at v2.6.25-rc2 776 lines 28 kB view raw
1#ifdef __KERNEL__ 2#ifndef _PPC_PGTABLE_H 3#define _PPC_PGTABLE_H 4 5#include <asm-generic/4level-fixup.h> 6 7 8#ifndef __ASSEMBLY__ 9#include <linux/sched.h> 10#include <linux/threads.h> 11#include <asm/processor.h> /* For TASK_SIZE */ 12#include <asm/mmu.h> 13#include <asm/page.h> 14#include <asm/io.h> /* For sub-arch specific PPC_PIN_SIZE */ 15struct mm_struct; 16 17extern unsigned long va_to_phys(unsigned long address); 18extern pte_t *va_to_pte(unsigned long address); 19extern unsigned long ioremap_bot, ioremap_base; 20#endif /* __ASSEMBLY__ */ 21 22/* 23 * The PowerPC MMU uses a hash table containing PTEs, together with 24 * a set of 16 segment registers (on 32-bit implementations), to define 25 * the virtual to physical address mapping. 26 * 27 * We use the hash table as an extended TLB, i.e. a cache of currently 28 * active mappings. We maintain a two-level page table tree, much 29 * like that used by the i386, for the sake of the Linux memory 30 * management code. Low-level assembler code in hashtable.S 31 * (procedure hash_page) is responsible for extracting ptes from the 32 * tree and putting them into the hash table when necessary, and 33 * updating the accessed and modified bits in the page table tree. 34 */ 35 36/* 37 * The PowerPC MPC8xx uses a TLB with hardware assisted, software tablewalk. 38 * We also use the two level tables, but we can put the real bits in them 39 * needed for the TLB and tablewalk. These definitions require Mx_CTR.PPM = 0, 40 * Mx_CTR.PPCS = 0, and MD_CTR.TWAM = 1. The level 2 descriptor has 41 * additional page protection (when Mx_CTR.PPCS = 1) that allows TLB hit 42 * based upon user/super access. The TLB does not have accessed nor write 43 * protect. We assume that if the TLB get loaded with an entry it is 44 * accessed, and overload the changed bit for write protect. We use 45 * two bits in the software pte that are supposed to be set to zero in 46 * the TLB entry (24 and 25) for these indicators. Although the level 1 47 * descriptor contains the guarded and writethrough/copyback bits, we can 48 * set these at the page level since they get copied from the Mx_TWC 49 * register when the TLB entry is loaded. We will use bit 27 for guard, since 50 * that is where it exists in the MD_TWC, and bit 26 for writethrough. 51 * These will get masked from the level 2 descriptor at TLB load time, and 52 * copied to the MD_TWC before it gets loaded. 53 * Large page sizes added. We currently support two sizes, 4K and 8M. 54 * This also allows a TLB hander optimization because we can directly 55 * load the PMD into MD_TWC. The 8M pages are only used for kernel 56 * mapping of well known areas. The PMD (PGD) entries contain control 57 * flags in addition to the address, so care must be taken that the 58 * software no longer assumes these are only pointers. 59 */ 60 61/* 62 * At present, all PowerPC 400-class processors share a similar TLB 63 * architecture. The instruction and data sides share a unified, 64 * 64-entry, fully-associative TLB which is maintained totally under 65 * software control. In addition, the instruction side has a 66 * hardware-managed, 4-entry, fully-associative TLB which serves as a 67 * first level to the shared TLB. These two TLBs are known as the UTLB 68 * and ITLB, respectively (see "mmu.h" for definitions). 69 */ 70 71/* 72 * The normal case is that PTEs are 32-bits and we have a 1-page 73 * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages. -- paulus 74 * 75 * For any >32-bit physical address platform, we can use the following 76 * two level page table layout where the pgdir is 8KB and the MS 13 bits 77 * are an index to the second level table. The combined pgdir/pmd first 78 * level has 2048 entries and the second level has 512 64-bit PTE entries. 