbinterval - This contains the value of the heartbeat interval, 2025 * in milliseconds. If a value of zero 2026 * is present in this field then no changes are to 2027 * be made to this parameter. 2028 * spp_pathmaxrxt - This contains the maximum number of 2029 * retransmissions before this address shall be 2030 * considered unreachable. If a value of zero 2031 * is present in this field then no changes are to 2032 * be made to this parameter. 2033 * spp_pathmtu - When Path MTU discovery is disabled the value 2034 * specified here will be the "fixed" path mtu. 2035 * Note that if the spp_address field is empty 2036 * then all associations on this address will 2037 * have this fixed path mtu set upon them. 2038 * 2039 * spp_sackdelay - When delayed sack is enabled, this value specifies 2040 * the number of milliseconds that sacks will be delayed 2041 * for. This value will apply to all addresses of an 2042 * association if the spp_address field is empty. Note 2043 * also, that if delayed sack is enabled and this 2044 * value is set to 0, no change is made to the last 2045 * recorded delayed sack timer value. 2046 * 2047 * spp_flags - These flags are used to control various features 2048 * on an association. The flag field may contain 2049 * zero or more of the following options. 2050 * 2051 * SPP_HB_ENABLE - Enable heartbeats on the 2052 * specified address. Note that if the address 2053 * field is empty all addresses for the association 2054 * have heartbeats enabled upon them. 2055 * 2056 * SPP_HB_DISABLE - Disable heartbeats on the 2057 * speicifed address. Note that if the address 2058 * field is empty all addresses for the association 2059 * will have their heartbeats disabled. Note also 2060 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2061 * mutually exclusive, only one of these two should 2062 * be specified. Enabling both fields will have 2063 * undetermined results. 2064 * 2065 * SPP_HB_DEMAND - Request a user initiated heartbeat 2066 * to be made immediately. 2067 * 2068 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2069 * heartbeat delayis to be set to the value of 0 2070 * milliseconds. 2071 * 2072 * SPP_PMTUD_ENABLE - This field will enable PMTU 2073 * discovery upon the specified address. Note that 2074 * if the address feild is empty then all addresses 2075 * on the association are effected. 2076 * 2077 * SPP_PMTUD_DISABLE - This field will disable PMTU 2078 * discovery upon the specified address. Note that 2079 * if the address feild is empty then all addresses 2080 * on the association are effected. Not also that 2081 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2082 * exclusive. Enabling both will have undetermined 2083 * results. 2084 * 2085 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2086 * on delayed sack. The time specified in spp_sackdelay 2087 * is used to specify the sack delay for this address. Note 2088 * that if spp_address is empty then all addresses will 2089 * enable delayed sack and take on the sack delay 2090 * value specified in spp_sackdelay. 2091 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2092 * off delayed sack. If the spp_address field is blank then 2093 * delayed sack is disabled for the entire association. Note 2094 * also that this field is mutually exclusive to 2095 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2096 * results. 2097 */ 2098static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2099 struct sctp_transport *trans, 2100 struct sctp_association *asoc, 2101 struct sctp_sock *sp, 2102 int hb_change, 2103 int pmtud_change, 2104 int sackdelay_change) 2105{ 2106 int error; 2107 2108 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2109 error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans); 2110 if (error) 2111 return error; 2112 } 2113 2114 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2115 * this field is ignored. Note also that a value of zero indicates 2116 * the current setting should be left unchanged. 2117 */ 2118 if (params->spp_flags & SPP_HB_ENABLE) { 2119 2120 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2121 * set. This lets us use 0 value when this flag 2122 * is set. 2123 */ 2124 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2125 params->spp_hbinterval = 0; 2126 2127 if (params->spp_hbinterval || 2128 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2129 if (trans) { 2130 trans->hbinterval = 2131 msecs_to_jiffies(params->spp_hbinterval); 2132 } else if (asoc) { 2133 asoc->hbinterval = 2134 msecs_to_jiffies(params->spp_hbinterval); 2135 } else { 2136 sp->hbinterval = params->spp_hbinterval; 2137 } 2138 } 2139 } 2140 2141 if (hb_change) { 2142 if (trans) { 2143 trans->param_flags = 2144 (trans->param_flags & ~SPP_HB) | hb_change; 2145 } else if (asoc) { 2146 asoc->param_flags = 2147 (asoc->param_flags & ~SPP_HB) | hb_change; 2148 } else { 2149 sp->param_flags = 2150 (sp->param_flags & ~SPP_HB) | hb_change; 2151 } 2152 } 2153 2154 /* When Path MTU discovery is disabled the value specified here will 2155 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2156 * include the flag SPP_PMTUD_DISABLE for this field to have any 2157 * effect). 2158 */ 2159 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2160 if (trans) { 2161 trans->pathmtu = params->spp_pathmtu; 2162 sctp_assoc_sync_pmtu(asoc); 2163 } else if (asoc) { 2164 asoc->pathmtu = params->spp_pathmtu; 2165 sctp_frag_point(sp, params->spp_pathmtu); 2166 } else { 2167 sp->pathmtu = params->spp_pathmtu; 2168 } 2169 } 2170 2171 if (pmtud_change) { 2172 if (trans) { 2173 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2174 (params->spp_flags & SPP_PMTUD_ENABLE); 2175 trans->param_flags = 2176 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2177 if (update) { 2178 sctp_transport_pmtu(trans); 2179 sctp_assoc_sync_pmtu(asoc); 2180 } 2181 } else if (asoc) { 2182 asoc->param_flags = 2183 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2184 } else { 2185 sp->param_flags = 2186 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2187 } 2188 } 2189 2190 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2191 * value of this field is ignored. Note also that a value of zero 2192 * indicates the current setting should be left unchanged. 2193 */ 2194 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2195 if (trans) { 2196 trans->sackdelay = 2197 msecs_to_jiffies(params->spp_sackdelay); 2198 } else if (asoc) { 2199 asoc->sackdelay = 2200 msecs_to_jiffies(params->spp_sackdelay); 2201 } else { 2202 sp->sackdelay = params->spp_sackdelay; 2203 } 2204 } 2205 2206 if (sackdelay_change) { 2207 if (trans) { 2208 trans->param_flags = 2209 (trans->param_flags & ~SPP_SACKDELAY) | 2210 sackdelay_change; 2211 } else if (asoc) { 2212 asoc->param_flags = 2213 (asoc->param_flags & ~SPP_SACKDELAY) | 2214 sackdelay_change; 2215 } else { 2216 sp->param_flags = 2217 (sp->param_flags & ~SPP_SACKDELAY) | 2218 sackdelay_change; 2219 } 2220 } 2221 2222 /* Note that unless the spp_flag is set to SPP_PMTUD_ENABLE the value 2223 * of this field is ignored. Note also that a value of zero 2224 * indicates the current setting should be left unchanged. 2225 */ 2226 if ((params->spp_flags & SPP_PMTUD_ENABLE) && params->spp_pathmaxrxt) { 2227 if (trans) { 2228 trans->pathmaxrxt = params->spp_pathmaxrxt; 2229 } else if (asoc) { 2230 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2231 } else { 2232 sp->pathmaxrxt = params->spp_pathmaxrxt; 2233 } 2234 } 2235 2236 return 0; 2237} 2238 2239static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2240 char __user *optval, int optlen) 2241{ 2242 struct sctp_paddrparams params; 2243 struct sctp_transport *trans = NULL; 2244 struct sctp_association *asoc = NULL; 2245 struct sctp_sock *sp = sctp_sk(sk); 2246 int error; 2247 int hb_change, pmtud_change, sackdelay_change; 2248 2249 if (optlen != sizeof(struct sctp_paddrparams)) 2250 return - EINVAL; 2251 2252 if (copy_from_user(&params, optval, optlen)) 2253 return -EFAULT; 2254 2255 /* Validate flags and value parameters. */ 2256 hb_change = params.spp_flags & SPP_HB; 2257 pmtud_change = params.spp_flags & SPP_PMTUD; 2258 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2259 2260 if (hb_change == SPP_HB || 2261 pmtud_change == SPP_PMTUD || 2262 sackdelay_change == SPP_SACKDELAY || 2263 params.spp_sackdelay > 500 || 2264 (params.spp_pathmtu 2265 && params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2266 return -EINVAL; 2267 2268 /* If an address other than INADDR_ANY is specified, and 2269 * no transport is found, then the request is invalid. 2270 */ 2271 if (!sctp_is_any(( union sctp_addr *)&params.spp_address)) { 2272 trans = sctp_addr_id2transport(sk, &params.spp_address, 2273 params.spp_assoc_id); 2274 if (!trans) 2275 return -EINVAL; 2276 } 2277 2278 /* Get association, if assoc_id != 0 and the socket is a one 2279 * to many style socket, and an association was not found, then 2280 * the id was invalid. 2281 */ 2282 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2283 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) 2284 return -EINVAL; 2285 2286 /* Heartbeat demand can only be sent on a transport or 2287 * association, but not a socket. 2288 */ 2289 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2290 return -EINVAL; 2291 2292 /* Process parameters. */ 2293 error = sctp_apply_peer_addr_params(&params, trans, asoc, sp, 2294 hb_change, pmtud_change, 2295 sackdelay_change); 2296 2297 if (error) 2298 return error; 2299 2300 /* If changes are for association, also apply parameters to each 2301 * transport. 2302 */ 2303 if (!trans && asoc) { 2304 struct list_head *pos; 2305 2306 list_for_each(pos, &asoc->peer.transport_addr_list) { 2307 trans = list_entry(pos, struct sctp_transport, 2308 transports); 2309 sctp_apply_peer_addr_params(&params, trans, asoc, sp, 2310 hb_change, pmtud_change, 2311 sackdelay_change); 2312 } 2313 } 2314 2315 return 0; 2316} 2317 2318/* 7.1.23. Delayed Ack Timer (SCTP_DELAYED_ACK_TIME) 2319 * 2320 * This options will get or set the delayed ack timer. The time is set 2321 * in milliseconds. If the assoc_id is 0, then this sets or gets the 2322 * endpoints default delayed ack timer value. If the assoc_id field is 2323 * non-zero, then the set or get effects the specified association. 2324 * 2325 * struct sctp_assoc_value { 2326 * sctp_assoc_t assoc_id; 2327 * uint32_t assoc_value; 2328 * }; 2329 * 2330 * assoc_id - This parameter, indicates which association the 2331 * user is preforming an action upon. Note that if 2332 * this field's value is zero then the endpoints 2333 * default value is changed (effecting future 2334 * associations only). 2335 * 2336 * assoc_value - This parameter contains the number of milliseconds 2337 * that the user is requesting the delayed ACK timer 2338 * be set to. Note that this value is defined in 2339 * the standard to be between 200 and 500 milliseconds. 2340 * 2341 * Note: a value of zero will leave the value alone, 2342 * but disable SACK delay. A non-zero value will also 2343 * enable SACK delay. 2344 */ 2345 2346static int sctp_setsockopt_delayed_ack_time(struct sock *sk, 2347 char __user *optval, int optlen) 2348{ 2349 struct sctp_assoc_value params; 2350 struct sctp_transport *trans = NULL; 2351 struct sctp_association *asoc = NULL; 2352 struct sctp_sock *sp = sctp_sk(sk); 2353 2354 if (optlen != sizeof(struct sctp_assoc_value)) 2355 return - EINVAL; 2356 2357 if (copy_from_user(&params, optval, optlen)) 2358 return -EFAULT; 2359 2360 /* Validate value parameter. */ 2361 if (params.assoc_value > 500) 2362 return -EINVAL; 2363 2364 /* Get association, if assoc_id != 0 and the socket is a one 2365 * to many style socket, and an association was not found, then 2366 * the id was invalid. 2367 */ 2368 asoc = sctp_id2assoc(sk, params.assoc_id); 2369 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 2370 return -EINVAL; 2371 2372 if (params.assoc_value) { 2373 if (asoc) { 2374 asoc->sackdelay = 2375 msecs_to_jiffies(params.assoc_value); 2376 asoc->param_flags = 2377 (asoc->param_flags & ~SPP_SACKDELAY) | 2378 SPP_SACKDELAY_ENABLE; 2379 } else { 2380 sp->sackdelay = params.assoc_value; 2381 sp->param_flags = 2382 (sp->param_flags & ~SPP_SACKDELAY) | 2383 SPP_SACKDELAY_ENABLE; 2384 } 2385 } else { 2386 if (asoc) { 2387 asoc->param_flags = 2388 (asoc->param_flags & ~SPP_SACKDELAY) | 2389 SPP_SACKDELAY_DISABLE; 2390 } else { 2391 sp->param_flags = 2392 (sp->param_flags & ~SPP_SACKDELAY) | 2393 SPP_SACKDELAY_DISABLE; 2394 } 2395 } 2396 2397 /* If change is for association, also apply to each transport. */ 2398 if (asoc) { 2399 struct list_head *pos; 2400 2401 list_for_each(pos, &asoc->peer.transport_addr_list) { 2402 trans = list_entry(pos, struct sctp_transport, 2403 transports); 2404 if (params.assoc_value) { 2405 trans->sackdelay = 2406 msecs_to_jiffies(params.assoc_value); 2407 trans->param_flags = 2408 (trans->param_flags & ~SPP_SACKDELAY) | 2409 SPP_SACKDELAY_ENABLE; 2410 } else { 2411 trans->param_flags = 2412 (trans->param_flags & ~SPP_SACKDELAY) | 2413 SPP_SACKDELAY_DISABLE; 2414 } 2415 } 2416 } 2417 2418 return 0; 2419} 2420 2421/* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2422 * 2423 * Applications can specify protocol parameters for the default association 2424 * initialization. The option name argument to setsockopt() and getsockopt() 2425 * is SCTP_INITMSG. 2426 * 2427 * Setting initialization parameters is effective only on an unconnected 2428 * socket (for UDP-style sockets only future associations are effected 2429 * by the change). With TCP-style sockets, this option is inherited by 2430 * sockets derived from a listener socket. 2431 */ 2432static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, int optlen) 2433{ 2434 struct sctp_initmsg sinit; 2435 struct sctp_sock *sp = sctp_sk(sk); 2436 2437 if (optlen != sizeof(struct sctp_initmsg)) 2438 return -EINVAL; 2439 if (copy_from_user(&sinit, optval, optlen)) 2440 return -EFAULT; 2441 2442 if (sinit.sinit_num_ostreams) 2443 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2444 if (sinit.sinit_max_instreams) 2445 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2446 if (sinit.sinit_max_attempts) 2447 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2448 if (sinit.sinit_max_init_timeo) 2449 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2450 2451 return 0; 2452} 2453 2454/* 2455 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2456 * 2457 * Applications that wish to use the sendto() system call may wish to 2458 * specify a default set of parameters that would normally be supplied 2459 * through the inclusion of ancillary data. This socket option allows 2460 * such an application to set the default sctp_sndrcvinfo structure. 2461 * The application that wishes to use this socket option simply passes 2462 * in to this call the sctp_sndrcvinfo structure defined in Section 2463 * 5.2.2) The input parameters accepted by this call include 2464 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2465 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2466 * to this call if the caller is using the UDP model. 2467 */ 2468static int sctp_setsockopt_default_send_param(struct sock *sk, 2469 char __user *optval, int optlen) 2470{ 2471 struct sctp_sndrcvinfo info; 2472 struct sctp_association *asoc; 2473 struct sctp_sock *sp = sctp_sk(sk); 2474 2475 if (optlen != sizeof(struct sctp_sndrcvinfo)) 2476 return -EINVAL; 2477 if (copy_from_user(&info, optval, optlen)) 2478 return -EFAULT; 2479 2480 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 2481 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 2482 return -EINVAL; 2483 2484 if (asoc) { 2485 asoc->default_stream = info.sinfo_stream; 2486 asoc->default_flags = info.sinfo_flags; 2487 asoc->default_ppid = info.sinfo_ppid; 2488 asoc->default_context = info.sinfo_context; 2489 asoc->default_timetolive = info.sinfo_timetolive; 2490 } else { 2491 sp->default_stream = info.sinfo_stream; 2492 sp->default_flags = info.sinfo_flags; 2493 sp->default_ppid = info.sinfo_ppid; 2494 sp->default_context = info.sinfo_context; 2495 sp->default_timetolive = info.sinfo_timetolive; 2496 } 2497 2498 return 0; 2499} 2500 2501/* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 2502 * 2503 * Requests that the local SCTP stack use the enclosed peer address as 2504 * the association primary. The enclosed address must be one of the 2505 * association peer's addresses. 2506 */ 2507static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 2508 int optlen) 2509{ 2510 struct sctp_prim prim; 2511 struct sctp_transport *trans; 2512 2513 if (optlen != sizeof(struct sctp_prim)) 2514 return -EINVAL; 2515 2516 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 2517 return -EFAULT; 2518 2519 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 2520 if (!trans) 2521 return -EINVAL; 2522 2523 sctp_assoc_set_primary(trans->asoc, trans); 2524 2525 return 0; 2526} 2527 2528/* 2529 * 7.1.5 SCTP_NODELAY 2530 * 2531 * Turn on/off any Nagle-like algorithm. This means that packets are 2532 * generally sent as soon as possible and no unnecessary delays are 2533 * introduced, at the cost of more packets in the network. Expects an 2534 * integer boolean flag. 2535 */ 2536static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 2537 int optlen) 2538{ 2539 int val; 2540 2541 if (optlen < sizeof(int)) 2542 return -EINVAL; 2543 if (get_user(val, (int __user *)optval)) 2544 return -EFAULT; 2545 2546 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 2547 return 0; 2548} 2549 2550/* 2551 * 2552 * 7.1.1 SCTP_RTOINFO 2553 * 2554 * The protocol parameters used to initialize and bound retransmission 2555 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 2556 * and modify these parameters. 