at v2.6.25-rc2 2316 lines 62 kB view raw
1/* 2 * ipg.c: Device Driver for the IP1000 Gigabit Ethernet Adapter 3 * 4 * Copyright (C) 2003, 2007 IC Plus Corp 5 * 6 * Original Author: 7 * 8 * Craig Rich 9 * Sundance Technology, Inc. 10 * www.sundanceti.com 11 * craig_rich@sundanceti.com 12 * 13 * Current Maintainer: 14 * 15 * Sorbica Shieh. 16 * http://www.icplus.com.tw 17 * sorbica@icplus.com.tw 18 * 19 * Jesse Huang 20 * http://www.icplus.com.tw 21 * jesse@icplus.com.tw 22 */ 23#include <linux/crc32.h> 24#include <linux/ethtool.h> 25#include <linux/mii.h> 26#include <linux/mutex.h> 27 28#include <asm/div64.h> 29 30#define IPG_RX_RING_BYTES (sizeof(struct ipg_rx) * IPG_RFDLIST_LENGTH) 31#define IPG_TX_RING_BYTES (sizeof(struct ipg_tx) * IPG_TFDLIST_LENGTH) 32#define IPG_RESET_MASK \ 33 (IPG_AC_GLOBAL_RESET | IPG_AC_RX_RESET | IPG_AC_TX_RESET | \ 34 IPG_AC_DMA | IPG_AC_FIFO | IPG_AC_NETWORK | IPG_AC_HOST | \ 35 IPG_AC_AUTO_INIT) 36 37#define ipg_w32(val32, reg) iowrite32((val32), ioaddr + (reg)) 38#define ipg_w16(val16, reg) iowrite16((val16), ioaddr + (reg)) 39#define ipg_w8(val8, reg) iowrite8((val8), ioaddr + (reg)) 40 41#define ipg_r32(reg) ioread32(ioaddr + (reg)) 42#define ipg_r16(reg) ioread16(ioaddr + (reg)) 43#define ipg_r8(reg) ioread8(ioaddr + (reg)) 44 45#define JUMBO_FRAME_4k_ONLY 46enum { 47 netdev_io_size = 128 48}; 49 50#include "ipg.h" 51#define DRV_NAME "ipg" 52 53MODULE_AUTHOR("IC Plus Corp. 2003"); 54MODULE_DESCRIPTION("IC Plus IP1000 Gigabit Ethernet Adapter Linux Driver"); 55MODULE_LICENSE("GPL"); 56 57/* 58 * Variable record -- index by leading revision/length 59 * Revision/Length(=N*4), Address1, Data1, Address2, Data2,...,AddressN,DataN 60 */ 61static unsigned short DefaultPhyParam[] = { 62 /* 11/12/03 IP1000A v1-3 rev=0x40 */ 63 /*-------------------------------------------------------------------------- 64 (0x4000|(15*4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 22, 0x85bd, 24, 0xfff2, 65 27, 0x0c10, 28, 0x0c10, 29, 0x2c10, 31, 0x0003, 23, 0x92f6, 66 31, 0x0000, 23, 0x003d, 30, 0x00de, 20, 0x20e7, 9, 0x0700, 67 --------------------------------------------------------------------------*/ 68 /* 12/17/03 IP1000A v1-4 rev=0x40 */ 69 (0x4000 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31, 70 0x0000, 71 30, 0x005e, 9, 0x0700, 72 /* 01/09/04 IP1000A v1-5 rev=0x41 */ 73 (0x4100 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31, 74 0x0000, 75 30, 0x005e, 9, 0x0700, 76 0x0000 77}; 78 79static const char *ipg_brand_name[] = { 80 "IC PLUS IP1000 1000/100/10 based NIC", 81 "Sundance Technology ST2021 based NIC", 82 "Tamarack Microelectronics TC9020/9021 based NIC", 83 "Tamarack Microelectronics TC9020/9021 based NIC", 84 "D-Link NIC", 85 "D-Link NIC IP1000A" 86}; 87 88static struct pci_device_id ipg_pci_tbl[] __devinitdata = { 89 { PCI_VDEVICE(SUNDANCE, 0x1023), 0 }, 90 { PCI_VDEVICE(SUNDANCE, 0x2021), 1 }, 91 { PCI_VDEVICE(SUNDANCE, 0x1021), 2 }, 92 { PCI_VDEVICE(DLINK, 0x9021), 3 }, 93 { PCI_VDEVICE(DLINK, 0x4000), 4 }, 94 { PCI_VDEVICE(DLINK, 0x4020), 5 }, 95 { 0, } 96}; 97 98MODULE_DEVICE_TABLE(pci, ipg_pci_tbl); 99 100static inline void __iomem *ipg_ioaddr(struct net_device *dev) 101{ 102 struct ipg_nic_private *sp = netdev_priv(dev); 103 return sp->ioaddr; 104} 105 106#ifdef IPG_DEBUG 107static void ipg_dump_rfdlist(struct net_device *dev) 108{ 109 struct ipg_nic_private *sp = netdev_priv(dev); 110 void __iomem *ioaddr = sp->ioaddr; 111 unsigned int i; 112 u32 offset; 113 114 IPG_DEBUG_MSG("_dump_rfdlist\n"); 115 116 printk(KERN_INFO "rx_current = %2.2x\n", sp->rx_current); 117 printk(KERN_INFO "rx_dirty = %2.2x\n", sp->rx_dirty); 118 printk(KERN_INFO "RFDList start address = %16.16lx\n", 119 (unsigned long) sp->rxd_map); 120 printk(KERN_INFO "RFDListPtr register = %8.8x%8.8x\n", 121 ipg_r32(IPG_RFDLISTPTR1), ipg_r32(IPG_RFDLISTPTR0)); 122 123 for (i = 0; i < IPG_RFDLIST_LENGTH; i++) { 124 offset = (u32) &sp->rxd[i].next_desc - (u32) sp->rxd; 125 printk(KERN_INFO "%2.2x %4.4x RFDNextPtr = %16.16lx\n", i, 126 offset, (unsigned long) sp->rxd[i].next_desc); 127 offset = (u32) &sp->rxd[i].rfs - (u32) sp->rxd; 128 printk(KERN_INFO "%2.2x %4.4x RFS = %16.16lx\n", i, 129 offset, (unsigned long) sp->rxd[i].rfs); 130 offset = (u32) &sp->rxd[i].frag_info - (u32) sp->rxd; 131 printk(KERN_INFO "%2.2x %4.4x frag_info = %16.16lx\n", i, 132 offset, (unsigned long) sp->rxd[i].frag_info); 133 } 134} 135 136static void ipg_dump_tfdlist(struct net_device *dev) 137{ 138 struct ipg_nic_private *sp = netdev_priv(dev); 139 void __iomem *ioaddr = sp->ioaddr; 140 unsigned int i; 141 u32 offset; 142 143 IPG_DEBUG_MSG("_dump_tfdlist\n"); 144 145 printk(KERN_INFO "tx_current = %2.2x\n", sp->tx_current); 146 printk(KERN_INFO "tx_dirty = %2.2x\n", sp->tx_dirty); 147 printk(KERN_INFO "TFDList start address = %16.16lx\n", 148 (unsigned long) sp->txd_map); 149 printk(KERN_INFO "TFDListPtr register = %8.8x%8.8x\n", 150 ipg_r32(IPG_TFDLISTPTR1), ipg_r32(IPG_TFDLISTPTR0)); 151 152 for (i = 0; i < IPG_TFDLIST_LENGTH; i++) { 153 offset = (u32) &sp->txd[i].next_desc - (u32) sp->txd; 154 printk(KERN_INFO "%2.2x %4.4x TFDNextPtr = %16.16lx\n", i, 155 offset, (unsigned long) sp->txd[i].next_desc); 156 157 offset = (u32) &sp->txd[i].tfc - (u32) sp->txd; 158 printk(KERN_INFO "%2.2x %4.4x TFC = %16.16lx\n", i, 159 offset, (unsigned long) sp->txd[i].tfc); 160 offset = (u32) &sp->txd[i].frag_info - (u32) sp->txd; 161 printk(KERN_INFO "%2.2x %4.4x frag_info = %16.16lx\n", i, 162 offset, (unsigned long) sp->txd[i].frag_info); 163 } 164} 165#endif 166 167static void ipg_write_phy_ctl(void __iomem *ioaddr, u8 data) 168{ 169 ipg_w8(IPG_PC_RSVD_MASK & data, PHY_CTRL); 170 ndelay(IPG_PC_PHYCTRLWAIT_NS); 171} 172 173static void ipg_drive_phy_ctl_low_high(void __iomem *ioaddr, u8 data) 174{ 175 ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | data); 176 ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | data); 177} 178 179static void send_three_state(void __iomem *ioaddr, u8 phyctrlpolarity) 180{ 181 phyctrlpolarity |= (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR; 182 183 ipg_drive_phy_ctl_low_high(ioaddr, phyctrlpolarity); 184} 185 186static void send_end(void __iomem *ioaddr, u8 phyctrlpolarity) 187{ 188 ipg_w8((IPG_PC_MGMTCLK_LO | (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR | 189 phyctrlpolarity) & IPG_PC_RSVD_MASK, PHY_CTRL); 190} 191 192static u16 read_phy_bit(void __iomem *ioaddr, u8 phyctrlpolarity) 193{ 194 u16 bit_data; 195 196 ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | phyctrlpolarity); 197 198 bit_data = ((ipg_r8(PHY_CTRL) & IPG_PC_MGMTDATA) >> 1) & 1; 199 200 ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | phyctrlpolarity); 201 202 return bit_data; 203} 204 205/* 206 * Read a register from the Physical Layer device located 207 * on the IPG NIC, using the IPG PHYCTRL register. 208 */ 209static int mdio_read(struct net_device *dev, int phy_id, int phy_reg) 210{ 211 void __iomem *ioaddr = ipg_ioaddr(dev); 212 /* 213 * The GMII mangement frame structure for a read is as follows: 214 * 215 * |Preamble|st|op|phyad|regad|ta| data |idle| 216 * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z | 217 * 218 * <32 1s> = 32 consecutive logic 1 values 219 * A = bit of Physical Layer device address (MSB first) 220 * R = bit of register address (MSB first) 221 * z = High impedance state 222 * D = bit of read data (MSB first) 223 * 224 * Transmission order is 'Preamble' field first, bits transmitted 225 * left to right (first to last). 226 */ 227 struct { 228 u32 field; 229 unsigned int len; 230 } p[] = { 231 { GMII_PREAMBLE, 32 }, /* Preamble */ 232 { GMII_ST, 2 }, /* ST */ 233 { GMII_READ, 2 }, /* OP */ 234 { phy_id, 5 }, /* PHYAD */ 235 { phy_reg, 5 }, /* REGAD */ 236 { 0x0000, 2 }, /* TA */ 237 { 0x0000, 16 }, /* DATA */ 238 { 0x0000, 1 } /* IDLE */ 239 }; 240 unsigned int i, j; 241 u8 polarity, data; 242 243 polarity = ipg_r8(PHY_CTRL); 244 polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY); 245 246 /* Create the Preamble, ST, OP, PHYAD, and REGAD field. */ 247 for (j = 0; j < 5; j++) { 248 for (i = 0; i < p[j].len; i++) { 249 /* For each variable length field, the MSB must be 250 * transmitted first. Rotate through the field bits, 251 * starting with the MSB, and move each bit into the 252 * the 1st (2^1) bit position (this is the bit position 253 * corresponding to the MgmtData bit of the PhyCtrl 254 * register for the IPG). 255 * 256 * Example: ST = 01; 257 * 258 * First write a '0' to bit 1 of the PhyCtrl 259 * register, then write a '1' to bit 1 of the 260 * PhyCtrl register. 