79 * -Matt 80 */ 81/* PMD_SHIFT determines the size of the area mapped by the PTE pages */ 82#define PMD_SHIFT (PAGE_SHIFT + PTE_SHIFT) 83#define PMD_SIZE (1UL << PMD_SHIFT) 84#define PMD_MASK (~(PMD_SIZE-1)) 85 86/* PGDIR_SHIFT determines what a top-level page table entry can map */ 87#define PGDIR_SHIFT PMD_SHIFT 88#define PGDIR_SIZE (1UL << PGDIR_SHIFT) 89#define PGDIR_MASK (~(PGDIR_SIZE-1)) 90 91/* 92 * entries per page directory level: our page-table tree is two-level, so 93 * we don't really have any PMD directory. 94 */ 95#define PTRS_PER_PTE (1 << PTE_SHIFT) 96#define PTRS_PER_PMD 1 97#define PTRS_PER_PGD (1 << (32 - PGDIR_SHIFT)) 98 99#define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE) 100#define FIRST_USER_ADDRESS 0 101 102#define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT) 103#define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS) 104 105#define pte_ERROR(e) \ 106 printk("%s:%d: bad pte "PTE_FMT".\n", __FILE__, __LINE__, pte_val(e)) 107#define pmd_ERROR(e) \ 108 printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e)) 109#define pgd_ERROR(e) \ 110 printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e)) 111 112/* 113 * Just any arbitrary offset to the start of the vmalloc VM area: the 114 * current 64MB value just means that there will be a 64MB "hole" after the 115 * physical memory until the kernel virtual memory starts. That means that 116 * any out-of-bounds memory accesses will hopefully be caught. 117 * The vmalloc() routines leaves a hole of 4kB between each vmalloced 118 * area for the same reason. ;) 119 * 120 * We no longer map larger than phys RAM with the BATs so we don't have 121 * to worry about the VMALLOC_OFFSET causing problems. We do have to worry 122 * about clashes between our early calls to ioremap() that start growing down 123 * from ioremap_base being run into the VM area allocations (growing upwards 124 * from VMALLOC_START). For this reason we have ioremap_bot to check when 125 * we actually run into our mappings setup in the early boot with the VM 126 * system. This really does become a problem for machines with good amounts 127 * of RAM. -- Cort 128 */ 129#define VMALLOC_OFFSET (0x1000000) /* 16M */ 130#ifdef PPC_PIN_SIZE 131#define VMALLOC_START (((_ALIGN((long)high_memory, PPC_PIN_SIZE) + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))) 132#else 133#define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))) 134#endif 135#define VMALLOC_END ioremap_bot 136 137/* 138 * Bits in a linux-style PTE. These match the bits in the 139 * (hardware-defined) PowerPC PTE as closely as possible. 140 */ 141 142#if defined(CONFIG_40x) 143 144/* There are several potential gotchas here. The 40x hardware TLBLO 145 field looks like this: 146 147 0 1 2 3 4 ... 18 19 20 21 22 23 24 25 26 27 28 29 30 31 148 RPN..................... 0 0 EX WR ZSEL....... W I M G 149 150 Where possible we make the Linux PTE bits match up with this 151 152 - bits 20 and 21 must be cleared, because we use 4k pages (40x can 153 support down to 1k pages), this is done in the TLBMiss exception 154 handler. 155 - We use only zones 0 (for kernel pages) and 1 (for user pages) 156 of the 16 available. Bit 24-26 of the TLB are cleared in the TLB 157 miss handler. Bit 27 is PAGE_USER, thus selecting the correct 158 zone. 159 - PRESENT *must* be in the bottom two bits because swap cache 160 entries use the top 30 bits. Because 40x doesn't support SMP 161 anyway, M is irrelevant so we borrow it for PAGE_PRESENT. Bit 30 162 is cleared in the TLB miss handler before the TLB entry is loaded. 