2557 * All parameters are time values, in milliseconds. A value of 0, when 2558 * modifying the parameters, indicates that the current value should not 2559 * be changed. 2560 * 2561 */ 2562static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, int optlen) { 2563 struct sctp_rtoinfo rtoinfo; 2564 struct sctp_association *asoc; 2565 2566 if (optlen != sizeof (struct sctp_rtoinfo)) 2567 return -EINVAL; 2568 2569 if (copy_from_user(&rtoinfo, optval, optlen)) 2570 return -EFAULT; 2571 2572 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 2573 2574 /* Set the values to the specific association */ 2575 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 2576 return -EINVAL; 2577 2578 if (asoc) { 2579 if (rtoinfo.srto_initial != 0) 2580 asoc->rto_initial = 2581 msecs_to_jiffies(rtoinfo.srto_initial); 2582 if (rtoinfo.srto_max != 0) 2583 asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max); 2584 if (rtoinfo.srto_min != 0) 2585 asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min); 2586 } else { 2587 /* If there is no association or the association-id = 0 2588 * set the values to the endpoint. 2589 */ 2590 struct sctp_sock *sp = sctp_sk(sk); 2591 2592 if (rtoinfo.srto_initial != 0) 2593 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 2594 if (rtoinfo.srto_max != 0) 2595 sp->rtoinfo.srto_max = rtoinfo.srto_max; 2596 if (rtoinfo.srto_min != 0) 2597 sp->rtoinfo.srto_min = rtoinfo.srto_min; 2598 } 2599 2600 return 0; 2601} 2602 2603/* 2604 * 2605 * 7.1.2 SCTP_ASSOCINFO 2606 * 2607 * This option is used to tune the maximum retransmission attempts 2608 * of the association. 2609 * Returns an error if the new association retransmission value is 2610 * greater than the sum of the retransmission value of the peer. 2611 * See [SCTP] for more information. 2612 * 2613 */ 2614static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, int optlen) 2615{ 2616 2617 struct sctp_assocparams assocparams; 2618 struct sctp_association *asoc; 2619 2620 if (optlen != sizeof(struct sctp_assocparams)) 2621 return -EINVAL; 2622 if (copy_from_user(&assocparams, optval, optlen)) 2623 return -EFAULT; 2624 2625 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 2626 2627 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 2628 return -EINVAL; 2629 2630 /* Set the values to the specific association */ 2631 if (asoc) { 2632 if (assocparams.sasoc_asocmaxrxt != 0) { 2633 __u32 path_sum = 0; 2634 int paths = 0; 2635 struct list_head *pos; 2636 struct sctp_transport *peer_addr; 2637 2638 list_for_each(pos, &asoc->peer.transport_addr_list) { 2639 peer_addr = list_entry(pos, 2640 struct sctp_transport, 2641 transports); 2642 path_sum += peer_addr->pathmaxrxt; 2643 paths++; 2644 } 2645 2646 /* Only validate asocmaxrxt if we have more then 2647 * one path/transport. We do this because path 2648 * retransmissions are only counted when we have more 2649 * then one path. 2650 */ 2651 if (paths > 1 && 2652 assocparams.sasoc_asocmaxrxt > path_sum) 2653 return -EINVAL; 2654 2655 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 2656 } 2657 2658 if (assocparams.sasoc_cookie_life != 0) { 2659 asoc->cookie_life.tv_sec = 2660 assocparams.sasoc_cookie_life / 1000; 2661 asoc->cookie_life.tv_usec = 2662 (assocparams.sasoc_cookie_life % 1000) 2663 * 1000; 2664 } 2665 } else { 2666 /* Set the values to the endpoint */ 2667 struct sctp_sock *sp = sctp_sk(sk); 2668 2669 if (assocparams.sasoc_asocmaxrxt != 0) 2670 sp->assocparams.sasoc_asocmaxrxt = 2671 assocparams.sasoc_asocmaxrxt; 2672 if (assocparams.sasoc_cookie_life != 0) 2673 sp->assocparams.sasoc_cookie_life = 2674 assocparams.sasoc_cookie_life; 2675 } 2676 return 0; 2677} 2678 2679/* 2680 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 2681 * 2682 * This socket option is a boolean flag which turns on or off mapped V4 2683 * addresses. If this option is turned on and the socket is type 2684 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 2685 * If this option is turned off, then no mapping will be done of V4 2686 * addresses and a user will receive both PF_INET6 and PF_INET type 2687 * addresses on the socket. 2688 */ 2689static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, int optlen) 2690{ 2691 int val; 2692 struct sctp_sock *sp = sctp_sk(sk); 2693 2694 if (optlen < sizeof(int)) 2695 return -EINVAL; 2696 if (get_user(val, (int __user *)optval)) 2697 return -EFAULT; 2698 if (val) 2699 sp->v4mapped = 1; 2700 else 2701 sp->v4mapped = 0; 2702 2703 return 0; 2704} 2705 2706/* 2707 * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG) 2708 * 2709 * This socket option specifies the maximum size to put in any outgoing 2710 * SCTP chunk. If a message is larger than this size it will be 2711 * fragmented by SCTP into the specified size. Note that the underlying 2712 * SCTP implementation may fragment into smaller sized chunks when the 2713 * PMTU of the underlying association is smaller than the value set by 2714 * the user. 2715 */ 2716static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, int optlen) 2717{ 2718 struct sctp_association *asoc; 2719 struct list_head *pos; 2720 struct sctp_sock *sp = sctp_sk(sk); 2721 int val; 2722 2723 if (optlen < sizeof(int)) 2724 return -EINVAL; 2725 if (get_user(val, (int __user *)optval)) 2726 return -EFAULT; 2727 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN))) 2728 return -EINVAL; 2729 sp->user_frag = val; 2730 2731 /* Update the frag_point of the existing associations. */ 2732 list_for_each(pos, &(sp->ep->asocs)) { 2733 asoc = list_entry(pos, struct sctp_association, asocs); 2734 asoc->frag_point = sctp_frag_point(sp, asoc->pathmtu); 2735 } 2736 2737 return 0; 2738} 2739 2740 2741/* 2742 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 2743 * 2744 * Requests that the peer mark the enclosed address as the association 2745 * primary. The enclosed address must be one of the association's 2746 * locally bound addresses. The following structure is used to make a 2747 * set primary request: 2748 */ 2749static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 2750 int optlen) 2751{ 2752 struct sctp_sock *sp; 2753 struct sctp_endpoint *ep; 2754 struct sctp_association *asoc = NULL; 2755 struct sctp_setpeerprim prim; 2756 struct sctp_chunk *chunk; 2757 int err; 2758 2759 sp = sctp_sk(sk); 2760 ep = sp->ep; 2761 2762 if (!sctp_addip_enable) 2763 return -EPERM; 2764 2765 if (optlen != sizeof(struct sctp_setpeerprim)) 2766 return -EINVAL; 2767 2768 if (copy_from_user(&prim, optval, optlen)) 2769 return -EFAULT; 2770 2771 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 2772 if (!asoc) 2773 return -EINVAL; 2774 2775 if (!asoc->peer.asconf_capable) 2776 return -EPERM; 2777 2778 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 2779 return -EPERM; 2780 2781 if (!sctp_state(asoc, ESTABLISHED)) 2782 return -ENOTCONN; 2783 2784 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 2785 return -EADDRNOTAVAIL; 2786 2787 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 2788 chunk = sctp_make_asconf_set_prim(asoc, 2789 (union sctp_addr *)&prim.sspp_addr); 2790 if (!chunk) 2791 return -ENOMEM; 2792 2793 err = sctp_send_asconf(asoc, chunk); 2794 2795 SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n"); 2796 2797 return err; 2798} 2799 2800static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 2801 int optlen) 2802{ 2803 struct sctp_setadaptation adaptation; 2804 2805 if (optlen != sizeof(struct sctp_setadaptation)) 2806 return -EINVAL; 2807 if (copy_from_user(&adaptation, optval, optlen)) 2808 return -EFAULT; 2809 2810 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 2811 2812 return 0; 2813} 2814 2815/* 2816 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 2817 * 2818 * The context field in the sctp_sndrcvinfo structure is normally only 2819 * used when a failed message is retrieved holding the value that was 2820 * sent down on the actual send call. This option allows the setting of 2821 * a default context on an association basis that will be received on 2822 * reading messages from the peer. This is especially helpful in the 2823 * one-2-many model for an application to keep some reference to an 2824 * internal state machine that is processing messages on the 2825 * association. Note that the setting of this value only effects 2826 * received messages from the peer and does not effect the value that is 2827 * saved with outbound messages. 2828 */ 2829static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 2830 int optlen) 2831{ 2832 struct sctp_assoc_value params; 2833 struct sctp_sock *sp; 2834 struct sctp_association *asoc; 2835 2836 if (optlen != sizeof(struct sctp_assoc_value)) 2837 return -EINVAL; 2838 if (copy_from_user(&params, optval, optlen)) 2839 return -EFAULT; 2840 2841 sp = sctp_sk(sk); 2842 2843 if (params.assoc_id != 0) { 2844 asoc = sctp_id2assoc(sk, params.assoc_id); 2845 if (!asoc) 2846 return -EINVAL; 2847 asoc->default_rcv_context = params.assoc_value; 2848 } else { 2849 sp->default_rcv_context = params.assoc_value; 2850 } 2851 2852 return 0; 2853} 2854 2855/* 2856 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 2857 * 2858 * This options will at a minimum specify if the implementation is doing 2859 * fragmented interleave. Fragmented interleave, for a one to many 2860 * socket, is when subsequent calls to receive a message may return 2861 * parts of messages from different associations. Some implementations 2862 * may allow you to turn this value on or off. If so, when turned off, 2863 * no fragment interleave will occur (which will cause a head of line 2864 * blocking amongst multiple associations sharing the same one to many 2865 * socket). When this option is turned on, then each receive call may 2866 * come from a different association (thus the user must receive data 2867 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 2868 * association each receive belongs to. 2869 * 2870 * This option takes a boolean value. A non-zero value indicates that 2871 * fragmented interleave is on. A value of zero indicates that 2872 * fragmented interleave is off. 2873 * 2874 * Note that it is important that an implementation that allows this 2875 * option to be turned on, have it off by default. Otherwise an unaware 2876 * application using the one to many model may become confused and act 2877 * incorrectly. 2878 */ 2879static int sctp_setsockopt_fragment_interleave(struct sock *sk, 2880 char __user *optval, 2881 int optlen) 2882{ 2883 int val; 2884 2885 if (optlen != sizeof(int)) 2886 return -EINVAL; 2887 if (get_user(val, (int __user *)optval)) 2888 return -EFAULT; 2889 2890 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1; 2891 2892 return 0; 2893} 2894 2895/* 2896 * 7.1.25. Set or Get the sctp partial delivery point 2897 * (SCTP_PARTIAL_DELIVERY_POINT) 2898 * This option will set or get the SCTP partial delivery point. This 2899 * point is the size of a message where the partial delivery API will be 2900 * invoked to help free up rwnd space for the peer. Setting this to a 2901 * lower value will cause partial delivery's to happen more often. The 2902 * calls argument is an integer that sets or gets the partial delivery 2903 * point. 2904 */ 2905static int sctp_setsockopt_partial_delivery_point(struct sock *sk, 2906 char __user *optval, 2907 int optlen) 2908{ 2909 u32 val; 2910 2911 if (optlen != sizeof(u32)) 2912 return -EINVAL; 2913 if (get_user(val, (int __user *)optval)) 2914 return -EFAULT; 2915 2916 sctp_sk(sk)->pd_point = val; 2917 2918 return 0; /* is this the right error code? */ 2919} 2920 2921/* 2922 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 2923 * 2924 * This option will allow a user to change the maximum burst of packets 2925 * that can be emitted by this association. Note that the default value 2926 * is 4, and some implementations may restrict this setting so that it 2927 * can only be lowered. 2928 * 2929 * NOTE: This text doesn't seem right. Do this on a socket basis with 2930 * future associations inheriting the socket value. 2931 */ 2932static int sctp_setsockopt_maxburst(struct sock *sk, 2933 char __user *optval, 2934 int optlen) 2935{ 2936 struct sctp_assoc_value params; 2937 struct sctp_sock *sp; 2938 struct sctp_association *asoc; 2939 int val; 2940 int assoc_id = 0; 2941 2942 if (optlen < sizeof(int)) 2943 return -EINVAL; 2944 2945 if (optlen == sizeof(int)) { 2946 printk(KERN_WARNING 2947 "SCTP: Use of int in max_burst socket option deprecated\n"); 2948 printk(KERN_WARNING 2949 "SCTP: Use struct sctp_assoc_value instead\n"); 2950 if (copy_from_user(&val, optval, optlen)) 2951 return -EFAULT; 2952 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2953 if (copy_from_user(&params, optval, optlen)) 2954 return -EFAULT; 2955 val = params.assoc_value; 2956 assoc_id = params.assoc_id; 2957 } else 2958 return -EINVAL; 2959 2960 sp = sctp_sk(sk); 2961 2962 if (assoc_id != 0) { 2963 asoc = sctp_id2assoc(sk, assoc_id); 2964 if (!asoc) 2965 return -EINVAL; 2966 asoc->max_burst = val; 2967 } else 2968 sp->max_burst = val; 2969 2970 return 0; 2971} 2972 2973/* 2974 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 2975 * 2976 * This set option adds a chunk type that the user is requesting to be 2977 * received only in an authenticated way. Changes to the list of chunks 2978 * will only effect future associations on the socket. 2979 */ 2980static int sctp_setsockopt_auth_chunk(struct sock *sk, 2981 char __user *optval, 2982 int optlen) 2983{ 2984 struct sctp_authchunk val; 2985 2986 if (optlen != sizeof(struct sctp_authchunk)) 2987 return -EINVAL; 2988 if (copy_from_user(&val, optval, optlen)) 2989 return -EFAULT; 2990 2991 switch (val.sauth_chunk) { 2992 case SCTP_CID_INIT: 2993 case SCTP_CID_INIT_ACK: 2994 case SCTP_CID_SHUTDOWN_COMPLETE: 2995 case SCTP_CID_AUTH: 2996 return -EINVAL; 2997 } 2998 2999 /* add this chunk id to the endpoint */ 3000 return sctp_auth_ep_add_chunkid(sctp_sk(sk)->ep, val.sauth_chunk); 3001} 3002 3003/* 3004 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3005 * 3006 * This option gets or sets the list of HMAC algorithms that the local 3007 * endpoint requires the peer to use. 3008 */ 3009static int sctp_setsockopt_hmac_ident(struct sock *sk, 3010 char __user *optval, 3011 int optlen) 3012{ 3013 struct sctp_hmacalgo *hmacs; 3014 int err; 3015 3016 if (optlen < sizeof(struct sctp_hmacalgo)) 3017 return -EINVAL; 3018 3019 hmacs = kmalloc(optlen, GFP_KERNEL); 3020 if (!hmacs) 3021 return -ENOMEM; 3022 3023 if (copy_from_user(hmacs, optval, optlen)) { 3024 err = -EFAULT; 3025 goto out; 3026 } 3027 3028 if (hmacs->shmac_num_idents == 0 || 3029 hmacs->shmac_num_idents > SCTP_AUTH_NUM_HMACS) { 3030 err = -EINVAL; 3031 goto out; 3032 } 3033 3034 err = sctp_auth_ep_set_hmacs(sctp_sk(sk)->ep, hmacs); 3035out: 3036 kfree(hmacs); 3037 return err; 3038} 3039 3040/* 3041 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3042 * 3043 * This option will set a shared secret key which is used to build an 3044 * association shared key. 3045 */ 3046static int sctp_setsockopt_auth_key(struct sock *sk, 3047 char __user *optval, 3048 int optlen) 3049{ 3050 struct sctp_authkey *authkey; 3051 struct sctp_association *asoc; 3052 int ret; 3053 3054 if (optlen <= sizeof(struct sctp_authkey)) 3055 return -EINVAL; 3056 3057 authkey = kmalloc(optlen, GFP_KERNEL); 3058 if (!authkey) 3059 return -ENOMEM; 3060 3061 if (copy_from_user(authkey, optval, optlen)) { 3062 ret = -EFAULT; 3063 goto out; 3064 } 3065 3066 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3067 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) { 3068 ret = -EINVAL; 3069 goto out; 3070 } 3071 3072 ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey); 3073out: 3074 kfree(authkey); 3075 return ret; 3076} 3077 3078/* 3079 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3080 * 3081 * This option will get or set the active shared key to be used to build 3082 * the association shared key. 3083 */ 3084static int sctp_setsockopt_active_key(struct sock *sk, 3085 char __user *optval, 3086 int optlen) 3087{ 3088 struct sctp_authkeyid val; 3089 struct sctp_association *asoc; 3090 3091 if (optlen != sizeof(struct sctp_authkeyid)) 3092 return -EINVAL; 3093 if (copy_from_user(&val, optval, optlen)) 3094 return -EFAULT; 3095 3096 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3097 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3098 return -EINVAL; 3099 3100 return sctp_auth_set_active_key(sctp_sk(sk)->ep, asoc, 3101 val.scact_keynumber); 3102} 3103 3104/* 3105 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3106 * 3107 * This set option will delete a shared secret key from use. 3108 */ 3109static int sctp_setsockopt_del_key(struct sock *sk, 3110 char __user *optval, 3111 int optlen) 3112{ 3113 struct sctp_authkeyid val; 3114 struct sctp_association *asoc; 3115 3116 if (optlen != sizeof(struct sctp_authkeyid)) 3117 return -EINVAL; 3118 if (copy_from_user(&val, optval, optlen)) 3119 return -EFAULT; 3120 3121 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3122 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3123 return -EINVAL; 3124 3125 return sctp_auth_del_key_id(sctp_sk(sk)->ep, asoc, 3126 val.scact_keynumber); 3127 3128} 3129 3130 3131/* API 6.2 setsockopt(), getsockopt() 3132 * 3133 * Applications use setsockopt() and getsockopt() to set or retrieve 3134 * socket options. Socket options are used to change the default 3135 * behavior of sockets calls. They are described in Section 7. 