261 * 262 * To do this, right shift the MSB of ST by the value: 263 * [field length - 1 - #ST bits already written] 264 * then left shift this result by 1. 265 */ 266 data = (p[j].field >> (p[j].len - 1 - i)) << 1; 267 data &= IPG_PC_MGMTDATA; 268 data |= polarity | IPG_PC_MGMTDIR; 269 270 ipg_drive_phy_ctl_low_high(ioaddr, data); 271 } 272 } 273 274 send_three_state(ioaddr, polarity); 275 276 read_phy_bit(ioaddr, polarity); 277 278 /* 279 * For a read cycle, the bits for the next two fields (TA and 280 * DATA) are driven by the PHY (the IPG reads these bits). 281 */ 282 for (i = 0; i < p[6].len; i++) { 283 p[6].field |= 284 (read_phy_bit(ioaddr, polarity) << (p[6].len - 1 - i)); 285 } 286 287 send_three_state(ioaddr, polarity); 288 send_three_state(ioaddr, polarity); 289 send_three_state(ioaddr, polarity); 290 send_end(ioaddr, polarity); 291 292 /* Return the value of the DATA field. */ 293 return p[6].field; 294} 295 296/* 297 * Write to a register from the Physical Layer device located 298 * on the IPG NIC, using the IPG PHYCTRL register. 299 */ 300static void mdio_write(struct net_device *dev, int phy_id, int phy_reg, int val) 301{ 302 void __iomem *ioaddr = ipg_ioaddr(dev); 303 /* 304 * The GMII mangement frame structure for a read is as follows: 305 * 306 * |Preamble|st|op|phyad|regad|ta| data |idle| 307 * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z | 308 * 309 * <32 1s> = 32 consecutive logic 1 values 310 * A = bit of Physical Layer device address (MSB first) 311 * R = bit of register address (MSB first) 312 * z = High impedance state 313 * D = bit of write data (MSB first) 314 * 315 * Transmission order is 'Preamble' field first, bits transmitted 316 * left to right (first to last). 317 */ 318 struct { 319 u32 field; 320 unsigned int len; 321 } p[] = { 322 { GMII_PREAMBLE, 32 }, /* Preamble */ 323 { GMII_ST, 2 }, /* ST */ 324 { GMII_WRITE, 2 }, /* OP */ 325 { phy_id, 5 }, /* PHYAD */ 326 { phy_reg, 5 }, /* REGAD */ 327 { 0x0002, 2 }, /* TA */ 328 { val & 0xffff, 16 }, /* DATA */ 329 { 0x0000, 1 } /* IDLE */ 330 }; 331 unsigned int i, j; 332 u8 polarity, data; 333 334 polarity = ipg_r8(PHY_CTRL); 335 polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY); 336 337 /* Create the Preamble, ST, OP, PHYAD, and REGAD field. */ 338 for (j = 0; j < 7; j++) { 339 for (i = 0; i < p[j].len; i++) { 340 /* For each variable length field, the MSB must be 341 * transmitted first. Rotate through the field bits, 342 * starting with the MSB, and move each bit into the 343 * the 1st (2^1) bit position (this is the bit position 344 * corresponding to the MgmtData bit of the PhyCtrl 345 * register for the IPG). 346 * 347 * Example: ST = 01; 348 * 349 * First write a '0' to bit 1 of the PhyCtrl 350 * register, then write a '1' to bit 1 of the 351 * PhyCtrl register. 352 * 353 * To do this, right shift the MSB of ST by the value: 354 * [field length - 1 - #ST bits already written] 355 * then left shift this result by 1. 356 */ 357 data = (p[j].field >> (p[j].len - 1 - i)) << 1; 358 data &= IPG_PC_MGMTDATA; 359 data |= polarity | IPG_PC_MGMTDIR; 360 361 ipg_drive_phy_ctl_low_high(ioaddr, data); 362 } 363 } 364 365 /* The last cycle is a tri-state, so read from the PHY. */ 366 for (j = 7; j < 8; j++) { 367 for (i = 0; i < p[j].len; i++) { 368 ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | polarity); 369 370 p[j].field |= ((ipg_r8(PHY_CTRL) & 371 IPG_PC_MGMTDATA) >> 1) << (p[j].len - 1 - i); 372 373 ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | polarity); 374 } 375 } 376} 377 378static void ipg_set_led_mode(struct net_device *dev) 379{ 380 struct ipg_nic_private *sp = netdev_priv(dev); 381 void __iomem *ioaddr = sp->ioaddr; 382 u32 mode; 383 384 mode = ipg_r32(ASIC_CTRL); 385 mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED); 386 387 if ((sp->led_mode & 0x03) > 1) 388 mode |= IPG_AC_LED_MODE_BIT_1; /* Write Asic Control Bit 29 */ 389 390 if ((sp->led_mode & 0x01) == 1) 391 mode |= IPG_AC_LED_MODE; /* Write Asic Control Bit 14 */ 392 393 if ((sp->led_mode & 0x08) == 8) 394 mode |= IPG_AC_LED_SPEED; /* Write Asic Control Bit 27 */ 395 396 ipg_w32(mode, ASIC_CTRL); 397} 398 399static void ipg_set_phy_set(struct net_device *dev) 400{ 401 struct ipg_nic_private *sp = netdev_priv(dev); 402 void __iomem *ioaddr = sp->ioaddr; 403 int physet; 404 405 physet = ipg_r8(PHY_SET); 406 physet &= ~(IPG_PS_MEM_LENB9B | IPG_PS_MEM_LEN9 | IPG_PS_NON_COMPDET); 407 physet |= ((sp->led_mode & 0x70) >> 4); 408 ipg_w8(physet, PHY_SET); 409} 410 411static int ipg_reset(struct net_device *dev, u32 resetflags) 412{ 413 /* Assert functional resets via the IPG AsicCtrl 414 * register as specified by the 'resetflags' input 415 * parameter. 416 */ 417 void __iomem *ioaddr = ipg_ioaddr(dev); 418 unsigned int timeout_count = 0; 419 420 IPG_DEBUG_MSG("_reset\n"); 421 422 ipg_w32(ipg_r32(ASIC_CTRL) | resetflags, ASIC_CTRL); 423 424 /* Delay added to account for problem with 10Mbps reset. */ 425 mdelay(IPG_AC_RESETWAIT); 426 427 while (IPG_AC_RESET_BUSY & ipg_r32(ASIC_CTRL)) { 428 mdelay(IPG_AC_RESETWAIT); 429 if (++timeout_count > IPG_AC_RESET_TIMEOUT) 430 return -ETIME; 431 } 432 /* Set LED Mode in Asic Control */ 433 ipg_set_led_mode(dev); 434 435 /* Set PHYSet Register Value */ 436 ipg_set_phy_set(dev); 437 return 0; 438} 439 440/* Find the GMII PHY address. */ 441static int ipg_find_phyaddr(struct net_device *dev) 442{ 443 unsigned int phyaddr, i; 444 445 for (i = 0; i < 32; i++) { 446 u32 status; 447 448 /* Search for the correct PHY address among 32 possible. */ 449 phyaddr = (IPG_NIC_PHY_ADDRESS + i) % 32; 450 451 /* 10/22/03 Grace change verify from GMII_PHY_STATUS to 452 GMII_PHY_ID1 453 */ 454 455 status = mdio_read(dev, phyaddr, MII_BMSR); 456 457 if ((status != 0xFFFF) && (status != 0)) 458 return phyaddr; 459 } 460 461 return 0x1f; 462} 463 464/* 465 * Configure IPG based on result of IEEE 802.3 PHY 466 * auto-negotiation. 467 */ 468static int ipg_config_autoneg(struct net_device *dev) 469{ 470 struct ipg_nic_private *sp = netdev_priv(dev); 471 void __iomem *ioaddr = sp->ioaddr; 472 unsigned int txflowcontrol; 473 unsigned int rxflowcontrol; 474 unsigned int fullduplex; 475 unsigned int gig; 476 u32 mac_ctrl_val; 477 u32 asicctrl; 478 u8 phyctrl; 479 480 IPG_DEBUG_MSG("_config_autoneg\n"); 481 482 asicctrl = ipg_r32(ASIC_CTRL); 483 phyctrl = ipg_r8(PHY_CTRL); 484 mac_ctrl_val = ipg_r32(MAC_CTRL); 485 486 /* Set flags for use in resolving auto-negotation, assuming 487 * non-1000Mbps, half duplex, no flow control. 488 */ 489 fullduplex = 0; 490 txflowcontrol = 0; 491 rxflowcontrol = 0; 492 gig = 0; 493 494 /* To accomodate a problem in 10Mbps operation, 495 * set a global flag if PHY running in 10Mbps mode. 496 */ 497 sp->tenmbpsmode = 0; 498 499 printk(KERN_INFO "%s: Link speed = ", dev->name); 500 501 /* Determine actual speed of operation. */ 502 switch (phyctrl & IPG_PC_LINK_SPEED) { 503 case IPG_PC_LINK_SPEED_10MBPS: 504 printk("10Mbps.\n"); 505 printk(KERN_INFO "%s: 10Mbps operational mode enabled.\n", 506 dev->name); 507 sp->tenmbpsmode = 1; 508 break; 509 case IPG_PC_LINK_SPEED_100MBPS: 510 printk("100Mbps.\n"); 511 break; 512 case IPG_PC_LINK_SPEED_1000MBPS: 513 printk("1000Mbps.\n"); 514 gig = 1; 515 break; 516 default: 517 printk("undefined!\n"); 518 return 0; 519 } 520 521 if (phyctrl & IPG_PC_DUPLEX_STATUS) { 522 fullduplex = 1; 523 txflowcontrol = 1; 524 rxflowcontrol = 1; 525 } 526 527 /* Configure full duplex, and flow control. */ 528 if (fullduplex == 1) { 529 /* Configure IPG for full duplex operation. */ 530 printk(KERN_INFO "%s: setting full duplex, ", dev->name); 531 532 mac_ctrl_val |= IPG_MC_DUPLEX_SELECT_FD; 533 534 if (txflowcontrol == 1) { 535 printk("TX flow control"); 536 mac_ctrl_val |= IPG_MC_TX_FLOW_CONTROL_ENABLE; 537 } else { 538 printk("no TX flow control"); 539 mac_ctrl_val &= ~IPG_MC_TX_FLOW_CONTROL_ENABLE; 540 } 541 542 if (rxflowcontrol == 1) { 543 printk(", RX flow control."); 544 mac_ctrl_val |= IPG_MC_RX_FLOW_CONTROL_ENABLE; 545 } else { 546 printk(", no RX flow control."); 547 mac_ctrl_val &= ~IPG_MC_RX_FLOW_CONTROL_ENABLE; 548 } 549 550 printk("\n"); 551 } else { 552 /* Configure IPG for half duplex operation. */ 553 printk(KERN_INFO "%s: setting half duplex, " 554 "no TX flow control, no RX flow control.