163 - All other bits of the PTE are loaded into TLBLO without 164 modification, leaving us only the bits 20, 21, 24, 25, 26, 30 for 165 software PTE bits. We actually use use bits 21, 24, 25, and 166 30 respectively for the software bits: ACCESSED, DIRTY, RW, and 167 PRESENT. 168*/ 169 170/* Definitions for 40x embedded chips. */ 171#define _PAGE_GUARDED 0x001 /* G: page is guarded from prefetch */ 172#define _PAGE_FILE 0x001 /* when !present: nonlinear file mapping */ 173#define _PAGE_PRESENT 0x002 /* software: PTE contains a translation */ 174#define _PAGE_NO_CACHE 0x004 /* I: caching is inhibited */ 175#define _PAGE_WRITETHRU 0x008 /* W: caching is write-through */ 176#define _PAGE_USER 0x010 /* matches one of the zone permission bits */ 177#define _PAGE_RW 0x040 /* software: Writes permitted */ 178#define _PAGE_DIRTY 0x080 /* software: dirty page */ 179#define _PAGE_HWWRITE 0x100 /* hardware: Dirty & RW, set in exception */ 180#define _PAGE_HWEXEC 0x200 /* hardware: EX permission */ 181#define _PAGE_ACCESSED 0x400 /* software: R: page referenced */ 182 183#define _PMD_PRESENT 0x400 /* PMD points to page of PTEs */ 184#define _PMD_BAD 0x802 185#define _PMD_SIZE 0x0e0 /* size field, != 0 for large-page PMD entry */ 186#define _PMD_SIZE_4M 0x0c0 187#define _PMD_SIZE_16M 0x0e0 188#define PMD_PAGE_SIZE(pmdval) (1024 << (((pmdval) & _PMD_SIZE) >> 4)) 189 190#elif defined(CONFIG_44x) 191/* 192 * Definitions for PPC440 193 * 194 * Because of the 3 word TLB entries to support 36-bit addressing, 195 * the attribute are difficult to map in such a fashion that they 196 * are easily loaded during exception processing. I decided to 197 * organize the entry so the ERPN is the only portion in the 198 * upper word of the PTE and the attribute bits below are packed 199 * in as sensibly as they can be in the area below a 4KB page size 200 * oriented RPN. This at least makes it easy to load the RPN and 201 * ERPN fields in the TLB. -Matt 202 * 203 * Note that these bits preclude future use of a page size 204 * less than 4KB. 205 * 206 * 207 * PPC 440 core has following TLB attribute fields; 208 * 209 * TLB1: 210 * 0 1 2 3 4 ... 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 211 * RPN................................. - - - - - - ERPN....... 212 * 213 * TLB2: 214 * 0 1 2 3 4 ... 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 215 * - - - - - - U0 U1 U2 U3 W I M G E - UX UW UR SX SW SR 216 * 217 * There are some constrains and options, to decide mapping software bits 218 * into TLB entry. 219 * 220 * - PRESENT *must* be in the bottom three bits because swap cache 221 * entries use the top 29 bits for TLB2. 222 * 223 * - FILE *must* be in the bottom three bits because swap cache 224 * entries use the top 29 bits for TLB2. 225 * 226 * - CACHE COHERENT bit (M) has no effect on PPC440 core, because it 227 * doesn't support SMP. So we can use this as software bit, like 228 * DIRTY. 229 * 230 * With the PPC 44x Linux implementation, the 0-11th LSBs of the PTE are used 231 * for memory protection related functions (see PTE structure in 232 * include/asm-ppc/mmu.h). The _PAGE_XXX definitions in this file map to the 233 * above bits. Note that the bit values are CPU specific, not architecture 234 * specific. 235 * 236 * The kernel PTE entry holds an arch-dependent swp_entry structure under 237 * certain situations. In other words, in such situations some portion of 238 * the PTE bits are used as a swp_entry. In the PPC implementation, the 239 * 3-24th LSB are shared with swp_entry, however the 0-2nd three LSB still 240 * hold protection values. That means the three protection bits are 241 * reserved for both PTE and SWAP entry at the most significant three 242 * LSBs. 243 * 244 * There are three protection bits available for SWAP entry: 245 * _PAGE_PRESENT 246 * _PAGE_FILE 247 * _PAGE_HASHPTE (if HW has) 248 * 249 * So those