3136 * 3137 * The syntax is: 3138 * 3139 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 3140 * int __user *optlen); 3141 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 3142 * int optlen); 3143 * 3144 * sd - the socket descript. 3145 * level - set to IPPROTO_SCTP for all SCTP options. 3146 * optname - the option name. 3147 * optval - the buffer to store the value of the option. 3148 * optlen - the size of the buffer. 3149 */ 3150SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname, 3151 char __user *optval, int optlen) 3152{ 3153 int retval = 0; 3154 3155 SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n", 3156 sk, optname); 3157 3158 /* I can hardly begin to describe how wrong this is. This is 3159 * so broken as to be worse than useless. The API draft 3160 * REALLY is NOT helpful here... I am not convinced that the 3161 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 3162 * are at all well-founded. 3163 */ 3164 if (level != SOL_SCTP) { 3165 struct sctp_af *af = sctp_sk(sk)->pf->af; 3166 retval = af->setsockopt(sk, level, optname, optval, optlen); 3167 goto out_nounlock; 3168 } 3169 3170 sctp_lock_sock(sk); 3171 3172 switch (optname) { 3173 case SCTP_SOCKOPT_BINDX_ADD: 3174 /* 'optlen' is the size of the addresses buffer. */ 3175 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3176 optlen, SCTP_BINDX_ADD_ADDR); 3177 break; 3178 3179 case SCTP_SOCKOPT_BINDX_REM: 3180 /* 'optlen' is the size of the addresses buffer. */ 3181 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3182 optlen, SCTP_BINDX_REM_ADDR); 3183 break; 3184 3185 case SCTP_SOCKOPT_CONNECTX: 3186 /* 'optlen' is the size of the addresses buffer. */ 3187 retval = sctp_setsockopt_connectx(sk, (struct sockaddr __user *)optval, 3188 optlen); 3189 break; 3190 3191 case SCTP_DISABLE_FRAGMENTS: 3192 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 3193 break; 3194 3195 case SCTP_EVENTS: 3196 retval = sctp_setsockopt_events(sk, optval, optlen); 3197 break; 3198 3199 case SCTP_AUTOCLOSE: 3200 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 3201 break; 3202 3203 case SCTP_PEER_ADDR_PARAMS: 3204 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 3205 break; 3206 3207 case SCTP_DELAYED_ACK_TIME: 3208 retval = sctp_setsockopt_delayed_ack_time(sk, optval, optlen); 3209 break; 3210 case SCTP_PARTIAL_DELIVERY_POINT: 3211 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); 3212 break; 3213 3214 case SCTP_INITMSG: 3215 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 3216 break; 3217 case SCTP_DEFAULT_SEND_PARAM: 3218 retval = sctp_setsockopt_default_send_param(sk, optval, 3219 optlen); 3220 break; 3221 case SCTP_PRIMARY_ADDR: 3222 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 3223 break; 3224 case SCTP_SET_PEER_PRIMARY_ADDR: 3225 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 3226 break; 3227 case SCTP_NODELAY: 3228 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 3229 break; 3230 case SCTP_RTOINFO: 3231 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 3232 break; 3233 case SCTP_ASSOCINFO: 3234 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 3235 break; 3236 case SCTP_I_WANT_MAPPED_V4_ADDR: 3237 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 3238 break; 3239 case SCTP_MAXSEG: 3240 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 3241 break; 3242 case SCTP_ADAPTATION_LAYER: 3243 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 3244 break; 3245 case SCTP_CONTEXT: 3246 retval = sctp_setsockopt_context(sk, optval, optlen); 3247 break; 3248 case SCTP_FRAGMENT_INTERLEAVE: 3249 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); 3250 break; 3251 case SCTP_MAX_BURST: 3252 retval = sctp_setsockopt_maxburst(sk, optval, optlen); 3253 break; 3254 case SCTP_AUTH_CHUNK: 3255 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen); 3256 break; 3257 case SCTP_HMAC_IDENT: 3258 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen); 3259 break; 3260 case SCTP_AUTH_KEY: 3261 retval = sctp_setsockopt_auth_key(sk, optval, optlen); 3262 break; 3263 case SCTP_AUTH_ACTIVE_KEY: 3264 retval = sctp_setsockopt_active_key(sk, optval, optlen); 3265 break; 3266 case SCTP_AUTH_DELETE_KEY: 3267 retval = sctp_setsockopt_del_key(sk, optval, optlen); 3268 break; 3269 default: 3270 retval = -ENOPROTOOPT; 3271 break; 3272 } 3273 3274 sctp_release_sock(sk); 3275 3276out_nounlock: 3277 return retval; 3278} 3279 3280/* API 3.1.6 connect() - UDP Style Syntax 3281 * 3282 * An application may use the connect() call in the UDP model to initiate an 3283 * association without sending data. 3284 * 3285 * The syntax is: 3286 * 3287 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 3288 * 3289 * sd: the socket descriptor to have a new association added to. 3290 * 3291 * nam: the address structure (either struct sockaddr_in or struct 3292 * sockaddr_in6 defined in RFC2553 [7]). 3293 * 3294 * len: the size of the address. 3295 */ 3296SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr, 3297 int addr_len) 3298{ 3299 int err = 0; 3300 struct sctp_af *af; 3301 3302 sctp_lock_sock(sk); 3303 3304 SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n", 3305 __FUNCTION__, sk, addr, addr_len); 3306 3307 /* Validate addr_len before calling common connect/connectx routine. */ 3308 af = sctp_get_af_specific(addr->sa_family); 3309 if (!af || addr_len < af->sockaddr_len) { 3310 err = -EINVAL; 3311 } else { 3312 /* Pass correct addr len to common routine (so it knows there 3313 * is only one address being passed. 3314 */ 3315 err = __sctp_connect(sk, addr, af->sockaddr_len); 3316 } 3317 3318 sctp_release_sock(sk); 3319 return err; 3320} 3321 3322/* FIXME: Write comments. */ 3323SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags) 3324{ 3325 return -EOPNOTSUPP; /* STUB */ 3326} 3327 3328/* 4.1.4 accept() - TCP Style Syntax 3329 * 3330 * Applications use accept() call to remove an established SCTP 3331 * association from the accept queue of the endpoint. A new socket 3332 * descriptor will be returned from accept() to represent the newly 3333 * formed association. 3334 */ 3335SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err) 3336{ 3337 struct sctp_sock *sp; 3338 struct sctp_endpoint *ep; 3339 struct sock *newsk = NULL; 3340 struct sctp_association *asoc; 3341 long timeo; 3342 int error = 0; 3343 3344 sctp_lock_sock(sk); 3345 3346 sp = sctp_sk(sk); 3347 ep = sp->ep; 3348 3349 if (!sctp_style(sk, TCP)) { 3350 error = -EOPNOTSUPP; 3351 goto out; 3352 } 3353 3354 if (!sctp_sstate(sk, LISTENING)) { 3355 error = -EINVAL; 3356 goto out; 3357 } 3358 3359 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 3360 3361 error = sctp_wait_for_accept(sk, timeo); 3362 if (error) 3363 goto out; 3364 3365 /* We treat the list of associations on the endpoint as the accept 3366 * queue and pick the first association on the list. 3367 */ 3368 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 3369 3370 newsk = sp->pf->create_accept_sk(sk, asoc); 3371 if (!newsk) { 3372 error = -ENOMEM; 3373 goto out; 3374 } 3375 3376 /* Populate the fields of the newsk from the oldsk and migrate the 3377 * asoc to the newsk. 3378 */ 3379 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 3380 3381out: 3382 sctp_release_sock(sk); 3383 *err = error; 3384 return newsk; 3385} 3386 3387/* The SCTP ioctl handler. */ 3388SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 3389{ 3390 return -ENOIOCTLCMD; 3391} 3392 3393/* This is the function which gets called during socket creation to 3394 * initialized the SCTP-specific portion of the sock. 3395 * The sock structure should already be zero-filled memory. 3396 */ 3397SCTP_STATIC int sctp_init_sock(struct sock *sk) 3398{ 3399 struct sctp_endpoint *ep; 3400 struct sctp_sock *sp; 3401 3402 SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk); 3403 3404 sp = sctp_sk(sk); 3405 3406 /* Initialize the SCTP per socket area. */ 3407 switch (sk->sk_type) { 3408 case SOCK_SEQPACKET: 3409 sp->type = SCTP_SOCKET_UDP; 3410 break; 3411 case SOCK_STREAM: 3412 sp->type = SCTP_SOCKET_TCP; 3413 break; 3414 default: 3415 return -ESOCKTNOSUPPORT; 3416 } 3417 3418 /* Initialize default send parameters. These parameters can be 3419 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 3420 */ 3421 sp->default_stream = 0; 3422 sp->default_ppid = 0; 3423 sp->default_flags = 0; 3424 sp->default_context = 0; 3425 sp->default_timetolive = 0; 3426 3427 sp->default_rcv_context = 0; 3428 sp->max_burst = sctp_max_burst; 3429 3430 /* Initialize default setup parameters. These parameters 3431 * can be modified with the SCTP_INITMSG socket option or 3432 * overridden by the SCTP_INIT CMSG. 3433 */ 3434 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 3435 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 3436 sp->initmsg.sinit_max_attempts = sctp_max_retrans_init; 3437 sp->initmsg.sinit_max_init_timeo = sctp_rto_max; 3438 3439 /* Initialize default RTO related parameters. These parameters can 3440 * be modified for with the SCTP_RTOINFO socket option. 3441 */ 3442 sp->rtoinfo.srto_initial = sctp_rto_initial; 3443 sp->rtoinfo.srto_max = sctp_rto_max; 3444 sp->rtoinfo.srto_min = sctp_rto_min; 3445 3446 /* Initialize default association related parameters. These parameters 3447 * can be modified with the SCTP_ASSOCINFO socket option. 3448 */ 3449 sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association; 3450 sp->assocparams.sasoc_number_peer_destinations = 0; 3451 sp->assocparams.sasoc_peer_rwnd = 0; 3452 sp->assocparams.sasoc_local_rwnd = 0; 3453 sp->assocparams.sasoc_cookie_life = sctp_valid_cookie_life; 3454 3455 /* Initialize default event subscriptions. By default, all the 3456 * options are off. 3457 */ 3458 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe)); 3459 3460 /* Default Peer Address Parameters. These defaults can 3461 * be modified via SCTP_PEER_ADDR_PARAMS 3462 */ 3463 sp->hbinterval = sctp_hb_interval; 3464 sp->pathmaxrxt = sctp_max_retrans_path; 3465 sp->pathmtu = 0; // allow default discovery 3466 sp->sackdelay = sctp_sack_timeout; 3467 sp->param_flags = SPP_HB_ENABLE | 3468 SPP_PMTUD_ENABLE | 3469 SPP_SACKDELAY_ENABLE; 3470 3471 /* If enabled no SCTP message fragmentation will be performed. 3472 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 3473 */ 3474 sp->disable_fragments = 0; 3475 3476 /* Enable Nagle algorithm by default. */ 3477 sp->nodelay = 0; 3478 3479 /* Enable by default. */ 3480 sp->v4mapped = 1; 3481 3482 /* Auto-close idle associations after the configured 3483 * number of seconds. A value of 0 disables this 3484 * feature. Configure through the SCTP_AUTOCLOSE socket option, 3485 * for UDP-style sockets only. 3486 */ 3487 sp->autoclose = 0; 3488 3489 /* User specified fragmentation limit. */ 3490 sp->user_frag = 0; 3491 3492 sp->adaptation_ind = 0; 3493 3494 sp->pf = sctp_get_pf_specific(sk->sk_family); 3495 3496 /* Control variables for partial data delivery. */ 3497 atomic_set(&sp->pd_mode, 0); 3498 skb_queue_head_init(&sp->pd_lobby); 3499 sp->frag_interleave = 0; 3500 3501 /* Create a per socket endpoint structure. Even if we 3502 * change the data structure relationships, this may still 3503 * be useful for storing pre-connect address information. 3504 */ 3505 ep = sctp_endpoint_new(sk, GFP_KERNEL); 3506 if (!ep) 3507 return -ENOMEM; 3508 3509 sp->ep = ep; 3510 sp->hmac = NULL; 3511 3512 SCTP_DBG_OBJCNT_INC(sock); 3513 atomic_inc(&sctp_sockets_allocated); 3514 return 0; 3515} 3516 3517/* Cleanup any SCTP per socket resources. */ 3518SCTP_STATIC int sctp_destroy_sock(struct sock *sk) 3519{ 3520 struct sctp_endpoint *ep; 3521 3522 SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk); 3523 3524 /* Release our hold on the endpoint. */ 3525 ep = sctp_sk(sk)->ep; 3526 sctp_endpoint_free(ep); 3527 atomic_dec(&sctp_sockets_allocated); 3528 return 0; 3529} 3530 3531/* API 4.1.7 shutdown() - TCP Style Syntax 3532 * int shutdown(int socket, int how); 3533 * 3534 * sd - the socket descriptor of the association to be closed. 3535 * how - Specifies the type of shutdown. The values are 3536 * as follows: 3537 * SHUT_RD 3538 * Disables further receive operations. No SCTP 3539 * protocol action is taken. 3540 * SHUT_WR 3541 * Disables further send operations, and initiates 3542 * the SCTP shutdown sequence. 3543 * SHUT_RDWR 3544 * Disables further send and receive operations 3545 * and initiates the SCTP shutdown sequence. 3546 */ 3547SCTP_STATIC void sctp_shutdown(struct sock *sk, int how) 3548{ 3549 struct sctp_endpoint *ep; 3550 struct sctp_association *asoc; 3551 3552 if (!sctp_style(sk, TCP)) 3553 return; 3554 3555 if (how & SEND_SHUTDOWN) { 3556 ep = sctp_sk(sk)->ep; 3557 if (!list_empty(&ep->asocs)) { 3558 asoc = list_entry(ep->asocs.next, 3559 struct sctp_association, asocs); 3560 sctp_primitive_SHUTDOWN(asoc, NULL); 3561 } 3562 } 3563} 3564 3565/* 7.2.1 Association Status (SCTP_STATUS) 3566 3567 * Applications can retrieve current status information about an 3568 * association, including association state, peer receiver window size, 3569 * number of unacked data chunks, and number of data chunks pending 3570 * receipt. This information is read-only. 3571 */ 3572static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 3573 char __user *optval, 3574 int __user *optlen) 3575{ 3576 struct sctp_status status; 3577 struct sctp_association *asoc = NULL; 3578 struct sctp_transport *transport; 3579 sctp_assoc_t associd; 3580 int retval = 0; 3581 3582 if (len < sizeof(status)) { 3583 retval = -EINVAL; 3584 goto out; 3585 } 3586 3587 len = sizeof(status); 3588 if (copy_from_user(&status, optval, len)) { 3589 retval = -EFAULT; 3590 goto out; 3591 } 3592 3593 associd = status.sstat_assoc_id; 3594 asoc = sctp_id2assoc(sk, associd); 3595 if (!asoc) { 3596 retval = -EINVAL; 3597 goto out; 3598 } 3599 3600 transport = asoc->peer.primary_path; 3601 3602 status.sstat_assoc_id = sctp_assoc2id(asoc); 3603 status.sstat_state = asoc->state; 3604 status.sstat_rwnd = asoc->peer.rwnd; 3605 status.sstat_unackdata = asoc->unack_data; 3606 3607 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 3608 status.sstat_instrms = asoc->c.sinit_max_instreams; 3609 status.sstat_outstrms = asoc->c.sinit_num_ostreams; 3610 status.sstat_fragmentation_point = asoc->frag_point; 3611 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 3612 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 3613 transport->af_specific->sockaddr_len); 3614 /* Map ipv4 address into v4-mapped-on-v6 address. */ 3615 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 3616 (union sctp_addr *)&status.sstat_primary.spinfo_address); 3617 status.sstat_primary.spinfo_state = transport->state; 3618 status.sstat_primary.spinfo_cwnd = transport->cwnd; 3619 status.sstat_primary.spinfo_srtt = transport->srtt; 3620 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 3621 status.sstat_primary.spinfo_mtu = transport->pathmtu; 3622 3623 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 3624 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 3625 3626 if (put_user(len, optlen)) { 3627 retval = -EFAULT; 3628 goto out; 3629 } 3630 3631 SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n", 3632 len, status.sstat_state, status.sstat_rwnd, 3633 status.sstat_assoc_id); 3634 3635 if (copy_to_user(optval, &status, len)) { 3636 retval = -EFAULT; 3637 goto out; 3638 } 3639 3640out: 3641 return (retval); 3642} 3643 3644 3645/* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 3646 * 3647 * Applications can retrieve information about a specific peer address 3648 * of an association, including its reachability state, congestion 3649 * window, and retransmission timer values. This information is 3650 * read-only. 3651 */ 3652static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 3653 char __user *optval, 3654 int __user *optlen) 3655{ 3656 struct sctp_paddrinfo pinfo; 3657 struct sctp_transport *transport; 3658 int retval = 0; 3659 3660 if (len < sizeof(pinfo)) { 3661 retval = -EINVAL; 3662 goto out; 3663 } 3664 3665 len = sizeof(pinfo); 3666 if (copy_from_user(&pinfo, optval, len)) { 3667 retval = -EFAULT; 3668 goto out; 3669 } 3670 3671 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 3672 pinfo.spinfo_assoc_id); 3673 if (!transport) 3674 return -EINVAL; 3675 3676 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 3677 pinfo.spinfo_state = transport->state; 3678 pinfo.spinfo_cwnd = transport->cwnd; 3679 pinfo.spinfo_srtt = transport->srtt; 3680 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 3681 pinfo.spinfo_mtu = transport->pathmtu; 3682 3683 if (pinfo.spinfo_state == SCTP_UNKNOWN) 3684 pinfo.spinfo_state = SCTP_ACTIVE; 3685 3686 if (put_user(len, optlen)) { 3687 retval = -EFAULT; 3688 goto out; 3689 } 3690 3691 if (copy_to_user(optval, &pinfo, len)) { 3692 retval = -EFAULT; 3693 goto out; 3694 } 3695 3696out: 3697 return (retval); 3698} 3699 3700/* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 3701 * 3702 * This option is a on/off flag. If enabled no SCTP message 3703 * fragmentation will be performed. Instead if a message being sent 3704 * exceeds the current PMTU size, the message will NOT be sent and 3705 * instead a error will be indicated to the user. 3706 */ 3707static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 3708 char __user *optval, int __user *optlen) 3709{ 3710 int val; 3711 3712 if (len < sizeof(int)) 3713 return -EINVAL; 3714 3715 len = sizeof(int); 3716 val = (sctp_sk(sk)->disable_fragments == 1); 3717 if (put_user(len, optlen)) 3718 return -EFAULT; 3719 if (copy_to_user(optval, &val, len)) 3720 return -EFAULT; 3721 return 0; 3722} 3723 3724/* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 3725 * 3726 * This socket option is used to specify various notifications and 3727 * ancillary data the user wishes to receive. 