\n", dev->name); 555 556 mac_ctrl_val &= ~IPG_MC_DUPLEX_SELECT_FD & 557 ~IPG_MC_TX_FLOW_CONTROL_ENABLE & 558 ~IPG_MC_RX_FLOW_CONTROL_ENABLE; 559 } 560 ipg_w32(mac_ctrl_val, MAC_CTRL); 561 return 0; 562} 563 564/* Determine and configure multicast operation and set 565 * receive mode for IPG. 566 */ 567static void ipg_nic_set_multicast_list(struct net_device *dev) 568{ 569 void __iomem *ioaddr = ipg_ioaddr(dev); 570 struct dev_mc_list *mc_list_ptr; 571 unsigned int hashindex; 572 u32 hashtable[2]; 573 u8 receivemode; 574 575 IPG_DEBUG_MSG("_nic_set_multicast_list\n"); 576 577 receivemode = IPG_RM_RECEIVEUNICAST | IPG_RM_RECEIVEBROADCAST; 578 579 if (dev->flags & IFF_PROMISC) { 580 /* NIC to be configured in promiscuous mode. */ 581 receivemode = IPG_RM_RECEIVEALLFRAMES; 582 } else if ((dev->flags & IFF_ALLMULTI) || 583 (dev->flags & IFF_MULTICAST & 584 (dev->mc_count > IPG_MULTICAST_HASHTABLE_SIZE))) { 585 /* NIC to be configured to receive all multicast 586 * frames. */ 587 receivemode |= IPG_RM_RECEIVEMULTICAST; 588 } else if (dev->flags & IFF_MULTICAST & (dev->mc_count > 0)) { 589 /* NIC to be configured to receive selected 590 * multicast addresses. */ 591 receivemode |= IPG_RM_RECEIVEMULTICASTHASH; 592 } 593 594 /* Calculate the bits to set for the 64 bit, IPG HASHTABLE. 595 * The IPG applies a cyclic-redundancy-check (the same CRC 596 * used to calculate the frame data FCS) to the destination 597 * address all incoming multicast frames whose destination 598 * address has the multicast bit set. The least significant 599 * 6 bits of the CRC result are used as an addressing index 600 * into the hash table. If the value of the bit addressed by 601 * this index is a 1, the frame is passed to the host system. 602 */ 603 604 /* Clear hashtable. */ 605 hashtable[0] = 0x00000000; 606 hashtable[1] = 0x00000000; 607 608 /* Cycle through all multicast addresses to filter. */ 609 for (mc_list_ptr = dev->mc_list; 610 mc_list_ptr != NULL; mc_list_ptr = mc_list_ptr->next) { 611 /* Calculate CRC result for each multicast address. */ 612 hashindex = crc32_le(0xffffffff, mc_list_ptr->dmi_addr, 613 ETH_ALEN); 614 615 /* Use only the least significant 6 bits. */ 616 hashindex = hashindex & 0x3F; 617 618 /* Within "hashtable", set bit number "hashindex" 619 * to a logic 1. 620 */ 621 set_bit(hashindex, (void *)hashtable); 622 } 623 624 /* Write the value of the hashtable, to the 4, 16 bit 625 * HASHTABLE IPG registers. 626 */ 627 ipg_w32(hashtable[0], HASHTABLE_0); 628 ipg_w32(hashtable[1], HASHTABLE_1); 629 630 ipg_w8(IPG_RM_RSVD_MASK & receivemode, RECEIVE_MODE); 631 632 IPG_DEBUG_MSG("ReceiveMode = %x\n", ipg_r8(RECEIVE_MODE)); 633} 634 635static int ipg_io_config(struct net_device *dev) 636{ 637 void __iomem *ioaddr = ipg_ioaddr(dev); 638 u32 origmacctrl; 639 u32 restoremacctrl; 640 641 IPG_DEBUG_MSG("_io_config\n"); 642 643 origmacctrl = ipg_r32(MAC_CTRL); 644 645 restoremacctrl = origmacctrl | IPG_MC_STATISTICS_ENABLE; 646 647 /* Based on compilation option, determine if FCS is to be 648 * stripped on receive frames by IPG. 649 */ 650 if (!IPG_STRIP_FCS_ON_RX) 651 restoremacctrl |= IPG_MC_RCV_FCS; 652 653 /* Determine if transmitter and/or receiver are 654 * enabled so we may restore MACCTRL correctly. 655 */ 656 if (origmacctrl & IPG_MC_TX_ENABLED) 657 restoremacctrl |= IPG_MC_TX_ENABLE; 658 659 if (origmacctrl & IPG_MC_RX_ENABLED) 660 restoremacctrl |= IPG_MC_RX_ENABLE; 661 662 /* Transmitter and receiver must be disabled before setting 663 * IFSSelect. 664 */ 665 ipg_w32((origmacctrl & (IPG_MC_RX_DISABLE | IPG_MC_TX_DISABLE)) & 666 IPG_MC_RSVD_MASK, MAC_CTRL); 667 668 /* Now that transmitter and receiver are disabled, write 669 * to IFSSelect. 670 */ 671 ipg_w32((origmacctrl & IPG_MC_IFS_96BIT) & IPG_MC_RSVD_MASK, MAC_CTRL); 672 673 /* Set RECEIVEMODE register. */ 674 ipg_nic_set_multicast_list(dev); 675 676 ipg_w16(IPG_MAX_RXFRAME_SIZE, MAX_FRAME_SIZE); 677 678 ipg_w8(IPG_RXDMAPOLLPERIOD_VALUE, RX_DMA_POLL_PERIOD); 679 ipg_w8(IPG_RXDMAURGENTTHRESH_VALUE, RX_DMA_URGENT_THRESH); 680 ipg_w8(IPG_RXDMABURSTTHRESH_VALUE, RX_DMA_BURST_THRESH); 681 ipg_w8(IPG_TXDMAPOLLPERIOD_VALUE, TX_DMA_POLL_PERIOD); 682 ipg_w8(IPG_TXDMAURGENTTHRESH_VALUE, TX_DMA_URGENT_THRESH); 683 ipg_w8(IPG_TXDMABURSTTHRESH_VALUE, TX_DMA_BURST_THRESH); 684 ipg_w16((IPG_IE_HOST_ERROR | IPG_IE_TX_DMA_COMPLETE | 685 IPG_IE_TX_COMPLETE | IPG_IE_INT_REQUESTED | 686 IPG_IE_UPDATE_STATS | IPG_IE_LINK_EVENT | 687 IPG_IE_RX_DMA_COMPLETE | IPG_IE_RX_DMA_PRIORITY), INT_ENABLE); 688 ipg_w16(IPG_FLOWONTHRESH_VALUE, FLOW_ON_THRESH); 689 ipg_w16(IPG_FLOWOFFTHRESH_VALUE, FLOW_OFF_THRESH); 690 691 /* IPG multi-frag frame bug workaround. 692 * Per silicon revision B3 eratta. 693 */ 694 ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0200, DEBUG_CTRL); 695 696 /* IPG TX poll now bug workaround. 697 * Per silicon revision B3 eratta. 698 */ 699 ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0010, DEBUG_CTRL); 700 701 /* IPG RX poll now bug workaround. 702 * Per silicon revision B3 eratta. 703 */ 704 ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0020, DEBUG_CTRL); 705 706 /* Now restore MACCTRL to original setting. */ 707 ipg_w32(IPG_MC_RSVD_MASK & restoremacctrl, MAC_CTRL); 708 709 /* Disable unused RMON statistics. */ 710 ipg_w32(IPG_RZ_ALL, RMON_STATISTICS_MASK); 711 712 /* Disable unused MIB statistics. */ 713 ipg_w32(IPG_SM_MACCONTROLFRAMESXMTD | IPG_SM_MACCONTROLFRAMESRCVD | 714 IPG_SM_BCSTOCTETXMTOK_BCSTFRAMESXMTDOK | IPG_SM_TXJUMBOFRAMES | 715 IPG_SM_MCSTOCTETXMTOK_MCSTFRAMESXMTDOK | IPG_SM_RXJUMBOFRAMES | 716 IPG_SM_BCSTOCTETRCVDOK_BCSTFRAMESRCVDOK | 717 IPG_SM_UDPCHECKSUMERRORS | IPG_SM_TCPCHECKSUMERRORS | 718 IPG_SM_IPCHECKSUMERRORS, STATISTICS_MASK); 719 720 return 0; 721} 722 723/* 724 * Create a receive buffer within system memory and update 725 * NIC private structure appropriately. 726 */ 727static int ipg_get_rxbuff(struct net_device *dev, int entry) 728{ 729 struct ipg_nic_private *sp = netdev_priv(dev); 730 struct ipg_rx *rxfd = sp->rxd + entry; 731 struct sk_buff *skb; 732 u64 rxfragsize; 733 734 IPG_DEBUG_MSG("_get_rxbuff\n"); 735 736 skb = netdev_alloc_skb(dev, IPG_RXSUPPORT_SIZE + NET_IP_ALIGN); 737 if (!skb) { 738 sp->rx_buff[entry] = NULL; 739 return -ENOMEM; 740 } 741 742 /* Adjust the data start location within the buffer to 743 * align IP address field to a 16 byte boundary. 744 */ 745 skb_reserve(skb, NET_IP_ALIGN); 746 747 /* Associate the receive buffer with the IPG NIC. */ 748 skb->dev = dev; 749 750 /* Save the address of the sk_buff structure. */ 751 sp->rx_buff[entry] = skb; 752 753 rxfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data, 754 sp->rx_buf_sz, PCI_DMA_FROMDEVICE)); 755 756 /* Set the RFD fragment length. */ 757 rxfragsize = IPG_RXFRAG_SIZE; 758 rxfd->frag_info |= cpu_to_le64((rxfragsize << 48) & IPG_RFI_FRAGLEN); 759 760 return 0; 761} 762 763static int init_rfdlist(struct net_device *dev) 764{ 765 struct ipg_nic_private *sp = netdev_priv(dev); 766 void __iomem *ioaddr = sp->ioaddr; 767 unsigned int i; 768 769 IPG_DEBUG_MSG("_init_rfdlist\n"); 770 771 for (i = 0; i < IPG_RFDLIST_LENGTH; i++) { 772 struct ipg_rx *rxfd = sp->rxd + i; 773 774 if (sp->rx_buff[i]) { 775 pci_unmap_single(sp->pdev, 776 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN, 777 sp->rx_buf_sz, PCI_DMA_FROMDEVICE); 778 dev_kfree_skb_irq(sp->rx_buff[i]); 779 sp->rx_buff[i] = NULL; 780 } 781 782 /* Clear out the RFS field. */ 783 rxfd->rfs = 0x0000000000000000; 784 785 if (ipg_get_rxbuff(dev, i) < 0) { 786 /* 787 * A receive buffer was not ready, break the 788 * RFD list here. 789 */ 790 IPG_DEBUG_MSG("Cannot allocate Rx buffer.\n"); 791 792 /* Just in case we cannot allocate a single RFD. 793 * Should not occur. 794 */ 795 if (i == 0) { 796 printk(KERN_ERR "%s: No memory available" 797 " for RFD list.