three bits have to be inside of 0-2nd LSB of PTE. 250 * 251 */ 252 253#define _PAGE_PRESENT 0x00000001 /* S: PTE valid */ 254#define _PAGE_RW 0x00000002 /* S: Write permission */ 255#define _PAGE_FILE 0x00000004 /* S: nonlinear file mapping */ 256#define _PAGE_ACCESSED 0x00000008 /* S: Page referenced */ 257#define _PAGE_HWWRITE 0x00000010 /* H: Dirty & RW */ 258#define _PAGE_HWEXEC 0x00000020 /* H: Execute permission */ 259#define _PAGE_USER 0x00000040 /* S: User page */ 260#define _PAGE_ENDIAN 0x00000080 /* H: E bit */ 261#define _PAGE_GUARDED 0x00000100 /* H: G bit */ 262#define _PAGE_DIRTY 0x00000200 /* S: Page dirty */ 263#define _PAGE_NO_CACHE 0x00000400 /* H: I bit */ 264#define _PAGE_WRITETHRU 0x00000800 /* H: W bit */ 265 266/* TODO: Add large page lowmem mapping support */ 267#define _PMD_PRESENT 0 268#define _PMD_PRESENT_MASK (PAGE_MASK) 269#define _PMD_BAD (~PAGE_MASK) 270 271/* ERPN in a PTE never gets cleared, ignore it */ 272#define _PTE_NONE_MASK 0xffffffff00000000ULL 273 274#elif defined(CONFIG_8xx) 275/* Definitions for 8xx embedded chips. */ 276#define _PAGE_PRESENT 0x0001 /* Page is valid */ 277#define _PAGE_FILE 0x0002 /* when !present: nonlinear file mapping */ 278#define _PAGE_NO_CACHE 0x0002 /* I: cache inhibit */ 279#define _PAGE_SHARED 0x0004 /* No ASID (context) compare */ 280 281/* These five software bits must be masked out when the entry is loaded 282 * into the TLB. 283 */ 284#define _PAGE_EXEC 0x0008 /* software: i-cache coherency required */ 285#define _PAGE_GUARDED 0x0010 /* software: guarded access */ 286#define _PAGE_DIRTY 0x0020 /* software: page changed */ 287#define _PAGE_RW 0x0040 /* software: user write access allowed */ 288#define _PAGE_ACCESSED 0x0080 /* software: page referenced */ 289 290/* Setting any bits in the nibble with the follow two controls will 291 * require a TLB exception handler change. It is assumed unused bits 292 * are always zero. 293 */ 294#define _PAGE_HWWRITE 0x0100 /* h/w write enable: never set in Linux PTE */ 295#define _PAGE_USER 0x0800 /* One of the PP bits, the other is USER&~RW */ 296 297#define _PMD_PRESENT 0x0001 298#define _PMD_BAD 0x0ff0 299#define _PMD_PAGE_MASK 0x000c 300#define _PMD_PAGE_8M 0x000c 301 302/* 303 * The 8xx TLB miss handler allegedly sets _PAGE_ACCESSED in the PTE 304 * for an address even if _PAGE_PRESENT is not set, as a performance 305 * optimization. This is a bug if you ever want to use swap unless 306 * _PAGE_ACCESSED is 2, which it isn't, or unless you have 8xx-specific 307 * definitions for __swp_entry etc. below, which would be gross. 308 * -- paulus 309 */ 310#define _PTE_NONE_MASK _PAGE_ACCESSED 311 312#else /* CONFIG_6xx */ 313/* Definitions for 60x, 740/750, etc. */ 314#define _PAGE_PRESENT 0x001 /* software: pte contains a translation */ 315#define _PAGE_HASHPTE 0x002 /* hash_page has made an HPTE for this pte */ 316#define _PAGE_FILE 0x004 /* when !present: nonlinear file mapping */ 317#define _PAGE_USER 0x004 /* usermode access allowed */ 318#define _PAGE_GUARDED 0x008 /* G: prohibit speculative access */ 319#define _PAGE_COHERENT 0x010 /* M: enforce memory coherence (SMP systems) */ 320#define _PAGE_NO_CACHE 0x020 /* I: cache inhibit */ 321#define _PAGE_WRITETHRU 0x040 /* W: cache write-through */ 322#define _PAGE_DIRTY 0x080 /* C: page changed */ 323#define _PAGE_ACCESSED 0x100 /* R: page referenced */ 324#define _PAGE_EXEC 0x200 /* software: i-cache coherency required */ 325#define _PAGE_RW 0x400 /* software: user write access allowed */ 326 327#define _PTE_NONE_MASK _PAGE_HASHPTE 328 329#define _PMD_PRESENT 0 330#define _PMD_PRESENT_MASK (PAGE_MASK) 331#define _PMD_BAD (~PAGE_MASK) 332#endif 333 334/* 335 * Some bits are only used on some cpu families... 