3728 */ 3729static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 3730 int __user *optlen) 3731{ 3732 if (len < sizeof(struct sctp_event_subscribe)) 3733 return -EINVAL; 3734 len = sizeof(struct sctp_event_subscribe); 3735 if (put_user(len, optlen)) 3736 return -EFAULT; 3737 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len)) 3738 return -EFAULT; 3739 return 0; 3740} 3741 3742/* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 3743 * 3744 * This socket option is applicable to the UDP-style socket only. When 3745 * set it will cause associations that are idle for more than the 3746 * specified number of seconds to automatically close. An association 3747 * being idle is defined an association that has NOT sent or received 3748 * user data. The special value of '0' indicates that no automatic 3749 * close of any associations should be performed. The option expects an 3750 * integer defining the number of seconds of idle time before an 3751 * association is closed. 3752 */ 3753static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 3754{ 3755 /* Applicable to UDP-style socket only */ 3756 if (sctp_style(sk, TCP)) 3757 return -EOPNOTSUPP; 3758 if (len < sizeof(int)) 3759 return -EINVAL; 3760 len = sizeof(int); 3761 if (put_user(len, optlen)) 3762 return -EFAULT; 3763 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int))) 3764 return -EFAULT; 3765 return 0; 3766} 3767 3768/* Helper routine to branch off an association to a new socket. */ 3769SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc, 3770 struct socket **sockp) 3771{ 3772 struct sock *sk = asoc->base.sk; 3773 struct socket *sock; 3774 struct inet_sock *inetsk; 3775 struct sctp_af *af; 3776 int err = 0; 3777 3778 /* An association cannot be branched off from an already peeled-off 3779 * socket, nor is this supported for tcp style sockets. 3780 */ 3781 if (!sctp_style(sk, UDP)) 3782 return -EINVAL; 3783 3784 /* Create a new socket. */ 3785 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 3786 if (err < 0) 3787 return err; 3788 3789 /* Populate the fields of the newsk from the oldsk and migrate the 3790 * asoc to the newsk. 3791 */ 3792 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 3793 3794 /* Make peeled-off sockets more like 1-1 accepted sockets. 3795 * Set the daddr and initialize id to something more random 3796 */ 3797 af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family); 3798 af->to_sk_daddr(&asoc->peer.primary_addr, sk); 3799 inetsk = inet_sk(sock->sk); 3800 inetsk->id = asoc->next_tsn ^ jiffies; 3801 3802 *sockp = sock; 3803 3804 return err; 3805} 3806 3807static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 3808{ 3809 sctp_peeloff_arg_t peeloff; 3810 struct socket *newsock; 3811 int retval = 0; 3812 struct sctp_association *asoc; 3813 3814 if (len < sizeof(sctp_peeloff_arg_t)) 3815 return -EINVAL; 3816 len = sizeof(sctp_peeloff_arg_t); 3817 if (copy_from_user(&peeloff, optval, len)) 3818 return -EFAULT; 3819 3820 asoc = sctp_id2assoc(sk, peeloff.associd); 3821 if (!asoc) { 3822 retval = -EINVAL; 3823 goto out; 3824 } 3825 3826 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __FUNCTION__, sk, asoc); 3827 3828 retval = sctp_do_peeloff(asoc, &newsock); 3829 if (retval < 0) 3830 goto out; 3831 3832 /* Map the socket to an unused fd that can be returned to the user. */ 3833 retval = sock_map_fd(newsock); 3834 if (retval < 0) { 3835 sock_release(newsock); 3836 goto out; 3837 } 3838 3839 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n", 3840 __FUNCTION__, sk, asoc, newsock->sk, retval); 3841 3842 /* Return the fd mapped to the new socket. */ 3843 peeloff.sd = retval; 3844 if (put_user(len, optlen)) 3845 return -EFAULT; 3846 if (copy_to_user(optval, &peeloff, len)) 3847 retval = -EFAULT; 3848 3849out: 3850 return retval; 3851} 3852 3853/* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 3854 * 3855 * Applications can enable or disable heartbeats for any peer address of 3856 * an association, modify an address's heartbeat interval, force a 3857 * heartbeat to be sent immediately, and adjust the address's maximum 3858 * number of retransmissions sent before an address is considered 3859 * unreachable. The following structure is used to access and modify an 3860 * address's parameters: 3861 * 3862 * struct sctp_paddrparams { 3863 * sctp_assoc_t spp_assoc_id; 3864 * struct sockaddr_storage spp_address; 3865 * uint32_t spp_hbinterval; 3866 * uint16_t spp_pathmaxrxt; 3867 * uint32_t spp_pathmtu; 3868 * uint32_t spp_sackdelay; 3869 * uint32_t spp_flags; 3870 * }; 3871 * 3872 * spp_assoc_id - (one-to-many style socket) This is filled in the 3873 * application, and identifies the association for 3874 * this query. 3875 * spp_address - This specifies which address is of interest. 3876 * spp_hbinterval - This contains the value of the heartbeat interval, 3877 * in milliseconds. If a value of zero 3878 * is present in this field then no changes are to 3879 * be made to this parameter. 3880 * spp_pathmaxrxt - This contains the maximum number of 3881 * retransmissions before this address shall be 3882 * considered unreachable. If a value of zero 3883 * is present in this field then no changes are to 3884 * be made to this parameter. 3885 * spp_pathmtu - When Path MTU discovery is disabled the value 3886 * specified here will be the "fixed" path mtu. 3887 * Note that if the spp_address field is empty 3888 * then all associations on this address will 3889 * have this fixed path mtu set upon them. 3890 * 3891 * spp_sackdelay - When delayed sack is enabled, this value specifies 3892 * the number of milliseconds that sacks will be delayed 3893 * for. This value will apply to all addresses of an 3894 * association if the spp_address field is empty. Note 3895 * also, that if delayed sack is enabled and this 3896 * value is set to 0, no change is made to the last 3897 * recorded delayed sack timer value. 3898 * 3899 * spp_flags - These flags are used to control various features 3900 * on an association. The flag field may contain 3901 * zero or more of the following options. 3902 * 3903 * SPP_HB_ENABLE - Enable heartbeats on the 3904 * specified address. Note that if the address 3905 * field is empty all addresses for the association 3906 * have heartbeats enabled upon them. 3907 * 3908 * SPP_HB_DISABLE - Disable heartbeats on the 3909 * speicifed address. Note that if the address 3910 * field is empty all addresses for the association 3911 * will have their heartbeats disabled. Note also 3912 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 3913 * mutually exclusive, only one of these two should 3914 * be specified. Enabling both fields will have 3915 * undetermined results. 3916 * 3917 * SPP_HB_DEMAND - Request a user initiated heartbeat 3918 * to be made immediately. 3919 * 3920 * SPP_PMTUD_ENABLE - This field will enable PMTU 3921 * discovery upon the specified address. Note that 3922 * if the address feild is empty then all addresses 3923 * on the association are effected. 3924 * 3925 * SPP_PMTUD_DISABLE - This field will disable PMTU 3926 * discovery upon the specified address. Note that 3927 * if the address feild is empty then all addresses 3928 * on the association are effected. Not also that 3929 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 3930 * exclusive. Enabling both will have undetermined 3931 * results. 3932 * 3933 * SPP_SACKDELAY_ENABLE - Setting this flag turns 3934 * on delayed sack. The time specified in spp_sackdelay 3935 * is used to specify the sack delay for this address. Note 3936 * that if spp_address is empty then all addresses will 3937 * enable delayed sack and take on the sack delay 3938 * value specified in spp_sackdelay. 3939 * SPP_SACKDELAY_DISABLE - Setting this flag turns 3940 * off delayed sack. If the spp_address field is blank then 3941 * delayed sack is disabled for the entire association. Note 3942 * also that this field is mutually exclusive to 3943 * SPP_SACKDELAY_ENABLE, setting both will have undefined 3944 * results. 3945 */ 3946static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 3947 char __user *optval, int __user *optlen) 3948{ 3949 struct sctp_paddrparams params; 3950 struct sctp_transport *trans = NULL; 3951 struct sctp_association *asoc = NULL; 3952 struct sctp_sock *sp = sctp_sk(sk); 3953 3954 if (len < sizeof(struct sctp_paddrparams)) 3955 return -EINVAL; 3956 len = sizeof(struct sctp_paddrparams); 3957 if (copy_from_user(&params, optval, len)) 3958 return -EFAULT; 3959 3960 /* If an address other than INADDR_ANY is specified, and 3961 * no transport is found, then the request is invalid. 3962 */ 3963 if (!sctp_is_any(( union sctp_addr *)&params.spp_address)) { 3964 trans = sctp_addr_id2transport(sk, &params.spp_address, 3965 params.spp_assoc_id); 3966 if (!trans) { 3967 SCTP_DEBUG_PRINTK("Failed no transport\n"); 3968 return -EINVAL; 3969 } 3970 } 3971 3972 /* Get association, if assoc_id != 0 and the socket is a one 3973 * to many style socket, and an association was not found, then 3974 * the id was invalid. 3975 */ 3976 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 3977 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) { 3978 SCTP_DEBUG_PRINTK("Failed no association\n"); 3979 return -EINVAL; 3980 } 3981 3982 if (trans) { 3983 /* Fetch transport values. */ 3984 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 3985 params.spp_pathmtu = trans->pathmtu; 3986 params.spp_pathmaxrxt = trans->pathmaxrxt; 3987 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 3988 3989 /*draft-11 doesn't say what to return in spp_flags*/ 3990 params.spp_flags = trans->param_flags; 3991 } else if (asoc) { 3992 /* Fetch association values. */ 3993 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 3994 params.spp_pathmtu = asoc->pathmtu; 3995 params.spp_pathmaxrxt = asoc->pathmaxrxt; 3996 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 3997 3998 /*draft-11 doesn't say what to return in spp_flags*/ 3999 params.spp_flags = asoc->param_flags; 4000 } else { 4001 /* Fetch socket values. */ 4002 params.spp_hbinterval = sp->hbinterval; 4003 params.spp_pathmtu = sp->pathmtu; 4004 params.spp_sackdelay = sp->sackdelay; 4005 params.spp_pathmaxrxt = sp->pathmaxrxt; 4006 4007 /*draft-11 doesn't say what to return in spp_flags*/ 4008 params.spp_flags = sp->param_flags; 4009 } 4010 4011 if (copy_to_user(optval, &params, len)) 4012 return -EFAULT; 4013 4014 if (put_user(len, optlen)) 4015 return -EFAULT; 4016 4017 return 0; 4018} 4019 4020/* 7.1.23. Delayed Ack Timer (SCTP_DELAYED_ACK_TIME) 4021 * 4022 * This options will get or set the delayed ack timer. The time is set 4023 * in milliseconds. If the assoc_id is 0, then this sets or gets the 4024 * endpoints default delayed ack timer value. If the assoc_id field is 4025 * non-zero, then the set or get effects the specified association. 4026 * 4027 * struct sctp_assoc_value { 4028 * sctp_assoc_t assoc_id; 4029 * uint32_t assoc_value; 4030 * }; 4031 * 4032 * assoc_id - This parameter, indicates which association the 4033 * user is preforming an action upon. Note that if 4034 * this field's value is zero then the endpoints 4035 * default value is changed (effecting future 4036 * associations only). 4037 * 4038 * assoc_value - This parameter contains the number of milliseconds 4039 * that the user is requesting the delayed ACK timer 4040 * be set to. Note that this value is defined in 4041 * the standard to be between 200 and 500 milliseconds. 4042 * 4043 * Note: a value of zero will leave the value alone, 4044 * but disable SACK delay. A non-zero value will also 4045 * enable SACK delay. 4046 */ 4047static int sctp_getsockopt_delayed_ack_time(struct sock *sk, int len, 4048 char __user *optval, 4049 int __user *optlen) 4050{ 4051 struct sctp_assoc_value params; 4052 struct sctp_association *asoc = NULL; 4053 struct sctp_sock *sp = sctp_sk(sk); 4054 4055 if (len < sizeof(struct sctp_assoc_value)) 4056 return - EINVAL; 4057 4058 len = sizeof(struct sctp_assoc_value); 4059 4060 if (copy_from_user(&params, optval, len)) 4061 return -EFAULT; 4062 4063 /* Get association, if assoc_id != 0 and the socket is a one 4064 * to many style socket, and an association was not found, then 4065 * the id was invalid. 4066 */ 4067 asoc = sctp_id2assoc(sk, params.assoc_id); 4068 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 4069 return -EINVAL; 4070 4071 if (asoc) { 4072 /* Fetch association values. */ 4073 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) 4074 params.assoc_value = jiffies_to_msecs( 4075 asoc->sackdelay); 4076 else 4077 params.assoc_value = 0; 4078 } else { 4079 /* Fetch socket values. */ 4080 if (sp->param_flags & SPP_SACKDELAY_ENABLE) 4081 params.assoc_value = sp->sackdelay; 4082 else 4083 params.assoc_value = 0; 4084 } 4085 4086 if (copy_to_user(optval, &params, len)) 4087 return -EFAULT; 4088 4089 if (put_user(len, optlen)) 4090 return -EFAULT; 4091 4092 return 0; 4093} 4094 4095/* 7.1.3 Initialization Parameters (SCTP_INITMSG) 4096 * 4097 * Applications can specify protocol parameters for the default association 4098 * initialization. The option name argument to setsockopt() and getsockopt() 4099 * is SCTP_INITMSG. 4100 * 4101 * Setting initialization parameters is effective only on an unconnected 4102 * socket (for UDP-style sockets only future associations are effected 4103 * by the change). With TCP-style sockets, this option is inherited by 4104 * sockets derived from a listener socket. 4105 */ 4106static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 4107{ 4108 if (len < sizeof(struct sctp_initmsg)) 4109 return -EINVAL; 4110 len = sizeof(struct sctp_initmsg); 4111 if (put_user(len, optlen)) 4112 return -EFAULT; 4113 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 4114 return -EFAULT; 4115 return 0; 4116} 4117 4118static int sctp_getsockopt_peer_addrs_num_old(struct sock *sk, int len, 4119 char __user *optval, 4120 int __user *optlen) 4121{ 4122 sctp_assoc_t id; 4123 struct sctp_association *asoc; 4124 struct list_head *pos; 4125 int cnt = 0; 4126 4127 if (len < sizeof(sctp_assoc_t)) 4128 return -EINVAL; 4129 4130 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t))) 4131 return -EFAULT; 4132 4133 /* For UDP-style sockets, id specifies the association to query. */ 4134 asoc = sctp_id2assoc(sk, id); 4135 if (!asoc) 4136 return -EINVAL; 4137 4138 list_for_each(pos, &asoc->peer.transport_addr_list) { 4139 cnt ++; 4140 } 4141 4142 return cnt; 4143} 4144 4145/* 4146 * Old API for getting list of peer addresses. Does not work for 32-bit 4147 * programs running on a 64-bit kernel 4148 */ 4149static int sctp_getsockopt_peer_addrs_old(struct sock *sk, int len, 4150 char __user *optval, 4151 int __user *optlen) 4152{ 4153 struct sctp_association *asoc; 4154 struct list_head *pos; 4155 int cnt = 0; 4156 struct sctp_getaddrs_old getaddrs; 4157 struct sctp_transport *from; 4158 void __user *to; 4159 union sctp_addr temp; 4160 struct sctp_sock *sp = sctp_sk(sk); 4161 int addrlen; 4162 4163 if (len < sizeof(struct sctp_getaddrs_old)) 4164 return -EINVAL; 4165 4166 len = sizeof(struct sctp_getaddrs_old); 4167 4168 if (copy_from_user(&getaddrs, optval, len)) 4169 return -EFAULT; 4170 4171 if (getaddrs.addr_num <= 0) return -EINVAL; 4172 4173 /* For UDP-style sockets, id specifies the association to query. */ 4174 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4175 if (!asoc) 4176 return -EINVAL; 4177 4178 to = (void __user *)getaddrs.addrs; 4179 list_for_each(pos, &asoc->peer.transport_addr_list) { 4180 from = list_entry(pos, struct sctp_transport, transports); 4181 memcpy(&temp, &from->ipaddr, sizeof(temp)); 4182 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4183 addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len; 4184 if (copy_to_user(to, &temp, addrlen)) 4185 return -EFAULT; 4186 to += addrlen ; 4187 cnt ++; 4188 if (cnt >= getaddrs.addr_num) break; 4189 } 4190 getaddrs.addr_num = cnt; 4191 if (put_user(len, optlen)) 4192 return -EFAULT; 4193 if (copy_to_user(optval, &getaddrs, len)) 4194 return -EFAULT; 4195 4196 return 0; 4197} 4198 4199static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 4200 char __user *optval, int __user *optlen) 4201{ 4202 struct sctp_association *asoc; 4203 struct list_head *pos; 4204 int cnt = 0; 4205 struct sctp_getaddrs getaddrs; 4206 struct sctp_transport *from; 4207 void __user *to; 4208 union sctp_addr temp; 4209 struct sctp_sock *sp = sctp_sk(sk); 4210 int addrlen; 4211 size_t space_left; 4212 int bytes_copied; 4213 4214 if (len < sizeof(struct sctp_getaddrs)) 4215 return -EINVAL; 4216 4217 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 4218 return -EFAULT; 4219 4220 /* For UDP-style sockets, id specifies the association to query. */ 4221 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4222 if (!asoc) 4223 return -EINVAL; 4224 4225 to = optval + offsetof(struct sctp_getaddrs,addrs); 4226 space_left = len - offsetof(struct sctp_getaddrs,addrs); 4227 4228 list_for_each(pos, &asoc->peer.transport_addr_list) { 4229 from = list_entry(pos, struct sctp_transport, transports); 4230 memcpy(&temp, &from->ipaddr, sizeof(temp)); 4231 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4232 addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len; 4233 if (space_left < addrlen) 4234 return -ENOMEM; 4235 if (copy_to_user(to, &temp, addrlen)) 4236 return -EFAULT; 4237 to += addrlen; 4238 cnt++; 4239 space_left -= addrlen; 4240 } 4241 4242 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 4243 return -EFAULT; 4244 bytes_copied = ((char __user *)to) - optval; 4245 if (put_user(bytes_copied, optlen)) 4246 return -EFAULT; 4247 4248 return 0; 4249} 4250 4251static int sctp_getsockopt_local_addrs_num_old(struct sock *sk, int len, 4252 char __user *optval, 4253 int __user *optlen) 4254{ 4255 sctp_assoc_t id; 4256 struct sctp_bind_addr *bp; 4257 struct sctp_association *asoc; 4258 struct sctp_sockaddr_entry *addr; 4259 int cnt = 0; 4260 4261 if (len < sizeof(sctp_assoc_t)) 4262 return -EINVAL; 4263 4264 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t))) 4265 return -EFAULT; 4266 4267 /* 4268 * For UDP-style sockets, id specifies the association to query. 