\n", dev->name); 798 return -ENOMEM; 799 } 800 } 801 802 rxfd->next_desc = cpu_to_le64(sp->rxd_map + 803 sizeof(struct ipg_rx)*(i + 1)); 804 } 805 sp->rxd[i - 1].next_desc = cpu_to_le64(sp->rxd_map); 806 807 sp->rx_current = 0; 808 sp->rx_dirty = 0; 809 810 /* Write the location of the RFDList to the IPG. */ 811 ipg_w32((u32) sp->rxd_map, RFD_LIST_PTR_0); 812 ipg_w32(0x00000000, RFD_LIST_PTR_1); 813 814 return 0; 815} 816 817static void init_tfdlist(struct net_device *dev) 818{ 819 struct ipg_nic_private *sp = netdev_priv(dev); 820 void __iomem *ioaddr = sp->ioaddr; 821 unsigned int i; 822 823 IPG_DEBUG_MSG("_init_tfdlist\n"); 824 825 for (i = 0; i < IPG_TFDLIST_LENGTH; i++) { 826 struct ipg_tx *txfd = sp->txd + i; 827 828 txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE); 829 830 if (sp->tx_buff[i]) { 831 dev_kfree_skb_irq(sp->tx_buff[i]); 832 sp->tx_buff[i] = NULL; 833 } 834 835 txfd->next_desc = cpu_to_le64(sp->txd_map + 836 sizeof(struct ipg_tx)*(i + 1)); 837 } 838 sp->txd[i - 1].next_desc = cpu_to_le64(sp->txd_map); 839 840 sp->tx_current = 0; 841 sp->tx_dirty = 0; 842 843 /* Write the location of the TFDList to the IPG. */ 844 IPG_DDEBUG_MSG("Starting TFDListPtr = %8.8x\n", 845 (u32) sp->txd_map); 846 ipg_w32((u32) sp->txd_map, TFD_LIST_PTR_0); 847 ipg_w32(0x00000000, TFD_LIST_PTR_1); 848 849 sp->reset_current_tfd = 1; 850} 851 852/* 853 * Free all transmit buffers which have already been transfered 854 * via DMA to the IPG. 855 */ 856static void ipg_nic_txfree(struct net_device *dev) 857{ 858 struct ipg_nic_private *sp = netdev_priv(dev); 859 unsigned int released, pending, dirty; 860 861 IPG_DEBUG_MSG("_nic_txfree\n"); 862 863 pending = sp->tx_current - sp->tx_dirty; 864 dirty = sp->tx_dirty % IPG_TFDLIST_LENGTH; 865 866 for (released = 0; released < pending; released++) { 867 struct sk_buff *skb = sp->tx_buff[dirty]; 868 struct ipg_tx *txfd = sp->txd + dirty; 869 870 IPG_DEBUG_MSG("TFC = %16.16lx\n", (unsigned long) txfd->tfc); 871 872 /* Look at each TFD's TFC field beginning 873 * at the last freed TFD up to the current TFD. 874 * If the TFDDone bit is set, free the associated 875 * buffer. 876 */ 877 if (!(txfd->tfc & cpu_to_le64(IPG_TFC_TFDDONE))) 878 break; 879 880 /* Free the transmit buffer. */ 881 if (skb) { 882 pci_unmap_single(sp->pdev, 883 le64_to_cpu(txfd->frag_info) & ~IPG_TFI_FRAGLEN, 884 skb->len, PCI_DMA_TODEVICE); 885 886 dev_kfree_skb_irq(skb); 887 888 sp->tx_buff[dirty] = NULL; 889 } 890 dirty = (dirty + 1) % IPG_TFDLIST_LENGTH; 891 } 892 893 sp->tx_dirty += released; 894 895 if (netif_queue_stopped(dev) && 896 (sp->tx_current != (sp->tx_dirty + IPG_TFDLIST_LENGTH))) { 897 netif_wake_queue(dev); 898 } 899} 900 901static void ipg_tx_timeout(struct net_device *dev) 902{ 903 struct ipg_nic_private *sp = netdev_priv(dev); 904 void __iomem *ioaddr = sp->ioaddr; 905 906 ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA | IPG_AC_NETWORK | 907 IPG_AC_FIFO); 908 909 spin_lock_irq(&sp->lock); 910 911 /* Re-configure after DMA reset. */ 912 if (ipg_io_config(dev) < 0) { 913 printk(KERN_INFO "%s: Error during re-configuration.\n", 914 dev->name); 915 } 916 917 init_tfdlist(dev); 918 919 spin_unlock_irq(&sp->lock); 920 921 ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) & IPG_MC_RSVD_MASK, 922 MAC_CTRL); 923} 924 925/* 926 * For TxComplete interrupts, free all transmit 927 * buffers which have already been transfered via DMA 928 * to the IPG. 929 */ 930static void ipg_nic_txcleanup(struct net_device *dev) 931{ 932 struct ipg_nic_private *sp = netdev_priv(dev); 933 void __iomem *ioaddr = sp->ioaddr; 934 unsigned int i; 935 936 IPG_DEBUG_MSG("_nic_txcleanup\n"); 937 938 for (i = 0; i < IPG_TFDLIST_LENGTH; i++) { 939 /* Reading the TXSTATUS register clears the 940 * TX_COMPLETE interrupt. 941 */ 942 u32 txstatusdword = ipg_r32(TX_STATUS); 943 944 IPG_DEBUG_MSG("TxStatus = %8.8x\n", txstatusdword); 945 946 /* Check for Transmit errors. Error bits only valid if 947 * TX_COMPLETE bit in the TXSTATUS register is a 1. 948 */ 949 if (!(txstatusdword & IPG_TS_TX_COMPLETE)) 950 break; 951 952 /* If in 10Mbps mode, indicate transmit is ready. */ 953 if (sp->tenmbpsmode) { 954 netif_wake_queue(dev); 955 } 956 957 /* Transmit error, increment stat counters. */ 958 if (txstatusdword & IPG_TS_TX_ERROR) { 959 IPG_DEBUG_MSG("Transmit error.\n"); 960 sp->stats.tx_errors++; 961 } 962 963 /* Late collision, re-enable transmitter. */ 964 if (txstatusdword & IPG_TS_LATE_COLLISION) { 965 IPG_DEBUG_MSG("Late collision on transmit.\n"); 966 ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) & 967 IPG_MC_RSVD_MASK, MAC_CTRL); 968 } 969 970 /* Maximum collisions, re-enable transmitter. */ 971 if (txstatusdword & IPG_TS_TX_MAX_COLL) { 972 IPG_DEBUG_MSG("Maximum collisions on transmit.\n"); 973 ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) & 974 IPG_MC_RSVD_MASK, MAC_CTRL); 975 } 976 977 /* Transmit underrun, reset and re-enable 978 * transmitter. 979 */ 980 if (txstatusdword & IPG_TS_TX_UNDERRUN) { 981 IPG_DEBUG_MSG("Transmitter underrun.\n"); 982 sp->stats.tx_fifo_errors++; 983 ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA | 984 IPG_AC_NETWORK | IPG_AC_FIFO); 985 986 /* Re-configure after DMA reset. */ 987 if (ipg_io_config(dev) < 0) { 988 printk(KERN_INFO 989 "%s: Error during re-configuration.\n", 990 dev->name); 991 } 992 init_tfdlist(dev); 993 994 ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) & 995 IPG_MC_RSVD_MASK, MAC_CTRL); 996 } 997 } 998 999 ipg_nic_txfree(dev); 1000} 1001 1002/* Provides statistical information about the IPG NIC. */ 1003static struct net_device_stats *ipg_nic_get_stats(struct net_device *dev) 1004{ 1005 struct ipg_nic_private *sp = netdev_priv(dev); 1006 void __iomem *ioaddr = sp->ioaddr; 1007 u16 temp1; 1008 u16 temp2; 1009 1010 IPG_DEBUG_MSG("_nic_get_stats\n"); 1011 1012 /* Check to see if the NIC has been initialized via nic_open, 1013 * before trying to read statistic registers. 1014 */ 1015 if (!test_bit(__LINK_STATE_START, &dev->state)) 1016 return &sp->stats; 1017 1018 sp->stats.rx_packets += ipg_r32(IPG_FRAMESRCVDOK); 1019 sp->stats.tx_packets += ipg_r32(IPG_FRAMESXMTDOK); 1020 sp->stats.rx_bytes += ipg_r32(IPG_OCTETRCVOK); 1021 sp->stats.tx_bytes += ipg_r32(IPG_OCTETXMTOK); 1022 temp1 = ipg_r16(IPG_FRAMESLOSTRXERRORS); 1023 sp->stats.rx_errors += temp1; 1024 sp->stats.rx_missed_errors += temp1; 1025 temp1 = ipg_r32(IPG_SINGLECOLFRAMES) + ipg_r32(IPG_MULTICOLFRAMES) + 1026 ipg_r32(IPG_LATECOLLISIONS); 1027 temp2 = ipg_r16(IPG_CARRIERSENSEERRORS); 1028 sp->stats.collisions += temp1; 1029 sp->stats.tx_dropped += ipg_r16(IPG_FRAMESABORTXSCOLLS); 1030 sp->stats.tx_errors += ipg_r16(IPG_FRAMESWEXDEFERRAL) + 1031 ipg_r32(IPG_FRAMESWDEFERREDXMT) + temp1 + temp2; 1032 sp->stats.multicast += ipg_r32(IPG_MCSTOCTETRCVDOK); 1033 1034 /* detailed tx_errors */ 1035 sp->stats.tx_carrier_errors += temp2; 1036 1037 /* detailed rx_errors */ 1038 sp->stats.rx_length_errors += ipg_r16(IPG_INRANGELENGTHERRORS) + 1039 ipg_r16(IPG_FRAMETOOLONGERRRORS); 1040 sp->stats.rx_crc_errors += ipg_r16(IPG_FRAMECHECKSEQERRORS); 1041 1042 /* Unutilized IPG statistic registers. */ 1043 ipg_r32(IPG_MCSTFRAMESRCVDOK); 1044 1045 return &sp->stats; 1046} 1047 1048/* Restore used receive buffers. */ 1049static int ipg_nic_rxrestore(struct net_device *dev) 1050{ 1051 struct ipg_nic_private *sp = netdev_priv(dev); 1052 const unsigned int curr = sp->rx_current; 1053 unsigned int dirty = sp->rx_dirty; 1054 1055 IPG_DEBUG_MSG("_nic_rxrestore\n"); 1056 1057 for (dirty = sp->rx_dirty; curr - dirty > 0; dirty++) { 1058 unsigned int entry = dirty % IPG_RFDLIST_LENGTH; 1059 1060 /* rx_copybreak may poke hole here and there. */ 1061 if (sp->rx_buff[entry]) 1062 continue; 1063 1064 /* Generate a new receive buffer to replace the 1065 * current buffer (which will be released by the 1066 * Linux system). 1067 */ 1068 if (ipg_get_rxbuff(dev, entry) < 0) { 1069 IPG_DEBUG_MSG("Cannot allocate new Rx buffer.\n"); 1070 1071 break; 1072 } 1073 1074 /* Reset the RFS field. */ 1075 sp->rxd[entry].rfs = 0x0000000000000000; 1076 } 1077 sp->rx_dirty = dirty; 1078 1079 return 0; 1080} 1081 1082#ifdef JUMBO_FRAME 1083 1084/* use jumboindex and jumbosize to control jumbo frame status 1085 * initial status is jumboindex=-1 and jumbosize=0 1086 * 1. jumboindex = -1 and jumbosize=0 : previous jumbo frame has been done. 1087 * 2. jumboindex != -1 and jumbosize != 0 : jumbo frame is not over size and receiving 1088 * 3. jumboindex = -1 and jumbosize != 0 : jumbo frame is over size, already dump 1089 * previous receiving and need to continue dumping the current one 1090 */ 1091enum { 1092 NORMAL_PACKET, 1093 ERROR_PACKET 1094}; 1095 1096enum { 1097 FRAME_NO_START_NO_END = 0, 1098 FRAME_WITH_START = 1, 1099 FRAME_WITH_END = 10, 1100 FRAME_WITH_START_WITH_END = 11 1101}; 1102 1103inline void ipg_nic_rx_free_skb(struct net_device *dev) 1104{ 1105 struct ipg_nic_private *sp = netdev_priv(dev); 1106 unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH; 1107 1108 if (sp->rx_buff[entry]) { 1109 struct ipg_rx *rxfd = sp->rxd + entry; 1110 1111 pci_unmap_single(sp->pdev, 1112 le64_to_cpu(rxfd->frag_info & ~IPG_RFI_FRAGLEN), 1113 sp->rx_buf_sz, PCI_DMA_FROMDEVICE); 1114 dev_kfree_skb_irq(sp->rx_buff[entry]); 1115 sp->rx_buff[entry] = NULL; 1116 } 1117} 1118 1119inline int ipg_nic_rx_check_frame_type(struct net_device *dev) 1120{ 1121 struct ipg_nic_private *sp = netdev_priv(dev); 1122 struct ipg_rx *rxfd = sp->rxd + (sp->rx_current % IPG_RFDLIST_LENGTH); 1123 int type = FRAME_NO_START_NO_END; 1124 1125 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART) 1126 type += FRAME_WITH_START; 1127 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND) 1128 type += FRAME_WITH_END; 1129 return type; 1130} 1131 1132inline int ipg_nic_rx_check_error(struct net_device *dev) 1133{ 1134 struct ipg_nic_private *sp = netdev_priv(dev); 1135 unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH; 1136 struct ipg_rx *rxfd = sp->rxd + entry; 1137 1138 if (IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) & 1139 (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME | 1140 IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR | 1141 IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR))) { 1142 IPG_DEBUG_MSG("Rx error, RFS = %16.16lx\n", 1143 (unsigned long) rxfd->rfs); 1144 1145 /* Increment general receive error statistic. */ 1146 sp->stats.rx_errors++; 1147 1148 /* Increment detailed receive error statistics. */ 1149 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) { 1150 IPG_DEBUG_MSG("RX FIFO overrun occured.