336 */ 337#ifndef _PAGE_HASHPTE 338#define _PAGE_HASHPTE 0 339#endif 340#ifndef _PTE_NONE_MASK 341#define _PTE_NONE_MASK 0 342#endif 343#ifndef _PAGE_SHARED 344#define _PAGE_SHARED 0 345#endif 346#ifndef _PAGE_HWWRITE 347#define _PAGE_HWWRITE 0 348#endif 349#ifndef _PAGE_HWEXEC 350#define _PAGE_HWEXEC 0 351#endif 352#ifndef _PAGE_EXEC 353#define _PAGE_EXEC 0 354#endif 355#ifndef _PMD_PRESENT_MASK 356#define _PMD_PRESENT_MASK _PMD_PRESENT 357#endif 358#ifndef _PMD_SIZE 359#define _PMD_SIZE 0 360#define PMD_PAGE_SIZE(pmd) bad_call_to_PMD_PAGE_SIZE() 361#endif 362 363#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) 364 365/* 366 * Note: the _PAGE_COHERENT bit automatically gets set in the hardware 367 * PTE if CONFIG_SMP is defined (hash_page does this); there is no need 368 * to have it in the Linux PTE, and in fact the bit could be reused for 369 * another purpose. -- paulus. 370 */ 371 372#ifdef CONFIG_44x 373#define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_GUARDED) 374#else 375#define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED) 376#endif 377#define _PAGE_WRENABLE (_PAGE_RW | _PAGE_DIRTY | _PAGE_HWWRITE) 378#define _PAGE_KERNEL (_PAGE_BASE | _PAGE_SHARED | _PAGE_WRENABLE) 379 380#ifdef CONFIG_PPC_STD_MMU 381/* On standard PPC MMU, no user access implies kernel read/write access, 382 * so to write-protect kernel memory we must turn on user access */ 383#define _PAGE_KERNEL_RO (_PAGE_BASE | _PAGE_SHARED | _PAGE_USER) 384#else 385#define _PAGE_KERNEL_RO (_PAGE_BASE | _PAGE_SHARED) 386#endif 387 388#define _PAGE_IO (_PAGE_KERNEL | _PAGE_NO_CACHE | _PAGE_GUARDED) 389#define _PAGE_RAM (_PAGE_KERNEL | _PAGE_HWEXEC) 390 391#if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) 392/* We want the debuggers to be able to set breakpoints anywhere, so 393 * don't write protect the kernel text */ 394#define _PAGE_RAM_TEXT _PAGE_RAM 395#else 396#define _PAGE_RAM_TEXT (_PAGE_KERNEL_RO | _PAGE_HWEXEC) 397#endif 398 399#define PAGE_NONE __pgprot(_PAGE_BASE) 400#define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_USER) 401#define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC) 402#define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW) 403#define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW | _PAGE_EXEC) 404#define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_USER) 405#define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC) 406 407#define PAGE_KERNEL __pgprot(_PAGE_RAM) 408#define PAGE_KERNEL_NOCACHE __pgprot(_PAGE_IO) 409 410/* 411 * The PowerPC can only do execute protection on a segment (256MB) basis, 412 * not on a page basis. So we consider execute permission the same as read. 413 * Also, write permissions imply read permissions. 414 * This is the closest we can get.. 415 */ 416#define __P000 PAGE_NONE 417#define __P001 PAGE_READONLY_X 418#define __P010 PAGE_COPY 419#define __P011 PAGE_COPY_X 420#define __P100 PAGE_READONLY 421#define __P101 PAGE_READONLY_X 422#define __P110 PAGE_COPY 423#define __P111 PAGE_COPY_X 424 425#define __S000 PAGE_NONE 426#define __S001 PAGE_READONLY_X 427#define __S010 PAGE_SHARED 428#define __S011 PAGE_SHARED_X 429#define __S100 PAGE_READONLY 430#define __S101 PAGE_READONLY_X 431#define __S110 PAGE_SHARED 432#define __S111 PAGE_SHARED_X 433 434#ifndef __ASSEMBLY__ 435/* Make sure we get a link error if PMD_PAGE_SIZE is ever called on a 436 * kernel without large page PMD support */ 437extern unsigned long bad_call_to_PMD_PAGE_SIZE(void); 438 439/* 440 * Conversions between PTE values and page frame numbers. 