4269 * If the id field is set to the value '0' then the locally bound 4270 * addresses are returned without regard to any particular 4271 * association. 4272 */ 4273 if (0 == id) { 4274 bp = &sctp_sk(sk)->ep->base.bind_addr; 4275 } else { 4276 asoc = sctp_id2assoc(sk, id); 4277 if (!asoc) 4278 return -EINVAL; 4279 bp = &asoc->base.bind_addr; 4280 } 4281 4282 /* If the endpoint is bound to 0.0.0.0 or ::0, count the valid 4283 * addresses from the global local address list. 4284 */ 4285 if (sctp_list_single_entry(&bp->address_list)) { 4286 addr = list_entry(bp->address_list.next, 4287 struct sctp_sockaddr_entry, list); 4288 if (sctp_is_any(&addr->a)) { 4289 rcu_read_lock(); 4290 list_for_each_entry_rcu(addr, 4291 &sctp_local_addr_list, list) { 4292 if (!addr->valid) 4293 continue; 4294 4295 if ((PF_INET == sk->sk_family) && 4296 (AF_INET6 == addr->a.sa.sa_family)) 4297 continue; 4298 4299 cnt++; 4300 } 4301 rcu_read_unlock(); 4302 } else { 4303 cnt = 1; 4304 } 4305 goto done; 4306 } 4307 4308 /* Protection on the bound address list is not needed, 4309 * since in the socket option context we hold the socket lock, 4310 * so there is no way that the bound address list can change. 4311 */ 4312 list_for_each_entry(addr, &bp->address_list, list) { 4313 cnt ++; 4314 } 4315done: 4316 return cnt; 4317} 4318 4319/* Helper function that copies local addresses to user and returns the number 4320 * of addresses copied. 4321 */ 4322static int sctp_copy_laddrs_old(struct sock *sk, __u16 port, 4323 int max_addrs, void *to, 4324 int *bytes_copied) 4325{ 4326 struct sctp_sockaddr_entry *addr; 4327 union sctp_addr temp; 4328 int cnt = 0; 4329 int addrlen; 4330 4331 rcu_read_lock(); 4332 list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) { 4333 if (!addr->valid) 4334 continue; 4335 4336 if ((PF_INET == sk->sk_family) && 4337 (AF_INET6 == addr->a.sa.sa_family)) 4338 continue; 4339 memcpy(&temp, &addr->a, sizeof(temp)); 4340 if (!temp.v4.sin_port) 4341 temp.v4.sin_port = htons(port); 4342 4343 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 4344 &temp); 4345 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4346 memcpy(to, &temp, addrlen); 4347 4348 to += addrlen; 4349 *bytes_copied += addrlen; 4350 cnt ++; 4351 if (cnt >= max_addrs) break; 4352 } 4353 rcu_read_unlock(); 4354 4355 return cnt; 4356} 4357 4358static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 4359 size_t space_left, int *bytes_copied) 4360{ 4361 struct sctp_sockaddr_entry *addr; 4362 union sctp_addr temp; 4363 int cnt = 0; 4364 int addrlen; 4365 4366 rcu_read_lock(); 4367 list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) { 4368 if (!addr->valid) 4369 continue; 4370 4371 if ((PF_INET == sk->sk_family) && 4372 (AF_INET6 == addr->a.sa.sa_family)) 4373 continue; 4374 memcpy(&temp, &addr->a, sizeof(temp)); 4375 if (!temp.v4.sin_port) 4376 temp.v4.sin_port = htons(port); 4377 4378 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 4379 &temp); 4380 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4381 if (space_left < addrlen) { 4382 cnt = -ENOMEM; 4383 break; 4384 } 4385 memcpy(to, &temp, addrlen); 4386 4387 to += addrlen; 4388 cnt ++; 4389 space_left -= addrlen; 4390 *bytes_copied += addrlen; 4391 } 4392 rcu_read_unlock(); 4393 4394 return cnt; 4395} 4396 4397/* Old API for getting list of local addresses. Does not work for 32-bit 4398 * programs running on a 64-bit kernel 4399 */ 4400static int sctp_getsockopt_local_addrs_old(struct sock *sk, int len, 4401 char __user *optval, int __user *optlen) 4402{ 4403 struct sctp_bind_addr *bp; 4404 struct sctp_association *asoc; 4405 int cnt = 0; 4406 struct sctp_getaddrs_old getaddrs; 4407 struct sctp_sockaddr_entry *addr; 4408 void __user *to; 4409 union sctp_addr temp; 4410 struct sctp_sock *sp = sctp_sk(sk); 4411 int addrlen; 4412 int err = 0; 4413 void *addrs; 4414 void *buf; 4415 int bytes_copied = 0; 4416 4417 if (len < sizeof(struct sctp_getaddrs_old)) 4418 return -EINVAL; 4419 4420 len = sizeof(struct sctp_getaddrs_old); 4421 if (copy_from_user(&getaddrs, optval, len)) 4422 return -EFAULT; 4423 4424 if (getaddrs.addr_num <= 0) return -EINVAL; 4425 /* 4426 * For UDP-style sockets, id specifies the association to query. 4427 * If the id field is set to the value '0' then the locally bound 4428 * addresses are returned without regard to any particular 4429 * association. 4430 */ 4431 if (0 == getaddrs.assoc_id) { 4432 bp = &sctp_sk(sk)->ep->base.bind_addr; 4433 } else { 4434 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4435 if (!asoc) 4436 return -EINVAL; 4437 bp = &asoc->base.bind_addr; 4438 } 4439 4440 to = getaddrs.addrs; 4441 4442 /* Allocate space for a local instance of packed array to hold all 4443 * the data. We store addresses here first and then put write them 4444 * to the user in one shot. 4445 */ 4446 addrs = kmalloc(sizeof(union sctp_addr) * getaddrs.addr_num, 4447 GFP_KERNEL); 4448 if (!addrs) 4449 return -ENOMEM; 4450 4451 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 4452 * addresses from the global local address list. 4453 */ 4454 if (sctp_list_single_entry(&bp->address_list)) { 4455 addr = list_entry(bp->address_list.next, 4456 struct sctp_sockaddr_entry, list); 4457 if (sctp_is_any(&addr->a)) { 4458 cnt = sctp_copy_laddrs_old(sk, bp->port, 4459 getaddrs.addr_num, 4460 addrs, &bytes_copied); 4461 goto copy_getaddrs; 4462 } 4463 } 4464 4465 buf = addrs; 4466 /* Protection on the bound address list is not needed since 4467 * in the socket option context we hold a socket lock and 4468 * thus the bound address list can't change. 4469 */ 4470 list_for_each_entry(addr, &bp->address_list, list) { 4471 memcpy(&temp, &addr->a, sizeof(temp)); 4472 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4473 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4474 memcpy(buf, &temp, addrlen); 4475 buf += addrlen; 4476 bytes_copied += addrlen; 4477 cnt ++; 4478 if (cnt >= getaddrs.addr_num) break; 4479 } 4480 4481copy_getaddrs: 4482 /* copy the entire address list into the user provided space */ 4483 if (copy_to_user(to, addrs, bytes_copied)) { 4484 err = -EFAULT; 4485 goto error; 4486 } 4487 4488 /* copy the leading structure back to user */ 4489 getaddrs.addr_num = cnt; 4490 if (copy_to_user(optval, &getaddrs, len)) 4491 err = -EFAULT; 4492 4493error: 4494 kfree(addrs); 4495 return err; 4496} 4497 4498static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 4499 char __user *optval, int __user *optlen) 4500{ 4501 struct sctp_bind_addr *bp; 4502 struct sctp_association *asoc; 4503 int cnt = 0; 4504 struct sctp_getaddrs getaddrs; 4505 struct sctp_sockaddr_entry *addr; 4506 void __user *to; 4507 union sctp_addr temp; 4508 struct sctp_sock *sp = sctp_sk(sk); 4509 int addrlen; 4510 int err = 0; 4511 size_t space_left; 4512 int bytes_copied = 0; 4513 void *addrs; 4514 void *buf; 4515 4516 if (len < sizeof(struct sctp_getaddrs)) 4517 return -EINVAL; 4518 4519 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 4520 return -EFAULT; 4521 4522 /* 4523 * For UDP-style sockets, id specifies the association to query. 4524 * If the id field is set to the value '0' then the locally bound 4525 * addresses are returned without regard to any particular 4526 * association. 4527 */ 4528 if (0 == getaddrs.assoc_id) { 4529 bp = &sctp_sk(sk)->ep->base.bind_addr; 4530 } else { 4531 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4532 if (!asoc) 4533 return -EINVAL; 4534 bp = &asoc->base.bind_addr; 4535 } 4536 4537 to = optval + offsetof(struct sctp_getaddrs,addrs); 4538 space_left = len - offsetof(struct sctp_getaddrs,addrs); 4539 4540 addrs = kmalloc(space_left, GFP_KERNEL); 4541 if (!addrs) 4542 return -ENOMEM; 4543 4544 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 4545 * addresses from the global local address list. 4546 */ 4547 if (sctp_list_single_entry(&bp->address_list)) { 4548 addr = list_entry(bp->address_list.next, 4549 struct sctp_sockaddr_entry, list); 4550 if (sctp_is_any(&addr->a)) { 4551 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 4552 space_left, &bytes_copied); 4553 if (cnt < 0) { 4554 err = cnt; 4555 goto out; 4556 } 4557 goto copy_getaddrs; 4558 } 4559 } 4560 4561 buf = addrs; 4562 /* Protection on the bound address list is not needed since 4563 * in the socket option context we hold a socket lock and 4564 * thus the bound address list can't change. 4565 */ 4566 list_for_each_entry(addr, &bp->address_list, list) { 4567 memcpy(&temp, &addr->a, sizeof(temp)); 4568 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4569 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4570 if (space_left < addrlen) { 4571 err = -ENOMEM; /*fixme: right error?*/ 4572 goto out; 4573 } 4574 memcpy(buf, &temp, addrlen); 4575 buf += addrlen; 4576 bytes_copied += addrlen; 4577 cnt ++; 4578 space_left -= addrlen; 4579 } 4580 4581copy_getaddrs: 4582 if (copy_to_user(to, addrs, bytes_copied)) { 4583 err = -EFAULT; 4584 goto out; 4585 } 4586 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 4587 err = -EFAULT; 4588 goto out; 4589 } 4590 if (put_user(bytes_copied, optlen)) 4591 err = -EFAULT; 4592out: 4593 kfree(addrs); 4594 return err; 4595} 4596 4597/* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 4598 * 4599 * Requests that the local SCTP stack use the enclosed peer address as 4600 * the association primary. The enclosed address must be one of the 4601 * association peer's addresses. 4602 */ 4603static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 4604 char __user *optval, int __user *optlen) 4605{ 4606 struct sctp_prim prim; 4607 struct sctp_association *asoc; 4608 struct sctp_sock *sp = sctp_sk(sk); 4609 4610 if (len < sizeof(struct sctp_prim)) 4611 return -EINVAL; 4612 4613 len = sizeof(struct sctp_prim); 4614 4615 if (copy_from_user(&prim, optval, len)) 4616 return -EFAULT; 4617 4618 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 4619 if (!asoc) 4620 return -EINVAL; 4621 4622 if (!asoc->peer.primary_path) 4623 return -ENOTCONN; 4624 4625 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 4626 asoc->peer.primary_path->af_specific->sockaddr_len); 4627 4628 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, 4629 (union sctp_addr *)&prim.ssp_addr); 4630 4631 if (put_user(len, optlen)) 4632 return -EFAULT; 4633 if (copy_to_user(optval, &prim, len)) 4634 return -EFAULT; 4635 4636 return 0; 4637} 4638 4639/* 4640 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 4641 * 4642 * Requests that the local endpoint set the specified Adaptation Layer 4643 * Indication parameter for all future INIT and INIT-ACK exchanges. 4644 */ 4645static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 4646 char __user *optval, int __user *optlen) 4647{ 4648 struct sctp_setadaptation adaptation; 4649 4650 if (len < sizeof(struct sctp_setadaptation)) 4651 return -EINVAL; 4652 4653 len = sizeof(struct sctp_setadaptation); 4654 4655 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 4656 4657 if (put_user(len, optlen)) 4658 return -EFAULT; 4659 if (copy_to_user(optval, &adaptation, len)) 4660 return -EFAULT; 4661 4662 return 0; 4663} 4664 4665/* 4666 * 4667 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 4668 * 4669 * Applications that wish to use the sendto() system call may wish to 4670 * specify a default set of parameters that would normally be supplied 4671 * through the inclusion of ancillary data. This socket option allows 4672 * such an application to set the default sctp_sndrcvinfo structure. 4673 4674 4675 * The application that wishes to use this socket option simply passes 4676 * in to this call the sctp_sndrcvinfo structure defined in Section 4677 * 5.2.2) The input parameters accepted by this call include 4678 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 4679 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 4680 * to this call if the caller is using the UDP model. 4681 * 4682 * For getsockopt, it get the default sctp_sndrcvinfo structure. 4683 */ 4684static int sctp_getsockopt_default_send_param(struct sock *sk, 4685 int len, char __user *optval, 4686 int __user *optlen) 4687{ 4688 struct sctp_sndrcvinfo info; 4689 struct sctp_association *asoc; 4690 struct sctp_sock *sp = sctp_sk(sk); 4691 4692 if (len < sizeof(struct sctp_sndrcvinfo)) 4693 return -EINVAL; 4694 4695 len = sizeof(struct sctp_sndrcvinfo); 4696 4697 if (copy_from_user(&info, optval, len)) 4698 return -EFAULT; 4699 4700 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 4701 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 4702 return -EINVAL; 4703 4704 if (asoc) { 4705 info.sinfo_stream = asoc->default_stream; 4706 info.sinfo_flags = asoc->default_flags; 4707 info.sinfo_ppid = asoc->default_ppid; 4708 info.sinfo_context = asoc->default_context; 4709 info.sinfo_timetolive = asoc->default_timetolive; 4710 } else { 4711 info.sinfo_stream = sp->default_stream; 4712 info.sinfo_flags = sp->default_flags; 4713 info.sinfo_ppid = sp->default_ppid; 4714 info.sinfo_context = sp->default_context; 4715 info.sinfo_timetolive = sp->default_timetolive; 4716 } 4717 4718 if (put_user(len, optlen)) 4719 return -EFAULT; 4720 if (copy_to_user(optval, &info, len)) 4721 return -EFAULT; 4722 4723 return 0; 4724} 4725 4726/* 4727 * 4728 * 7.1.5 SCTP_NODELAY 4729 * 4730 * Turn on/off any Nagle-like algorithm. This means that packets are 4731 * generally sent as soon as possible and no unnecessary delays are 4732 * introduced, at the cost of more packets in the network. Expects an 4733 * integer boolean flag. 4734 */ 4735 4736static int sctp_getsockopt_nodelay(struct sock *sk, int len, 4737 char __user *optval, int __user *optlen) 4738{ 4739 int val; 4740 4741 if (len < sizeof(int)) 4742 return -EINVAL; 4743 4744 len = sizeof(int); 4745 val = (sctp_sk(sk)->nodelay == 1); 4746 if (put_user(len, optlen)) 4747 return -EFAULT; 4748 if (copy_to_user(optval, &val, len)) 4749 return -EFAULT; 4750 return 0; 4751} 4752 4753/* 4754 * 4755 * 7.1.1 SCTP_RTOINFO 4756 * 4757 * The protocol parameters used to initialize and bound retransmission 4758 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 4759 * and modify these parameters. 4760 * All parameters are time values, in milliseconds. A value of 0, when 4761 * modifying the parameters, indicates that the current value should not 4762 * be changed. 4763 * 4764 */ 4765static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 4766 char __user *optval, 4767 int __user *optlen) { 4768 struct sctp_rtoinfo rtoinfo; 4769 struct sctp_association *asoc; 4770 4771 if (len < sizeof (struct sctp_rtoinfo)) 4772 return -EINVAL; 4773 4774 len = sizeof(struct sctp_rtoinfo); 4775 4776 if (copy_from_user(&rtoinfo, optval, len)) 4777 return -EFAULT; 4778 4779 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 4780 4781 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 4782 return -EINVAL; 4783 4784 /* Values corresponding to the specific association. */ 4785 if (asoc) { 4786 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 4787 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 4788 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 4789 } else { 4790 /* Values corresponding to the endpoint. */ 4791 struct sctp_sock *sp = sctp_sk(sk); 4792 4793 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 4794 rtoinfo.srto_max = sp->rtoinfo.srto_max; 4795 rtoinfo.srto_min = sp->rtoinfo.srto_min; 4796 } 4797 4798 if (put_user(len, optlen)) 4799 return -EFAULT; 4800 4801 if (copy_to_user(optval, &rtoinfo, len)) 4802 return -EFAULT; 4803 4804 return 0; 4805} 4806 4807/* 4808 * 4809 * 7.1.2 SCTP_ASSOCINFO 4810 * 4811 * This option is used to tune the maximum retransmission attempts 4812 * of the association. 