\n"); 1151 1152 sp->stats.rx_fifo_errors++; 1153 } 1154 1155 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) { 1156 IPG_DEBUG_MSG("RX runt occured.\n"); 1157 sp->stats.rx_length_errors++; 1158 } 1159 1160 /* Do nothing for IPG_RFS_RXOVERSIZEDFRAME, 1161 * error count handled by a IPG statistic register. 1162 */ 1163 1164 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) { 1165 IPG_DEBUG_MSG("RX alignment error occured.\n"); 1166 sp->stats.rx_frame_errors++; 1167 } 1168 1169 /* Do nothing for IPG_RFS_RXFCSERROR, error count 1170 * handled by a IPG statistic register. 1171 */ 1172 1173 /* Free the memory associated with the RX 1174 * buffer since it is erroneous and we will 1175 * not pass it to higher layer processes. 1176 */ 1177 if (sp->rx_buff[entry]) { 1178 pci_unmap_single(sp->pdev, 1179 le64_to_cpu(rxfd->frag_info & ~IPG_RFI_FRAGLEN), 1180 sp->rx_buf_sz, PCI_DMA_FROMDEVICE); 1181 1182 dev_kfree_skb_irq(sp->rx_buff[entry]); 1183 sp->rx_buff[entry] = NULL; 1184 } 1185 return ERROR_PACKET; 1186 } 1187 return NORMAL_PACKET; 1188} 1189 1190static void ipg_nic_rx_with_start_and_end(struct net_device *dev, 1191 struct ipg_nic_private *sp, 1192 struct ipg_rx *rxfd, unsigned entry) 1193{ 1194 struct ipg_jumbo *jumbo = &sp->jumbo; 1195 struct sk_buff *skb; 1196 int framelen; 1197 1198 if (jumbo->found_start) { 1199 dev_kfree_skb_irq(jumbo->skb); 1200 jumbo->found_start = 0; 1201 jumbo->current_size = 0; 1202 jumbo->skb = NULL; 1203 } 1204 1205 /* 1: found error, 0 no error */ 1206 if (ipg_nic_rx_check_error(dev) != NORMAL_PACKET) 1207 return; 1208 1209 skb = sp->rx_buff[entry]; 1210 if (!skb) 1211 return; 1212 1213 /* accept this frame and send to upper layer */ 1214 framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN; 1215 if (framelen > IPG_RXFRAG_SIZE) 1216 framelen = IPG_RXFRAG_SIZE; 1217 1218 skb_put(skb, framelen); 1219 skb->protocol = eth_type_trans(skb, dev); 1220 skb->ip_summed = CHECKSUM_NONE; 1221 netif_rx(skb); 1222 dev->last_rx = jiffies; 1223 sp->rx_buff[entry] = NULL; 1224} 1225 1226static void ipg_nic_rx_with_start(struct net_device *dev, 1227 struct ipg_nic_private *sp, 1228 struct ipg_rx *rxfd, unsigned entry) 1229{ 1230 struct ipg_jumbo *jumbo = &sp->jumbo; 1231 struct pci_dev *pdev = sp->pdev; 1232 struct sk_buff *skb; 1233 1234 /* 1: found error, 0 no error */ 1235 if (ipg_nic_rx_check_error(dev) != NORMAL_PACKET) 1236 return; 1237 1238 /* accept this frame and send to upper layer */ 1239 skb = sp->rx_buff[entry]; 1240 if (!skb) 1241 return; 1242 1243 if (jumbo->found_start) 1244 dev_kfree_skb_irq(jumbo->skb); 1245 1246 pci_unmap_single(pdev, le64_to_cpu(rxfd->frag_info & ~IPG_RFI_FRAGLEN), 1247 sp->rx_buf_sz, PCI_DMA_FROMDEVICE); 1248 1249 skb_put(skb, IPG_RXFRAG_SIZE); 1250 1251 jumbo->found_start = 1; 1252 jumbo->current_size = IPG_RXFRAG_SIZE; 1253 jumbo->skb = skb; 1254 1255 sp->rx_buff[entry] = NULL; 1256 dev->last_rx = jiffies; 1257} 1258 1259static void ipg_nic_rx_with_end(struct net_device *dev, 1260 struct ipg_nic_private *sp, 1261 struct ipg_rx *rxfd, unsigned entry) 1262{ 1263 struct ipg_jumbo *jumbo = &sp->jumbo; 1264 1265 /* 1: found error, 0 no error */ 1266 if (ipg_nic_rx_check_error(dev) == NORMAL_PACKET) { 1267 struct sk_buff *skb = sp->rx_buff[entry]; 1268 1269 if (!skb) 1270 return; 1271 1272 if (jumbo->found_start) { 1273 int framelen, endframelen; 1274 1275 framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN; 1276 1277 endframeLen = framelen - jumbo->current_size; 1278 /* 1279 if (framelen > IPG_RXFRAG_SIZE) 1280 framelen=IPG_RXFRAG_SIZE; 1281 */ 1282 if (framelen > IPG_RXSUPPORT_SIZE) 1283 dev_kfree_skb_irq(jumbo->skb); 1284 else { 1285 memcpy(skb_put(jumbo->skb, endframeLen), 1286 skb->data, endframeLen); 1287 1288 jumbo->skb->protocol = 1289 eth_type_trans(jumbo->skb, dev); 1290 1291 jumbo->skb->ip_summed = CHECKSUM_NONE; 1292 netif_rx(jumbo->skb); 1293 } 1294 } 1295 1296 dev->last_rx = jiffies; 1297 jumbo->found_start = 0; 1298 jumbo->current_size = 0; 1299 jumbo->skb = NULL; 1300 1301 ipg_nic_rx_free_skb(dev); 1302 } else { 1303 dev_kfree_skb_irq(jumbo->skb); 1304 jumbo->found_start = 0; 1305 jumbo->current_size = 0; 1306 jumbo->skb = NULL; 1307 } 1308} 1309 1310static void ipg_nic_rx_no_start_no_end(struct net_device *dev, 1311 struct ipg_nic_private *sp, 1312 struct ipg_rx *rxfd, unsigned entry) 1313{ 1314 struct ipg_jumbo *jumbo = &sp->jumbo; 1315 1316 /* 1: found error, 0 no error */ 1317 if (ipg_nic_rx_check_error(dev) == NORMAL_PACKET) { 1318 struct sk_buff *skb = sp->rx_buff[entry]; 1319 1320 if (skb) { 1321 if (jumbo->found_start) { 1322 jumbo->current_size += IPG_RXFRAG_SIZE; 1323 if (jumbo->current_size <= IPG_RXSUPPORT_SIZE) { 1324 memcpy(skb_put(jumbo->skb, 1325 IPG_RXFRAG_SIZE), 1326 skb->data, IPG_RXFRAG_SIZE); 1327 } 1328 } 1329 dev->last_rx = jiffies; 1330 ipg_nic_rx_free_skb(dev); 1331 } 1332 } else { 1333 dev_kfree_skb_irq(jumbo->skb); 1334 jumbo->found_start = 0; 1335 jumbo->current_size = 0; 1336 jumbo->skb = NULL; 1337 } 1338} 1339 1340static int ipg_nic_rx(struct net_device *dev) 1341{ 1342 struct ipg_nic_private *sp = netdev_priv(dev); 1343 unsigned int curr = sp->rx_current; 1344 void __iomem *ioaddr = sp->ioaddr; 1345 unsigned int i; 1346 1347 IPG_DEBUG_MSG("_nic_rx\n"); 1348 1349 for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) { 1350 unsigned int entry = curr % IPG_RFDLIST_LENGTH; 1351 struct ipg_rx *rxfd = sp->rxd + entry; 1352 1353 if (!(rxfd->rfs & le64_to_cpu(IPG_RFS_RFDDONE))) 1354 break; 1355 1356 switch (ipg_nic_rx_check_frame_type(dev)) { 1357 case FRAME_WITH_START_WITH_END: 1358 ipg_nic_rx_with_start_and_end(dev, tp, rxfd, entry); 1359 break; 1360 case FRAME_WITH_START: 1361 ipg_nic_rx_with_start(dev, tp, rxfd, entry); 1362 break; 1363 case FRAME_WITH_END: 1364 ipg_nic_rx_with_end(dev, tp, rxfd, entry); 1365 break; 1366 case FRAME_NO_START_NO_END: 1367 ipg_nic_rx_no_start_no_end(dev, tp, rxfd, entry); 1368 break; 1369 } 1370 } 1371 1372 sp->rx_current = curr; 1373 1374 if (i == IPG_MAXRFDPROCESS_COUNT) { 1375 /* There are more RFDs to process, however the 1376 * allocated amount of RFD processing time has 1377 * expired. Assert Interrupt Requested to make 1378 * sure we come back to process the remaining RFDs. 1379 */ 1380 ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL); 1381 } 1382 1383 ipg_nic_rxrestore(dev); 1384 1385 return 0; 1386} 1387 1388#else 1389static int ipg_nic_rx(struct net_device *dev) 1390{ 1391 /* Transfer received Ethernet frames to higher network layers. */ 1392 struct ipg_nic_private *sp = netdev_priv(dev); 1393 unsigned int curr = sp->rx_current; 1394 void __iomem *ioaddr = sp->ioaddr; 1395 struct ipg_rx *rxfd; 1396 unsigned int i; 1397 1398 IPG_DEBUG_MSG("_nic_rx\n"); 1399 1400#define __RFS_MASK \ 1401 cpu_to_le64(IPG_RFS_RFDDONE | IPG_RFS_FRAMESTART | IPG_RFS_FRAMEEND) 1402 1403 for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) { 1404 unsigned int entry = curr % IPG_RFDLIST_LENGTH; 1405 struct sk_buff *skb = sp->rx_buff[entry]; 1406 unsigned int framelen; 1407 1408 rxfd = sp->rxd + entry; 1409 1410 if (((rxfd->rfs & __RFS_MASK) != __RFS_MASK) || !skb) 1411 break; 1412 1413 /* Get received frame length. */ 1414 framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN; 1415 1416 /* Check for jumbo frame arrival with too small 1417 * RXFRAG_SIZE. 1418 */ 1419 if (framelen > IPG_RXFRAG_SIZE) { 1420 IPG_DEBUG_MSG 1421 ("RFS FrameLen > allocated fragment size.