441 */ 442 443/* in some case we want to additionaly adjust where the pfn is in the pte to 444 * allow room for more flags */ 445#define PFN_SHIFT_OFFSET (PAGE_SHIFT) 446 447#define pte_pfn(x) (pte_val(x) >> PFN_SHIFT_OFFSET) 448#define pte_page(x) pfn_to_page(pte_pfn(x)) 449 450#define pfn_pte(pfn, prot) __pte(((pte_basic_t)(pfn) << PFN_SHIFT_OFFSET) |\ 451 pgprot_val(prot)) 452#define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot) 453 454/* 455 * ZERO_PAGE is a global shared page that is always zero: used 456 * for zero-mapped memory areas etc.. 457 */ 458extern unsigned long empty_zero_page[1024]; 459#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) 460 461#endif /* __ASSEMBLY__ */ 462 463#define pte_none(pte) ((pte_val(pte) & ~_PTE_NONE_MASK) == 0) 464#define pte_present(pte) (pte_val(pte) & _PAGE_PRESENT) 465#define pte_clear(mm,addr,ptep) do { set_pte_at((mm), (addr), (ptep), __pte(0)); } while (0) 466 467#define pmd_none(pmd) (!pmd_val(pmd)) 468#define pmd_bad(pmd) (pmd_val(pmd) & _PMD_BAD) 469#define pmd_present(pmd) (pmd_val(pmd) & _PMD_PRESENT_MASK) 470#define pmd_clear(pmdp) do { pmd_val(*(pmdp)) = 0; } while (0) 471 472#ifndef __ASSEMBLY__ 473/* 474 * The "pgd_xxx()" functions here are trivial for a folded two-level 475 * setup: the pgd is never bad, and a pmd always exists (as it's folded 476 * into the pgd entry) 477 */ 478static inline int pgd_none(pgd_t pgd) { return 0; } 479static inline int pgd_bad(pgd_t pgd) { return 0; } 480static inline int pgd_present(pgd_t pgd) { return 1; } 481#define pgd_clear(xp) do { } while (0) 482 483#define pgd_page_vaddr(pgd) \ 484 ((unsigned long) __va(pgd_val(pgd) & PAGE_MASK)) 485 486/* 487 * The following only work if pte_present() is true. 488 * Undefined behaviour if not.. 489 */ 490static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; } 491static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } 492static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } 493static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; } 494 495static inline void pte_uncache(pte_t pte) { pte_val(pte) |= _PAGE_NO_CACHE; } 496static inline void pte_cache(pte_t pte) { pte_val(pte) &= ~_PAGE_NO_CACHE; } 497 498static inline pte_t pte_wrprotect(pte_t pte) { 499 pte_val(pte) &= ~(_PAGE_RW | _PAGE_HWWRITE); return pte; } 500static inline pte_t pte_mkclean(pte_t pte) { 501 pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HWWRITE); return pte; } 502static inline pte_t pte_mkold(pte_t pte) { 503 pte_val(pte) &= ~_PAGE_ACCESSED; return pte; } 504 505static inline pte_t pte_mkwrite(pte_t pte) { 506 pte_val(pte) |= _PAGE_RW; return pte; } 507static inline pte_t pte_mkdirty(pte_t pte) { 508 pte_val(pte) |= _PAGE_DIRTY; return pte; } 509static inline pte_t pte_mkyoung(pte_t pte) { 510 pte_val(pte) |= _PAGE_ACCESSED; return pte; } 511 512static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 513{ 514 pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); 515 return pte; 516} 517 518/* 519 * When flushing the tlb entry for a page, we also need to flush the hash 520 * table entry. flush_hash_pages is assembler (for speed) in hashtable.S. 521 */ 522extern int flush_hash_pages(unsigned context, unsigned long va, 523 unsigned long pmdval, int count); 524 525/* Add an HPTE to the hash table */ 526extern void add_hash_page(unsigned context, unsigned long va, 527 unsigned long pmdval); 528 529/* 530 * Atomic PTE updates. 