4813 * Returns an error if the new association retransmission value is 4814 * greater than the sum of the retransmission value of the peer. 4815 * See [SCTP] for more information. 4816 * 4817 */ 4818static int sctp_getsockopt_associnfo(struct sock *sk, int len, 4819 char __user *optval, 4820 int __user *optlen) 4821{ 4822 4823 struct sctp_assocparams assocparams; 4824 struct sctp_association *asoc; 4825 struct list_head *pos; 4826 int cnt = 0; 4827 4828 if (len < sizeof (struct sctp_assocparams)) 4829 return -EINVAL; 4830 4831 len = sizeof(struct sctp_assocparams); 4832 4833 if (copy_from_user(&assocparams, optval, len)) 4834 return -EFAULT; 4835 4836 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 4837 4838 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 4839 return -EINVAL; 4840 4841 /* Values correspoinding to the specific association */ 4842 if (asoc) { 4843 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 4844 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 4845 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 4846 assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec 4847 * 1000) + 4848 (asoc->cookie_life.tv_usec 4849 / 1000); 4850 4851 list_for_each(pos, &asoc->peer.transport_addr_list) { 4852 cnt ++; 4853 } 4854 4855 assocparams.sasoc_number_peer_destinations = cnt; 4856 } else { 4857 /* Values corresponding to the endpoint */ 4858 struct sctp_sock *sp = sctp_sk(sk); 4859 4860 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 4861 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 4862 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 4863 assocparams.sasoc_cookie_life = 4864 sp->assocparams.sasoc_cookie_life; 4865 assocparams.sasoc_number_peer_destinations = 4866 sp->assocparams. 4867 sasoc_number_peer_destinations; 4868 } 4869 4870 if (put_user(len, optlen)) 4871 return -EFAULT; 4872 4873 if (copy_to_user(optval, &assocparams, len)) 4874 return -EFAULT; 4875 4876 return 0; 4877} 4878 4879/* 4880 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 4881 * 4882 * This socket option is a boolean flag which turns on or off mapped V4 4883 * addresses. If this option is turned on and the socket is type 4884 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 4885 * If this option is turned off, then no mapping will be done of V4 4886 * addresses and a user will receive both PF_INET6 and PF_INET type 4887 * addresses on the socket. 4888 */ 4889static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 4890 char __user *optval, int __user *optlen) 4891{ 4892 int val; 4893 struct sctp_sock *sp = sctp_sk(sk); 4894 4895 if (len < sizeof(int)) 4896 return -EINVAL; 4897 4898 len = sizeof(int); 4899 val = sp->v4mapped; 4900 if (put_user(len, optlen)) 4901 return -EFAULT; 4902 if (copy_to_user(optval, &val, len)) 4903 return -EFAULT; 4904 4905 return 0; 4906} 4907 4908/* 4909 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 4910 * (chapter and verse is quoted at sctp_setsockopt_context()) 4911 */ 4912static int sctp_getsockopt_context(struct sock *sk, int len, 4913 char __user *optval, int __user *optlen) 4914{ 4915 struct sctp_assoc_value params; 4916 struct sctp_sock *sp; 4917 struct sctp_association *asoc; 4918 4919 if (len < sizeof(struct sctp_assoc_value)) 4920 return -EINVAL; 4921 4922 len = sizeof(struct sctp_assoc_value); 4923 4924 if (copy_from_user(&params, optval, len)) 4925 return -EFAULT; 4926 4927 sp = sctp_sk(sk); 4928 4929 if (params.assoc_id != 0) { 4930 asoc = sctp_id2assoc(sk, params.assoc_id); 4931 if (!asoc) 4932 return -EINVAL; 4933 params.assoc_value = asoc->default_rcv_context; 4934 } else { 4935 params.assoc_value = sp->default_rcv_context; 4936 } 4937 4938 if (put_user(len, optlen)) 4939 return -EFAULT; 4940 if (copy_to_user(optval, &params, len)) 4941 return -EFAULT; 4942 4943 return 0; 4944} 4945 4946/* 4947 * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG) 4948 * 4949 * This socket option specifies the maximum size to put in any outgoing 4950 * SCTP chunk. If a message is larger than this size it will be 4951 * fragmented by SCTP into the specified size. Note that the underlying 4952 * SCTP implementation may fragment into smaller sized chunks when the 4953 * PMTU of the underlying association is smaller than the value set by 4954 * the user. 4955 */ 4956static int sctp_getsockopt_maxseg(struct sock *sk, int len, 4957 char __user *optval, int __user *optlen) 4958{ 4959 int val; 4960 4961 if (len < sizeof(int)) 4962 return -EINVAL; 4963 4964 len = sizeof(int); 4965 4966 val = sctp_sk(sk)->user_frag; 4967 if (put_user(len, optlen)) 4968 return -EFAULT; 4969 if (copy_to_user(optval, &val, len)) 4970 return -EFAULT; 4971 4972 return 0; 4973} 4974 4975/* 4976 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 4977 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 4978 */ 4979static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 4980 char __user *optval, int __user *optlen) 4981{ 4982 int val; 4983 4984 if (len < sizeof(int)) 4985 return -EINVAL; 4986 4987 len = sizeof(int); 4988 4989 val = sctp_sk(sk)->frag_interleave; 4990 if (put_user(len, optlen)) 4991 return -EFAULT; 4992 if (copy_to_user(optval, &val, len)) 4993 return -EFAULT; 4994 4995 return 0; 4996} 4997 4998/* 4999 * 7.1.25. Set or Get the sctp partial delivery point 5000 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 5001 */ 5002static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 5003 char __user *optval, 5004 int __user *optlen) 5005{ 5006 u32 val; 5007 5008 if (len < sizeof(u32)) 5009 return -EINVAL; 5010 5011 len = sizeof(u32); 5012 5013 val = sctp_sk(sk)->pd_point; 5014 if (put_user(len, optlen)) 5015 return -EFAULT; 5016 if (copy_to_user(optval, &val, len)) 5017 return -EFAULT; 5018 5019 return -ENOTSUPP; 5020} 5021 5022/* 5023 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 5024 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 5025 */ 5026static int sctp_getsockopt_maxburst(struct sock *sk, int len, 5027 char __user *optval, 5028 int __user *optlen) 5029{ 5030 struct sctp_assoc_value params; 5031 struct sctp_sock *sp; 5032 struct sctp_association *asoc; 5033 5034 if (len < sizeof(int)) 5035 return -EINVAL; 5036 5037 if (len == sizeof(int)) { 5038 printk(KERN_WARNING 5039 "SCTP: Use of int in max_burst socket option deprecated\n"); 5040 printk(KERN_WARNING 5041 "SCTP: Use struct sctp_assoc_value instead\n"); 5042 params.assoc_id = 0; 5043 } else if (len == sizeof (struct sctp_assoc_value)) { 5044 if (copy_from_user(&params, optval, len)) 5045 return -EFAULT; 5046 } else 5047 return -EINVAL; 5048 5049 sp = sctp_sk(sk); 5050 5051 if (params.assoc_id != 0) { 5052 asoc = sctp_id2assoc(sk, params.assoc_id); 5053 if (!asoc) 5054 return -EINVAL; 5055 params.assoc_value = asoc->max_burst; 5056 } else 5057 params.assoc_value = sp->max_burst; 5058 5059 if (len == sizeof(int)) { 5060 if (copy_to_user(optval, &params.assoc_value, len)) 5061 return -EFAULT; 5062 } else { 5063 if (copy_to_user(optval, &params, len)) 5064 return -EFAULT; 5065 } 5066 5067 return 0; 5068 5069} 5070 5071static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 5072 char __user *optval, int __user *optlen) 5073{ 5074 struct sctp_hmac_algo_param *hmacs; 5075 __u16 param_len; 5076 5077 hmacs = sctp_sk(sk)->ep->auth_hmacs_list; 5078 param_len = ntohs(hmacs->param_hdr.length); 5079 5080 if (len < param_len) 5081 return -EINVAL; 5082 if (put_user(len, optlen)) 5083 return -EFAULT; 5084 if (copy_to_user(optval, hmacs->hmac_ids, len)) 5085 return -EFAULT; 5086 5087 return 0; 5088} 5089 5090static int sctp_getsockopt_active_key(struct sock *sk, int len, 5091 char __user *optval, int __user *optlen) 5092{ 5093 struct sctp_authkeyid val; 5094 struct sctp_association *asoc; 5095 5096 if (len < sizeof(struct sctp_authkeyid)) 5097 return -EINVAL; 5098 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid))) 5099 return -EFAULT; 5100 5101 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 5102 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 5103 return -EINVAL; 5104 5105 if (asoc) 5106 val.scact_keynumber = asoc->active_key_id; 5107 else 5108 val.scact_keynumber = sctp_sk(sk)->ep->active_key_id; 5109 5110 return 0; 5111} 5112 5113static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 5114 char __user *optval, int __user *optlen) 5115{ 5116 struct sctp_authchunks __user *p = (void __user *)optval; 5117 struct sctp_authchunks val; 5118 struct sctp_association *asoc; 5119 struct sctp_chunks_param *ch; 5120 u32 num_chunks; 5121 char __user *to; 5122 5123 if (len <= sizeof(struct sctp_authchunks)) 5124 return -EINVAL; 5125 5126 if (copy_from_user(&val, p, sizeof(struct sctp_authchunks))) 5127 return -EFAULT; 5128 5129 to = p->gauth_chunks; 5130 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 5131 if (!asoc) 5132 return -EINVAL; 5133 5134 ch = asoc->peer.peer_chunks; 5135 5136 /* See if the user provided enough room for all the data */ 5137 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t); 5138 if (len < num_chunks) 5139 return -EINVAL; 5140 5141 len = num_chunks; 5142 if (put_user(len, optlen)) 5143 return -EFAULT; 5144 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 5145 return -EFAULT; 5146 if (copy_to_user(to, ch->chunks, len)) 5147 return -EFAULT; 5148 5149 return 0; 5150} 5151 5152static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 5153 char __user *optval, int __user *optlen) 5154{ 5155 struct sctp_authchunks __user *p = (void __user *)optval; 5156 struct sctp_authchunks val; 5157 struct sctp_association *asoc; 5158 struct sctp_chunks_param *ch; 5159 u32 num_chunks; 5160 char __user *to; 5161 5162 if (len <= sizeof(struct sctp_authchunks)) 5163 return -EINVAL; 5164 5165 if (copy_from_user(&val, p, sizeof(struct sctp_authchunks))) 5166 return -EFAULT; 5167 5168 to = p->gauth_chunks; 5169 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 5170 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP)) 5171 return -EINVAL; 5172 5173 if (asoc) 5174 ch = (struct sctp_chunks_param*)asoc->c.auth_chunks; 5175 else 5176 ch = sctp_sk(sk)->ep->auth_chunk_list; 5177 5178 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t); 5179 if (len < num_chunks) 5180 return -EINVAL; 5181 5182 len = num_chunks; 5183 if (put_user(len, optlen)) 5184 return -EFAULT; 5185 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 5186 return -EFAULT; 5187 if (copy_to_user(to, ch->chunks, len)) 5188 return -EFAULT; 5189 5190 return 0; 5191} 5192 5193SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname, 5194 char __user *optval, int __user *optlen) 5195{ 5196 int retval = 0; 5197 int len; 5198 5199 SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n", 5200 sk, optname); 5201 5202 /* I can hardly begin to describe how wrong this is. This is 5203 * so broken as to be worse than useless. The API draft 5204 * REALLY is NOT helpful here... I am not convinced that the 5205 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 5206 * are at all well-founded. 5207 */ 5208 if (level != SOL_SCTP) { 5209 struct sctp_af *af = sctp_sk(sk)->pf->af; 5210 5211 retval = af->getsockopt(sk, level, optname, optval, optlen); 5212 return retval; 5213 } 5214 5215 if (get_user(len, optlen)) 5216 return -EFAULT; 5217 5218 sctp_lock_sock(sk); 5219 5220 switch (optname) { 5221 case SCTP_STATUS: 5222 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 5223 break; 5224 case SCTP_DISABLE_FRAGMENTS: 5225 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 5226 optlen); 5227 break; 5228 case SCTP_EVENTS: 5229 retval = sctp_getsockopt_events(sk, len, optval, optlen); 5230 break; 5231 case SCTP_AUTOCLOSE: 5232 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 5233 break; 5234 case SCTP_SOCKOPT_PEELOFF: 5235 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 5236 break; 5237 case SCTP_PEER_ADDR_PARAMS: 5238 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 5239 optlen); 5240 break; 5241 case SCTP_DELAYED_ACK_TIME: 5242 retval = sctp_getsockopt_delayed_ack_time(sk, len, optval, 5243 optlen); 5244 break; 5245 case SCTP_INITMSG: 5246 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 5247 break; 5248 case SCTP_GET_PEER_ADDRS_NUM_OLD: 5249 retval = sctp_getsockopt_peer_addrs_num_old(sk, len, optval, 5250 optlen); 5251 break; 5252 case SCTP_GET_LOCAL_ADDRS_NUM_OLD: 5253 retval = sctp_getsockopt_local_addrs_num_old(sk, len, optval, 5254 optlen); 5255 break; 5256 case SCTP_GET_PEER_ADDRS_OLD: 5257 retval = sctp_getsockopt_peer_addrs_old(sk, len, optval, 5258 optlen); 5259 break; 5260 case SCTP_GET_LOCAL_ADDRS_OLD: 5261 retval = sctp_getsockopt_local_addrs_old(sk, len, optval, 5262 optlen); 5263 break; 5264 case SCTP_GET_PEER_ADDRS: 5265 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 5266 optlen); 5267 break; 5268 case SCTP_GET_LOCAL_ADDRS: 5269 retval = sctp_getsockopt_local_addrs(sk, len, optval, 5270 optlen); 5271 break; 5272 case SCTP_DEFAULT_SEND_PARAM: 5273 retval = sctp_getsockopt_default_send_param(sk, len, 5274 optval, optlen); 5275 break; 5276 case SCTP_PRIMARY_ADDR: 5277 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 5278 break; 5279 case SCTP_NODELAY: 5280 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 5281 break; 5282 case SCTP_RTOINFO: 5283 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 5284 break; 5285 case SCTP_ASSOCINFO: 5286 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 5287 break; 5288 case SCTP_I_WANT_MAPPED_V4_ADDR: 5289 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 5290 break; 5291 case SCTP_MAXSEG: 5292 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 5293 break; 5294 case SCTP_GET_PEER_ADDR_INFO: 5295 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 5296 optlen); 5297 break; 5298 case SCTP_ADAPTATION_LAYER: 5299 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 5300 optlen); 5301 break; 5302 case SCTP_CONTEXT: 5303 retval = sctp_getsockopt_context(sk, len, optval, optlen); 5304 break; 5305 case SCTP_FRAGMENT_INTERLEAVE: 5306 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 5307 optlen); 5308 break; 5309 case SCTP_PARTIAL_DELIVERY_POINT: 5310 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 5311 optlen); 5312 break; 5313 case SCTP_MAX_BURST: 5314 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 5315 break; 5316 case SCTP_AUTH_KEY: 5317 case SCTP_AUTH_CHUNK: 5318 case SCTP_AUTH_DELETE_KEY: 5319 retval = -EOPNOTSUPP; 5320 break; 5321 case SCTP_HMAC_IDENT: 5322 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 5323 break; 5324 case SCTP_AUTH_ACTIVE_KEY: 5325 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 5326 break; 5327 case SCTP_PEER_AUTH_CHUNKS: 5328 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 5329 optlen); 5330 break; 5331 case SCTP_LOCAL_AUTH_CHUNKS: 5332 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 5333 optlen); 5334 break; 5335 default: 5336 retval = -ENOPROTOOPT; 5337 break; 5338 } 5339 5340 sctp_release_sock(sk); 5341 return retval; 5342} 5343 5344static void sctp_hash(struct sock *sk) 5345{ 5346 /* STUB */ 5347} 5348 5349static void sctp_unhash(struct sock *sk) 5350{ 5351 /* STUB */ 5352} 5353 5354/* Check if port is acceptable. Possibly find first available port. 5355 * 5356 * The port hash table (contained in the 'global' SCTP protocol storage 5357 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 5358 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 5359 * list (the list number is the port number hashed out, so as you 5360 * would expect from a hash function, all the ports in a given list have 5361 * such a number that hashes out to the same list number; you were 5362 * expecting that, right?); so each list has a set of ports, with a 5363 * link to the socket (struct sock) that uses it, the port number and 5364 * a fastreuse flag (FIXME: NPI ipg). 5365 */ 5366static struct sctp_bind_bucket *sctp_bucket_create( 5367 struct sctp_bind_hashbucket *head, unsigned short snum); 5368 5369static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 5370{ 5371 struct sctp_bind_hashbucket *head; /* hash list */ 5372 struct sctp_bind_bucket *pp; /* hash list port iterator */ 5373 struct hlist_node *node; 5374 unsigned short snum; 5375 int ret; 5376 5377 snum = ntohs(addr->v4.sin_port); 5378 5379 SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum); 5380 sctp_local_bh_disable(); 5381 5382 if (snum == 0) { 5383 /* Search for an available port. */ 5384 int low, high, remaining, index; 5385 unsigned int rover; 5386 5387 inet_get_local_port_range(&low, &high); 5388 remaining = (high - low) + 1; 5389 rover = net_random() % remaining + low; 5390 5391 do { 5392 rover++; 5393 if ((rover < low) || (rover > high)) 5394 rover = low; 5395 index = sctp_phashfn(rover); 5396 head = &sctp_port_hashtable[index]; 5397 sctp_spin_lock(&head->lock); 5398 sctp_for_each_hentry(pp, node, &head->chain) 5399 if (pp->port == rover) 5400 goto next; 5401 break; 5402 next: 5403 sctp_spin_unlock(&head->lock); 5404 } while (--remaining > 0); 5405 5406 /* Exhausted local port range during search? */ 5407 ret = 1; 5408 if (remaining <= 0) 5409 goto fail; 5410 5411 /* OK, here is the one we will use. HEAD (the port 5412 * hash table list entry) is non-NULL and we hold it's 5413 * mutex. 