\n"); 1422 1423 framelen = IPG_RXFRAG_SIZE; 1424 } 1425 1426 if ((IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) & 1427 (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME | 1428 IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR | 1429 IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR)))) { 1430 1431 IPG_DEBUG_MSG("Rx error, RFS = %16.16lx\n", 1432 (unsigned long int) rxfd->rfs); 1433 1434 /* Increment general receive error statistic. */ 1435 sp->stats.rx_errors++; 1436 1437 /* Increment detailed receive error statistics. */ 1438 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) { 1439 IPG_DEBUG_MSG("RX FIFO overrun occured.\n"); 1440 sp->stats.rx_fifo_errors++; 1441 } 1442 1443 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) { 1444 IPG_DEBUG_MSG("RX runt occured.\n"); 1445 sp->stats.rx_length_errors++; 1446 } 1447 1448 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXOVERSIZEDFRAME) ; 1449 /* Do nothing, error count handled by a IPG 1450 * statistic register. 1451 */ 1452 1453 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) { 1454 IPG_DEBUG_MSG("RX alignment error occured.\n"); 1455 sp->stats.rx_frame_errors++; 1456 } 1457 1458 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFCSERROR) ; 1459 /* Do nothing, error count handled by a IPG 1460 * statistic register. 1461 */ 1462 1463 /* Free the memory associated with the RX 1464 * buffer since it is erroneous and we will 1465 * not pass it to higher layer processes. 1466 */ 1467 if (skb) { 1468 __le64 info = rxfd->frag_info; 1469 1470 pci_unmap_single(sp->pdev, 1471 le64_to_cpu(info) & ~IPG_RFI_FRAGLEN, 1472 sp->rx_buf_sz, PCI_DMA_FROMDEVICE); 1473 1474 dev_kfree_skb_irq(skb); 1475 } 1476 } else { 1477 1478 /* Adjust the new buffer length to accomodate the size 1479 * of the received frame. 1480 */ 1481 skb_put(skb, framelen); 1482 1483 /* Set the buffer's protocol field to Ethernet. */ 1484 skb->protocol = eth_type_trans(skb, dev); 1485 1486 /* The IPG encountered an error with (or 1487 * there were no) IP/TCP/UDP checksums. 1488 * This may or may not indicate an invalid 1489 * IP/TCP/UDP frame was received. Let the 1490 * upper layer decide. 1491 */ 1492 skb->ip_summed = CHECKSUM_NONE; 1493 1494 /* Hand off frame for higher layer processing. 1495 * The function netif_rx() releases the sk_buff 1496 * when processing completes. 1497 */ 1498 netif_rx(skb); 1499 1500 /* Record frame receive time (jiffies = Linux 1501 * kernel current time stamp). 1502 */ 1503 dev->last_rx = jiffies; 1504 } 1505 1506 /* Assure RX buffer is not reused by IPG. */ 1507 sp->rx_buff[entry] = NULL; 1508 } 1509 1510 /* 1511 * If there are more RFDs to proces and the allocated amount of RFD 1512 * processing time has expired, assert Interrupt Requested to make 1513 * sure we come back to process the remaining RFDs. 1514 */ 1515 if (i == IPG_MAXRFDPROCESS_COUNT) 1516 ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL); 1517 1518#ifdef IPG_DEBUG 1519 /* Check if the RFD list contained no receive frame data. */ 1520 if (!i) 1521 sp->EmptyRFDListCount++; 1522#endif 1523 while ((le64_to_cpu(rxfd->rfs) & IPG_RFS_RFDDONE) && 1524 !((le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART) && 1525 (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND))) { 1526 unsigned int entry = curr++ % IPG_RFDLIST_LENGTH; 1527 1528 rxfd = sp->rxd + entry; 1529 1530 IPG_DEBUG_MSG("Frame requires multiple RFDs.\n"); 1531 1532 /* An unexpected event, additional code needed to handle 1533 * properly. So for the time being, just disregard the 1534 * frame. 1535 */ 1536 1537 /* Free the memory associated with the RX 1538 * buffer since it is erroneous and we will 1539 * not pass it to higher layer processes. 1540 */ 1541 if (sp->rx_buff[entry]) { 1542 pci_unmap_single(sp->pdev, 1543 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN, 1544 sp->rx_buf_sz, PCI_DMA_FROMDEVICE); 1545 dev_kfree_skb_irq(sp->rx_buff[entry]); 1546 } 1547 1548 /* Assure RX buffer is not reused by IPG. */ 1549 sp->rx_buff[entry] = NULL; 1550 } 1551 1552 sp->rx_current = curr; 1553 1554 /* Check to see if there are a minimum number of used 1555 * RFDs before restoring any (should improve performance.) 1556 */ 1557 if ((curr - sp->rx_dirty) >= IPG_MINUSEDRFDSTOFREE) 1558 ipg_nic_rxrestore(dev); 1559 1560 return 0; 1561} 1562#endif 1563 1564static void ipg_reset_after_host_error(struct work_struct *work) 1565{ 1566 struct ipg_nic_private *sp = 1567 container_of(work, struct ipg_nic_private, task.work); 1568 struct net_device *dev = sp->dev; 1569 1570 IPG_DDEBUG_MSG("DMACtrl = %8.8x\n", ioread32(sp->ioaddr + IPG_DMACTRL)); 1571 1572 /* 1573 * Acknowledge HostError interrupt by resetting 1574 * IPG DMA and HOST. 1575 */ 1576 ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA); 1577 1578 init_rfdlist(dev); 1579 init_tfdlist(dev); 1580 1581 if (ipg_io_config(dev) < 0) { 1582 printk(KERN_INFO "%s: Cannot recover from PCI error.\n", 1583 dev->name); 1584 schedule_delayed_work(&sp->task, HZ); 1585 } 1586} 1587 1588static irqreturn_t ipg_interrupt_handler(int irq, void *dev_inst) 1589{ 1590 struct net_device *dev = dev_inst; 1591 struct ipg_nic_private *sp = netdev_priv(dev); 1592 void __iomem *ioaddr = sp->ioaddr; 1593 unsigned int handled = 0; 1594 u16 status; 1595 1596 IPG_DEBUG_MSG("_interrupt_handler\n"); 1597 1598#ifdef JUMBO_FRAME 1599 ipg_nic_rxrestore(dev); 1600#endif 1601 spin_lock(&sp->lock); 1602 1603 /* Get interrupt source information, and acknowledge 1604 * some (i.e. TxDMAComplete, RxDMAComplete, RxEarly, 1605 * IntRequested, MacControlFrame, LinkEvent) interrupts 1606 * if issued. Also, all IPG interrupts are disabled by 1607 * reading IntStatusAck. 1608 */ 1609 status = ipg_r16(INT_STATUS_ACK); 1610 1611 IPG_DEBUG_MSG("IntStatusAck = %4.4x\n", status); 1612 1613 /* Shared IRQ of remove event. */ 1614 if (!(status & IPG_IS_RSVD_MASK)) 1615 goto out_enable; 1616 1617 handled = 1; 1618 1619 if (unlikely(!netif_running(dev))) 1620 goto out_unlock; 1621 1622 /* If RFDListEnd interrupt, restore all used RFDs. */ 1623 if (status & IPG_IS_RFD_LIST_END) { 1624 IPG_DEBUG_MSG("RFDListEnd Interrupt.\n"); 1625 1626 /* The RFD list end indicates an RFD was encountered 1627 * with a 0 NextPtr, or with an RFDDone bit set to 1 1628 * (indicating the RFD is not read for use by the 1629 * IPG.) Try to restore all RFDs. 1630 */ 1631 ipg_nic_rxrestore(dev); 1632 1633#ifdef IPG_DEBUG 1634 /* Increment the RFDlistendCount counter. */ 1635 sp->RFDlistendCount++; 1636#endif 1637 } 1638 1639 /* If RFDListEnd, RxDMAPriority, RxDMAComplete, or 1640 * IntRequested interrupt, process received frames. */ 1641 if ((status & IPG_IS_RX_DMA_PRIORITY) || 1642 (status & IPG_IS_RFD_LIST_END) || 1643 (status & IPG_IS_RX_DMA_COMPLETE) || 1644 (status & IPG_IS_INT_REQUESTED)) { 1645#ifdef IPG_DEBUG 1646 /* Increment the RFD list checked counter if interrupted 1647 * only to check the RFD list. */ 1648 if (status & (~(IPG_IS_RX_DMA_PRIORITY | IPG_IS_RFD_LIST_END | 1649 IPG_IS_RX_DMA_COMPLETE | IPG_IS_INT_REQUESTED) & 1650 (IPG_IS_HOST_ERROR | IPG_IS_TX_DMA_COMPLETE | 1651 IPG_IS_LINK_EVENT | IPG_IS_TX_COMPLETE | 1652 IPG_IS_UPDATE_STATS))) 1653 sp->RFDListCheckedCount++; 1654#endif 1655 1656 ipg_nic_rx(dev); 1657 } 1658 1659 /* If TxDMAComplete interrupt, free used TFDs. */ 1660 if (status & IPG_IS_TX_DMA_COMPLETE) 1661 ipg_nic_txfree(dev); 1662 1663 /* TxComplete interrupts indicate one of numerous actions. 1664 * Determine what action to take based on TXSTATUS register. 1665 */ 1666 if (status & IPG_IS_TX_COMPLETE) 1667 ipg_nic_txcleanup(dev); 1668 1669 /* If UpdateStats interrupt, update Linux Ethernet statistics */ 1670 if (status & IPG_IS_UPDATE_STATS) 1671 ipg_nic_get_stats(dev); 1672 1673 /* If HostError interrupt, reset IPG. */ 1674 if (status & IPG_IS_HOST_ERROR) { 1675 IPG_DDEBUG_MSG("HostError Interrupt\n"); 1676 1677 schedule_delayed_work(&sp->task, 0); 1678 } 1679 1680 /* If LinkEvent interrupt, resolve autonegotiation. */ 1681 if (status & IPG_IS_LINK_EVENT) { 1682 if (ipg_config_autoneg(dev) < 0) 1683 printk(KERN_INFO "%s: Auto-negotiation error.\n", 1684 dev->name); 1685 } 1686 1687 /* If MACCtrlFrame interrupt, do nothing. */ 1688 if (status & IPG_IS_MAC_CTRL_FRAME) 1689 IPG_DEBUG_MSG("MACCtrlFrame interrupt.\n"); 1690 1691 /* If RxComplete interrupt, do nothing. */ 1692 if (status & IPG_IS_RX_COMPLETE) 1693 IPG_DEBUG_MSG("RxComplete interrupt.\n"); 1694 1695 /* If RxEarly interrupt, do nothing. */ 1696 if (status & IPG_IS_RX_EARLY) 1697 IPG_DEBUG_MSG("RxEarly interrupt.\n"); 1698 1699out_enable: 1700 /* Re-enable IPG interrupts. */ 1701 ipg_w16(IPG_IE_TX_DMA_COMPLETE | IPG_IE_RX_DMA_COMPLETE | 1702 IPG_IE_HOST_ERROR | IPG_IE_INT_REQUESTED | IPG_IE_TX_COMPLETE | 1703 IPG_IE_LINK_EVENT | IPG_IE_UPDATE_STATS, INT_ENABLE); 1704out_unlock: 1705 spin_unlock(&sp->lock); 1706 1707 return IRQ_RETVAL(handled); 1708} 1709 1710static void ipg_rx_clear(struct ipg_nic_private *sp) 1711{ 1712 unsigned int i; 1713 1714 for (i = 0; i < IPG_RFDLIST_LENGTH; i++) { 1715 if (sp->rx_buff[i]) { 1716 struct ipg_rx *rxfd = sp->rxd + i; 1717 1718 dev_kfree_skb_irq(sp->rx_buff[i]); 1719 sp->rx_buff[i] = NULL; 1720 pci_unmap_single(sp->pdev, 1721 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN, 1722 sp->rx_buf_sz, PCI_DMA_FROMDEVICE); 1723 } 1724 } 1725} 1726 1727static void ipg_tx_clear(struct ipg_nic_private *sp) 1728{ 1729 unsigned int i; 1730 1731 for (i = 0; i < IPG_TFDLIST_LENGTH; i++) { 1732 if (sp->tx_buff[i]) { 1733 struct ipg_tx *txfd = sp->txd + i; 1734 1735 pci_unmap_single(sp->pdev, 1736 le64_to_cpu(txfd->frag_info) & ~IPG_TFI_FRAGLEN, 1737 sp->tx_buff[i]->len, PCI_DMA_TODEVICE); 1738 1739 dev_kfree_skb_irq(sp->tx_buff[i]); 1740 1741 sp->tx_buff[i] = NULL; 1742 } 1743 } 1744} 1745 1746static int ipg_nic_open(struct net_device *dev) 1747{ 1748 struct ipg_nic_private *sp = netdev_priv(dev); 1749 void __iomem *ioaddr = sp->ioaddr; 1750 struct pci_dev *pdev = sp->pdev; 1751 int rc; 1752 1753 IPG_DEBUG_MSG("_nic_open\n"); 1754 1755 sp->rx_buf_sz = IPG_RXSUPPORT_SIZE; 1756 1757 /* Check for interrupt line conflicts, and request interrupt 1758 * line for IPG. 1759 * 1760 * IMPORTANT: Disable IPG interrupts prior to registering 1761 * IRQ. 1762 */ 1763 ipg_w16(0x0000, INT_ENABLE); 1764 1765 /* Register the interrupt line to be used by the IPG within 1766 * the Linux system. 1767 */ 1768 rc = request_irq(pdev->irq, &ipg_interrupt_handler, IRQF_SHARED, 1769 dev->name, dev); 1770 if (rc < 0) { 1771 printk(KERN_INFO "%s: Error when requesting interrupt.\n", 1772 dev->name); 1773 goto out; 1774 } 1775 1776 dev->irq = pdev->irq; 1777 1778 rc = -ENOMEM; 1779 1780 sp->rxd = dma_alloc_coherent(&pdev->dev, IPG_RX_RING_BYTES, 1781 &sp->rxd_map, GFP_KERNEL); 1782 if (!sp->rxd) 1783 goto err_free_irq_0; 1784 1785 sp->txd = dma_alloc_coherent(&pdev->dev, IPG_TX_RING_BYTES, 1786 &sp->txd_map, GFP_KERNEL); 1787 if (!sp->txd) 1788 goto err_free_rx_1; 1789 1790 rc = init_rfdlist(dev); 1791 if (rc < 0) { 1792 printk(KERN_INFO "%s: Error during configuration.\n", 1793 dev->name); 1794 goto err_free_tx_2; 1795 } 1796 1797 init_tfdlist(dev); 1798 1799 rc = ipg_io_config(dev); 1800 if (rc < 0) { 1801 printk(KERN_INFO "%s: Error during configuration.\n", 1802 dev->name); 1803 goto err_release_tfdlist_3; 1804 } 1805 1806 /* Resolve autonegotiation. */ 1807 if (ipg_config_autoneg(dev) < 0) 1808 printk(KERN_INFO "%s: Auto-negotiation error.\n", dev->name); 1809 1810#ifdef JUMBO_FRAME 1811 /* initialize JUMBO Frame control variable */ 1812 sp->jumbo.found_start = 0; 1813 sp->jumbo.current_size = 0; 1814 sp->jumbo.skb = 0; 1815 dev->mtu = IPG_TXFRAG_SIZE; 1816#endif 1817 1818 /* Enable transmit and receive operation of the IPG. */ 1819 ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_RX_ENABLE | IPG_MC_TX_ENABLE) & 1820 IPG_MC_RSVD_MASK, MAC_CTRL); 1821 1822 netif_start_queue(dev); 1823out: 1824 return rc; 1825 1826err_release_tfdlist_3: 1827 ipg_tx_clear(sp); 1828 ipg_rx_clear(sp); 1829err_free_tx_2: 1830 dma_free_coherent(&pdev->dev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map); 1831err_free_rx_1: 1832 dma_free_coherent(&pdev->dev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map); 1833err_free_irq_0: 1834 free_irq(pdev->irq, dev); 1835 goto out; 1836} 1837 1838static int ipg_nic_stop(struct net_device *dev) 1839{ 1840 struct ipg_nic_private *sp = netdev_priv(dev); 1841 void __iomem *ioaddr = sp->ioaddr; 1842 struct pci_dev *pdev = sp->pdev; 1843 1844 IPG_DEBUG_MSG("_nic_stop\n"); 1845 1846 netif_stop_queue(dev); 1847 1848 IPG_DDEBUG_MSG("RFDlistendCount = %i\n", sp->RFDlistendCount); 1849 IPG_DDEBUG_MSG("RFDListCheckedCount = %i\n", sp->rxdCheckedCount); 1850 IPG_DDEBUG_MSG("EmptyRFDListCount = %i\n", sp->EmptyRFDListCount); 1851 IPG_DUMPTFDLIST(dev); 1852 1853 do { 1854 (void) ipg_r16(INT_STATUS_ACK); 1855 1856 ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA); 1857 1858 synchronize_irq(pdev->irq); 1859 } while (ipg_r16(INT_ENABLE) & IPG_IE_RSVD_MASK); 1860 1861 ipg_rx_clear(sp); 1862 1863 ipg_tx_clear(sp); 1864 1865 pci_free_consistent(pdev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map); 1866 pci_free_consistent(pdev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map); 1867 1868 free_irq(pdev->irq, dev); 1869 1870 return 0; 1871} 1872 1873static int ipg_nic_hard_start_xmit(struct sk_buff *skb, struct net_device *dev) 1874{ 1875 struct ipg_nic_private *sp = netdev_priv(dev); 1876 void __iomem *ioaddr = sp->ioaddr; 1877 unsigned int entry = sp->tx_current % IPG_TFDLIST_LENGTH; 1878 unsigned long flags; 1879 struct ipg_tx *txfd; 1880 1881 IPG_DDEBUG_MSG("_nic_hard_start_xmit\n"); 1882 1883 /* If in 10Mbps mode, stop the transmit queue so 1884 * no more transmit frames are accepted. 1885 */ 1886 if (sp->tenmbpsmode) 1887 netif_stop_queue(dev); 1888 1889 if (sp->reset_current_tfd) { 1890 sp->reset_current_tfd = 0; 1891 entry = 0; 1892 } 1893 1894 txfd = sp->txd + entry; 1895 1896 sp->tx_buff[entry] = skb; 1897 1898 /* Clear all TFC fields, except TFDDONE. */ 1899 txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE); 1900 1901 /* Specify the TFC field within the TFD. */ 1902 txfd->tfc |= cpu_to_le64(IPG_TFC_WORDALIGNDISABLED | 1903 (IPG_TFC_FRAMEID & cpu_to_le64(sp->tx_current)) | 1904 (IPG_TFC_FRAGCOUNT & (1 << 24))); 1905 1906 /* Request TxComplete interrupts at an interval defined 1907 * by the constant IPG_FRAMESBETWEENTXCOMPLETES. 1908 * Request TxComplete interrupt for every frame 1909 * if in 10Mbps mode to accomodate problem with 10Mbps 1910 * processing. 1911 */ 1912 if (sp->tenmbpsmode) 1913 txfd->tfc |= cpu_to_le64(IPG_TFC_TXINDICATE); 1914 txfd->tfc |= cpu_to_le64(IPG_TFC_TXDMAINDICATE); 1915 /* Based on compilation option, determine if FCS is to be 1916 * appended to transmit frame by IPG. 1917 */ 1918 if (!(IPG_APPEND_FCS_ON_TX)) 1919 txfd->tfc |= cpu_to_le64(IPG_TFC_FCSAPPENDDISABLE); 1920 1921 /* Based on compilation option, determine if IP, TCP and/or 1922 * UDP checksums are to be added to transmit frame by IPG. 1923 */ 1924 if (IPG_ADD_IPCHECKSUM_ON_TX) 1925 txfd->tfc |= cpu_to_le64(IPG_TFC_IPCHECKSUMENABLE); 1926 1927 if (IPG_ADD_TCPCHECKSUM_ON_TX) 1928 txfd->tfc |= cpu_to_le64(IPG_TFC_TCPCHECKSUMENABLE); 1929 1930 if (IPG_ADD_UDPCHECKSUM_ON_TX) 1931 txfd->tfc |= cpu_to_le64(IPG_TFC_UDPCHECKSUMENABLE); 1932 1933 /* Based on compilation option, determine if VLAN tag info is to be 1934 * inserted into transmit frame by IPG. 1935 */ 1936 if (IPG_INSERT_MANUAL_VLAN_TAG) { 1937 txfd->tfc |= cpu_to_le64(IPG_TFC_VLANTAGINSERT | 1938 ((u64) IPG_MANUAL_VLAN_VID << 32) | 1939 ((u64) IPG_MANUAL_VLAN_CFI << 44) | 1940 ((u64) IPG_MANUAL_VLAN_USERPRIORITY << 45)); 1941 } 1942 1943 /* The fragment start location within system memory is defined 1944 * by the sk_buff structure's data field. The physical address 1945 * of this location within the system's virtual memory space 1946 * is determined using the IPG_HOST2BUS_MAP function. 1947 */ 1948 txfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data, 1949 skb->len, PCI_DMA_TODEVICE)); 1950 1951 /* The length of the fragment within system memory is defined by 1952 * the sk_buff structure's len field. 1953 */ 1954 txfd->frag_info |= cpu_to_le64(IPG_TFI_FRAGLEN & 1955 ((u64) (skb->len & 0xffff) << 48)); 1956 1957 /* Clear the TFDDone bit last to indicate the TFD is ready 1958 * for transfer to the IPG. 1959 */ 1960 txfd->tfc &= cpu_to_le64(~IPG_TFC_TFDDONE); 1961 1962 spin_lock_irqsave(&sp->lock, flags); 1963 1964 sp->tx_current++; 1965 1966 mmiowb(); 1967 1968 ipg_w32(IPG_DC_TX_DMA_POLL_NOW, DMA_CTRL); 1969 1970 if (sp->tx_current == (sp->tx_dirty + IPG_TFDLIST_LENGTH)) 1971 netif_stop_queue(dev); 1972 1973 spin_unlock_irqrestore(&sp->lock, flags); 1974 1975 return NETDEV_TX_OK; 1976} 1977 1978static void ipg_set_phy_default_param(unsigned char rev, 1979 struct net_device *dev, int phy_address) 1980{ 1981 unsigned short length; 1982 unsigned char revision; 1983 unsigned short *phy_param; 1984 unsigned short address, value; 1985 1986 phy_param = &DefaultPhyParam[0]; 1987 length = *phy_param & 0x00FF; 1988 revision = (unsigned char)((*phy_param) >> 8); 1989 phy_param++; 1990 while (length != 0) { 1991 if (rev == revision) { 1992 while (length > 1) { 1993 address = *phy_param; 1994 value = *(phy_param + 1); 1995 phy_param += 2; 1996 mdio_write(dev, phy_address, address, value); 1997 length -= 4; 1998 } 1999 break; 2000 } else { 2001 phy_param += length / 2; 2002 length = *phy_param & 0x00FF; 2003 revision = (unsigned char)((*phy_param) >> 8); 2004 phy_param++; 2005 } 2006 } 2007} 2008 2009static int read_eeprom(struct net_device *dev, int eep_addr) 2010{ 2011 void __iomem *ioaddr = ipg_ioaddr(dev); 2012 unsigned int i; 2013 int ret = 0; 2014 u16 value; 2015 2016 value = IPG_EC_EEPROM_READOPCODE | (eep_addr & 0xff); 2017 ipg_w16(value, EEPROM_CTRL); 2018 2019 for (i = 0; i < 1000; i++) { 2020 u16 data; 2021 2022 mdelay(10); 2023 data = ipg_r16(EEPROM_CTRL); 2024 if (!(data & IPG_EC_EEPROM_BUSY)) { 2025 ret = ipg_r16(EEPROM_DATA); 2026 break; 2027 } 2028 } 2029 return ret; 2030} 2031 2032static void ipg_init_mii(struct net_device *dev) 2033{ 2034 struct ipg_nic_private *sp = netdev_priv(dev); 2035 struct mii_if_info *mii_if = &sp->mii_if; 2036 int phyaddr; 2037 2038 mii_if->dev = dev; 2039 mii_if->mdio_read = mdio_read; 2040 mii_if->mdio_write = mdio_write; 2041 mii_if->phy_id_mask = 0x1f; 2042 mii_if->reg_num_mask = 0x1f; 2043 2044 mii_if->phy_id = phyaddr = ipg_find_phyaddr(dev); 2045 2046 if (phyaddr != 0x1f) { 2047 u16 mii_phyctrl, mii_1000cr; 2048 u8 revisionid = 0; 2049 2050 mii_1000cr = mdio_read(dev, phyaddr, MII_CTRL1000); 2051 mii_1000cr |= ADVERTISE_1000FULL | ADVERTISE_1000HALF | 2052 GMII_PHY_1000BASETCONTROL_PreferMaster; 2053 mdio_write(dev, phyaddr, MII_CTRL1000, mii_1000cr); 2054 2055 mii_phyctrl = mdio_read(dev, phyaddr, MII_BMCR); 2056 2057 /* Set default phyparam */ 2058 pci_read_config_byte(sp->pdev, PCI_REVISION_ID, &revisionid); 2059 ipg_set_phy_default_param(revisionid, dev, phyaddr); 2060 2061 /* Reset PHY */ 2062 mii_phyctrl |= BMCR_RESET | BMCR_ANRESTART; 2063 mdio_write(dev, phyaddr, MII_BMCR, mii_phyctrl); 2064 2065 } 2066} 2067 2068static int ipg_hw_init(struct net_device *dev) 2069{ 2070 struct ipg_nic_private *sp = netdev_priv(dev); 2071 void __iomem *ioaddr = sp->ioaddr; 2072 unsigned int i; 2073 int rc; 2074 2075 /* Read/Write and Reset EEPROM Value */ 2076 /* Read LED Mode Configuration from EEPROM */ 2077 sp->led_mode = read_eeprom(dev, 6); 2078 2079 /* Reset all functions within the IPG. Do not assert 2080 * RST_OUT as not compatible with some PHYs. 2081 */ 2082 rc = ipg_reset(dev, IPG_RESET_MASK); 2083 if (rc < 0) 2084 goto out; 2085 2086 ipg_init_mii(dev); 2087 2088 /* Read MAC Address from EEPROM */ 2089 for (i = 0; i < 3; i++) 2090 sp->station_addr[i] = read_eeprom(dev, 16 + i); 2091 2092 for (i = 0; i < 3; i++) 2093 ipg_w16(sp->station_addr[i], STATION_ADDRESS_0 + 2*i); 2094 2095 /* Set station address in ethernet_device structure. */ 2096 dev->dev_addr[0] = ipg_r16(STATION_ADDRESS_0) & 0x00ff; 2097 dev->dev_addr[1] = (ipg_r16(STATION_ADDRESS_0) & 0xff00) >> 8; 2098 dev->dev_addr[2] = ipg_r16(STATION_ADDRESS_1) & 0x00ff; 2099 dev->dev_addr[3] = (ipg_r16(STATION_ADDRESS_1) & 0xff00) >> 8; 2100 dev->dev_addr[4] = ipg_r16(STATION_ADDRESS_2) & 0x00ff; 2101 dev->dev_addr[5] = (ipg_r16(STATION_ADDRESS_2) & 0xff00) >> 8; 2102out: 2103 return rc; 2104} 2105 2106static int ipg_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 2107{ 2108 struct ipg_nic_private *sp = netdev_priv(dev); 2109 int rc; 2110 2111 mutex_lock(&sp->mii_mutex); 2112 rc = generic_mii_ioctl(&sp->mii_if, if_mii(ifr), cmd, NULL); 2113 mutex_unlock(&sp->mii_mutex); 2114 2115 return rc; 2116} 2117 2118static int ipg_nic_change_mtu(struct net_device *dev, int new_mtu) 2119{ 2120 /* Function to accomodate changes to Maximum Transfer Unit 2121 * (or MTU) of IPG NIC. Cannot use default function since 2122 * the default will not allow for MTU > 1500 bytes. 2123 */ 2124 2125 IPG_DEBUG_MSG("_nic_change_mtu\n"); 2126 2127 /* Check that the new MTU value is between 68 (14 byte header, 46 2128 * byte payload, 4 byte FCS) and IPG_MAX_RXFRAME_SIZE, which 2129 * corresponds to the MAXFRAMESIZE register in the IPG. 2130 */ 2131 if ((new_mtu < 68) || (new_mtu > IPG_MAX_RXFRAME_SIZE)) 2132 return -EINVAL; 2133 2134 dev->mtu = new_mtu; 2135 2136 return 0; 2137} 2138 2139static int ipg_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 2140{ 2141 struct ipg_nic_private *sp = netdev_priv(dev); 2142 int rc; 2143 2144 mutex_lock(&sp->mii_mutex); 2145 rc = mii_ethtool_gset(&sp->mii_if, cmd); 2146 mutex_unlock(&sp->mii_mutex); 2147 2148 return rc; 2149} 2150 2151static int ipg_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 2152{ 2153 struct ipg_nic_private *sp = netdev_priv(dev); 2154 int rc; 2155 2156 mutex_lock(&sp->mii_mutex); 2157 rc = mii_ethtool_sset(&sp->mii_if, cmd); 2158 mutex_unlock(&sp->mii_mutex); 2159 2160 return rc; 2161} 2162 2163static int ipg_nway_reset(struct net_device *dev) 2164{ 2165 struct ipg_nic_private *sp = netdev_priv(dev); 2166 int rc; 2167 2168 mutex_lock(&sp->mii_mutex); 2169 rc = mii_nway_restart(&sp->mii_if); 2170 mutex_unlock(&sp->mii_mutex); 2171 2172 return rc; 2173} 2174 2175static struct ethtool_ops ipg_ethtool_ops = { 2176 .get_settings = ipg_get_settings, 2177 .set_settings = ipg_set_settings, 2178 .nway_reset = ipg_nway_reset, 2179}; 2180 2181static void __devexit ipg_remove(struct pci_dev *pdev) 2182{ 2183 struct net_device *dev = pci_get_drvdata(pdev); 2184 struct ipg_nic_private *sp = netdev_priv(dev); 2185 2186 IPG_DEBUG_MSG("_remove\n"); 2187 2188 /* Un-register Ethernet device. */ 2189 unregister_netdev(dev); 2190 2191 pci_iounmap(pdev, sp->ioaddr); 2192 2193 pci_release_regions(pdev); 2194 2195 free_netdev(dev); 2196 pci_disable_device(pdev); 2197 pci_set_drvdata(pdev, NULL); 2198} 2199 2200static int __devinit ipg_probe(struct pci_dev *pdev, 2201 const struct pci_device_id *id) 2202{ 2203 unsigned int i = id->driver_data; 2204 struct ipg_nic_private *sp; 2205 struct net_device *dev; 2206 void __iomem *ioaddr; 2207 int rc; 2208 2209 rc = pci_enable_device(pdev); 2210 if (rc < 0) 2211 goto out; 2212 2213 printk(KERN_INFO "%s: %s\n", pci_name(pdev), ipg_brand_name[i]); 2214 2215 pci_set_master(pdev); 2216 2217 rc = pci_set_dma_mask(pdev, DMA_40BIT_MASK); 2218 if (rc < 0) { 2219 rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK); 2220 if (rc < 0) { 2221 printk(KERN_ERR "%s: DMA config failed.\n", 2222 pci_name(pdev)); 2223 goto err_disable_0; 2224 } 2225 } 2226 2227 /* 2228 * Initialize net device. 2229 */ 2230 dev = alloc_etherdev(sizeof(struct ipg_nic_private)); 2231 if (!dev) { 2232 printk(KERN_ERR "%s: alloc_etherdev failed\n", pci_name(pdev)); 2233 rc = -ENOMEM; 2234 goto err_disable_0; 2235 } 2236 2237 sp = netdev_priv(dev); 2238 spin_lock_init(&sp->lock); 2239 mutex_init(&sp->mii_mutex); 2240 2241 /* Declare IPG NIC functions for Ethernet device methods. 2242 */ 2243 dev->open = &ipg_nic_open; 2244 dev->stop = &ipg_nic_stop; 2245 dev->hard_start_xmit = &ipg_nic_hard_start_xmit; 2246 dev->get_stats = &ipg_nic_get_stats; 2247 dev->set_multicast_list = &ipg_nic_set_multicast_list; 2248 dev->do_ioctl = ipg_ioctl; 2249 dev->tx_timeout = ipg_tx_timeout; 2250 dev->change_mtu = &ipg_nic_change_mtu; 2251 2252 SET_NETDEV_DEV(dev, &pdev->dev); 2253 SET_ETHTOOL_OPS(dev, &ipg_ethtool_ops); 2254 2255 rc = pci_request_regions(pdev, DRV_NAME); 2256 if (rc) 2257 goto err_free_dev_1; 2258 2259 ioaddr = pci_iomap(pdev, 1, pci_resource_len(pdev, 1)); 2260 if (!ioaddr) { 2261 printk(KERN_ERR "%s cannot map MMIO\n", pci_name(pdev)); 2262 rc = -EIO; 2263 goto err_release_regions_2; 2264 } 2265 2266 /* Save the pointer to the PCI device information. */ 2267 sp->ioaddr = ioaddr; 2268 sp->pdev = pdev; 2269 sp->dev = dev; 2270 2271 INIT_DELAYED_WORK(&sp->task, ipg_reset_after_host_error); 2272 2273 pci_set_drvdata(pdev, dev); 2274 2275 rc = ipg_hw_init(dev); 2276 if (rc < 0) 2277 goto err_unmap_3; 2278 2279 rc = register_netdev(dev); 2280 if (rc < 0) 2281 goto err_unmap_3; 2282 2283 printk(KERN_INFO "Ethernet device registered as: %s\n", dev->name); 2284out: 2285 return rc; 2286 2287err_unmap_3: 2288 pci_iounmap(pdev, ioaddr); 2289err_release_regions_2: 2290 pci_release_regions(pdev); 2291err_free_dev_1: 2292 free_netdev(dev); 2293err_disable_0: 2294 pci_disable_device(pdev); 2295 goto out; 2296} 2297 2298static struct pci_driver ipg_pci_driver = { 2299 .name = IPG_DRIVER_NAME, 2300 .id_table = ipg_pci_tbl, 2301 .probe = ipg_probe, 2302 .remove = __devexit_p(ipg_remove), 2303}; 2304 2305static int __init ipg_init_module(void) 2306{ 2307 return pci_register_driver(&ipg_pci_driver); 2308} 2309 2310static void __exit ipg_exit_module(void) 2311{ 2312 pci_unregister_driver(&ipg_pci_driver); 2313} 2314 2315module_init(ipg_init_module); 2316module_exit(ipg_exit_module);