531 * 532 * pte_update clears and sets bit atomically, and returns 533 * the old pte value. In the 64-bit PTE case we lock around the 534 * low PTE word since we expect ALL flag bits to be there 535 */ 536#ifndef CONFIG_PTE_64BIT 537static inline unsigned long pte_update(pte_t *p, unsigned long clr, 538 unsigned long set) 539{ 540 unsigned long old, tmp; 541 542 __asm__ __volatile__("\ 5431: lwarx %0,0,%3\n\ 544 andc %1,%0,%4\n\ 545 or %1,%1,%5\n" 546 PPC405_ERR77(0,%3) 547" stwcx. %1,0,%3\n\ 548 bne- 1b" 549 : "=&r" (old), "=&r" (tmp), "=m" (*p) 550 : "r" (p), "r" (clr), "r" (set), "m" (*p) 551 : "cc" ); 552 return old; 553} 554#else 555static inline unsigned long long pte_update(pte_t *p, unsigned long clr, 556 unsigned long set) 557{ 558 unsigned long long old; 559 unsigned long tmp; 560 561 __asm__ __volatile__("\ 5621: lwarx %L0,0,%4\n\ 563 lwzx %0,0,%3\n\ 564 andc %1,%L0,%5\n\ 565 or %1,%1,%6\n" 566 PPC405_ERR77(0,%3) 567" stwcx. %1,0,%4\n\ 568 bne- 1b" 569 : "=&r" (old), "=&r" (tmp), "=m" (*p) 570 : "r" (p), "r" ((unsigned long)(p) + 4), "r" (clr), "r" (set), "m" (*p) 571 : "cc" ); 572 return old; 573} 574#endif 575 576/* 577 * set_pte stores a linux PTE into the linux page table. 578 * On machines which use an MMU hash table we avoid changing the 579 * _PAGE_HASHPTE bit. 580 */ 581static inline void set_pte_at(struct mm_struct *mm, unsigned long addr, 582 pte_t *ptep, pte_t pte) 583{ 584#if _PAGE_HASHPTE != 0 585 pte_update(ptep, ~_PAGE_HASHPTE, pte_val(pte) & ~_PAGE_HASHPTE); 586#else 587 *ptep = pte; 588#endif 589} 590 591/* 592 * 2.6 calles this without flushing the TLB entry, this is wrong 593 * for our hash-based implementation, we fix that up here 594 */ 595#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 596static inline int __ptep_test_and_clear_young(unsigned int context, unsigned long addr, pte_t *ptep) 597{ 598 unsigned long old; 599 old = pte_update(ptep, _PAGE_ACCESSED, 0); 600#if _PAGE_HASHPTE != 0 601 if (old & _PAGE_HASHPTE) { 602 unsigned long ptephys = __pa(ptep) & PAGE_MASK; 603 flush_hash_pages(context, addr, ptephys, 1); 604 } 605#endif 606 return (old & _PAGE_ACCESSED) != 0; 607} 608#define ptep_test_and_clear_young(__vma, __addr, __ptep) \ 609 __ptep_test_and_clear_young((__vma)->vm_mm->context.id, __addr, __ptep) 610 611#define __HAVE_ARCH_PTEP_GET_AND_CLEAR 612static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, 613 pte_t *ptep) 614{ 615 return __pte(pte_update(ptep, ~_PAGE_HASHPTE, 0)); 616} 617 618#define __HAVE_ARCH_PTEP_SET_WRPROTECT 619static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, 620 pte_t *ptep) 621{ 622 pte_update(ptep, (_PAGE_RW | _PAGE_HWWRITE), 0); 623} 624 625#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 626static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry, int dirty) 627{ 628 unsigned long bits = pte_val(entry) & 629 (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW); 630 pte_update(ptep, 0, bits); 631} 632 633#define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \ 634({ \ 635 int __changed = !pte_same(*(__ptep), __entry); \ 636 if (__changed) { \ 637 __ptep_set_access_flags(__ptep, __entry, __dirty); \ 638 flush_tlb_page_nohash(__vma, __address); \ 639 } \ 640 __changed; \ 641}) 642 643/* 644 * Macro to mark a page protection value as "uncacheable". 645 */ 646#define pgprot_noncached(prot) (__pgprot(pgprot_val(prot) | _PAGE_NO_CACHE | _PAGE_GUARDED)) 647 648struct file; 649extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, 650 unsigned long size, pgprot_t vma_prot); 651#define __HAVE_PHYS_MEM_ACCESS_PROT 652 653#define __HAVE_ARCH_PTE_SAME 654#define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0) 655 656/* 657 * Note that on Book E processors, the pmd contains the kernel virtual 658 * (lowmem) address of the pte page. The physical address is less useful 659 * because everything runs with translation enabled (even the TLB miss 660 * handler). On everything else the pmd contains the physical address 661 * of the pte page. -- paulus 662 */ 663#ifndef CONFIG_BOOKE 664#define pmd_page_vaddr(pmd) \ 665 ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK)) 666#define pmd_page(pmd) \ 667 (mem_map + (pmd_val(pmd) >> PAGE_SHIFT)) 668#else 669#define pmd_page_vaddr(pmd) \ 670 ((unsigned long) (pmd_val(pmd) & PAGE_MASK)) 671#define