5414 */ 5415 snum = rover; 5416 } else { 5417 /* We are given an specific port number; we verify 5418 * that it is not being used. If it is used, we will 5419 * exahust the search in the hash list corresponding 5420 * to the port number (snum) - we detect that with the 5421 * port iterator, pp being NULL. 5422 */ 5423 head = &sctp_port_hashtable[sctp_phashfn(snum)]; 5424 sctp_spin_lock(&head->lock); 5425 sctp_for_each_hentry(pp, node, &head->chain) { 5426 if (pp->port == snum) 5427 goto pp_found; 5428 } 5429 } 5430 pp = NULL; 5431 goto pp_not_found; 5432pp_found: 5433 if (!hlist_empty(&pp->owner)) { 5434 /* We had a port hash table hit - there is an 5435 * available port (pp != NULL) and it is being 5436 * used by other socket (pp->owner not empty); that other 5437 * socket is going to be sk2. 5438 */ 5439 int reuse = sk->sk_reuse; 5440 struct sock *sk2; 5441 struct hlist_node *node; 5442 5443 SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n"); 5444 if (pp->fastreuse && sk->sk_reuse && 5445 sk->sk_state != SCTP_SS_LISTENING) 5446 goto success; 5447 5448 /* Run through the list of sockets bound to the port 5449 * (pp->port) [via the pointers bind_next and 5450 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 5451 * we get the endpoint they describe and run through 5452 * the endpoint's list of IP (v4 or v6) addresses, 5453 * comparing each of the addresses with the address of 5454 * the socket sk. If we find a match, then that means 5455 * that this port/socket (sk) combination are already 5456 * in an endpoint. 5457 */ 5458 sk_for_each_bound(sk2, node, &pp->owner) { 5459 struct sctp_endpoint *ep2; 5460 ep2 = sctp_sk(sk2)->ep; 5461 5462 if (reuse && sk2->sk_reuse && 5463 sk2->sk_state != SCTP_SS_LISTENING) 5464 continue; 5465 5466 if (sctp_bind_addr_match(&ep2->base.bind_addr, addr, 5467 sctp_sk(sk))) { 5468 ret = (long)sk2; 5469 goto fail_unlock; 5470 } 5471 } 5472 SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n"); 5473 } 5474pp_not_found: 5475 /* If there was a hash table miss, create a new port. */ 5476 ret = 1; 5477 if (!pp && !(pp = sctp_bucket_create(head, snum))) 5478 goto fail_unlock; 5479 5480 /* In either case (hit or miss), make sure fastreuse is 1 only 5481 * if sk->sk_reuse is too (that is, if the caller requested 5482 * SO_REUSEADDR on this socket -sk-). 5483 */ 5484 if (hlist_empty(&pp->owner)) { 5485 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING) 5486 pp->fastreuse = 1; 5487 else 5488 pp->fastreuse = 0; 5489 } else if (pp->fastreuse && 5490 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING)) 5491 pp->fastreuse = 0; 5492 5493 /* We are set, so fill up all the data in the hash table 5494 * entry, tie the socket list information with the rest of the 5495 * sockets FIXME: Blurry, NPI (ipg). 5496 */ 5497success: 5498 if (!sctp_sk(sk)->bind_hash) { 5499 inet_sk(sk)->num = snum; 5500 sk_add_bind_node(sk, &pp->owner); 5501 sctp_sk(sk)->bind_hash = pp; 5502 } 5503 ret = 0; 5504 5505fail_unlock: 5506 sctp_spin_unlock(&head->lock); 5507 5508fail: 5509 sctp_local_bh_enable(); 5510 return ret; 5511} 5512 5513/* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 5514 * port is requested. 5515 */ 5516static int sctp_get_port(struct sock *sk, unsigned short snum) 5517{ 5518 long ret; 5519 union sctp_addr addr; 5520 struct sctp_af *af = sctp_sk(sk)->pf->af; 5521 5522 /* Set up a dummy address struct from the sk. */ 5523 af->from_sk(&addr, sk); 5524 addr.v4.sin_port = htons(snum); 5525 5526 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 5527 ret = sctp_get_port_local(sk, &addr); 5528 5529 return (ret ? 1 : 0); 5530} 5531 5532/* 5533 * 3.1.3 listen() - UDP Style Syntax 5534 * 5535 * By default, new associations are not accepted for UDP style sockets. 5536 * An application uses listen() to mark a socket as being able to 5537 * accept new associations. 5538 */ 5539SCTP_STATIC int sctp_seqpacket_listen(struct sock *sk, int backlog) 5540{ 5541 struct sctp_sock *sp = sctp_sk(sk); 5542 struct sctp_endpoint *ep = sp->ep; 5543 5544 /* Only UDP style sockets that are not peeled off are allowed to 5545 * listen(). 5546 */ 5547 if (!sctp_style(sk, UDP)) 5548 return -EINVAL; 5549 5550 /* If backlog is zero, disable listening. */ 5551 if (!backlog) { 5552 if (sctp_sstate(sk, CLOSED)) 5553 return 0; 5554 5555 sctp_unhash_endpoint(ep); 5556 sk->sk_state = SCTP_SS_CLOSED; 5557 return 0; 5558 } 5559 5560 /* Return if we are already listening. */ 5561 if (sctp_sstate(sk, LISTENING)) 5562 return 0; 5563 5564 /* 5565 * If a bind() or sctp_bindx() is not called prior to a listen() 5566 * call that allows new associations to be accepted, the system 5567 * picks an ephemeral port and will choose an address set equivalent 5568 * to binding with a wildcard address. 5569 * 5570 * This is not currently spelled out in the SCTP sockets 5571 * extensions draft, but follows the practice as seen in TCP 5572 * sockets. 5573 * 5574 * Additionally, turn off fastreuse flag since we are not listening 5575 */ 5576 sk->sk_state = SCTP_SS_LISTENING; 5577 if (!ep->base.bind_addr.port) { 5578 if (sctp_autobind(sk)) 5579 return -EAGAIN; 5580 } else 5581 sctp_sk(sk)->bind_hash->fastreuse = 0; 5582 5583 sctp_hash_endpoint(ep); 5584 return 0; 5585} 5586 5587/* 5588 * 4.1.3 listen() - TCP Style Syntax 5589 * 5590 * Applications uses listen() to ready the SCTP endpoint for accepting 5591 * inbound associations. 5592 */ 5593SCTP_STATIC int sctp_stream_listen(struct sock *sk, int backlog) 5594{ 5595 struct sctp_sock *sp = sctp_sk(sk); 5596 struct sctp_endpoint *ep = sp->ep; 5597 5598 /* If backlog is zero, disable listening. */ 5599 if (!backlog) { 5600 if (sctp_sstate(sk, CLOSED)) 5601 return 0; 5602 5603 sctp_unhash_endpoint(ep); 5604 sk->sk_state = SCTP_SS_CLOSED; 5605 return 0; 5606 } 5607 5608 if (sctp_sstate(sk, LISTENING)) 5609 return 0; 5610 5611 /* 5612 * If a bind() or sctp_bindx() is not called prior to a listen() 5613 * call that allows new associations to be accepted, the system 5614 * picks an ephemeral port and will choose an address set equivalent 5615 * to binding with a wildcard address. 5616 * 5617 * This is not currently spelled out in the SCTP sockets 5618 * extensions draft, but follows the practice as seen in TCP 5619 * sockets. 5620 */ 5621 sk->sk_state = SCTP_SS_LISTENING; 5622 if (!ep->base.bind_addr.port) { 5623 if (sctp_autobind(sk)) 5624 return -EAGAIN; 5625 } else 5626 sctp_sk(sk)->bind_hash->fastreuse = 0; 5627 5628 sk->sk_max_ack_backlog = backlog; 5629 sctp_hash_endpoint(ep); 5630 return 0; 5631} 5632 5633/* 5634 * Move a socket to LISTENING state. 5635 */ 5636int sctp_inet_listen(struct socket *sock, int backlog) 5637{ 5638 struct sock *sk = sock->sk; 5639 struct crypto_hash *tfm = NULL; 5640 int err = -EINVAL; 5641 5642 if (unlikely(backlog < 0)) 5643 goto out; 5644 5645 sctp_lock_sock(sk); 5646 5647 if (sock->state != SS_UNCONNECTED) 5648 goto out; 5649 5650 /* Allocate HMAC for generating cookie. */ 5651 if (sctp_hmac_alg) { 5652 tfm = crypto_alloc_hash(sctp_hmac_alg, 0, CRYPTO_ALG_ASYNC); 5653 if (IS_ERR(tfm)) { 5654 if (net_ratelimit()) { 5655 printk(KERN_INFO 5656 "SCTP: failed to load transform for %s: %ld\n", 5657 sctp_hmac_alg, PTR_ERR(tfm)); 5658 } 5659 err = -ENOSYS; 5660 goto out; 5661 } 5662 } 5663 5664 switch (sock->type) { 5665 case SOCK_SEQPACKET: 5666 err = sctp_seqpacket_listen(sk, backlog); 5667 break; 5668 case SOCK_STREAM: 5669 err = sctp_stream_listen(sk, backlog); 5670 break; 5671 default: 5672 break; 5673 } 5674 5675 if (err) 5676 goto cleanup; 5677 5678 /* Store away the transform reference. */ 5679 sctp_sk(sk)->hmac = tfm; 5680out: 5681 sctp_release_sock(sk); 5682 return err; 5683cleanup: 5684 crypto_free_hash(tfm); 5685 goto out; 5686} 5687 5688/* 5689 * This function is done by modeling the current datagram_poll() and the 5690 * tcp_poll(). Note that, based on these implementations, we don't 5691 * lock the socket in this function, even though it seems that, 5692 * ideally, locking or some other mechanisms can be used to ensure 5693 * the integrity of the counters (sndbuf and wmem_alloc) used 5694 * in this place. We assume that we don't need locks either until proven 5695 * otherwise. 5696 * 5697 * Another thing to note is that we include the Async I/O support 5698 * here, again, by modeling the current TCP/UDP code. We don't have 5699 * a good way to test with it yet. 5700 */ 5701unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 5702{ 5703 struct sock *sk = sock->sk; 5704 struct sctp_sock *sp = sctp_sk(sk); 5705 unsigned int mask; 5706 5707 poll_wait(file, sk->sk_sleep, wait); 5708 5709 /* A TCP-style listening socket becomes readable when the accept queue 5710 * is not empty. 5711 */ 5712 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 5713 return (!list_empty(&sp->ep->asocs)) ? 5714 (POLLIN | POLLRDNORM) : 0; 5715 5716 mask = 0; 5717 5718 /* Is there any exceptional events? */ 5719 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 5720 mask |= POLLERR; 5721 if (sk->sk_shutdown & RCV_SHUTDOWN) 5722 mask |= POLLRDHUP; 5723 if (sk->sk_shutdown == SHUTDOWN_MASK) 5724 mask |= POLLHUP; 5725 5726 /* Is it readable? Reconsider this code with TCP-style support. */ 5727 if (!skb_queue_empty(&sk->sk_receive_queue) || 5728 (sk->sk_shutdown & RCV_SHUTDOWN)) 5729 mask |= POLLIN | POLLRDNORM; 5730 5731 /* The association is either gone or not ready. */ 5732 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 5733 return mask; 5734 5735 /* Is it writable? */ 5736 if (sctp_writeable(sk)) { 5737 mask |= POLLOUT | POLLWRNORM; 5738 } else { 5739 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 5740 /* 5741 * Since the socket is not locked, the buffer 5742 * might be made available after the writeable check and 5743 * before the bit is set. This could cause a lost I/O 5744 * signal. tcp_poll() has a race breaker for this race 5745 * condition. Based on their implementation, we put 5746 * in the following code to cover it as well. 5747 */ 5748 if (sctp_writeable(sk)) 5749 mask |= POLLOUT | POLLWRNORM; 5750 } 5751 return mask; 5752} 5753 5754/******************************************************************** 5755 * 2nd Level Abstractions 5756 ********************************************************************/ 5757 5758static struct sctp_bind_bucket *sctp_bucket_create( 5759 struct sctp_bind_hashbucket *head, unsigned short snum) 5760{ 5761 struct sctp_bind_bucket *pp; 5762 5763 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 5764 SCTP_DBG_OBJCNT_INC(bind_bucket); 5765 if (pp) { 5766 pp->port = snum; 5767 pp->fastreuse = 0; 5768 INIT_HLIST_HEAD(&pp->owner); 5769 hlist_add_head(&pp->node, &head->chain); 5770 } 5771 return pp; 5772} 5773 5774/* Caller must hold hashbucket lock for this tb with local BH disabled */ 5775static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 5776{ 5777 if (pp && hlist_empty(&pp->owner)) { 5778 __hlist_del(&pp->node); 5779 kmem_cache_free(sctp_bucket_cachep, pp); 5780 SCTP_DBG_OBJCNT_DEC(bind_bucket); 5781 } 5782} 5783 5784/* Release this socket's reference to a local port. */ 5785static inline void __sctp_put_port(struct sock *sk) 5786{ 5787 struct sctp_bind_hashbucket *head = 5788 &sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->num)]; 5789 struct sctp_bind_bucket *pp; 5790 5791 sctp_spin_lock(&head->lock); 5792 pp = sctp_sk(sk)->bind_hash; 5793 __sk_del_bind_node(sk); 5794 sctp_sk(sk)->bind_hash = NULL; 5795 inet_sk(sk)->num = 0; 5796 sctp_bucket_destroy(pp); 5797 sctp_spin_unlock(&head->lock); 5798} 5799 5800void sctp_put_port(struct sock *sk) 5801{ 5802 sctp_local_bh_disable(); 5803 __sctp_put_port(sk); 5804 sctp_local_bh_enable(); 5805} 5806 5807/* 5808 * The system picks an ephemeral port and choose an address set equivalent 5809 * to binding with a wildcard address. 5810 * One of those addresses will be the primary address for the association. 5811 * This automatically enables the multihoming capability of SCTP. 5812 */ 5813static int sctp_autobind(struct sock *sk) 5814{ 5815 union sctp_addr autoaddr; 5816 struct sctp_af *af; 5817 __be16 port; 5818 5819 /* Initialize a local sockaddr structure to INADDR_ANY. */ 5820 af = sctp_sk(sk)->pf->af; 5821 5822 port = htons(inet_sk(sk)->num); 5823 af->inaddr_any(&autoaddr, port); 5824 5825 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 5826} 5827 5828/* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 5829 * 5830 * From RFC 2292 5831 * 4.2 The cmsghdr Structure * 5832 * 5833 * When ancillary data is sent or received, any number of ancillary data 5834 * objects can be specified by the msg_control and msg_controllen members of 5835 * the msghdr structure, because each object is preceded by 5836 * a cmsghdr structure defining the object's length (the cmsg_len member). 5837 * Historically Berkeley-derived implementations have passed only one object 5838 * at a time, but this API allows multiple objects to be 5839 * passed in a single call to sendmsg() or recvmsg(). The following example 5840 * shows two ancillary data objects in a control buffer. 5841 * 5842 * |<--------------------------- msg_controllen -------------------------->| 5843 * | | 5844 * 5845 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 5846 * 5847 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 5848 * | | | 5849 * 5850 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 5851 * 5852 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 5853 * | | | | | 5854 * 5855 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 5856 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 5857 * 5858 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 5859 * 5860 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 5861 * ^ 5862 * | 5863 * 5864 * msg_control 5865 * points here 5866 */ 5867SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg, 5868 sctp_cmsgs_t *cmsgs) 5869{ 5870 struct cmsghdr *cmsg; 5871 5872 for (cmsg = CMSG_FIRSTHDR(msg); 5873 cmsg != NULL; 5874 cmsg = CMSG_NXTHDR((struct msghdr*)msg, cmsg)) { 5875 if (!CMSG_OK(msg, cmsg)) 5876 return -EINVAL; 5877 5878 /* Should we parse this header or ignore? */ 5879 if (cmsg->cmsg_level != IPPROTO_SCTP) 5880 continue; 5881 5882 /* Strictly check lengths following example in SCM code. */ 5883 switch (cmsg->cmsg_type) { 5884 case SCTP_INIT: 5885 /* SCTP Socket API Extension 5886 * 5.2.1 SCTP Initiation Structure (SCTP_INIT) 5887 * 5888 * This cmsghdr structure provides information for 5889 * initializing new SCTP associations with sendmsg(). 5890 * The SCTP_INITMSG socket option uses this same data 5891 * structure. This structure is not used for 5892 * recvmsg(). 5893 * 5894 * cmsg_level cmsg_type cmsg_data[] 5895 * ------------ ------------ ---------------------- 5896 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 5897 */ 5898 if (cmsg->cmsg_len != 5899 CMSG_LEN(sizeof(struct sctp_initmsg))) 5900 return -EINVAL; 5901 cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg); 5902 break; 5903 5904 case SCTP_SNDRCV: 5905 /* SCTP Socket API Extension 5906 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV) 5907 * 5908 * This cmsghdr structure specifies SCTP options for 5909 * sendmsg() and describes SCTP header information 5910 * about a received message through recvmsg(). 5911 * 5912 * cmsg_level cmsg_type cmsg_data[] 5913 * ------------ ------------ ---------------------- 5914 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 5915 */ 5916 if (cmsg->cmsg_len != 5917 CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 5918 return -EINVAL; 5919 5920 cmsgs->info = 5921 (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg); 5922 5923 /* Minimally, validate the sinfo_flags. */ 5924 if (cmsgs->info->sinfo_flags & 5925 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 5926 SCTP_ABORT | SCTP_EOF)) 5927 return -EINVAL; 5928 break; 5929 5930 default: 5931 return -EINVAL; 5932 } 5933 } 5934 return 0; 5935} 5936 5937/* 5938 * Wait for a packet.. 5939 * Note: This function is the same function as in core/datagram.c 5940 * with a few modifications to make lksctp work. 5941 */ 5942static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p) 5943{ 5944 int error; 5945 DEFINE_WAIT(wait); 5946 5947 prepare_to_wait_exclusive(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE); 5948 5949 /* Socket errors? */ 5950 error = sock_error(sk); 5951 if (error) 5952 goto out; 5953 5954 if (!skb_queue_empty(&sk->sk_receive_queue)) 5955 goto ready; 5956 5957 /* Socket shut down? */ 5958 if (sk->sk_shutdown & RCV_SHUTDOWN) 5959 goto out; 5960 5961 /* Sequenced packets can come disconnected. If so we report the 5962 * problem. 5963 */ 5964 error = -ENOTCONN; 5965 5966 /* Is there a good reason to think that we may receive some data? */ 5967 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 5968 goto out; 5969 5970 /* Handle signals. */ 5971 if (signal_pending(current)) 5972 goto interrupted; 5973 5974 /* Let another process have a go. Since we are going to sleep 5975 * anyway. Note: This may cause odd behaviors if the message 5976 * does not fit in the user's buffer, but this seems to be the 5977 * only way to honor MSG_DONTWAIT realistically. 