pmd_page(pmd) \ 672 (mem_map + (__pa(pmd_val(pmd)) >> PAGE_SHIFT)) 673#endif 674 675/* to find an entry in a kernel page-table-directory */ 676#define pgd_offset_k(address) pgd_offset(&init_mm, address) 677 678/* to find an entry in a page-table-directory */ 679#define pgd_index(address) ((address) >> PGDIR_SHIFT) 680#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address)) 681 682/* Find an entry in the second-level page table.. */ 683static inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address) 684{ 685 return (pmd_t *) dir; 686} 687 688/* Find an entry in the third-level page table.. */ 689#define pte_index(address) \ 690 (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) 691#define pte_offset_kernel(dir, addr) \ 692 ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(addr)) 693#define pte_offset_map(dir, addr) \ 694 ((pte_t *) kmap_atomic(pmd_page(*(dir)), KM_PTE0) + pte_index(addr)) 695#define pte_offset_map_nested(dir, addr) \ 696 ((pte_t *) kmap_atomic(pmd_page(*(dir)), KM_PTE1) + pte_index(addr)) 697 698#define pte_unmap(pte) kunmap_atomic(pte, KM_PTE0) 699#define pte_unmap_nested(pte) kunmap_atomic(pte, KM_PTE1) 700 701extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; 702 703extern void paging_init(void); 704 705/* 706 * Encode and decode a swap entry. 707 * Note that the bits we use in a PTE for representing a swap entry 708 * must not include the _PAGE_PRESENT bit, the _PAGE_FILE bit, or the 709 *_PAGE_HASHPTE bit (if used). -- paulus 710 */ 711#define __swp_type(entry) ((entry).val & 0x1f) 712#define __swp_offset(entry) ((entry).val >> 5) 713#define __swp_entry(type, offset) ((swp_entry_t) { (type) | ((offset) << 5) }) 714#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> 3 }) 715#define __swp_entry_to_pte(x) ((pte_t) { (x).val << 3 }) 716 717/* Encode and decode a nonlinear file mapping entry */ 718#define PTE_FILE_MAX_BITS 29 719#define pte_to_pgoff(pte) (pte_val(pte) >> 3) 720#define pgoff_to_pte(off) ((pte_t) { ((off) << 3) | _PAGE_FILE }) 721 722/* Values for nocacheflag and cmode */ 723/* These are not used by the APUS kernel_map, but prevents 724 compilation errors. */ 725#define KERNELMAP_FULL_CACHING 0 726#define KERNELMAP_NOCACHE_SER 1 727#define KERNELMAP_NOCACHE_NONSER 2 728#define KERNELMAP_NO_COPYBACK 3 729 730/* 731 * Map some physical address range into the kernel address space. 732 */ 733extern unsigned long kernel_map(unsigned long paddr, unsigned long size, 734 int nocacheflag, unsigned long *memavailp ); 735 736/* 737 * Set cache mode of (kernel space) address range. 738 */ 739extern void kernel_set_cachemode (unsigned long address, unsigned long size, 740 unsigned int cmode); 741 742/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */ 743#define kern_addr_valid(addr) (1) 744 745#ifdef CONFIG_PHYS_64BIT 746extern int remap_pfn_range(struct vm_area_struct *vma, unsigned long from, 747 unsigned long paddr, unsigned long size, pgprot_t prot); 748 749static inline int io_remap_pfn_range(struct vm_area_struct *vma, 750 unsigned long vaddr, 751 unsigned long pfn, 752 unsigned long size, 753 pgprot_t prot) 754{ 755 phys_addr_t paddr64 = fixup_bigphys_addr(pfn << PAGE_SHIFT, size); 756 return remap_pfn_range(vma, vaddr, paddr64 >> PAGE_SHIFT, size, prot); 757} 758#else 759#define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \ 760 remap_pfn_range(vma, vaddr, pfn, size, prot) 761#endif 762 763/* 764 * No page table caches to initialise 765 */ 766#define pgtable_cache_init() do { } while (0) 767 768extern int get_pteptr(struct mm_struct *mm, unsigned long addr, pte_t **ptep, 769 pmd_t **pmdp); 770 771#include <asm-generic/pgtable.h> 772 773#endif /* !__ASSEMBLY__ */ 774 775#endif /* _PPC_PGTABLE_H */ 776#endif /* __KERNEL__ */