5978 */ 5979 sctp_release_sock(sk); 5980 *timeo_p = schedule_timeout(*timeo_p); 5981 sctp_lock_sock(sk); 5982 5983ready: 5984 finish_wait(sk->sk_sleep, &wait); 5985 return 0; 5986 5987interrupted: 5988 error = sock_intr_errno(*timeo_p); 5989 5990out: 5991 finish_wait(sk->sk_sleep, &wait); 5992 *err = error; 5993 return error; 5994} 5995 5996/* Receive a datagram. 5997 * Note: This is pretty much the same routine as in core/datagram.c 5998 * with a few changes to make lksctp work. 5999 */ 6000static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 6001 int noblock, int *err) 6002{ 6003 int error; 6004 struct sk_buff *skb; 6005 long timeo; 6006 6007 timeo = sock_rcvtimeo(sk, noblock); 6008 6009 SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n", 6010 timeo, MAX_SCHEDULE_TIMEOUT); 6011 6012 do { 6013 /* Again only user level code calls this function, 6014 * so nothing interrupt level 6015 * will suddenly eat the receive_queue. 6016 * 6017 * Look at current nfs client by the way... 6018 * However, this function was corrent in any case. 8) 6019 */ 6020 if (flags & MSG_PEEK) { 6021 spin_lock_bh(&sk->sk_receive_queue.lock); 6022 skb = skb_peek(&sk->sk_receive_queue); 6023 if (skb) 6024 atomic_inc(&skb->users); 6025 spin_unlock_bh(&sk->sk_receive_queue.lock); 6026 } else { 6027 skb = skb_dequeue(&sk->sk_receive_queue); 6028 } 6029 6030 if (skb) 6031 return skb; 6032 6033 /* Caller is allowed not to check sk->sk_err before calling. */ 6034 error = sock_error(sk); 6035 if (error) 6036 goto no_packet; 6037 6038 if (sk->sk_shutdown & RCV_SHUTDOWN) 6039 break; 6040 6041 /* User doesn't want to wait. */ 6042 error = -EAGAIN; 6043 if (!timeo) 6044 goto no_packet; 6045 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 6046 6047 return NULL; 6048 6049no_packet: 6050 *err = error; 6051 return NULL; 6052} 6053 6054/* If sndbuf has changed, wake up per association sndbuf waiters. */ 6055static void __sctp_write_space(struct sctp_association *asoc) 6056{ 6057 struct sock *sk = asoc->base.sk; 6058 struct socket *sock = sk->sk_socket; 6059 6060 if ((sctp_wspace(asoc) > 0) && sock) { 6061 if (waitqueue_active(&asoc->wait)) 6062 wake_up_interruptible(&asoc->wait); 6063 6064 if (sctp_writeable(sk)) { 6065 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) 6066 wake_up_interruptible(sk->sk_sleep); 6067 6068 /* Note that we try to include the Async I/O support 6069 * here by modeling from the current TCP/UDP code. 6070 * We have not tested with it yet. 6071 */ 6072 if (sock->fasync_list && 6073 !(sk->sk_shutdown & SEND_SHUTDOWN)) 6074 sock_wake_async(sock, 6075 SOCK_WAKE_SPACE, POLL_OUT); 6076 } 6077 } 6078} 6079 6080/* Do accounting for the sndbuf space. 6081 * Decrement the used sndbuf space of the corresponding association by the 6082 * data size which was just transmitted(freed). 6083 */ 6084static void sctp_wfree(struct sk_buff *skb) 6085{ 6086 struct sctp_association *asoc; 6087 struct sctp_chunk *chunk; 6088 struct sock *sk; 6089 6090 /* Get the saved chunk pointer. */ 6091 chunk = *((struct sctp_chunk **)(skb->cb)); 6092 asoc = chunk->asoc; 6093 sk = asoc->base.sk; 6094 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) + 6095 sizeof(struct sk_buff) + 6096 sizeof(struct sctp_chunk); 6097 6098 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 6099 6100 /* 6101 * This undoes what is done via sctp_set_owner_w and sk_mem_charge 6102 */ 6103 sk->sk_wmem_queued -= skb->truesize; 6104 sk_mem_uncharge(sk, skb->truesize); 6105 6106 sock_wfree(skb); 6107 __sctp_write_space(asoc); 6108 6109 sctp_association_put(asoc); 6110} 6111 6112/* Do accounting for the receive space on the socket. 6113 * Accounting for the association is done in ulpevent.c 6114 * We set this as a destructor for the cloned data skbs so that 6115 * accounting is done at the correct time. 6116 */ 6117void sctp_sock_rfree(struct sk_buff *skb) 6118{ 6119 struct sock *sk = skb->sk; 6120 struct sctp_ulpevent *event = sctp_skb2event(skb); 6121 6122 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 6123 6124 /* 6125 * Mimic the behavior of sock_rfree 6126 */ 6127 sk_mem_uncharge(sk, event->rmem_len); 6128} 6129 6130 6131/* Helper function to wait for space in the sndbuf. */ 6132static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 6133 size_t msg_len) 6134{ 6135 struct sock *sk = asoc->base.sk; 6136 int err = 0; 6137 long current_timeo = *timeo_p; 6138 DEFINE_WAIT(wait); 6139 6140 SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n", 6141 asoc, (long)(*timeo_p), msg_len); 6142 6143 /* Increment the association's refcnt. */ 6144 sctp_association_hold(asoc); 6145 6146 /* Wait on the association specific sndbuf space. */ 6147 for (;;) { 6148 prepare_to_wait_exclusive(&asoc->wait, &wait, 6149 TASK_INTERRUPTIBLE); 6150 if (!*timeo_p) 6151 goto do_nonblock; 6152 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 6153 asoc->base.dead) 6154 goto do_error; 6155 if (signal_pending(current)) 6156 goto do_interrupted; 6157 if (msg_len <= sctp_wspace(asoc)) 6158 break; 6159 6160 /* Let another process have a go. Since we are going 6161 * to sleep anyway. 6162 */ 6163 sctp_release_sock(sk); 6164 current_timeo = schedule_timeout(current_timeo); 6165 BUG_ON(sk != asoc->base.sk); 6166 sctp_lock_sock(sk); 6167 6168 *timeo_p = current_timeo; 6169 } 6170 6171out: 6172 finish_wait(&asoc->wait, &wait); 6173 6174 /* Release the association's refcnt. */ 6175 sctp_association_put(asoc); 6176 6177 return err; 6178 6179do_error: 6180 err = -EPIPE; 6181 goto out; 6182 6183do_interrupted: 6184 err = sock_intr_errno(*timeo_p); 6185 goto out; 6186 6187do_nonblock: 6188 err = -EAGAIN; 6189 goto out; 6190} 6191 6192/* If socket sndbuf has changed, wake up all per association waiters. */ 6193void sctp_write_space(struct sock *sk) 6194{ 6195 struct sctp_association *asoc; 6196 struct list_head *pos; 6197 6198 /* Wake up the tasks in each wait queue. */ 6199 list_for_each(pos, &((sctp_sk(sk))->ep->asocs)) { 6200 asoc = list_entry(pos, struct sctp_association, asocs); 6201 __sctp_write_space(asoc); 6202 } 6203} 6204 6205/* Is there any sndbuf space available on the socket? 6206 * 6207 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 6208 * associations on the same socket. For a UDP-style socket with 6209 * multiple associations, it is possible for it to be "unwriteable" 6210 * prematurely. I assume that this is acceptable because 6211 * a premature "unwriteable" is better than an accidental "writeable" which 6212 * would cause an unwanted block under certain circumstances. For the 1-1 6213 * UDP-style sockets or TCP-style sockets, this code should work. 6214 * - Daisy 6215 */ 6216static int sctp_writeable(struct sock *sk) 6217{ 6218 int amt = 0; 6219 6220 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc); 6221 if (amt < 0) 6222 amt = 0; 6223 return amt; 6224} 6225 6226/* Wait for an association to go into ESTABLISHED state. If timeout is 0, 6227 * returns immediately with EINPROGRESS. 6228 */ 6229static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 6230{ 6231 struct sock *sk = asoc->base.sk; 6232 int err = 0; 6233 long current_timeo = *timeo_p; 6234 DEFINE_WAIT(wait); 6235 6236 SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __FUNCTION__, asoc, 6237 (long)(*timeo_p)); 6238 6239 /* Increment the association's refcnt. */ 6240 sctp_association_hold(asoc); 6241 6242 for (;;) { 6243 prepare_to_wait_exclusive(&asoc->wait, &wait, 6244 TASK_INTERRUPTIBLE); 6245 if (!*timeo_p) 6246 goto do_nonblock; 6247 if (sk->sk_shutdown & RCV_SHUTDOWN) 6248 break; 6249 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 6250 asoc->base.dead) 6251 goto do_error; 6252 if (signal_pending(current)) 6253 goto do_interrupted; 6254 6255 if (sctp_state(asoc, ESTABLISHED)) 6256 break; 6257 6258 /* Let another process have a go. Since we are going 6259 * to sleep anyway. 6260 */ 6261 sctp_release_sock(sk); 6262 current_timeo = schedule_timeout(current_timeo); 6263 sctp_lock_sock(sk); 6264 6265 *timeo_p = current_timeo; 6266 } 6267 6268out: 6269 finish_wait(&asoc->wait, &wait); 6270 6271 /* Release the association's refcnt. */ 6272 sctp_association_put(asoc); 6273 6274 return err; 6275 6276do_error: 6277 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 6278 err = -ETIMEDOUT; 6279 else 6280 err = -ECONNREFUSED; 6281 goto out; 6282 6283do_interrupted: 6284 err = sock_intr_errno(*timeo_p); 6285 goto out; 6286 6287do_nonblock: 6288 err = -EINPROGRESS; 6289 goto out; 6290} 6291 6292static int sctp_wait_for_accept(struct sock *sk, long timeo) 6293{ 6294 struct sctp_endpoint *ep; 6295 int err = 0; 6296 DEFINE_WAIT(wait); 6297 6298 ep = sctp_sk(sk)->ep; 6299 6300 6301 for (;;) { 6302 prepare_to_wait_exclusive(sk->sk_sleep, &wait, 6303 TASK_INTERRUPTIBLE); 6304 6305 if (list_empty(&ep->asocs)) { 6306 sctp_release_sock(sk); 6307 timeo = schedule_timeout(timeo); 6308 sctp_lock_sock(sk); 6309 } 6310 6311 err = -EINVAL; 6312 if (!sctp_sstate(sk, LISTENING)) 6313 break; 6314 6315 err = 0; 6316 if (!list_empty(&ep->asocs)) 6317 break; 6318 6319 err = sock_intr_errno(timeo); 6320 if (signal_pending(current)) 6321 break; 6322 6323 err = -EAGAIN; 6324 if (!timeo) 6325 break; 6326 } 6327 6328 finish_wait(sk->sk_sleep, &wait); 6329 6330 return err; 6331} 6332 6333static void sctp_wait_for_close(struct sock *sk, long timeout) 6334{ 6335 DEFINE_WAIT(wait); 6336 6337 do { 6338 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE); 6339 if (list_empty(&sctp_sk(sk)->ep->asocs)) 6340 break; 6341 sctp_release_sock(sk); 6342 timeout = schedule_timeout(timeout); 6343 sctp_lock_sock(sk); 6344 } while (!signal_pending(current) && timeout); 6345 6346 finish_wait(sk->sk_sleep, &wait); 6347} 6348 6349static void sctp_sock_rfree_frag(struct sk_buff *skb) 6350{ 6351 struct sk_buff *frag; 6352 6353 if (!skb->data_len) 6354 goto done; 6355 6356 /* Don't forget the fragments. */ 6357 for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next) 6358 sctp_sock_rfree_frag(frag); 6359 6360done: 6361 sctp_sock_rfree(skb); 6362} 6363 6364static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 6365{ 6366 struct sk_buff *frag; 6367 6368 if (!skb->data_len) 6369 goto done; 6370 6371 /* Don't forget the fragments. */ 6372 for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next) 6373 sctp_skb_set_owner_r_frag(frag, sk); 6374 6375done: 6376 sctp_skb_set_owner_r(skb, sk); 6377} 6378 6379/* Populate the fields of the newsk from the oldsk and migrate the assoc 6380 * and its messages to the newsk. 6381 */ 6382static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 6383 struct sctp_association *assoc, 6384 sctp_socket_type_t type) 6385{ 6386 struct sctp_sock *oldsp = sctp_sk(oldsk); 6387 struct sctp_sock *newsp = sctp_sk(newsk); 6388 struct sctp_bind_bucket *pp; /* hash list port iterator */ 6389 struct sctp_endpoint *newep = newsp->ep; 6390 struct sk_buff *skb, *tmp; 6391 struct sctp_ulpevent *event; 6392 struct sctp_bind_hashbucket *head; 6393 6394 /* Migrate socket buffer sizes and all the socket level options to the 6395 * new socket. 6396 */ 6397 newsk->sk_sndbuf = oldsk->sk_sndbuf; 6398 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 6399 /* Brute force copy old sctp opt. */ 6400 inet_sk_copy_descendant(newsk, oldsk); 6401 6402 /* Restore the ep value that was overwritten with the above structure 6403 * copy. 6404 */ 6405 newsp->ep = newep; 6406 newsp->hmac = NULL; 6407 6408 /* Hook this new socket in to the bind_hash list. */ 6409 head = &sctp_port_hashtable[sctp_phashfn(inet_sk(oldsk)->num)]; 6410 sctp_local_bh_disable(); 6411 sctp_spin_lock(&head->lock); 6412 pp = sctp_sk(oldsk)->bind_hash; 6413 sk_add_bind_node(newsk, &pp->owner); 6414 sctp_sk(newsk)->bind_hash = pp; 6415 inet_sk(newsk)->num = inet_sk(oldsk)->num; 6416 sctp_spin_unlock(&head->lock); 6417 sctp_local_bh_enable(); 6418 6419 /* Copy the bind_addr list from the original endpoint to the new 6420 * endpoint so that we can handle restarts properly 6421 */ 6422 sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 6423 &oldsp->ep->base.bind_addr, GFP_KERNEL); 6424 6425 /* Move any messages in the old socket's receive queue that are for the 6426 * peeled off association to the new socket's receive queue. 6427 */ 6428 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 6429 event = sctp_skb2event(skb); 6430 if (event->asoc == assoc) { 6431 sctp_sock_rfree_frag(skb); 6432 __skb_unlink(skb, &oldsk->sk_receive_queue); 6433 __skb_queue_tail(&newsk->sk_receive_queue, skb); 6434 sctp_skb_set_owner_r_frag(skb, newsk); 6435 } 6436 } 6437 6438 /* Clean up any messages pending delivery due to partial 6439 * delivery. Three cases: 6440 * 1) No partial deliver; no work. 6441 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 6442 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 6443 */ 6444 skb_queue_head_init(&newsp->pd_lobby); 6445 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 6446 6447 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 6448 struct sk_buff_head *queue; 6449 6450 /* Decide which queue to move pd_lobby skbs to. */ 6451 if (assoc->ulpq.pd_mode) { 6452 queue = &newsp->pd_lobby; 6453 } else 6454 queue = &newsk->sk_receive_queue; 6455 6456 /* Walk through the pd_lobby, looking for skbs that 6457 * need moved to the new socket. 6458 */ 6459 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 6460 event = sctp_skb2event(skb); 6461 if (event->asoc == assoc) { 6462 sctp_sock_rfree_frag(skb); 6463 __skb_unlink(skb, &oldsp->pd_lobby); 6464 __skb_queue_tail(queue, skb); 6465 sctp_skb_set_owner_r_frag(skb, newsk); 6466 } 6467 } 6468 6469 /* Clear up any skbs waiting for the partial 6470 * delivery to finish. 6471 */ 6472 if (assoc->ulpq.pd_mode) 6473 sctp_clear_pd(oldsk, NULL); 6474 6475 } 6476 6477 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp) { 6478 sctp_sock_rfree_frag(skb); 6479 sctp_skb_set_owner_r_frag(skb, newsk); 6480 } 6481 6482 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp) { 6483 sctp_sock_rfree_frag(skb); 6484 sctp_skb_set_owner_r_frag(skb, newsk); 6485 } 6486 6487 /* Set the type of socket to indicate that it is peeled off from the 6488 * original UDP-style socket or created with the accept() call on a 6489 * TCP-style socket.. 6490 */ 6491 newsp->type = type; 6492 6493 /* Mark the new socket "in-use" by the user so that any packets 6494 * that may arrive on the association after we've moved it are 6495 * queued to the backlog. This prevents a potential race between 6496 * backlog processing on the old socket and new-packet processing 6497 * on the new socket. 6498 * 6499 * The caller has just allocated newsk so we can guarantee that other 6500 * paths won't try to lock it and then oldsk. 6501 */ 6502 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 6503 sctp_assoc_migrate(assoc, newsk); 6504 6505 /* If the association on the newsk is already closed before accept() 6506 * is called, set RCV_SHUTDOWN flag. 6507 */ 6508 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) 6509 newsk->sk_shutdown |= RCV_SHUTDOWN; 6510 6511 newsk->sk_state = SCTP_SS_ESTABLISHED; 6512 sctp_release_sock(newsk); 6513} 6514 6515 6516DEFINE_PROTO_INUSE(sctp) 6517 6518/* This proto struct describes the ULP interface for SCTP. */ 6519struct proto sctp_prot = { 6520 .name = "SCTP", 6521 .owner = THIS_MODULE, 6522 .close = sctp_close, 6523 .connect = sctp_connect, 6524 .disconnect = sctp_disconnect, 6525 .accept = sctp_accept, 6526 .ioctl = sctp_ioctl, 6527 .init = sctp_init_sock, 6528 .destroy = sctp_destroy_sock, 6529 .shutdown = sctp_shutdown, 6530 .setsockopt = sctp_setsockopt, 6531 .getsockopt = sctp_getsockopt, 6532 .sendmsg = sctp_sendmsg, 6533 .recvmsg = sctp_recvmsg, 6534 .bind = sctp_bind, 6535 .backlog_rcv = sctp_backlog_rcv, 6536 .hash = sctp_hash, 6537 .unhash = sctp_unhash, 6538 .get_port = sctp_get_port, 6539 .obj_size = sizeof(struct sctp_sock), 6540 .sysctl_mem = sysctl_sctp_mem, 6541 .sysctl_rmem = sysctl_sctp_rmem, 6542 .sysctl_wmem = sysctl_sctp_wmem, 6543 .memory_pressure = &sctp_memory_pressure, 6544 .enter_memory_pressure = sctp_enter_memory_pressure, 6545 .memory_allocated = &sctp_memory_allocated, 6546 .sockets_allocated = &sctp_sockets_allocated, 6547 REF_PROTO_INUSE(sctp) 6548}; 6549 6550#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 6551DEFINE_PROTO_INUSE(sctpv6) 6552 6553struct proto sctpv6_prot = { 6554 .name = "SCTPv6", 6555 .owner = THIS_MODULE, 6556 .close = sctp_close, 6557 .connect = sctp_connect, 6558 .disconnect = sctp_disconnect, 6559 .accept = sctp_accept, 6560 .ioctl = sctp_ioctl, 6561 .init = sctp_init_sock, 6562 .destroy = sctp_destroy_sock, 6563 .shutdown = sctp_shutdown, 6564 .setsockopt = sctp_setsockopt, 6565 .getsockopt = sctp_getsockopt, 6566 .sendmsg = sctp_sendmsg, 6567 .recvmsg = sctp_recvmsg, 6568 .bind = sctp_bind, 6569 .backlog_rcv = sctp_backlog_rcv, 6570 .hash = sctp_hash, 6571 .unhash = sctp_unhash, 6572 .get_port = sctp_get_port, 6573 .obj_size = sizeof(struct sctp6_sock), 6574 .sysctl_mem = sysctl_sctp_mem, 6575 .sysctl_rmem = sysctl_sctp_rmem, 6576 .sysctl_wmem = sysctl_sctp_wmem, 6577 .memory_pressure = &sctp_memory_pressure, 6578 .enter_memory_pressure = sctp_enter_memory_pressure, 6579 .memory_allocated = &sctp_memory_allocated, 6580 .sockets_allocated = &sctp_sockets_allocated, 6581 REF_PROTO_INUSE(sctpv6) 6582}; 6583#endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */