at v2.6.25-rc2 4182 lines 118 kB view raw
1/******************************************************************************* 2 3 Intel PRO/1000 Linux driver 4 Copyright(c) 1999 - 2007 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, write to the Free Software Foundation, Inc., 17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 18 19 The full GNU General Public License is included in this distribution in 20 the file called "COPYING". 21 22 Contact Information: 23 Linux NICS <linux.nics@intel.com> 24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 26 27*******************************************************************************/ 28 29#include <linux/module.h> 30#include <linux/types.h> 31#include <linux/init.h> 32#include <linux/pci.h> 33#include <linux/vmalloc.h> 34#include <linux/pagemap.h> 35#include <linux/delay.h> 36#include <linux/netdevice.h> 37#include <linux/tcp.h> 38#include <linux/ipv6.h> 39#include <net/checksum.h> 40#include <net/ip6_checksum.h> 41#include <linux/mii.h> 42#include <linux/ethtool.h> 43#include <linux/if_vlan.h> 44#include <linux/cpu.h> 45#include <linux/smp.h> 46 47#include "e1000.h" 48 49#define DRV_VERSION "0.2.0" 50char e1000e_driver_name[] = "e1000e"; 51const char e1000e_driver_version[] = DRV_VERSION; 52 53static const struct e1000_info *e1000_info_tbl[] = { 54 [board_82571] = &e1000_82571_info, 55 [board_82572] = &e1000_82572_info, 56 [board_82573] = &e1000_82573_info, 57 [board_80003es2lan] = &e1000_es2_info, 58 [board_ich8lan] = &e1000_ich8_info, 59 [board_ich9lan] = &e1000_ich9_info, 60}; 61 62#ifdef DEBUG 63/** 64 * e1000_get_hw_dev_name - return device name string 65 * used by hardware layer to print debugging information 66 **/ 67char *e1000e_get_hw_dev_name(struct e1000_hw *hw) 68{ 69 return hw->adapter->netdev->name; 70} 71#endif 72 73/** 74 * e1000_desc_unused - calculate if we have unused descriptors 75 **/ 76static int e1000_desc_unused(struct e1000_ring *ring) 77{ 78 if (ring->next_to_clean > ring->next_to_use) 79 return ring->next_to_clean - ring->next_to_use - 1; 80 81 return ring->count + ring->next_to_clean - ring->next_to_use - 1; 82} 83 84/** 85 * e1000_receive_skb - helper function to handle rx indications 86 * @adapter: board private structure 87 * @status: descriptor status field as written by hardware 88 * @vlan: descriptor vlan field as written by hardware (no le/be conversion) 89 * @skb: pointer to sk_buff to be indicated to stack 90 **/ 91static void e1000_receive_skb(struct e1000_adapter *adapter, 92 struct net_device *netdev, 93 struct sk_buff *skb, 94 u8 status, __le16 vlan) 95{ 96 skb->protocol = eth_type_trans(skb, netdev); 97 98 if (adapter->vlgrp && (status & E1000_RXD_STAT_VP)) 99 vlan_hwaccel_receive_skb(skb, adapter->vlgrp, 100 le16_to_cpu(vlan) & 101 E1000_RXD_SPC_VLAN_MASK); 102 else 103 netif_receive_skb(skb); 104 105 netdev->last_rx = jiffies; 106} 107 108/** 109 * e1000_rx_checksum - Receive Checksum Offload for 82543 110 * @adapter: board private structure 111 * @status_err: receive descriptor status and error fields 112 * @csum: receive descriptor csum field 113 * @sk_buff: socket buffer with received data 114 **/ 115static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err, 116 u32 csum, struct sk_buff *skb) 117{ 118 u16 status = (u16)status_err; 119 u8 errors = (u8)(status_err >> 24); 120 skb->ip_summed = CHECKSUM_NONE; 121 122 /* Ignore Checksum bit is set */ 123 if (status & E1000_RXD_STAT_IXSM) 124 return; 125 /* TCP/UDP checksum error bit is set */ 126 if (errors & E1000_RXD_ERR_TCPE) { 127 /* let the stack verify checksum errors */ 128 adapter->hw_csum_err++; 129 return; 130 } 131 132 /* TCP/UDP Checksum has not been calculated */ 133 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))) 134 return; 135 136 /* It must be a TCP or UDP packet with a valid checksum */ 137 if (status & E1000_RXD_STAT_TCPCS) { 138 /* TCP checksum is good */ 139 skb->ip_summed = CHECKSUM_UNNECESSARY; 140 } else { 141 /* IP fragment with UDP payload */ 142 /* Hardware complements the payload checksum, so we undo it 143 * and then put the value in host order for further stack use. 144 */ 145 __sum16 sum = (__force __sum16)htons(csum); 146 skb->csum = csum_unfold(~sum); 147 skb->ip_summed = CHECKSUM_COMPLETE; 148 } 149 adapter->hw_csum_good++; 150} 151 152/** 153 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended 154 * @adapter: address of board private structure 155 **/ 156static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, 157 int cleaned_count) 158{ 159 struct net_device *netdev = adapter->netdev; 160 struct pci_dev *pdev = adapter->pdev; 161 struct e1000_ring *rx_ring = adapter->rx_ring; 162 struct e1000_rx_desc *rx_desc; 163 struct e1000_buffer *buffer_info; 164 struct sk_buff *skb; 165 unsigned int i; 166 unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN; 167 168 i = rx_ring->next_to_use; 169 buffer_info = &rx_ring->buffer_info[i]; 170 171 while (cleaned_count--) { 172 skb = buffer_info->skb; 173 if (skb) { 174 skb_trim(skb, 0); 175 goto map_skb; 176 } 177 178 skb = netdev_alloc_skb(netdev, bufsz); 179 if (!skb) { 180 /* Better luck next round */ 181 adapter->alloc_rx_buff_failed++; 182 break; 183 } 184 185 /* Make buffer alignment 2 beyond a 16 byte boundary 186 * this will result in a 16 byte aligned IP header after 187 * the 14 byte MAC header is removed 188 */ 189 skb_reserve(skb, NET_IP_ALIGN); 190 191 buffer_info->skb = skb; 192map_skb: 193 buffer_info->dma = pci_map_single(pdev, skb->data, 194 adapter->rx_buffer_len, 195 PCI_DMA_FROMDEVICE); 196 if (pci_dma_mapping_error(buffer_info->dma)) { 197 dev_err(&pdev->dev, "RX DMA map failed\n"); 198 adapter->rx_dma_failed++; 199 break; 200 } 201 202 rx_desc = E1000_RX_DESC(*rx_ring, i); 203 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); 204 205 i++; 206 if (i == rx_ring->count) 207 i = 0; 208 buffer_info = &rx_ring->buffer_info[i]; 209 } 210 211 if (rx_ring->next_to_use != i) { 212 rx_ring->next_to_use = i; 213 if (i-- == 0) 214 i = (rx_ring->count - 1); 215 216 /* Force memory writes to complete before letting h/w 217 * know there are new descriptors to fetch. (Only 218 * applicable for weak-ordered memory model archs, 219 * such as IA-64). */ 220 wmb(); 221 writel(i, adapter->hw.hw_addr + rx_ring->tail); 222 } 223} 224 225/** 226 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split 227 * @adapter: address of board private structure 228 **/ 229static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter, 230 int cleaned_count) 231{ 232 struct net_device *netdev = adapter->netdev; 233 struct pci_dev *pdev = adapter->pdev; 234 union e1000_rx_desc_packet_split *rx_desc; 235 struct e1000_ring *rx_ring = adapter->rx_ring; 236 struct e1000_buffer *buffer_info; 237 struct e1000_ps_page *ps_page; 238 struct sk_buff *skb; 239 unsigned int i, j; 240 241 i = rx_ring->next_to_use; 242 buffer_info = &rx_ring->buffer_info[i]; 243 244 while (cleaned_count--) { 245 rx_desc = E1000_RX_DESC_PS(*rx_ring, i); 246 247 for (j = 0; j < PS_PAGE_BUFFERS; j++) { 248 ps_page = &buffer_info->ps_pages[j]; 249 if (j >= adapter->rx_ps_pages) { 250 /* all unused desc entries get hw null ptr */ 251 rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0); 252 continue; 253 } 254 if (!ps_page->page) { 255 ps_page->page = alloc_page(GFP_ATOMIC); 256 if (!ps_page->page) { 257 adapter->alloc_rx_buff_failed++; 258 goto no_buffers; 259 } 260 ps_page->dma = pci_map_page(pdev, 261 ps_page->page, 262 0, PAGE_SIZE, 263 PCI_DMA_FROMDEVICE); 264 if (pci_dma_mapping_error(ps_page->dma)) { 265 dev_err(&adapter->pdev->dev, 266 "RX DMA page map failed\n"); 267 adapter->rx_dma_failed++; 268 goto no_buffers; 269 } 270 } 271 /* 272 * Refresh the desc even if buffer_addrs 273 * didn't change because each write-back 274 * erases this info. 275 */ 276 rx_desc->read.buffer_addr[j+1] = 277 cpu_to_le64(ps_page->dma); 278 } 279 280 skb = netdev_alloc_skb(netdev, 281 adapter->rx_ps_bsize0 + NET_IP_ALIGN); 282 283 if (!skb) { 284 adapter->alloc_rx_buff_failed++; 285 break; 286 } 287 288 /* Make buffer alignment 2 beyond a 16 byte boundary 289 * this will result in a 16 byte aligned IP header after 290 * the 14 byte MAC header is removed 291 */ 292 skb_reserve(skb, NET_IP_ALIGN); 293 294 buffer_info->skb = skb; 295 buffer_info->dma = pci_map_single(pdev, skb->data, 296 adapter->rx_ps_bsize0, 297 PCI_DMA_FROMDEVICE); 298 if (pci_dma_mapping_error(buffer_info->dma)) { 299 dev_err(&pdev->dev, "RX DMA map failed\n"); 300 adapter->rx_dma_failed++; 301 /* cleanup skb */ 302 dev_kfree_skb_any(skb); 303 buffer_info->skb = NULL; 304 break; 305 } 306 307 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma); 308 309 i++; 310 if (i == rx_ring->count) 311 i = 0; 312 buffer_info = &rx_ring->buffer_info[i]; 313 } 314 315no_buffers: 316 if (rx_ring->next_to_use != i) { 317 rx_ring->next_to_use = i; 318 319 if (!(i--)) 320 i = (rx_ring->count - 1); 321 322 /* Force memory writes to complete before letting h/w 323 * know there are new descriptors to fetch. (Only 324 * applicable for weak-ordered memory model archs, 325 * such as IA-64). */ 326 wmb(); 327 /* Hardware increments by 16 bytes, but packet split 328 * descriptors are 32 bytes...so we increment tail 329 * twice as much. 330 */ 331 writel(i<<1, adapter->hw.hw_addr + rx_ring->tail); 332 } 333} 334 335/** 336 * e1000_clean_rx_irq - Send received data up the network stack; legacy 337 * @adapter: board private structure 338 * 339 * the return value indicates whether actual cleaning was done, there 340 * is no guarantee that everything was cleaned 341 **/ 342static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, 343 int *work_done, int work_to_do) 344{ 345 struct net_device *netdev = adapter->netdev; 346 struct pci_dev *pdev = adapter->pdev; 347 struct e1000_ring *rx_ring = adapter->rx_ring; 348 struct e1000_rx_desc *rx_desc, *next_rxd; 349 struct e1000_buffer *buffer_info, *next_buffer; 350 u32 length; 351 unsigned int i; 352 int cleaned_count = 0; 353 bool cleaned = 0; 354 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 355 356 i = rx_ring->next_to_clean; 357 rx_desc = E1000_RX_DESC(*rx_ring, i); 358 buffer_info = &rx_ring->buffer_info[i]; 359 360 while (rx_desc->status & E1000_RXD_STAT_DD) { 361 struct sk_buff *skb; 362 u8 status; 363 364 if (*work_done >= work_to_do) 365 break; 366 (*work_done)++; 367 368 status = rx_desc->status; 369 skb = buffer_info->skb; 370 buffer_info->skb = NULL; 371 372 prefetch(skb->data - NET_IP_ALIGN); 373 374 i++; 375 if (i == rx_ring->count) 376 i = 0; 377 next_rxd = E1000_RX_DESC(*rx_ring, i); 378 prefetch(next_rxd); 379 380 next_buffer = &rx_ring->buffer_info[i]; 381 382 cleaned = 1; 383 cleaned_count++; 384 pci_unmap_single(pdev, 385 buffer_info->dma, 386 adapter->rx_buffer_len, 387 PCI_DMA_FROMDEVICE); 388 buffer_info->dma = 0; 389 390 length = le16_to_cpu(rx_desc->length); 391 392 /* !EOP means multiple descriptors were used to store a single 393 * packet, also make sure the frame isn't just CRC only */ 394 if (!(status & E1000_RXD_STAT_EOP) || (length <= 4)) { 395 /* All receives must fit into a single buffer */ 396 ndev_dbg(netdev, "%s: Receive packet consumed " 397 "multiple buffers\n", netdev->name); 398 /* recycle */ 399 buffer_info->skb = skb; 400 goto next_desc; 401 } 402 403 if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) { 404 /* recycle */ 405 buffer_info->skb = skb; 406 goto next_desc; 407 } 408 409 total_rx_bytes += length; 410 total_rx_packets++; 411 412 /* code added for copybreak, this should improve 413 * performance for small packets with large amounts 414 * of reassembly being done in the stack */ 415 if (length < copybreak) { 416 struct sk_buff *new_skb = 417 netdev_alloc_skb(netdev, length + NET_IP_ALIGN); 418 if (new_skb) { 419 skb_reserve(new_skb, NET_IP_ALIGN); 420 memcpy(new_skb->data - NET_IP_ALIGN, 421 skb->data - NET_IP_ALIGN, 422 length + NET_IP_ALIGN); 423 /* save the skb in buffer_info as good */ 424 buffer_info->skb = skb; 425 skb = new_skb; 426 } 427 /* else just continue with the old one */ 428 } 429 /* end copybreak code */ 430 skb_put(skb, length); 431 432 /* Receive Checksum Offload */ 433 e1000_rx_checksum(adapter, 434 (u32)(status) | 435 ((u32)(rx_desc->errors) << 24), 436 le16_to_cpu(rx_desc->csum), skb); 437 438 e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special); 439 440next_desc: 441 rx_desc->status = 0; 442 443 /* return some buffers to hardware, one at a time is too slow */ 444 if (cleaned_count >= E1000_RX_BUFFER_WRITE) { 445 adapter->alloc_rx_buf(adapter, cleaned_count); 446 cleaned_count = 0; 447 } 448 449 /* use prefetched values */ 450 rx_desc = next_rxd; 451 buffer_info = next_buffer; 452 } 453 rx_ring->next_to_clean = i; 454 455 cleaned_count = e1000_desc_unused(rx_ring); 456 if (cleaned_count) 457 adapter->alloc_rx_buf(adapter, cleaned_count); 458 459 adapter->total_rx_packets += total_rx_packets; 460 adapter->total_rx_bytes += total_rx_bytes; 461 adapter->net_stats.rx_packets += total_rx_packets; 462 adapter->net_stats.rx_bytes += total_rx_bytes; 463 return cleaned; 464} 465 466static void e1000_put_txbuf(struct e1000_adapter *adapter, 467 struct e1000_buffer *buffer_info) 468{ 469 if (buffer_info->dma) { 470 pci_unmap_page(adapter->pdev, buffer_info->dma, 471 buffer_info->length, PCI_DMA_TODEVICE); 472 buffer_info->dma = 0; 473 } 474 if (buffer_info->skb) { 475 dev_kfree_skb_any(buffer_info->skb); 476 buffer_info->skb = NULL; 477 } 478} 479 480static void e1000_print_tx_hang(struct e1000_adapter *adapter) 481{ 482 struct e1000_ring *tx_ring = adapter->tx_ring; 483 unsigned int i = tx_ring->next_to_clean; 484 unsigned int eop = tx_ring->buffer_info[i].next_to_watch; 485 struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop); 486 struct net_device *netdev = adapter->netdev; 487 488 /* detected Tx unit hang */ 489 ndev_err(netdev, 490 "Detected Tx Unit Hang:\n" 491 " TDH <%x>\n" 492 " TDT <%x>\n" 493 " next_to_use <%x>\n" 494 " next_to_clean <%x>\n" 495 "buffer_info[next_to_clean]:\n" 496 " time_stamp <%lx>\n" 497 " next_to_watch <%x>\n" 498 " jiffies <%lx>\n" 499 " next_to_watch.status <%x>\n", 500 readl(adapter->hw.hw_addr + tx_ring->head), 501 readl(adapter->hw.hw_addr + tx_ring->tail), 502 tx_ring->next_to_use, 503 tx_ring->next_to_clean, 504 tx_ring->buffer_info[eop].time_stamp, 505 eop, 506 jiffies, 507 eop_desc->upper.fields.status); 508} 509 510/** 511 * e1000_clean_tx_irq - Reclaim resources after transmit completes 512 * @adapter: board private structure 513 * 514 * the return value indicates whether actual cleaning was done, there 515 * is no guarantee that everything was cleaned 516 **/ 517static bool e1000_clean_tx_irq(struct e1000_adapter *adapter) 518{ 519 struct net_device *netdev = adapter->netdev; 520 struct e1000_hw *hw = &adapter->hw; 521 struct e1000_ring *tx_ring = adapter->tx_ring; 522 struct e1000_tx_desc *tx_desc, *eop_desc; 523 struct e1000_buffer *buffer_info; 524 unsigned int i, eop; 525 unsigned int count = 0; 526 bool cleaned = 0; 527 unsigned int total_tx_bytes = 0, total_tx_packets = 0; 528 529 i = tx_ring->next_to_clean; 530 eop = tx_ring->buffer_info[i].next_to_watch; 531 eop_desc = E1000_TX_DESC(*tx_ring, eop); 532 533 while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) { 534 for (cleaned = 0; !cleaned; ) { 535 tx_desc = E1000_TX_DESC(*tx_ring, i); 536 buffer_info = &tx_ring->buffer_info[i]; 537 cleaned = (i == eop); 538 539 if (cleaned) { 540 struct sk_buff *skb = buffer_info->skb; 541 unsigned int segs, bytecount; 542 segs = skb_shinfo(skb)->gso_segs ?: 1; 543 /* multiply data chunks by size of headers */ 544 bytecount = ((segs - 1) * skb_headlen(skb)) + 545 skb->len; 546 total_tx_packets += segs; 547 total_tx_bytes += bytecount; 548 } 549 550 e1000_put_txbuf(adapter, buffer_info); 551 tx_desc->upper.data = 0; 552 553 i++; 554 if (i == tx_ring->count) 555 i = 0; 556 } 557 558 eop = tx_ring->buffer_info[i].next_to_watch; 559 eop_desc = E1000_TX_DESC(*tx_ring, eop); 560#define E1000_TX_WEIGHT 64 561 /* weight of a sort for tx, to avoid endless transmit cleanup */ 562 if (count++ == E1000_TX_WEIGHT) 563 break; 564 } 565 566 tx_ring->next_to_clean = i; 567 568#define TX_WAKE_THRESHOLD 32 569 if (cleaned && netif_carrier_ok(netdev) && 570 e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) { 571 /* Make sure that anybody stopping the queue after this 572 * sees the new next_to_clean. 573 */ 574 smp_mb(); 575 576 if (netif_queue_stopped(netdev) && 577 !(test_bit(__E1000_DOWN, &adapter->state))) { 578 netif_wake_queue(netdev); 579 ++adapter->restart_queue; 580 } 581 } 582 583 if (adapter->detect_tx_hung) { 584 /* Detect a transmit hang in hardware, this serializes the 585 * check with the clearing of time_stamp and movement of i */ 586 adapter->detect_tx_hung = 0; 587 if (tx_ring->buffer_info[eop].dma && 588 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp 589 + (adapter->tx_timeout_factor * HZ)) 590 && !(er32(STATUS) & 591 E1000_STATUS_TXOFF)) { 592 e1000_print_tx_hang(adapter); 593 netif_stop_queue(netdev); 594 } 595 } 596 adapter->total_tx_bytes += total_tx_bytes; 597 adapter->total_tx_packets += total_tx_packets; 598 adapter->net_stats.tx_packets += total_tx_packets; 599 adapter->net_stats.tx_bytes += total_tx_bytes; 600 return cleaned; 601} 602 603/** 604 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split 605 * @adapter: board private structure 606 * 607 * the return value indicates whether actual cleaning was done, there 608 * is no guarantee that everything was cleaned 609 **/ 610static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter, 611 int *work_done, int work_to_do) 612{ 613 union e1000_rx_desc_packet_split *rx_desc, *next_rxd; 614 struct net_device *netdev = adapter->netdev; 615 struct pci_dev *pdev = adapter->pdev; 616 struct e1000_ring *rx_ring = adapter->rx_ring; 617 struct e1000_buffer *buffer_info, *next_buffer; 618 struct e1000_ps_page *ps_page; 619 struct sk_buff *skb; 620 unsigned int i, j; 621 u32 length, staterr; 622 int cleaned_count = 0; 623 bool cleaned = 0; 624 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 625 626 i = rx_ring->next_to_clean; 627 rx_desc = E1000_RX_DESC_PS(*rx_ring, i); 628 staterr = le32_to_cpu(rx_desc->wb.middle.status_error); 629 buffer_info = &rx_ring->buffer_info[i]; 630 631 while (staterr & E1000_RXD_STAT_DD) { 632 if (*work_done >= work_to_do) 633 break; 634 (*work_done)++; 635 skb = buffer_info->skb; 636 637 /* in the packet split case this is header only */ 638 prefetch(skb->data - NET_IP_ALIGN); 639 640 i++; 641 if (i == rx_ring->count) 642 i = 0; 643 next_rxd = E1000_RX_DESC_PS(*rx_ring, i); 644 prefetch(next_rxd); 645 646 next_buffer = &rx_ring->buffer_info[i]; 647 648 cleaned = 1; 649 cleaned_count++; 650 pci_unmap_single(pdev, buffer_info->dma, 651 adapter->rx_ps_bsize0, 652 PCI_DMA_FROMDEVICE); 653 buffer_info->dma = 0; 654 655 if (!(staterr & E1000_RXD_STAT_EOP)) { 656 ndev_dbg(netdev, "%s: Packet Split buffers didn't pick " 657 "up the full packet\n", netdev->name); 658 dev_kfree_skb_irq(skb); 659 goto next_desc; 660 } 661 662 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) { 663 dev_kfree_skb_irq(skb); 664 goto next_desc; 665 } 666 667 length = le16_to_cpu(rx_desc->wb.middle.length0); 668 669 if (!length) { 670 ndev_dbg(netdev, "%s: Last part of the packet spanning" 671 " multiple descriptors\n", netdev->name); 672 dev_kfree_skb_irq(skb); 673 goto next_desc; 674 } 675 676 /* Good Receive */ 677 skb_put(skb, length); 678 679 { 680 /* this looks ugly, but it seems compiler issues make it 681 more efficient than reusing j */ 682 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]); 683 684 /* page alloc/put takes too long and effects small packet 685 * throughput, so unsplit small packets and save the alloc/put*/ 686 if (l1 && (l1 <= copybreak) && 687 ((length + l1) <= adapter->rx_ps_bsize0)) { 688 u8 *vaddr; 689 690 ps_page = &buffer_info->ps_pages[0]; 691 692 /* there is no documentation about how to call 693 * kmap_atomic, so we can't hold the mapping 694 * very long */ 695 pci_dma_sync_single_for_cpu(pdev, ps_page->dma, 696 PAGE_SIZE, PCI_DMA_FROMDEVICE); 697 vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ); 698 memcpy(skb_tail_pointer(skb), vaddr, l1); 699 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ); 700 pci_dma_sync_single_for_device(pdev, ps_page->dma, 701 PAGE_SIZE, PCI_DMA_FROMDEVICE); 702 703 skb_put(skb, l1); 704 goto copydone; 705 } /* if */ 706 } 707 708 for (j = 0; j < PS_PAGE_BUFFERS; j++) { 709 length = le16_to_cpu(rx_desc->wb.upper.length[j]); 710 if (!length) 711 break; 712 713 ps_page = &buffer_info->ps_pages[j]; 714 pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE, 715 PCI_DMA_FROMDEVICE); 716 ps_page->dma = 0; 717 skb_fill_page_desc(skb, j, ps_page->page, 0, length); 718 ps_page->page = NULL; 719 skb->len += length; 720 skb->data_len += length; 721 skb->truesize += length; 722 } 723 724copydone: 725 total_rx_bytes += skb->len; 726 total_rx_packets++; 727 728 e1000_rx_checksum(adapter, staterr, le16_to_cpu( 729 rx_desc->wb.lower.hi_dword.csum_ip.csum), skb); 730 731 if (rx_desc->wb.upper.header_status & 732 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)) 733 adapter->rx_hdr_split++; 734 735 e1000_receive_skb(adapter, netdev, skb, 736 staterr, rx_desc->wb.middle.vlan); 737 738next_desc: 739 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF); 740 buffer_info->skb = NULL; 741 742 /* return some buffers to hardware, one at a time is too slow */ 743 if (cleaned_count >= E1000_RX_BUFFER_WRITE) { 744 adapter->alloc_rx_buf(adapter, cleaned_count); 745 cleaned_count = 0; 746 } 747 748 /* use prefetched values */ 749 rx_desc = next_rxd; 750 buffer_info = next_buffer; 751 752 staterr = le32_to_cpu(rx_desc->wb.middle.status_error); 753 } 754 rx_ring->next_to_clean = i; 755 756 cleaned_count = e1000_desc_unused(rx_ring); 757 if (cleaned_count) 758 adapter->alloc_rx_buf(adapter, cleaned_count); 759 760 adapter->total_rx_packets += total_rx_packets; 761 adapter->total_rx_bytes += total_rx_bytes; 762 adapter->net_stats.rx_packets += total_rx_packets; 763 adapter->net_stats.rx_bytes += total_rx_bytes; 764 return cleaned; 765} 766 767/** 768 * e1000_clean_rx_ring - Free Rx Buffers per Queue 769 * @adapter: board private structure 770 **/ 771static void e1000_clean_rx_ring(struct e1000_adapter *adapter) 772{ 773 struct e1000_ring *rx_ring = adapter->rx_ring; 774 struct e1000_buffer *buffer_info; 775 struct e1000_ps_page *ps_page; 776 struct pci_dev *pdev = adapter->pdev; 777 unsigned int i, j; 778 779 /* Free all the Rx ring sk_buffs */ 780 for (i = 0; i < rx_ring->count; i++) { 781 buffer_info = &rx_ring->buffer_info[i]; 782 if (buffer_info->dma) { 783 if (adapter->clean_rx == e1000_clean_rx_irq) 784 pci_unmap_single(pdev, buffer_info->dma, 785 adapter->rx_buffer_len, 786 PCI_DMA_FROMDEVICE); 787 else if (adapter->clean_rx == e1000_clean_rx_irq_ps) 788 pci_unmap_single(pdev, buffer_info->dma, 789 adapter->rx_ps_bsize0, 790 PCI_DMA_FROMDEVICE); 791 buffer_info->dma = 0; 792 } 793 794 if (buffer_info->skb) { 795 dev_kfree_skb(buffer_info->skb); 796 buffer_info->skb = NULL; 797 } 798 799 for (j = 0; j < PS_PAGE_BUFFERS; j++) { 800 ps_page = &buffer_info->ps_pages[j]; 801 if (!ps_page->page) 802 break; 803 pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE, 804 PCI_DMA_FROMDEVICE); 805 ps_page->dma = 0; 806 put_page(ps_page->page); 807 ps_page->page = NULL; 808 } 809 } 810 811 /* there also may be some cached data from a chained receive */ 812 if (rx_ring->rx_skb_top) { 813 dev_kfree_skb(rx_ring->rx_skb_top); 814 rx_ring->rx_skb_top = NULL; 815 } 816 817 /* Zero out the descriptor ring */ 818 memset(rx_ring->desc, 0, rx_ring->size); 819 820 rx_ring->next_to_clean = 0; 821 rx_ring->next_to_use = 0; 822 823 writel(0, adapter->hw.hw_addr + rx_ring->head); 824 writel(0, adapter->hw.hw_addr + rx_ring->tail); 825} 826 827/** 828 * e1000_intr_msi - Interrupt Handler 829 * @irq: interrupt number 830 * @data: pointer to a network interface device structure 831 **/ 832static irqreturn_t e1000_intr_msi(int irq, void *data) 833{ 834 struct net_device *netdev = data; 835 struct e1000_adapter *adapter = netdev_priv(netdev); 836 struct e1000_hw *hw = &adapter->hw; 837 u32 icr = er32(ICR); 838 839 /* read ICR disables interrupts using IAM, so keep up with our 840 * enable/disable accounting */ 841 atomic_inc(&adapter->irq_sem); 842 843 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { 844 hw->mac.get_link_status = 1; 845 /* ICH8 workaround-- Call gig speed drop workaround on cable 846 * disconnect (LSC) before accessing any PHY registers */ 847 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) && 848 (!(er32(STATUS) & E1000_STATUS_LU))) 849 e1000e_gig_downshift_workaround_ich8lan(hw); 850 851 /* 80003ES2LAN workaround-- For packet buffer work-around on 852 * link down event; disable receives here in the ISR and reset 853 * adapter in watchdog */ 854 if (netif_carrier_ok(netdev) && 855 adapter->flags & FLAG_RX_NEEDS_RESTART) { 856 /* disable receives */ 857 u32 rctl = er32(RCTL); 858 ew32(RCTL, rctl & ~E1000_RCTL_EN); 859 } 860 /* guard against interrupt when we're going down */ 861 if (!test_bit(__E1000_DOWN, &adapter->state)) 862 mod_timer(&adapter->watchdog_timer, jiffies + 1); 863 } 864 865 if (netif_rx_schedule_prep(netdev, &adapter->napi)) { 866 adapter->total_tx_bytes = 0; 867 adapter->total_tx_packets = 0; 868 adapter->total_rx_bytes = 0; 869 adapter->total_rx_packets = 0; 870 __netif_rx_schedule(netdev, &adapter->napi); 871 } else { 872 atomic_dec(&adapter->irq_sem); 873 } 874 875 return IRQ_HANDLED; 876} 877 878/** 879 * e1000_intr - Interrupt Handler 880 * @irq: interrupt number 881 * @data: pointer to a network interface device structure 882 **/ 883static irqreturn_t e1000_intr(int irq, void *data) 884{ 885 struct net_device *netdev = data; 886 struct e1000_adapter *adapter = netdev_priv(netdev); 887 struct e1000_hw *hw = &adapter->hw; 888 889 u32 rctl, icr = er32(ICR); 890 if (!icr) 891 return IRQ_NONE; /* Not our interrupt */ 892 893 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is 894 * not set, then the adapter didn't send an interrupt */ 895 if (!(icr & E1000_ICR_INT_ASSERTED)) 896 return IRQ_NONE; 897 898 /* Interrupt Auto-Mask...upon reading ICR, 899 * interrupts are masked. No need for the 900 * IMC write, but it does mean we should 901 * account for it ASAP. */ 902 atomic_inc(&adapter->irq_sem); 903 904 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { 905 hw->mac.get_link_status = 1; 906 /* ICH8 workaround-- Call gig speed drop workaround on cable 907 * disconnect (LSC) before accessing any PHY registers */ 908 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) && 909 (!(er32(STATUS) & E1000_STATUS_LU))) 910 e1000e_gig_downshift_workaround_ich8lan(hw); 911 912 /* 80003ES2LAN workaround-- 913 * For packet buffer work-around on link down event; 914 * disable receives here in the ISR and 915 * reset adapter in watchdog 916 */ 917 if (netif_carrier_ok(netdev) && 918 (adapter->flags & FLAG_RX_NEEDS_RESTART)) { 919 /* disable receives */ 920 rctl = er32(RCTL); 921 ew32(RCTL, rctl & ~E1000_RCTL_EN); 922 } 923 /* guard against interrupt when we're going down */ 924 if (!test_bit(__E1000_DOWN, &adapter->state)) 925 mod_timer(&adapter->watchdog_timer, jiffies + 1); 926 } 927 928 if (netif_rx_schedule_prep(netdev, &adapter->napi)) { 929 adapter->total_tx_bytes = 0; 930 adapter->total_tx_packets = 0; 931 adapter->total_rx_bytes = 0; 932 adapter->total_rx_packets = 0; 933 __netif_rx_schedule(netdev, &adapter->napi); 934 } else { 935 atomic_dec(&adapter->irq_sem); 936 } 937 938 return IRQ_HANDLED; 939} 940 941static int e1000_request_irq(struct e1000_adapter *adapter) 942{ 943 struct net_device *netdev = adapter->netdev; 944 irq_handler_t handler = e1000_intr; 945 int irq_flags = IRQF_SHARED; 946 int err; 947 948 if (!pci_enable_msi(adapter->pdev)) { 949 adapter->flags |= FLAG_MSI_ENABLED; 950 handler = e1000_intr_msi; 951 irq_flags = 0; 952 } 953 954 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name, 955 netdev); 956 if (err) { 957 ndev_err(netdev, 958 "Unable to allocate %s interrupt (return: %d)\n", 959 adapter->flags & FLAG_MSI_ENABLED ? "MSI":"INTx", 960 err); 961 if (adapter->flags & FLAG_MSI_ENABLED) 962 pci_disable_msi(adapter->pdev); 963 } 964 965 return err; 966} 967 968static void e1000_free_irq(struct e1000_adapter *adapter) 969{ 970 struct net_device *netdev = adapter->netdev; 971 972 free_irq(adapter->pdev->irq, netdev); 973 if (adapter->flags & FLAG_MSI_ENABLED) { 974 pci_disable_msi(adapter->pdev); 975 adapter->flags &= ~FLAG_MSI_ENABLED; 976 } 977} 978 979/** 980 * e1000_irq_disable - Mask off interrupt generation on the NIC 981 **/ 982static void e1000_irq_disable(struct e1000_adapter *adapter) 983{ 984 struct e1000_hw *hw = &adapter->hw; 985 986 atomic_inc(&adapter->irq_sem); 987 ew32(IMC, ~0); 988 e1e_flush(); 989 synchronize_irq(adapter->pdev->irq); 990} 991 992/** 993 * e1000_irq_enable - Enable default interrupt generation settings 994 **/ 995static void e1000_irq_enable(struct e1000_adapter *adapter) 996{ 997 struct e1000_hw *hw = &adapter->hw; 998 999 if (atomic_dec_and_test(&adapter->irq_sem)) { 1000 ew32(IMS, IMS_ENABLE_MASK); 1001 e1e_flush(); 1002 } 1003} 1004 1005/** 1006 * e1000_get_hw_control - get control of the h/w from f/w 1007 * @adapter: address of board private structure 1008 * 1009 * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit. 1010 * For ASF and Pass Through versions of f/w this means that 1011 * the driver is loaded. For AMT version (only with 82573) 1012 * of the f/w this means that the network i/f is open. 1013 **/ 1014static void e1000_get_hw_control(struct e1000_adapter *adapter) 1015{ 1016 struct e1000_hw *hw = &adapter->hw; 1017 u32 ctrl_ext; 1018 u32 swsm; 1019 1020 /* Let firmware know the driver has taken over */ 1021 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) { 1022 swsm = er32(SWSM); 1023 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD); 1024 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) { 1025 ctrl_ext = er32(CTRL_EXT); 1026 ew32(CTRL_EXT, 1027 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); 1028 } 1029} 1030 1031/** 1032 * e1000_release_hw_control - release control of the h/w to f/w 1033 * @adapter: address of board private structure 1034 * 1035 * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit. 1036 * For ASF and Pass Through versions of f/w this means that the 1037 * driver is no longer loaded. For AMT version (only with 82573) i 1038 * of the f/w this means that the network i/f is closed. 1039 * 1040 **/ 1041static void e1000_release_hw_control(struct e1000_adapter *adapter) 1042{ 1043 struct e1000_hw *hw = &adapter->hw; 1044 u32 ctrl_ext; 1045 u32 swsm; 1046 1047 /* Let firmware taken over control of h/w */ 1048 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) { 1049 swsm = er32(SWSM); 1050 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD); 1051 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) { 1052 ctrl_ext = er32(CTRL_EXT); 1053 ew32(CTRL_EXT, 1054 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); 1055 } 1056} 1057 1058static void e1000_release_manageability(struct e1000_adapter *adapter) 1059{ 1060 if (adapter->flags & FLAG_MNG_PT_ENABLED) { 1061 struct e1000_hw *hw = &adapter->hw; 1062 1063 u32 manc = er32(MANC); 1064 1065 /* re-enable hardware interception of ARP */ 1066 manc |= E1000_MANC_ARP_EN; 1067 manc &= ~E1000_MANC_EN_MNG2HOST; 1068 1069 /* don't explicitly have to mess with MANC2H since 1070 * MANC has an enable disable that gates MANC2H */ 1071 ew32(MANC, manc); 1072 } 1073} 1074 1075/** 1076 * @e1000_alloc_ring - allocate memory for a ring structure 1077 **/ 1078static int e1000_alloc_ring_dma(struct e1000_adapter *adapter, 1079 struct e1000_ring *ring) 1080{ 1081 struct pci_dev *pdev = adapter->pdev; 1082 1083 ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma, 1084 GFP_KERNEL); 1085 if (!ring->desc) 1086 return -ENOMEM; 1087 1088 return 0; 1089} 1090 1091/** 1092 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors) 1093 * @adapter: board private structure 1094 * 1095 * Return 0 on success, negative on failure 1096 **/ 1097int e1000e_setup_tx_resources(struct e1000_adapter *adapter) 1098{ 1099 struct e1000_ring *tx_ring = adapter->tx_ring; 1100 int err = -ENOMEM, size; 1101 1102 size = sizeof(struct e1000_buffer) * tx_ring->count; 1103 tx_ring->buffer_info = vmalloc(size); 1104 if (!tx_ring->buffer_info) 1105 goto err; 1106 memset(tx_ring->buffer_info, 0, size); 1107 1108 /* round up to nearest 4K */ 1109 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc); 1110 tx_ring->size = ALIGN(tx_ring->size, 4096); 1111 1112 err = e1000_alloc_ring_dma(adapter, tx_ring); 1113 if (err) 1114 goto err; 1115 1116 tx_ring->next_to_use = 0; 1117 tx_ring->next_to_clean = 0; 1118 spin_lock_init(&adapter->tx_queue_lock); 1119 1120 return 0; 1121err: 1122 vfree(tx_ring->buffer_info); 1123 ndev_err(adapter->netdev, 1124 "Unable to allocate memory for the transmit descriptor ring\n"); 1125 return err; 1126} 1127 1128/** 1129 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors) 1130 * @adapter: board private structure 1131 * 1132 * Returns 0 on success, negative on failure 1133 **/ 1134int e1000e_setup_rx_resources(struct e1000_adapter *adapter) 1135{ 1136 struct e1000_ring *rx_ring = adapter->rx_ring; 1137 struct e1000_buffer *buffer_info; 1138 int i, size, desc_len, err = -ENOMEM; 1139 1140 size = sizeof(struct e1000_buffer) * rx_ring->count; 1141 rx_ring->buffer_info = vmalloc(size); 1142 if (!rx_ring->buffer_info) 1143 goto err; 1144 memset(rx_ring->buffer_info, 0, size); 1145 1146 for (i = 0; i < rx_ring->count; i++) { 1147 buffer_info = &rx_ring->buffer_info[i]; 1148 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS, 1149 sizeof(struct e1000_ps_page), 1150 GFP_KERNEL); 1151 if (!buffer_info->ps_pages) 1152 goto err_pages; 1153 } 1154 1155 desc_len = sizeof(union e1000_rx_desc_packet_split); 1156 1157 /* Round up to nearest 4K */ 1158 rx_ring->size = rx_ring->count * desc_len; 1159 rx_ring->size = ALIGN(rx_ring->size, 4096); 1160 1161 err = e1000_alloc_ring_dma(adapter, rx_ring); 1162 if (err) 1163 goto err_pages; 1164 1165 rx_ring->next_to_clean = 0; 1166 rx_ring->next_to_use = 0; 1167 rx_ring->rx_skb_top = NULL; 1168 1169 return 0; 1170 1171err_pages: 1172 for (i = 0; i < rx_ring->count; i++) { 1173 buffer_info = &rx_ring->buffer_info[i]; 1174 kfree(buffer_info->ps_pages); 1175 } 1176err: 1177 vfree(rx_ring->buffer_info); 1178 ndev_err(adapter->netdev, 1179 "Unable to allocate memory for the transmit descriptor ring\n"); 1180 return err; 1181} 1182 1183/** 1184 * e1000_clean_tx_ring - Free Tx Buffers 1185 * @adapter: board private structure 1186 **/ 1187static void e1000_clean_tx_ring(struct e1000_adapter *adapter) 1188{ 1189 struct e1000_ring *tx_ring = adapter->tx_ring; 1190 struct e1000_buffer *buffer_info; 1191 unsigned long size; 1192 unsigned int i; 1193 1194 for (i = 0; i < tx_ring->count; i++) { 1195 buffer_info = &tx_ring->buffer_info[i]; 1196 e1000_put_txbuf(adapter, buffer_info); 1197 } 1198 1199 size = sizeof(struct e1000_buffer) * tx_ring->count; 1200 memset(tx_ring->buffer_info, 0, size); 1201 1202 memset(tx_ring->desc, 0, tx_ring->size); 1203 1204 tx_ring->next_to_use = 0; 1205 tx_ring->next_to_clean = 0; 1206 1207 writel(0, adapter->hw.hw_addr + tx_ring->head); 1208 writel(0, adapter->hw.hw_addr + tx_ring->tail); 1209} 1210 1211/** 1212 * e1000e_free_tx_resources - Free Tx Resources per Queue 1213 * @adapter: board private structure 1214 * 1215 * Free all transmit software resources 1216 **/ 1217void e1000e_free_tx_resources(struct e1000_adapter *adapter) 1218{ 1219 struct pci_dev *pdev = adapter->pdev; 1220 struct e1000_ring *tx_ring = adapter->tx_ring; 1221 1222 e1000_clean_tx_ring(adapter); 1223 1224 vfree(tx_ring->buffer_info); 1225 tx_ring->buffer_info = NULL; 1226 1227 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, 1228 tx_ring->dma); 1229 tx_ring->desc = NULL; 1230} 1231 1232/** 1233 * e1000e_free_rx_resources - Free Rx Resources 1234 * @adapter: board private structure 1235 * 1236 * Free all receive software resources 1237 **/ 1238 1239void e1000e_free_rx_resources(struct e1000_adapter *adapter) 1240{ 1241 struct pci_dev *pdev = adapter->pdev; 1242 struct e1000_ring *rx_ring = adapter->rx_ring; 1243 int i; 1244 1245 e1000_clean_rx_ring(adapter); 1246 1247 for (i = 0; i < rx_ring->count; i++) { 1248 kfree(rx_ring->buffer_info[i].ps_pages); 1249 } 1250 1251 vfree(rx_ring->buffer_info); 1252 rx_ring->buffer_info = NULL; 1253 1254 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, 1255 rx_ring->dma); 1256 rx_ring->desc = NULL; 1257} 1258 1259/** 1260 * e1000_update_itr - update the dynamic ITR value based on statistics 1261 * Stores a new ITR value based on packets and byte 1262 * counts during the last interrupt. The advantage of per interrupt 1263 * computation is faster updates and more accurate ITR for the current 1264 * traffic pattern. Constants in this function were computed 1265 * based on theoretical maximum wire speed and thresholds were set based 1266 * on testing data as well as attempting to minimize response time 1267 * while increasing bulk throughput. 1268 * this functionality is controlled by the InterruptThrottleRate module 1269 * parameter (see e1000_param.c) 1270 * @adapter: pointer to adapter 1271 * @itr_setting: current adapter->itr 1272 * @packets: the number of packets during this measurement interval 1273 * @bytes: the number of bytes during this measurement interval 1274 **/ 1275static unsigned int e1000_update_itr(struct e1000_adapter *adapter, 1276 u16 itr_setting, int packets, 1277 int bytes) 1278{ 1279 unsigned int retval = itr_setting; 1280 1281 if (packets == 0) 1282 goto update_itr_done; 1283 1284 switch (itr_setting) { 1285 case lowest_latency: 1286 /* handle TSO and jumbo frames */ 1287 if (bytes/packets > 8000) 1288 retval = bulk_latency; 1289 else if ((packets < 5) && (bytes > 512)) { 1290 retval = low_latency; 1291 } 1292 break; 1293 case low_latency: /* 50 usec aka 20000 ints/s */ 1294 if (bytes > 10000) { 1295 /* this if handles the TSO accounting */ 1296 if (bytes/packets > 8000) { 1297 retval = bulk_latency; 1298 } else if ((packets < 10) || ((bytes/packets) > 1200)) { 1299 retval = bulk_latency; 1300 } else if ((packets > 35)) { 1301 retval = lowest_latency; 1302 } 1303 } else if (bytes/packets > 2000) { 1304 retval = bulk_latency; 1305 } else if (packets <= 2 && bytes < 512) { 1306 retval = lowest_latency; 1307 } 1308 break; 1309 case bulk_latency: /* 250 usec aka 4000 ints/s */ 1310 if (bytes > 25000) { 1311 if (packets > 35) { 1312 retval = low_latency; 1313 } 1314 } else if (bytes < 6000) { 1315 retval = low_latency; 1316 } 1317 break; 1318 } 1319 1320update_itr_done: 1321 return retval; 1322} 1323 1324static void e1000_set_itr(struct e1000_adapter *adapter) 1325{ 1326 struct e1000_hw *hw = &adapter->hw; 1327 u16 current_itr; 1328 u32 new_itr = adapter->itr; 1329 1330 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ 1331 if (adapter->link_speed != SPEED_1000) { 1332 current_itr = 0; 1333 new_itr = 4000; 1334 goto set_itr_now; 1335 } 1336 1337 adapter->tx_itr = e1000_update_itr(adapter, 1338 adapter->tx_itr, 1339 adapter->total_tx_packets, 1340 adapter->total_tx_bytes); 1341 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 1342 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency) 1343 adapter->tx_itr = low_latency; 1344 1345 adapter->rx_itr = e1000_update_itr(adapter, 1346 adapter->rx_itr, 1347 adapter->total_rx_packets, 1348 adapter->total_rx_bytes); 1349 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 1350 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency) 1351 adapter->rx_itr = low_latency; 1352 1353 current_itr = max(adapter->rx_itr, adapter->tx_itr); 1354 1355 switch (current_itr) { 1356 /* counts and packets in update_itr are dependent on these numbers */ 1357 case lowest_latency: 1358 new_itr = 70000; 1359 break; 1360 case low_latency: 1361 new_itr = 20000; /* aka hwitr = ~200 */ 1362 break; 1363 case bulk_latency: 1364 new_itr = 4000; 1365 break; 1366 default: 1367 break; 1368 } 1369 1370set_itr_now: 1371 if (new_itr != adapter->itr) { 1372 /* this attempts to bias the interrupt rate towards Bulk 1373 * by adding intermediate steps when interrupt rate is 1374 * increasing */ 1375 new_itr = new_itr > adapter->itr ? 1376 min(adapter->itr + (new_itr >> 2), new_itr) : 1377 new_itr; 1378 adapter->itr = new_itr; 1379 ew32(ITR, 1000000000 / (new_itr * 256)); 1380 } 1381} 1382 1383/** 1384 * e1000_clean - NAPI Rx polling callback 1385 * @adapter: board private structure 1386 **/ 1387static int e1000_clean(struct napi_struct *napi, int budget) 1388{ 1389 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi); 1390 struct net_device *poll_dev = adapter->netdev; 1391 int tx_cleaned = 0, work_done = 0; 1392 1393 /* Must NOT use netdev_priv macro here. */ 1394 adapter = poll_dev->priv; 1395 1396 /* e1000_clean is called per-cpu. This lock protects 1397 * tx_ring from being cleaned by multiple cpus 1398 * simultaneously. A failure obtaining the lock means 1399 * tx_ring is currently being cleaned anyway. */ 1400 if (spin_trylock(&adapter->tx_queue_lock)) { 1401 tx_cleaned = e1000_clean_tx_irq(adapter); 1402 spin_unlock(&adapter->tx_queue_lock); 1403 } 1404 1405 adapter->clean_rx(adapter, &work_done, budget); 1406 1407 if (tx_cleaned) 1408 work_done = budget; 1409 1410 /* If budget not fully consumed, exit the polling mode */ 1411 if (work_done < budget) { 1412 if (adapter->itr_setting & 3) 1413 e1000_set_itr(adapter); 1414 netif_rx_complete(poll_dev, napi); 1415 e1000_irq_enable(adapter); 1416 } 1417 1418 return work_done; 1419} 1420 1421static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid) 1422{ 1423 struct e1000_adapter *adapter = netdev_priv(netdev); 1424 struct e1000_hw *hw = &adapter->hw; 1425 u32 vfta, index; 1426 1427 /* don't update vlan cookie if already programmed */ 1428 if ((adapter->hw.mng_cookie.status & 1429 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && 1430 (vid == adapter->mng_vlan_id)) 1431 return; 1432 /* add VID to filter table */ 1433 index = (vid >> 5) & 0x7F; 1434 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index); 1435 vfta |= (1 << (vid & 0x1F)); 1436 e1000e_write_vfta(hw, index, vfta); 1437} 1438 1439static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid) 1440{ 1441 struct e1000_adapter *adapter = netdev_priv(netdev); 1442 struct e1000_hw *hw = &adapter->hw; 1443 u32 vfta, index; 1444 1445 e1000_irq_disable(adapter); 1446 vlan_group_set_device(adapter->vlgrp, vid, NULL); 1447 e1000_irq_enable(adapter); 1448 1449 if ((adapter->hw.mng_cookie.status & 1450 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && 1451 (vid == adapter->mng_vlan_id)) { 1452 /* release control to f/w */ 1453 e1000_release_hw_control(adapter); 1454 return; 1455 } 1456 1457 /* remove VID from filter table */ 1458 index = (vid >> 5) & 0x7F; 1459 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index); 1460 vfta &= ~(1 << (vid & 0x1F)); 1461 e1000e_write_vfta(hw, index, vfta); 1462} 1463 1464static void e1000_update_mng_vlan(struct e1000_adapter *adapter) 1465{ 1466 struct net_device *netdev = adapter->netdev; 1467 u16 vid = adapter->hw.mng_cookie.vlan_id; 1468 u16 old_vid = adapter->mng_vlan_id; 1469 1470 if (!adapter->vlgrp) 1471 return; 1472 1473 if (!vlan_group_get_device(adapter->vlgrp, vid)) { 1474 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; 1475 if (adapter->hw.mng_cookie.status & 1476 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) { 1477 e1000_vlan_rx_add_vid(netdev, vid); 1478 adapter->mng_vlan_id = vid; 1479 } 1480 1481 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && 1482 (vid != old_vid) && 1483 !vlan_group_get_device(adapter->vlgrp, old_vid)) 1484 e1000_vlan_rx_kill_vid(netdev, old_vid); 1485 } else { 1486 adapter->mng_vlan_id = vid; 1487 } 1488} 1489 1490 1491static void e1000_vlan_rx_register(struct net_device *netdev, 1492 struct vlan_group *grp) 1493{ 1494 struct e1000_adapter *adapter = netdev_priv(netdev); 1495 struct e1000_hw *hw = &adapter->hw; 1496 u32 ctrl, rctl; 1497 1498 e1000_irq_disable(adapter); 1499 adapter->vlgrp = grp; 1500 1501 if (grp) { 1502 /* enable VLAN tag insert/strip */ 1503 ctrl = er32(CTRL); 1504 ctrl |= E1000_CTRL_VME; 1505 ew32(CTRL, ctrl); 1506 1507 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { 1508 /* enable VLAN receive filtering */ 1509 rctl = er32(RCTL); 1510 rctl |= E1000_RCTL_VFE; 1511 rctl &= ~E1000_RCTL_CFIEN; 1512 ew32(RCTL, rctl); 1513 e1000_update_mng_vlan(adapter); 1514 } 1515 } else { 1516 /* disable VLAN tag insert/strip */ 1517 ctrl = er32(CTRL); 1518 ctrl &= ~E1000_CTRL_VME; 1519 ew32(CTRL, ctrl); 1520 1521 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { 1522 /* disable VLAN filtering */ 1523 rctl = er32(RCTL); 1524 rctl &= ~E1000_RCTL_VFE; 1525 ew32(RCTL, rctl); 1526 if (adapter->mng_vlan_id != 1527 (u16)E1000_MNG_VLAN_NONE) { 1528 e1000_vlan_rx_kill_vid(netdev, 1529 adapter->mng_vlan_id); 1530 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; 1531 } 1532 } 1533 } 1534 1535 e1000_irq_enable(adapter); 1536} 1537 1538static void e1000_restore_vlan(struct e1000_adapter *adapter) 1539{ 1540 u16 vid; 1541 1542 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp); 1543 1544 if (!adapter->vlgrp) 1545 return; 1546 1547 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) { 1548 if (!vlan_group_get_device(adapter->vlgrp, vid)) 1549 continue; 1550 e1000_vlan_rx_add_vid(adapter->netdev, vid); 1551 } 1552} 1553 1554static void e1000_init_manageability(struct e1000_adapter *adapter) 1555{ 1556 struct e1000_hw *hw = &adapter->hw; 1557 u32 manc, manc2h; 1558 1559 if (!(adapter->flags & FLAG_MNG_PT_ENABLED)) 1560 return; 1561 1562 manc = er32(MANC); 1563 1564 /* disable hardware interception of ARP */ 1565 manc &= ~(E1000_MANC_ARP_EN); 1566 1567 /* enable receiving management packets to the host. this will probably 1568 * generate destination unreachable messages from the host OS, but 1569 * the packets will be handled on SMBUS */ 1570 manc |= E1000_MANC_EN_MNG2HOST; 1571 manc2h = er32(MANC2H); 1572#define E1000_MNG2HOST_PORT_623 (1 << 5) 1573#define E1000_MNG2HOST_PORT_664 (1 << 6) 1574 manc2h |= E1000_MNG2HOST_PORT_623; 1575 manc2h |= E1000_MNG2HOST_PORT_664; 1576 ew32(MANC2H, manc2h); 1577 ew32(MANC, manc); 1578} 1579 1580/** 1581 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset 1582 * @adapter: board private structure 1583 * 1584 * Configure the Tx unit of the MAC after a reset. 1585 **/ 1586static void e1000_configure_tx(struct e1000_adapter *adapter) 1587{ 1588 struct e1000_hw *hw = &adapter->hw; 1589 struct e1000_ring *tx_ring = adapter->tx_ring; 1590 u64 tdba; 1591 u32 tdlen, tctl, tipg, tarc; 1592 u32 ipgr1, ipgr2; 1593 1594 /* Setup the HW Tx Head and Tail descriptor pointers */ 1595 tdba = tx_ring->dma; 1596 tdlen = tx_ring->count * sizeof(struct e1000_tx_desc); 1597 ew32(TDBAL, (tdba & DMA_32BIT_MASK)); 1598 ew32(TDBAH, (tdba >> 32)); 1599 ew32(TDLEN, tdlen); 1600 ew32(TDH, 0); 1601 ew32(TDT, 0); 1602 tx_ring->head = E1000_TDH; 1603 tx_ring->tail = E1000_TDT; 1604 1605 /* Set the default values for the Tx Inter Packet Gap timer */ 1606 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; /* 8 */ 1607 ipgr1 = DEFAULT_82543_TIPG_IPGR1; /* 8 */ 1608 ipgr2 = DEFAULT_82543_TIPG_IPGR2; /* 6 */ 1609 1610 if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN) 1611 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /* 7 */ 1612 1613 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT; 1614 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT; 1615 ew32(TIPG, tipg); 1616 1617 /* Set the Tx Interrupt Delay register */ 1618 ew32(TIDV, adapter->tx_int_delay); 1619 /* tx irq moderation */ 1620 ew32(TADV, adapter->tx_abs_int_delay); 1621 1622 /* Program the Transmit Control Register */ 1623 tctl = er32(TCTL); 1624 tctl &= ~E1000_TCTL_CT; 1625 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | 1626 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); 1627 1628 if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) { 1629 tarc = er32(TARC0); 1630 /* set the speed mode bit, we'll clear it if we're not at 1631 * gigabit link later */ 1632#define SPEED_MODE_BIT (1 << 21) 1633 tarc |= SPEED_MODE_BIT; 1634 ew32(TARC0, tarc); 1635 } 1636 1637 /* errata: program both queues to unweighted RR */ 1638 if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) { 1639 tarc = er32(TARC0); 1640 tarc |= 1; 1641 ew32(TARC0, tarc); 1642 tarc = er32(TARC1); 1643 tarc |= 1; 1644 ew32(TARC1, tarc); 1645 } 1646 1647 e1000e_config_collision_dist(hw); 1648 1649 /* Setup Transmit Descriptor Settings for eop descriptor */ 1650 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS; 1651 1652 /* only set IDE if we are delaying interrupts using the timers */ 1653 if (adapter->tx_int_delay) 1654 adapter->txd_cmd |= E1000_TXD_CMD_IDE; 1655 1656 /* enable Report Status bit */ 1657 adapter->txd_cmd |= E1000_TXD_CMD_RS; 1658 1659 ew32(TCTL, tctl); 1660 1661 adapter->tx_queue_len = adapter->netdev->tx_queue_len; 1662} 1663 1664/** 1665 * e1000_setup_rctl - configure the receive control registers 1666 * @adapter: Board private structure 1667 **/ 1668#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \ 1669 (((S) & (PAGE_SIZE - 1)) ? 1 : 0)) 1670static void e1000_setup_rctl(struct e1000_adapter *adapter) 1671{ 1672 struct e1000_hw *hw = &adapter->hw; 1673 u32 rctl, rfctl; 1674 u32 psrctl = 0; 1675 u32 pages = 0; 1676 1677 /* Program MC offset vector base */ 1678 rctl = er32(RCTL); 1679 rctl &= ~(3 << E1000_RCTL_MO_SHIFT); 1680 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | 1681 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | 1682 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT); 1683 1684 /* Do not Store bad packets */ 1685 rctl &= ~E1000_RCTL_SBP; 1686 1687 /* Enable Long Packet receive */ 1688 if (adapter->netdev->mtu <= ETH_DATA_LEN) 1689 rctl &= ~E1000_RCTL_LPE; 1690 else 1691 rctl |= E1000_RCTL_LPE; 1692 1693 /* Setup buffer sizes */ 1694 rctl &= ~E1000_RCTL_SZ_4096; 1695 rctl |= E1000_RCTL_BSEX; 1696 switch (adapter->rx_buffer_len) { 1697 case 256: 1698 rctl |= E1000_RCTL_SZ_256; 1699 rctl &= ~E1000_RCTL_BSEX; 1700 break; 1701 case 512: 1702 rctl |= E1000_RCTL_SZ_512; 1703 rctl &= ~E1000_RCTL_BSEX; 1704 break; 1705 case 1024: 1706 rctl |= E1000_RCTL_SZ_1024; 1707 rctl &= ~E1000_RCTL_BSEX; 1708 break; 1709 case 2048: 1710 default: 1711 rctl |= E1000_RCTL_SZ_2048; 1712 rctl &= ~E1000_RCTL_BSEX; 1713 break; 1714 case 4096: 1715 rctl |= E1000_RCTL_SZ_4096; 1716 break; 1717 case 8192: 1718 rctl |= E1000_RCTL_SZ_8192; 1719 break; 1720 case 16384: 1721 rctl |= E1000_RCTL_SZ_16384; 1722 break; 1723 } 1724 1725 /* 1726 * 82571 and greater support packet-split where the protocol 1727 * header is placed in skb->data and the packet data is 1728 * placed in pages hanging off of skb_shinfo(skb)->nr_frags. 1729 * In the case of a non-split, skb->data is linearly filled, 1730 * followed by the page buffers. Therefore, skb->data is 1731 * sized to hold the largest protocol header. 1732 * 1733 * allocations using alloc_page take too long for regular MTU 1734 * so only enable packet split for jumbo frames 1735 * 1736 * Using pages when the page size is greater than 16k wastes 1737 * a lot of memory, since we allocate 3 pages at all times 1738 * per packet. 1739 */ 1740 adapter->rx_ps_pages = 0; 1741 pages = PAGE_USE_COUNT(adapter->netdev->mtu); 1742 if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE)) 1743 adapter->rx_ps_pages = pages; 1744 1745 if (adapter->rx_ps_pages) { 1746 /* Configure extra packet-split registers */ 1747 rfctl = er32(RFCTL); 1748 rfctl |= E1000_RFCTL_EXTEN; 1749 /* disable packet split support for IPv6 extension headers, 1750 * because some malformed IPv6 headers can hang the RX */ 1751 rfctl |= (E1000_RFCTL_IPV6_EX_DIS | 1752 E1000_RFCTL_NEW_IPV6_EXT_DIS); 1753 1754 ew32(RFCTL, rfctl); 1755 1756 /* Enable Packet split descriptors */ 1757 rctl |= E1000_RCTL_DTYP_PS; 1758 1759 /* Enable hardware CRC frame stripping */ 1760 rctl |= E1000_RCTL_SECRC; 1761 1762 psrctl |= adapter->rx_ps_bsize0 >> 1763 E1000_PSRCTL_BSIZE0_SHIFT; 1764 1765 switch (adapter->rx_ps_pages) { 1766 case 3: 1767 psrctl |= PAGE_SIZE << 1768 E1000_PSRCTL_BSIZE3_SHIFT; 1769 case 2: 1770 psrctl |= PAGE_SIZE << 1771 E1000_PSRCTL_BSIZE2_SHIFT; 1772 case 1: 1773 psrctl |= PAGE_SIZE >> 1774 E1000_PSRCTL_BSIZE1_SHIFT; 1775 break; 1776 } 1777 1778 ew32(PSRCTL, psrctl); 1779 } 1780 1781 ew32(RCTL, rctl); 1782} 1783 1784/** 1785 * e1000_configure_rx - Configure Receive Unit after Reset 1786 * @adapter: board private structure 1787 * 1788 * Configure the Rx unit of the MAC after a reset. 1789 **/ 1790static void e1000_configure_rx(struct e1000_adapter *adapter) 1791{ 1792 struct e1000_hw *hw = &adapter->hw; 1793 struct e1000_ring *rx_ring = adapter->rx_ring; 1794 u64 rdba; 1795 u32 rdlen, rctl, rxcsum, ctrl_ext; 1796 1797 if (adapter->rx_ps_pages) { 1798 /* this is a 32 byte descriptor */ 1799 rdlen = rx_ring->count * 1800 sizeof(union e1000_rx_desc_packet_split); 1801 adapter->clean_rx = e1000_clean_rx_irq_ps; 1802 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps; 1803 } else { 1804 rdlen = rx_ring->count * 1805 sizeof(struct e1000_rx_desc); 1806 adapter->clean_rx = e1000_clean_rx_irq; 1807 adapter->alloc_rx_buf = e1000_alloc_rx_buffers; 1808 } 1809 1810 /* disable receives while setting up the descriptors */ 1811 rctl = er32(RCTL); 1812 ew32(RCTL, rctl & ~E1000_RCTL_EN); 1813 e1e_flush(); 1814 msleep(10); 1815 1816 /* set the Receive Delay Timer Register */ 1817 ew32(RDTR, adapter->rx_int_delay); 1818 1819 /* irq moderation */ 1820 ew32(RADV, adapter->rx_abs_int_delay); 1821 if (adapter->itr_setting != 0) 1822 ew32(ITR, 1823 1000000000 / (adapter->itr * 256)); 1824 1825 ctrl_ext = er32(CTRL_EXT); 1826 /* Reset delay timers after every interrupt */ 1827 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR; 1828 /* Auto-Mask interrupts upon ICR access */ 1829 ctrl_ext |= E1000_CTRL_EXT_IAME; 1830 ew32(IAM, 0xffffffff); 1831 ew32(CTRL_EXT, ctrl_ext); 1832 e1e_flush(); 1833 1834 /* Setup the HW Rx Head and Tail Descriptor Pointers and 1835 * the Base and Length of the Rx Descriptor Ring */ 1836 rdba = rx_ring->dma; 1837 ew32(RDBAL, (rdba & DMA_32BIT_MASK)); 1838 ew32(RDBAH, (rdba >> 32)); 1839 ew32(RDLEN, rdlen); 1840 ew32(RDH, 0); 1841 ew32(RDT, 0); 1842 rx_ring->head = E1000_RDH; 1843 rx_ring->tail = E1000_RDT; 1844 1845 /* Enable Receive Checksum Offload for TCP and UDP */ 1846 rxcsum = er32(RXCSUM); 1847 if (adapter->flags & FLAG_RX_CSUM_ENABLED) { 1848 rxcsum |= E1000_RXCSUM_TUOFL; 1849 1850 /* IPv4 payload checksum for UDP fragments must be 1851 * used in conjunction with packet-split. */ 1852 if (adapter->rx_ps_pages) 1853 rxcsum |= E1000_RXCSUM_IPPCSE; 1854 } else { 1855 rxcsum &= ~E1000_RXCSUM_TUOFL; 1856 /* no need to clear IPPCSE as it defaults to 0 */ 1857 } 1858 ew32(RXCSUM, rxcsum); 1859 1860 /* Enable early receives on supported devices, only takes effect when 1861 * packet size is equal or larger than the specified value (in 8 byte 1862 * units), e.g. using jumbo frames when setting to E1000_ERT_2048 */ 1863 if ((adapter->flags & FLAG_HAS_ERT) && 1864 (adapter->netdev->mtu > ETH_DATA_LEN)) 1865 ew32(ERT, E1000_ERT_2048); 1866 1867 /* Enable Receives */ 1868 ew32(RCTL, rctl); 1869} 1870 1871/** 1872 * e1000_mc_addr_list_update - Update Multicast addresses 1873 * @hw: pointer to the HW structure 1874 * @mc_addr_list: array of multicast addresses to program 1875 * @mc_addr_count: number of multicast addresses to program 1876 * @rar_used_count: the first RAR register free to program 1877 * @rar_count: total number of supported Receive Address Registers 1878 * 1879 * Updates the Receive Address Registers and Multicast Table Array. 1880 * The caller must have a packed mc_addr_list of multicast addresses. 1881 * The parameter rar_count will usually be hw->mac.rar_entry_count 1882 * unless there are workarounds that change this. Currently no func pointer 1883 * exists and all implementations are handled in the generic version of this 1884 * function. 1885 **/ 1886static void e1000_mc_addr_list_update(struct e1000_hw *hw, u8 *mc_addr_list, 1887 u32 mc_addr_count, u32 rar_used_count, 1888 u32 rar_count) 1889{ 1890 hw->mac.ops.mc_addr_list_update(hw, mc_addr_list, mc_addr_count, 1891 rar_used_count, rar_count); 1892} 1893 1894/** 1895 * e1000_set_multi - Multicast and Promiscuous mode set 1896 * @netdev: network interface device structure 1897 * 1898 * The set_multi entry point is called whenever the multicast address 1899 * list or the network interface flags are updated. This routine is 1900 * responsible for configuring the hardware for proper multicast, 1901 * promiscuous mode, and all-multi behavior. 1902 **/ 1903static void e1000_set_multi(struct net_device *netdev) 1904{ 1905 struct e1000_adapter *adapter = netdev_priv(netdev); 1906 struct e1000_hw *hw = &adapter->hw; 1907 struct e1000_mac_info *mac = &hw->mac; 1908 struct dev_mc_list *mc_ptr; 1909 u8 *mta_list; 1910 u32 rctl; 1911 int i; 1912 1913 /* Check for Promiscuous and All Multicast modes */ 1914 1915 rctl = er32(RCTL); 1916 1917 if (netdev->flags & IFF_PROMISC) { 1918 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); 1919 } else if (netdev->flags & IFF_ALLMULTI) { 1920 rctl |= E1000_RCTL_MPE; 1921 rctl &= ~E1000_RCTL_UPE; 1922 } else { 1923 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE); 1924 } 1925 1926 ew32(RCTL, rctl); 1927 1928 if (netdev->mc_count) { 1929 mta_list = kmalloc(netdev->mc_count * 6, GFP_ATOMIC); 1930 if (!mta_list) 1931 return; 1932 1933 /* prepare a packed array of only addresses. */ 1934 mc_ptr = netdev->mc_list; 1935 1936 for (i = 0; i < netdev->mc_count; i++) { 1937 if (!mc_ptr) 1938 break; 1939 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, 1940 ETH_ALEN); 1941 mc_ptr = mc_ptr->next; 1942 } 1943 1944 e1000_mc_addr_list_update(hw, mta_list, i, 1, 1945 mac->rar_entry_count); 1946 kfree(mta_list); 1947 } else { 1948 /* 1949 * if we're called from probe, we might not have 1950 * anything to do here, so clear out the list 1951 */ 1952 e1000_mc_addr_list_update(hw, NULL, 0, 1, 1953 mac->rar_entry_count); 1954 } 1955} 1956 1957/** 1958 * e1000_configure - configure the hardware for RX and TX 1959 * @adapter: private board structure 1960 **/ 1961static void e1000_configure(struct e1000_adapter *adapter) 1962{ 1963 e1000_set_multi(adapter->netdev); 1964 1965 e1000_restore_vlan(adapter); 1966 e1000_init_manageability(adapter); 1967 1968 e1000_configure_tx(adapter); 1969 e1000_setup_rctl(adapter); 1970 e1000_configure_rx(adapter); 1971 adapter->alloc_rx_buf(adapter, 1972 e1000_desc_unused(adapter->rx_ring)); 1973} 1974 1975/** 1976 * e1000e_power_up_phy - restore link in case the phy was powered down 1977 * @adapter: address of board private structure 1978 * 1979 * The phy may be powered down to save power and turn off link when the 1980 * driver is unloaded and wake on lan is not enabled (among others) 1981 * *** this routine MUST be followed by a call to e1000e_reset *** 1982 **/ 1983void e1000e_power_up_phy(struct e1000_adapter *adapter) 1984{ 1985 u16 mii_reg = 0; 1986 1987 /* Just clear the power down bit to wake the phy back up */ 1988 if (adapter->hw.media_type == e1000_media_type_copper) { 1989 /* according to the manual, the phy will retain its 1990 * settings across a power-down/up cycle */ 1991 e1e_rphy(&adapter->hw, PHY_CONTROL, &mii_reg); 1992 mii_reg &= ~MII_CR_POWER_DOWN; 1993 e1e_wphy(&adapter->hw, PHY_CONTROL, mii_reg); 1994 } 1995 1996 adapter->hw.mac.ops.setup_link(&adapter->hw); 1997} 1998 1999/** 2000 * e1000_power_down_phy - Power down the PHY 2001 * 2002 * Power down the PHY so no link is implied when interface is down 2003 * The PHY cannot be powered down is management or WoL is active 2004 */ 2005static void e1000_power_down_phy(struct e1000_adapter *adapter) 2006{ 2007 struct e1000_hw *hw = &adapter->hw; 2008 u16 mii_reg; 2009 2010 /* WoL is enabled */ 2011 if (!adapter->wol) 2012 return; 2013 2014 /* non-copper PHY? */ 2015 if (adapter->hw.media_type != e1000_media_type_copper) 2016 return; 2017 2018 /* reset is blocked because of a SoL/IDER session */ 2019 if (e1000e_check_mng_mode(hw) || 2020 e1000_check_reset_block(hw)) 2021 return; 2022 2023 /* managebility (AMT) is enabled */ 2024 if (er32(MANC) & E1000_MANC_SMBUS_EN) 2025 return; 2026 2027 /* power down the PHY */ 2028 e1e_rphy(hw, PHY_CONTROL, &mii_reg); 2029 mii_reg |= MII_CR_POWER_DOWN; 2030 e1e_wphy(hw, PHY_CONTROL, mii_reg); 2031 mdelay(1); 2032} 2033 2034/** 2035 * e1000e_reset - bring the hardware into a known good state 2036 * 2037 * This function boots the hardware and enables some settings that 2038 * require a configuration cycle of the hardware - those cannot be 2039 * set/changed during runtime. After reset the device needs to be 2040 * properly configured for rx, tx etc. 2041 */ 2042void e1000e_reset(struct e1000_adapter *adapter) 2043{ 2044 struct e1000_mac_info *mac = &adapter->hw.mac; 2045 struct e1000_hw *hw = &adapter->hw; 2046 u32 tx_space, min_tx_space, min_rx_space; 2047 u32 pba; 2048 u16 hwm; 2049 2050 ew32(PBA, adapter->pba); 2051 2052 if (mac->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN ) { 2053 /* To maintain wire speed transmits, the Tx FIFO should be 2054 * large enough to accommodate two full transmit packets, 2055 * rounded up to the next 1KB and expressed in KB. Likewise, 2056 * the Rx FIFO should be large enough to accommodate at least 2057 * one full receive packet and is similarly rounded up and 2058 * expressed in KB. */ 2059 pba = er32(PBA); 2060 /* upper 16 bits has Tx packet buffer allocation size in KB */ 2061 tx_space = pba >> 16; 2062 /* lower 16 bits has Rx packet buffer allocation size in KB */ 2063 pba &= 0xffff; 2064 /* the tx fifo also stores 16 bytes of information about the tx 2065 * but don't include ethernet FCS because hardware appends it */ 2066 min_tx_space = (mac->max_frame_size + 2067 sizeof(struct e1000_tx_desc) - 2068 ETH_FCS_LEN) * 2; 2069 min_tx_space = ALIGN(min_tx_space, 1024); 2070 min_tx_space >>= 10; 2071 /* software strips receive CRC, so leave room for it */ 2072 min_rx_space = mac->max_frame_size; 2073 min_rx_space = ALIGN(min_rx_space, 1024); 2074 min_rx_space >>= 10; 2075 2076 /* If current Tx allocation is less than the min Tx FIFO size, 2077 * and the min Tx FIFO size is less than the current Rx FIFO 2078 * allocation, take space away from current Rx allocation */ 2079 if ((tx_space < min_tx_space) && 2080 ((min_tx_space - tx_space) < pba)) { 2081 pba -= min_tx_space - tx_space; 2082 2083 /* if short on rx space, rx wins and must trump tx 2084 * adjustment or use Early Receive if available */ 2085 if ((pba < min_rx_space) && 2086 (!(adapter->flags & FLAG_HAS_ERT))) 2087 /* ERT enabled in e1000_configure_rx */ 2088 pba = min_rx_space; 2089 } 2090 2091 ew32(PBA, pba); 2092 } 2093 2094 2095 /* flow control settings */ 2096 /* The high water mark must be low enough to fit one full frame 2097 * (or the size used for early receive) above it in the Rx FIFO. 2098 * Set it to the lower of: 2099 * - 90% of the Rx FIFO size, and 2100 * - the full Rx FIFO size minus the early receive size (for parts 2101 * with ERT support assuming ERT set to E1000_ERT_2048), or 2102 * - the full Rx FIFO size minus one full frame */ 2103 if (adapter->flags & FLAG_HAS_ERT) 2104 hwm = min(((adapter->pba << 10) * 9 / 10), 2105 ((adapter->pba << 10) - (E1000_ERT_2048 << 3))); 2106 else 2107 hwm = min(((adapter->pba << 10) * 9 / 10), 2108 ((adapter->pba << 10) - mac->max_frame_size)); 2109 2110 mac->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */ 2111 mac->fc_low_water = mac->fc_high_water - 8; 2112 2113 if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME) 2114 mac->fc_pause_time = 0xFFFF; 2115 else 2116 mac->fc_pause_time = E1000_FC_PAUSE_TIME; 2117 mac->fc = mac->original_fc; 2118 2119 /* Allow time for pending master requests to run */ 2120 mac->ops.reset_hw(hw); 2121 ew32(WUC, 0); 2122 2123 if (mac->ops.init_hw(hw)) 2124 ndev_err(adapter->netdev, "Hardware Error\n"); 2125 2126 e1000_update_mng_vlan(adapter); 2127 2128 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ 2129 ew32(VET, ETH_P_8021Q); 2130 2131 e1000e_reset_adaptive(hw); 2132 e1000_get_phy_info(hw); 2133 2134 if (!(adapter->flags & FLAG_SMART_POWER_DOWN)) { 2135 u16 phy_data = 0; 2136 /* speed up time to link by disabling smart power down, ignore 2137 * the return value of this function because there is nothing 2138 * different we would do if it failed */ 2139 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); 2140 phy_data &= ~IGP02E1000_PM_SPD; 2141 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); 2142 } 2143 2144 e1000_release_manageability(adapter); 2145} 2146 2147int e1000e_up(struct e1000_adapter *adapter) 2148{ 2149 struct e1000_hw *hw = &adapter->hw; 2150 2151 /* hardware has been reset, we need to reload some things */ 2152 e1000_configure(adapter); 2153 2154 clear_bit(__E1000_DOWN, &adapter->state); 2155 2156 napi_enable(&adapter->napi); 2157 e1000_irq_enable(adapter); 2158 2159 /* fire a link change interrupt to start the watchdog */ 2160 ew32(ICS, E1000_ICS_LSC); 2161 return 0; 2162} 2163 2164void e1000e_down(struct e1000_adapter *adapter) 2165{ 2166 struct net_device *netdev = adapter->netdev; 2167 struct e1000_hw *hw = &adapter->hw; 2168 u32 tctl, rctl; 2169 2170 /* signal that we're down so the interrupt handler does not 2171 * reschedule our watchdog timer */ 2172 set_bit(__E1000_DOWN, &adapter->state); 2173 2174 /* disable receives in the hardware */ 2175 rctl = er32(RCTL); 2176 ew32(RCTL, rctl & ~E1000_RCTL_EN); 2177 /* flush and sleep below */ 2178 2179 netif_stop_queue(netdev); 2180 2181 /* disable transmits in the hardware */ 2182 tctl = er32(TCTL); 2183 tctl &= ~E1000_TCTL_EN; 2184 ew32(TCTL, tctl); 2185 /* flush both disables and wait for them to finish */ 2186 e1e_flush(); 2187 msleep(10); 2188 2189 napi_disable(&adapter->napi); 2190 atomic_set(&adapter->irq_sem, 0); 2191 e1000_irq_disable(adapter); 2192 2193 del_timer_sync(&adapter->watchdog_timer); 2194 del_timer_sync(&adapter->phy_info_timer); 2195 2196 netdev->tx_queue_len = adapter->tx_queue_len; 2197 netif_carrier_off(netdev); 2198 adapter->link_speed = 0; 2199 adapter->link_duplex = 0; 2200 2201 e1000e_reset(adapter); 2202 e1000_clean_tx_ring(adapter); 2203 e1000_clean_rx_ring(adapter); 2204 2205 /* 2206 * TODO: for power management, we could drop the link and 2207 * pci_disable_device here. 2208 */ 2209} 2210 2211void e1000e_reinit_locked(struct e1000_adapter *adapter) 2212{ 2213 might_sleep(); 2214 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 2215 msleep(1); 2216 e1000e_down(adapter); 2217 e1000e_up(adapter); 2218 clear_bit(__E1000_RESETTING, &adapter->state); 2219} 2220 2221/** 2222 * e1000_sw_init - Initialize general software structures (struct e1000_adapter) 2223 * @adapter: board private structure to initialize 2224 * 2225 * e1000_sw_init initializes the Adapter private data structure. 2226 * Fields are initialized based on PCI device information and 2227 * OS network device settings (MTU size). 2228 **/ 2229static int __devinit e1000_sw_init(struct e1000_adapter *adapter) 2230{ 2231 struct e1000_hw *hw = &adapter->hw; 2232 struct net_device *netdev = adapter->netdev; 2233 2234 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN; 2235 adapter->rx_ps_bsize0 = 128; 2236 hw->mac.max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN; 2237 hw->mac.min_frame_size = ETH_ZLEN + ETH_FCS_LEN; 2238 2239 adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL); 2240 if (!adapter->tx_ring) 2241 goto err; 2242 2243 adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL); 2244 if (!adapter->rx_ring) 2245 goto err; 2246 2247 spin_lock_init(&adapter->tx_queue_lock); 2248 2249 /* Explicitly disable IRQ since the NIC can be in any state. */ 2250 atomic_set(&adapter->irq_sem, 0); 2251 e1000_irq_disable(adapter); 2252 2253 spin_lock_init(&adapter->stats_lock); 2254 2255 set_bit(__E1000_DOWN, &adapter->state); 2256 return 0; 2257 2258err: 2259 ndev_err(netdev, "Unable to allocate memory for queues\n"); 2260 kfree(adapter->rx_ring); 2261 kfree(adapter->tx_ring); 2262 return -ENOMEM; 2263} 2264 2265/** 2266 * e1000_open - Called when a network interface is made active 2267 * @netdev: network interface device structure 2268 * 2269 * Returns 0 on success, negative value on failure 2270 * 2271 * The open entry point is called when a network interface is made 2272 * active by the system (IFF_UP). At this point all resources needed 2273 * for transmit and receive operations are allocated, the interrupt 2274 * handler is registered with the OS, the watchdog timer is started, 2275 * and the stack is notified that the interface is ready. 2276 **/ 2277static int e1000_open(struct net_device *netdev) 2278{ 2279 struct e1000_adapter *adapter = netdev_priv(netdev); 2280 struct e1000_hw *hw = &adapter->hw; 2281 int err; 2282 2283 /* disallow open during test */ 2284 if (test_bit(__E1000_TESTING, &adapter->state)) 2285 return -EBUSY; 2286 2287 /* allocate transmit descriptors */ 2288 err = e1000e_setup_tx_resources(adapter); 2289 if (err) 2290 goto err_setup_tx; 2291 2292 /* allocate receive descriptors */ 2293 err = e1000e_setup_rx_resources(adapter); 2294 if (err) 2295 goto err_setup_rx; 2296 2297 e1000e_power_up_phy(adapter); 2298 2299 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; 2300 if ((adapter->hw.mng_cookie.status & 2301 E1000_MNG_DHCP_COOKIE_STATUS_VLAN)) 2302 e1000_update_mng_vlan(adapter); 2303 2304 /* If AMT is enabled, let the firmware know that the network 2305 * interface is now open */ 2306 if ((adapter->flags & FLAG_HAS_AMT) && 2307 e1000e_check_mng_mode(&adapter->hw)) 2308 e1000_get_hw_control(adapter); 2309 2310 /* before we allocate an interrupt, we must be ready to handle it. 2311 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt 2312 * as soon as we call pci_request_irq, so we have to setup our 2313 * clean_rx handler before we do so. */ 2314 e1000_configure(adapter); 2315 2316 err = e1000_request_irq(adapter); 2317 if (err) 2318 goto err_req_irq; 2319 2320 /* From here on the code is the same as e1000e_up() */ 2321 clear_bit(__E1000_DOWN, &adapter->state); 2322 2323 napi_enable(&adapter->napi); 2324 2325 e1000_irq_enable(adapter); 2326 2327 /* fire a link status change interrupt to start the watchdog */ 2328 ew32(ICS, E1000_ICS_LSC); 2329 2330 return 0; 2331 2332err_req_irq: 2333 e1000_release_hw_control(adapter); 2334 e1000_power_down_phy(adapter); 2335 e1000e_free_rx_resources(adapter); 2336err_setup_rx: 2337 e1000e_free_tx_resources(adapter); 2338err_setup_tx: 2339 e1000e_reset(adapter); 2340 2341 return err; 2342} 2343 2344/** 2345 * e1000_close - Disables a network interface 2346 * @netdev: network interface device structure 2347 * 2348 * Returns 0, this is not allowed to fail 2349 * 2350 * The close entry point is called when an interface is de-activated 2351 * by the OS. The hardware is still under the drivers control, but 2352 * needs to be disabled. A global MAC reset is issued to stop the 2353 * hardware, and all transmit and receive resources are freed. 2354 **/ 2355static int e1000_close(struct net_device *netdev) 2356{ 2357 struct e1000_adapter *adapter = netdev_priv(netdev); 2358 2359 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state)); 2360 e1000e_down(adapter); 2361 e1000_power_down_phy(adapter); 2362 e1000_free_irq(adapter); 2363 2364 e1000e_free_tx_resources(adapter); 2365 e1000e_free_rx_resources(adapter); 2366 2367 /* kill manageability vlan ID if supported, but not if a vlan with 2368 * the same ID is registered on the host OS (let 8021q kill it) */ 2369 if ((adapter->hw.mng_cookie.status & 2370 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && 2371 !(adapter->vlgrp && 2372 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) 2373 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id); 2374 2375 /* If AMT is enabled, let the firmware know that the network 2376 * interface is now closed */ 2377 if ((adapter->flags & FLAG_HAS_AMT) && 2378 e1000e_check_mng_mode(&adapter->hw)) 2379 e1000_release_hw_control(adapter); 2380 2381 return 0; 2382} 2383/** 2384 * e1000_set_mac - Change the Ethernet Address of the NIC 2385 * @netdev: network interface device structure 2386 * @p: pointer to an address structure 2387 * 2388 * Returns 0 on success, negative on failure 2389 **/ 2390static int e1000_set_mac(struct net_device *netdev, void *p) 2391{ 2392 struct e1000_adapter *adapter = netdev_priv(netdev); 2393 struct sockaddr *addr = p; 2394 2395 if (!is_valid_ether_addr(addr->sa_data)) 2396 return -EADDRNOTAVAIL; 2397 2398 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); 2399 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len); 2400 2401 e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0); 2402 2403 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) { 2404 /* activate the work around */ 2405 e1000e_set_laa_state_82571(&adapter->hw, 1); 2406 2407 /* Hold a copy of the LAA in RAR[14] This is done so that 2408 * between the time RAR[0] gets clobbered and the time it 2409 * gets fixed (in e1000_watchdog), the actual LAA is in one 2410 * of the RARs and no incoming packets directed to this port 2411 * are dropped. Eventually the LAA will be in RAR[0] and 2412 * RAR[14] */ 2413 e1000e_rar_set(&adapter->hw, 2414 adapter->hw.mac.addr, 2415 adapter->hw.mac.rar_entry_count - 1); 2416 } 2417 2418 return 0; 2419} 2420 2421/* Need to wait a few seconds after link up to get diagnostic information from 2422 * the phy */ 2423static void e1000_update_phy_info(unsigned long data) 2424{ 2425 struct e1000_adapter *adapter = (struct e1000_adapter *) data; 2426 e1000_get_phy_info(&adapter->hw); 2427} 2428 2429/** 2430 * e1000e_update_stats - Update the board statistics counters 2431 * @adapter: board private structure 2432 **/ 2433void e1000e_update_stats(struct e1000_adapter *adapter) 2434{ 2435 struct e1000_hw *hw = &adapter->hw; 2436 struct pci_dev *pdev = adapter->pdev; 2437 unsigned long irq_flags; 2438 u16 phy_tmp; 2439 2440#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF 2441 2442 /* 2443 * Prevent stats update while adapter is being reset, or if the pci 2444 * connection is down. 2445 */ 2446 if (adapter->link_speed == 0) 2447 return; 2448 if (pci_channel_offline(pdev)) 2449 return; 2450 2451 spin_lock_irqsave(&adapter->stats_lock, irq_flags); 2452 2453 /* these counters are modified from e1000_adjust_tbi_stats, 2454 * called from the interrupt context, so they must only 2455 * be written while holding adapter->stats_lock 2456 */ 2457 2458 adapter->stats.crcerrs += er32(CRCERRS); 2459 adapter->stats.gprc += er32(GPRC); 2460 adapter->stats.gorcl += er32(GORCL); 2461 adapter->stats.gorch += er32(GORCH); 2462 adapter->stats.bprc += er32(BPRC); 2463 adapter->stats.mprc += er32(MPRC); 2464 adapter->stats.roc += er32(ROC); 2465 2466 if (adapter->flags & FLAG_HAS_STATS_PTC_PRC) { 2467 adapter->stats.prc64 += er32(PRC64); 2468 adapter->stats.prc127 += er32(PRC127); 2469 adapter->stats.prc255 += er32(PRC255); 2470 adapter->stats.prc511 += er32(PRC511); 2471 adapter->stats.prc1023 += er32(PRC1023); 2472 adapter->stats.prc1522 += er32(PRC1522); 2473 adapter->stats.symerrs += er32(SYMERRS); 2474 adapter->stats.sec += er32(SEC); 2475 } 2476 2477 adapter->stats.mpc += er32(MPC); 2478 adapter->stats.scc += er32(SCC); 2479 adapter->stats.ecol += er32(ECOL); 2480 adapter->stats.mcc += er32(MCC); 2481 adapter->stats.latecol += er32(LATECOL); 2482 adapter->stats.dc += er32(DC); 2483 adapter->stats.rlec += er32(RLEC); 2484 adapter->stats.xonrxc += er32(XONRXC); 2485 adapter->stats.xontxc += er32(XONTXC); 2486 adapter->stats.xoffrxc += er32(XOFFRXC); 2487 adapter->stats.xofftxc += er32(XOFFTXC); 2488 adapter->stats.fcruc += er32(FCRUC); 2489 adapter->stats.gptc += er32(GPTC); 2490 adapter->stats.gotcl += er32(GOTCL); 2491 adapter->stats.gotch += er32(GOTCH); 2492 adapter->stats.rnbc += er32(RNBC); 2493 adapter->stats.ruc += er32(RUC); 2494 adapter->stats.rfc += er32(RFC); 2495 adapter->stats.rjc += er32(RJC); 2496 adapter->stats.torl += er32(TORL); 2497 adapter->stats.torh += er32(TORH); 2498 adapter->stats.totl += er32(TOTL); 2499 adapter->stats.toth += er32(TOTH); 2500 adapter->stats.tpr += er32(TPR); 2501 2502 if (adapter->flags & FLAG_HAS_STATS_PTC_PRC) { 2503 adapter->stats.ptc64 += er32(PTC64); 2504 adapter->stats.ptc127 += er32(PTC127); 2505 adapter->stats.ptc255 += er32(PTC255); 2506 adapter->stats.ptc511 += er32(PTC511); 2507 adapter->stats.ptc1023 += er32(PTC1023); 2508 adapter->stats.ptc1522 += er32(PTC1522); 2509 } 2510 2511 adapter->stats.mptc += er32(MPTC); 2512 adapter->stats.bptc += er32(BPTC); 2513 2514 /* used for adaptive IFS */ 2515 2516 hw->mac.tx_packet_delta = er32(TPT); 2517 adapter->stats.tpt += hw->mac.tx_packet_delta; 2518 hw->mac.collision_delta = er32(COLC); 2519 adapter->stats.colc += hw->mac.collision_delta; 2520 2521 adapter->stats.algnerrc += er32(ALGNERRC); 2522 adapter->stats.rxerrc += er32(RXERRC); 2523 adapter->stats.tncrs += er32(TNCRS); 2524 adapter->stats.cexterr += er32(CEXTERR); 2525 adapter->stats.tsctc += er32(TSCTC); 2526 adapter->stats.tsctfc += er32(TSCTFC); 2527 2528 adapter->stats.iac += er32(IAC); 2529 2530 if (adapter->flags & FLAG_HAS_STATS_ICR_ICT) { 2531 adapter->stats.icrxoc += er32(ICRXOC); 2532 adapter->stats.icrxptc += er32(ICRXPTC); 2533 adapter->stats.icrxatc += er32(ICRXATC); 2534 adapter->stats.ictxptc += er32(ICTXPTC); 2535 adapter->stats.ictxatc += er32(ICTXATC); 2536 adapter->stats.ictxqec += er32(ICTXQEC); 2537 adapter->stats.ictxqmtc += er32(ICTXQMTC); 2538 adapter->stats.icrxdmtc += er32(ICRXDMTC); 2539 } 2540 2541 /* Fill out the OS statistics structure */ 2542 adapter->net_stats.multicast = adapter->stats.mprc; 2543 adapter->net_stats.collisions = adapter->stats.colc; 2544 2545 /* Rx Errors */ 2546 2547 /* RLEC on some newer hardware can be incorrect so build 2548 * our own version based on RUC and ROC */ 2549 adapter->net_stats.rx_errors = adapter->stats.rxerrc + 2550 adapter->stats.crcerrs + adapter->stats.algnerrc + 2551 adapter->stats.ruc + adapter->stats.roc + 2552 adapter->stats.cexterr; 2553 adapter->net_stats.rx_length_errors = adapter->stats.ruc + 2554 adapter->stats.roc; 2555 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs; 2556 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc; 2557 adapter->net_stats.rx_missed_errors = adapter->stats.mpc; 2558 2559 /* Tx Errors */ 2560 adapter->net_stats.tx_errors = adapter->stats.ecol + 2561 adapter->stats.latecol; 2562 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol; 2563 adapter->net_stats.tx_window_errors = adapter->stats.latecol; 2564 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs; 2565 2566 /* Tx Dropped needs to be maintained elsewhere */ 2567 2568 /* Phy Stats */ 2569 if (hw->media_type == e1000_media_type_copper) { 2570 if ((adapter->link_speed == SPEED_1000) && 2571 (!e1e_rphy(hw, PHY_1000T_STATUS, &phy_tmp))) { 2572 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK; 2573 adapter->phy_stats.idle_errors += phy_tmp; 2574 } 2575 } 2576 2577 /* Management Stats */ 2578 adapter->stats.mgptc += er32(MGTPTC); 2579 adapter->stats.mgprc += er32(MGTPRC); 2580 adapter->stats.mgpdc += er32(MGTPDC); 2581 2582 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags); 2583} 2584 2585static void e1000_print_link_info(struct e1000_adapter *adapter) 2586{ 2587 struct net_device *netdev = adapter->netdev; 2588 struct e1000_hw *hw = &adapter->hw; 2589 u32 ctrl = er32(CTRL); 2590 2591 ndev_info(netdev, 2592 "Link is Up %d Mbps %s, Flow Control: %s\n", 2593 adapter->link_speed, 2594 (adapter->link_duplex == FULL_DUPLEX) ? 2595 "Full Duplex" : "Half Duplex", 2596 ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ? 2597 "RX/TX" : 2598 ((ctrl & E1000_CTRL_RFCE) ? "RX" : 2599 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" ))); 2600} 2601 2602/** 2603 * e1000_watchdog - Timer Call-back 2604 * @data: pointer to adapter cast into an unsigned long 2605 **/ 2606static void e1000_watchdog(unsigned long data) 2607{ 2608 struct e1000_adapter *adapter = (struct e1000_adapter *) data; 2609 2610 /* Do the rest outside of interrupt context */ 2611 schedule_work(&adapter->watchdog_task); 2612 2613 /* TODO: make this use queue_delayed_work() */ 2614} 2615 2616static void e1000_watchdog_task(struct work_struct *work) 2617{ 2618 struct e1000_adapter *adapter = container_of(work, 2619 struct e1000_adapter, watchdog_task); 2620 2621 struct net_device *netdev = adapter->netdev; 2622 struct e1000_mac_info *mac = &adapter->hw.mac; 2623 struct e1000_ring *tx_ring = adapter->tx_ring; 2624 struct e1000_hw *hw = &adapter->hw; 2625 u32 link, tctl; 2626 s32 ret_val; 2627 int tx_pending = 0; 2628 2629 if ((netif_carrier_ok(netdev)) && 2630 (er32(STATUS) & E1000_STATUS_LU)) 2631 goto link_up; 2632 2633 ret_val = mac->ops.check_for_link(hw); 2634 if ((ret_val == E1000_ERR_PHY) && 2635 (adapter->hw.phy.type == e1000_phy_igp_3) && 2636 (er32(CTRL) & 2637 E1000_PHY_CTRL_GBE_DISABLE)) { 2638 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */ 2639 ndev_info(netdev, 2640 "Gigabit has been disabled, downgrading speed\n"); 2641 } 2642 2643 if ((e1000e_enable_tx_pkt_filtering(hw)) && 2644 (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)) 2645 e1000_update_mng_vlan(adapter); 2646 2647 if ((adapter->hw.media_type == e1000_media_type_internal_serdes) && 2648 !(er32(TXCW) & E1000_TXCW_ANE)) 2649 link = adapter->hw.mac.serdes_has_link; 2650 else 2651 link = er32(STATUS) & E1000_STATUS_LU; 2652 2653 if (link) { 2654 if (!netif_carrier_ok(netdev)) { 2655 bool txb2b = 1; 2656 mac->ops.get_link_up_info(&adapter->hw, 2657 &adapter->link_speed, 2658 &adapter->link_duplex); 2659 e1000_print_link_info(adapter); 2660 /* tweak tx_queue_len according to speed/duplex 2661 * and adjust the timeout factor */ 2662 netdev->tx_queue_len = adapter->tx_queue_len; 2663 adapter->tx_timeout_factor = 1; 2664 switch (adapter->link_speed) { 2665 case SPEED_10: 2666 txb2b = 0; 2667 netdev->tx_queue_len = 10; 2668 adapter->tx_timeout_factor = 14; 2669 break; 2670 case SPEED_100: 2671 txb2b = 0; 2672 netdev->tx_queue_len = 100; 2673 /* maybe add some timeout factor ? */ 2674 break; 2675 } 2676 2677 /* workaround: re-program speed mode bit after 2678 * link-up event */ 2679 if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) && 2680 !txb2b) { 2681 u32 tarc0; 2682 tarc0 = er32(TARC0); 2683 tarc0 &= ~SPEED_MODE_BIT; 2684 ew32(TARC0, tarc0); 2685 } 2686 2687 /* disable TSO for pcie and 10/100 speeds, to avoid 2688 * some hardware issues */ 2689 if (!(adapter->flags & FLAG_TSO_FORCE)) { 2690 switch (adapter->link_speed) { 2691 case SPEED_10: 2692 case SPEED_100: 2693 ndev_info(netdev, 2694 "10/100 speed: disabling TSO\n"); 2695 netdev->features &= ~NETIF_F_TSO; 2696 netdev->features &= ~NETIF_F_TSO6; 2697 break; 2698 case SPEED_1000: 2699 netdev->features |= NETIF_F_TSO; 2700 netdev->features |= NETIF_F_TSO6; 2701 break; 2702 default: 2703 /* oops */ 2704 break; 2705 } 2706 } 2707 2708 /* enable transmits in the hardware, need to do this 2709 * after setting TARC0 */ 2710 tctl = er32(TCTL); 2711 tctl |= E1000_TCTL_EN; 2712 ew32(TCTL, tctl); 2713 2714 netif_carrier_on(netdev); 2715 netif_wake_queue(netdev); 2716 2717 if (!test_bit(__E1000_DOWN, &adapter->state)) 2718 mod_timer(&adapter->phy_info_timer, 2719 round_jiffies(jiffies + 2 * HZ)); 2720 } else { 2721 /* make sure the receive unit is started */ 2722 if (adapter->flags & FLAG_RX_NEEDS_RESTART) { 2723 u32 rctl = er32(RCTL); 2724 ew32(RCTL, rctl | 2725 E1000_RCTL_EN); 2726 } 2727 } 2728 } else { 2729 if (netif_carrier_ok(netdev)) { 2730 adapter->link_speed = 0; 2731 adapter->link_duplex = 0; 2732 ndev_info(netdev, "Link is Down\n"); 2733 netif_carrier_off(netdev); 2734 netif_stop_queue(netdev); 2735 if (!test_bit(__E1000_DOWN, &adapter->state)) 2736 mod_timer(&adapter->phy_info_timer, 2737 round_jiffies(jiffies + 2 * HZ)); 2738 2739 if (adapter->flags & FLAG_RX_NEEDS_RESTART) 2740 schedule_work(&adapter->reset_task); 2741 } 2742 } 2743 2744link_up: 2745 e1000e_update_stats(adapter); 2746 2747 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old; 2748 adapter->tpt_old = adapter->stats.tpt; 2749 mac->collision_delta = adapter->stats.colc - adapter->colc_old; 2750 adapter->colc_old = adapter->stats.colc; 2751 2752 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old; 2753 adapter->gorcl_old = adapter->stats.gorcl; 2754 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old; 2755 adapter->gotcl_old = adapter->stats.gotcl; 2756 2757 e1000e_update_adaptive(&adapter->hw); 2758 2759 if (!netif_carrier_ok(netdev)) { 2760 tx_pending = (e1000_desc_unused(tx_ring) + 1 < 2761 tx_ring->count); 2762 if (tx_pending) { 2763 /* We've lost link, so the controller stops DMA, 2764 * but we've got queued Tx work that's never going 2765 * to get done, so reset controller to flush Tx. 2766 * (Do the reset outside of interrupt context). */ 2767 adapter->tx_timeout_count++; 2768 schedule_work(&adapter->reset_task); 2769 } 2770 } 2771 2772 /* Cause software interrupt to ensure rx ring is cleaned */ 2773 ew32(ICS, E1000_ICS_RXDMT0); 2774 2775 /* Force detection of hung controller every watchdog period */ 2776 adapter->detect_tx_hung = 1; 2777 2778 /* With 82571 controllers, LAA may be overwritten due to controller 2779 * reset from the other port. Set the appropriate LAA in RAR[0] */ 2780 if (e1000e_get_laa_state_82571(hw)) 2781 e1000e_rar_set(hw, adapter->hw.mac.addr, 0); 2782 2783 /* Reset the timer */ 2784 if (!test_bit(__E1000_DOWN, &adapter->state)) 2785 mod_timer(&adapter->watchdog_timer, 2786 round_jiffies(jiffies + 2 * HZ)); 2787} 2788 2789#define E1000_TX_FLAGS_CSUM 0x00000001 2790#define E1000_TX_FLAGS_VLAN 0x00000002 2791#define E1000_TX_FLAGS_TSO 0x00000004 2792#define E1000_TX_FLAGS_IPV4 0x00000008 2793#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000 2794#define E1000_TX_FLAGS_VLAN_SHIFT 16 2795 2796static int e1000_tso(struct e1000_adapter *adapter, 2797 struct sk_buff *skb) 2798{ 2799 struct e1000_ring *tx_ring = adapter->tx_ring; 2800 struct e1000_context_desc *context_desc; 2801 struct e1000_buffer *buffer_info; 2802 unsigned int i; 2803 u32 cmd_length = 0; 2804 u16 ipcse = 0, tucse, mss; 2805 u8 ipcss, ipcso, tucss, tucso, hdr_len; 2806 int err; 2807 2808 if (skb_is_gso(skb)) { 2809 if (skb_header_cloned(skb)) { 2810 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2811 if (err) 2812 return err; 2813 } 2814 2815 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 2816 mss = skb_shinfo(skb)->gso_size; 2817 if (skb->protocol == htons(ETH_P_IP)) { 2818 struct iphdr *iph = ip_hdr(skb); 2819 iph->tot_len = 0; 2820 iph->check = 0; 2821 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, 2822 iph->daddr, 0, 2823 IPPROTO_TCP, 2824 0); 2825 cmd_length = E1000_TXD_CMD_IP; 2826 ipcse = skb_transport_offset(skb) - 1; 2827 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) { 2828 ipv6_hdr(skb)->payload_len = 0; 2829 tcp_hdr(skb)->check = 2830 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 2831 &ipv6_hdr(skb)->daddr, 2832 0, IPPROTO_TCP, 0); 2833 ipcse = 0; 2834 } 2835 ipcss = skb_network_offset(skb); 2836 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data; 2837 tucss = skb_transport_offset(skb); 2838 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data; 2839 tucse = 0; 2840 2841 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE | 2842 E1000_TXD_CMD_TCP | (skb->len - (hdr_len))); 2843 2844 i = tx_ring->next_to_use; 2845 context_desc = E1000_CONTEXT_DESC(*tx_ring, i); 2846 buffer_info = &tx_ring->buffer_info[i]; 2847 2848 context_desc->lower_setup.ip_fields.ipcss = ipcss; 2849 context_desc->lower_setup.ip_fields.ipcso = ipcso; 2850 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse); 2851 context_desc->upper_setup.tcp_fields.tucss = tucss; 2852 context_desc->upper_setup.tcp_fields.tucso = tucso; 2853 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse); 2854 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss); 2855 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len; 2856 context_desc->cmd_and_length = cpu_to_le32(cmd_length); 2857 2858 buffer_info->time_stamp = jiffies; 2859 buffer_info->next_to_watch = i; 2860 2861 i++; 2862 if (i == tx_ring->count) 2863 i = 0; 2864 tx_ring->next_to_use = i; 2865 2866 return 1; 2867 } 2868 2869 return 0; 2870} 2871 2872static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb) 2873{ 2874 struct e1000_ring *tx_ring = adapter->tx_ring; 2875 struct e1000_context_desc *context_desc; 2876 struct e1000_buffer *buffer_info; 2877 unsigned int i; 2878 u8 css; 2879 2880 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2881 css = skb_transport_offset(skb); 2882 2883 i = tx_ring->next_to_use; 2884 buffer_info = &tx_ring->buffer_info[i]; 2885 context_desc = E1000_CONTEXT_DESC(*tx_ring, i); 2886 2887 context_desc->lower_setup.ip_config = 0; 2888 context_desc->upper_setup.tcp_fields.tucss = css; 2889 context_desc->upper_setup.tcp_fields.tucso = 2890 css + skb->csum_offset; 2891 context_desc->upper_setup.tcp_fields.tucse = 0; 2892 context_desc->tcp_seg_setup.data = 0; 2893 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT); 2894 2895 buffer_info->time_stamp = jiffies; 2896 buffer_info->next_to_watch = i; 2897 2898 i++; 2899 if (i == tx_ring->count) 2900 i = 0; 2901 tx_ring->next_to_use = i; 2902 2903 return 1; 2904 } 2905 2906 return 0; 2907} 2908 2909#define E1000_MAX_PER_TXD 8192 2910#define E1000_MAX_TXD_PWR 12 2911 2912static int e1000_tx_map(struct e1000_adapter *adapter, 2913 struct sk_buff *skb, unsigned int first, 2914 unsigned int max_per_txd, unsigned int nr_frags, 2915 unsigned int mss) 2916{ 2917 struct e1000_ring *tx_ring = adapter->tx_ring; 2918 struct e1000_buffer *buffer_info; 2919 unsigned int len = skb->len - skb->data_len; 2920 unsigned int offset = 0, size, count = 0, i; 2921 unsigned int f; 2922 2923 i = tx_ring->next_to_use; 2924 2925 while (len) { 2926 buffer_info = &tx_ring->buffer_info[i]; 2927 size = min(len, max_per_txd); 2928 2929 /* Workaround for premature desc write-backs 2930 * in TSO mode. Append 4-byte sentinel desc */ 2931 if (mss && !nr_frags && size == len && size > 8) 2932 size -= 4; 2933 2934 buffer_info->length = size; 2935 /* set time_stamp *before* dma to help avoid a possible race */ 2936 buffer_info->time_stamp = jiffies; 2937 buffer_info->dma = 2938 pci_map_single(adapter->pdev, 2939 skb->data + offset, 2940 size, 2941 PCI_DMA_TODEVICE); 2942 if (pci_dma_mapping_error(buffer_info->dma)) { 2943 dev_err(&adapter->pdev->dev, "TX DMA map failed\n"); 2944 adapter->tx_dma_failed++; 2945 return -1; 2946 } 2947 buffer_info->next_to_watch = i; 2948 2949 len -= size; 2950 offset += size; 2951 count++; 2952 i++; 2953 if (i == tx_ring->count) 2954 i = 0; 2955 } 2956 2957 for (f = 0; f < nr_frags; f++) { 2958 struct skb_frag_struct *frag; 2959 2960 frag = &skb_shinfo(skb)->frags[f]; 2961 len = frag->size; 2962 offset = frag->page_offset; 2963 2964 while (len) { 2965 buffer_info = &tx_ring->buffer_info[i]; 2966 size = min(len, max_per_txd); 2967 /* Workaround for premature desc write-backs 2968 * in TSO mode. Append 4-byte sentinel desc */ 2969 if (mss && f == (nr_frags-1) && size == len && size > 8) 2970 size -= 4; 2971 2972 buffer_info->length = size; 2973 buffer_info->time_stamp = jiffies; 2974 buffer_info->dma = 2975 pci_map_page(adapter->pdev, 2976 frag->page, 2977 offset, 2978 size, 2979 PCI_DMA_TODEVICE); 2980 if (pci_dma_mapping_error(buffer_info->dma)) { 2981 dev_err(&adapter->pdev->dev, 2982 "TX DMA page map failed\n"); 2983 adapter->tx_dma_failed++; 2984 return -1; 2985 } 2986 2987 buffer_info->next_to_watch = i; 2988 2989 len -= size; 2990 offset += size; 2991 count++; 2992 2993 i++; 2994 if (i == tx_ring->count) 2995 i = 0; 2996 } 2997 } 2998 2999 if (i == 0) 3000 i = tx_ring->count - 1; 3001 else 3002 i--; 3003 3004 tx_ring->buffer_info[i].skb = skb; 3005 tx_ring->buffer_info[first].next_to_watch = i; 3006 3007 return count; 3008} 3009 3010static void e1000_tx_queue(struct e1000_adapter *adapter, 3011 int tx_flags, int count) 3012{ 3013 struct e1000_ring *tx_ring = adapter->tx_ring; 3014 struct e1000_tx_desc *tx_desc = NULL; 3015 struct e1000_buffer *buffer_info; 3016 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS; 3017 unsigned int i; 3018 3019 if (tx_flags & E1000_TX_FLAGS_TSO) { 3020 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | 3021 E1000_TXD_CMD_TSE; 3022 txd_upper |= E1000_TXD_POPTS_TXSM << 8; 3023 3024 if (tx_flags & E1000_TX_FLAGS_IPV4) 3025 txd_upper |= E1000_TXD_POPTS_IXSM << 8; 3026 } 3027 3028 if (tx_flags & E1000_TX_FLAGS_CSUM) { 3029 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; 3030 txd_upper |= E1000_TXD_POPTS_TXSM << 8; 3031 } 3032 3033 if (tx_flags & E1000_TX_FLAGS_VLAN) { 3034 txd_lower |= E1000_TXD_CMD_VLE; 3035 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK); 3036 } 3037 3038 i = tx_ring->next_to_use; 3039 3040 while (count--) { 3041 buffer_info = &tx_ring->buffer_info[i]; 3042 tx_desc = E1000_TX_DESC(*tx_ring, i); 3043 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); 3044 tx_desc->lower.data = 3045 cpu_to_le32(txd_lower | buffer_info->length); 3046 tx_desc->upper.data = cpu_to_le32(txd_upper); 3047 3048 i++; 3049 if (i == tx_ring->count) 3050 i = 0; 3051 } 3052 3053 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd); 3054 3055 /* Force memory writes to complete before letting h/w 3056 * know there are new descriptors to fetch. (Only 3057 * applicable for weak-ordered memory model archs, 3058 * such as IA-64). */ 3059 wmb(); 3060 3061 tx_ring->next_to_use = i; 3062 writel(i, adapter->hw.hw_addr + tx_ring->tail); 3063 /* we need this if more than one processor can write to our tail 3064 * at a time, it synchronizes IO on IA64/Altix systems */ 3065 mmiowb(); 3066} 3067 3068#define MINIMUM_DHCP_PACKET_SIZE 282 3069static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter, 3070 struct sk_buff *skb) 3071{ 3072 struct e1000_hw *hw = &adapter->hw; 3073 u16 length, offset; 3074 3075 if (vlan_tx_tag_present(skb)) { 3076 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) 3077 && (adapter->hw.mng_cookie.status & 3078 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))) 3079 return 0; 3080 } 3081 3082 if (skb->len <= MINIMUM_DHCP_PACKET_SIZE) 3083 return 0; 3084 3085 if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP)) 3086 return 0; 3087 3088 { 3089 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14); 3090 struct udphdr *udp; 3091 3092 if (ip->protocol != IPPROTO_UDP) 3093 return 0; 3094 3095 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2)); 3096 if (ntohs(udp->dest) != 67) 3097 return 0; 3098 3099 offset = (u8 *)udp + 8 - skb->data; 3100 length = skb->len - offset; 3101 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length); 3102 } 3103 3104 return 0; 3105} 3106 3107static int __e1000_maybe_stop_tx(struct net_device *netdev, int size) 3108{ 3109 struct e1000_adapter *adapter = netdev_priv(netdev); 3110 3111 netif_stop_queue(netdev); 3112 /* Herbert's original patch had: 3113 * smp_mb__after_netif_stop_queue(); 3114 * but since that doesn't exist yet, just open code it. */ 3115 smp_mb(); 3116 3117 /* We need to check again in a case another CPU has just 3118 * made room available. */ 3119 if (e1000_desc_unused(adapter->tx_ring) < size) 3120 return -EBUSY; 3121 3122 /* A reprieve! */ 3123 netif_start_queue(netdev); 3124 ++adapter->restart_queue; 3125 return 0; 3126} 3127 3128static int e1000_maybe_stop_tx(struct net_device *netdev, int size) 3129{ 3130 struct e1000_adapter *adapter = netdev_priv(netdev); 3131 3132 if (e1000_desc_unused(adapter->tx_ring) >= size) 3133 return 0; 3134 return __e1000_maybe_stop_tx(netdev, size); 3135} 3136 3137#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 ) 3138static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev) 3139{ 3140 struct e1000_adapter *adapter = netdev_priv(netdev); 3141 struct e1000_ring *tx_ring = adapter->tx_ring; 3142 unsigned int first; 3143 unsigned int max_per_txd = E1000_MAX_PER_TXD; 3144 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR; 3145 unsigned int tx_flags = 0; 3146 unsigned int len = skb->len - skb->data_len; 3147 unsigned long irq_flags; 3148 unsigned int nr_frags; 3149 unsigned int mss; 3150 int count = 0; 3151 int tso; 3152 unsigned int f; 3153 3154 if (test_bit(__E1000_DOWN, &adapter->state)) { 3155 dev_kfree_skb_any(skb); 3156 return NETDEV_TX_OK; 3157 } 3158 3159 if (skb->len <= 0) { 3160 dev_kfree_skb_any(skb); 3161 return NETDEV_TX_OK; 3162 } 3163 3164 mss = skb_shinfo(skb)->gso_size; 3165 /* The controller does a simple calculation to 3166 * make sure there is enough room in the FIFO before 3167 * initiating the DMA for each buffer. The calc is: 3168 * 4 = ceil(buffer len/mss). To make sure we don't 3169 * overrun the FIFO, adjust the max buffer len if mss 3170 * drops. */ 3171 if (mss) { 3172 u8 hdr_len; 3173 max_per_txd = min(mss << 2, max_per_txd); 3174 max_txd_pwr = fls(max_per_txd) - 1; 3175 3176 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data 3177 * points to just header, pull a few bytes of payload from 3178 * frags into skb->data */ 3179 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 3180 if (skb->data_len && (hdr_len == len)) { 3181 unsigned int pull_size; 3182 3183 pull_size = min((unsigned int)4, skb->data_len); 3184 if (!__pskb_pull_tail(skb, pull_size)) { 3185 ndev_err(netdev, 3186 "__pskb_pull_tail failed.\n"); 3187 dev_kfree_skb_any(skb); 3188 return NETDEV_TX_OK; 3189 } 3190 len = skb->len - skb->data_len; 3191 } 3192 } 3193 3194 /* reserve a descriptor for the offload context */ 3195 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL)) 3196 count++; 3197 count++; 3198 3199 count += TXD_USE_COUNT(len, max_txd_pwr); 3200 3201 nr_frags = skb_shinfo(skb)->nr_frags; 3202 for (f = 0; f < nr_frags; f++) 3203 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size, 3204 max_txd_pwr); 3205 3206 if (adapter->hw.mac.tx_pkt_filtering) 3207 e1000_transfer_dhcp_info(adapter, skb); 3208 3209 if (!spin_trylock_irqsave(&adapter->tx_queue_lock, irq_flags)) 3210 /* Collision - tell upper layer to requeue */ 3211 return NETDEV_TX_LOCKED; 3212 3213 /* need: count + 2 desc gap to keep tail from touching 3214 * head, otherwise try next time */ 3215 if (e1000_maybe_stop_tx(netdev, count + 2)) { 3216 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags); 3217 return NETDEV_TX_BUSY; 3218 } 3219 3220 if (adapter->vlgrp && vlan_tx_tag_present(skb)) { 3221 tx_flags |= E1000_TX_FLAGS_VLAN; 3222 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT); 3223 } 3224 3225 first = tx_ring->next_to_use; 3226 3227 tso = e1000_tso(adapter, skb); 3228 if (tso < 0) { 3229 dev_kfree_skb_any(skb); 3230 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags); 3231 return NETDEV_TX_OK; 3232 } 3233 3234 if (tso) 3235 tx_flags |= E1000_TX_FLAGS_TSO; 3236 else if (e1000_tx_csum(adapter, skb)) 3237 tx_flags |= E1000_TX_FLAGS_CSUM; 3238 3239 /* Old method was to assume IPv4 packet by default if TSO was enabled. 3240 * 82571 hardware supports TSO capabilities for IPv6 as well... 3241 * no longer assume, we must. */ 3242 if (skb->protocol == htons(ETH_P_IP)) 3243 tx_flags |= E1000_TX_FLAGS_IPV4; 3244 3245 count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss); 3246 if (count < 0) { 3247 /* handle pci_map_single() error in e1000_tx_map */ 3248 dev_kfree_skb_any(skb); 3249 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags); 3250 return NETDEV_TX_OK; 3251 } 3252 3253 e1000_tx_queue(adapter, tx_flags, count); 3254 3255 netdev->trans_start = jiffies; 3256 3257 /* Make sure there is space in the ring for the next send. */ 3258 e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2); 3259 3260 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags); 3261 return NETDEV_TX_OK; 3262} 3263 3264/** 3265 * e1000_tx_timeout - Respond to a Tx Hang 3266 * @netdev: network interface device structure 3267 **/ 3268static void e1000_tx_timeout(struct net_device *netdev) 3269{ 3270 struct e1000_adapter *adapter = netdev_priv(netdev); 3271 3272 /* Do the reset outside of interrupt context */ 3273 adapter->tx_timeout_count++; 3274 schedule_work(&adapter->reset_task); 3275} 3276 3277static void e1000_reset_task(struct work_struct *work) 3278{ 3279 struct e1000_adapter *adapter; 3280 adapter = container_of(work, struct e1000_adapter, reset_task); 3281 3282 e1000e_reinit_locked(adapter); 3283} 3284 3285/** 3286 * e1000_get_stats - Get System Network Statistics 3287 * @netdev: network interface device structure 3288 * 3289 * Returns the address of the device statistics structure. 3290 * The statistics are actually updated from the timer callback. 3291 **/ 3292static struct net_device_stats *e1000_get_stats(struct net_device *netdev) 3293{ 3294 struct e1000_adapter *adapter = netdev_priv(netdev); 3295 3296 /* only return the current stats */ 3297 return &adapter->net_stats; 3298} 3299 3300/** 3301 * e1000_change_mtu - Change the Maximum Transfer Unit 3302 * @netdev: network interface device structure 3303 * @new_mtu: new value for maximum frame size 3304 * 3305 * Returns 0 on success, negative on failure 3306 **/ 3307static int e1000_change_mtu(struct net_device *netdev, int new_mtu) 3308{ 3309 struct e1000_adapter *adapter = netdev_priv(netdev); 3310 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; 3311 3312 if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) || 3313 (max_frame > MAX_JUMBO_FRAME_SIZE)) { 3314 ndev_err(netdev, "Invalid MTU setting\n"); 3315 return -EINVAL; 3316 } 3317 3318 /* Jumbo frame size limits */ 3319 if (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) { 3320 if (!(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) { 3321 ndev_err(netdev, "Jumbo Frames not supported.\n"); 3322 return -EINVAL; 3323 } 3324 if (adapter->hw.phy.type == e1000_phy_ife) { 3325 ndev_err(netdev, "Jumbo Frames not supported.\n"); 3326 return -EINVAL; 3327 } 3328 } 3329 3330#define MAX_STD_JUMBO_FRAME_SIZE 9234 3331 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) { 3332 ndev_err(netdev, "MTU > 9216 not supported.\n"); 3333 return -EINVAL; 3334 } 3335 3336 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 3337 msleep(1); 3338 /* e1000e_down has a dependency on max_frame_size */ 3339 adapter->hw.mac.max_frame_size = max_frame; 3340 if (netif_running(netdev)) 3341 e1000e_down(adapter); 3342 3343 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN 3344 * means we reserve 2 more, this pushes us to allocate from the next 3345 * larger slab size. 3346 * i.e. RXBUFFER_2048 --> size-4096 slab */ 3347 3348 if (max_frame <= 256) 3349 adapter->rx_buffer_len = 256; 3350 else if (max_frame <= 512) 3351 adapter->rx_buffer_len = 512; 3352 else if (max_frame <= 1024) 3353 adapter->rx_buffer_len = 1024; 3354 else if (max_frame <= 2048) 3355 adapter->rx_buffer_len = 2048; 3356 else 3357 adapter->rx_buffer_len = 4096; 3358 3359 /* adjust allocation if LPE protects us, and we aren't using SBP */ 3360 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) || 3361 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN)) 3362 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN 3363 + ETH_FCS_LEN ; 3364 3365 ndev_info(netdev, "changing MTU from %d to %d\n", 3366 netdev->mtu, new_mtu); 3367 netdev->mtu = new_mtu; 3368 3369 if (netif_running(netdev)) 3370 e1000e_up(adapter); 3371 else 3372 e1000e_reset(adapter); 3373 3374 clear_bit(__E1000_RESETTING, &adapter->state); 3375 3376 return 0; 3377} 3378 3379static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, 3380 int cmd) 3381{ 3382 struct e1000_adapter *adapter = netdev_priv(netdev); 3383 struct mii_ioctl_data *data = if_mii(ifr); 3384 unsigned long irq_flags; 3385 3386 if (adapter->hw.media_type != e1000_media_type_copper) 3387 return -EOPNOTSUPP; 3388 3389 switch (cmd) { 3390 case SIOCGMIIPHY: 3391 data->phy_id = adapter->hw.phy.addr; 3392 break; 3393 case SIOCGMIIREG: 3394 if (!capable(CAP_NET_ADMIN)) 3395 return -EPERM; 3396 spin_lock_irqsave(&adapter->stats_lock, irq_flags); 3397 if (e1e_rphy(&adapter->hw, data->reg_num & 0x1F, 3398 &data->val_out)) { 3399 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags); 3400 return -EIO; 3401 } 3402 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags); 3403 break; 3404 case SIOCSMIIREG: 3405 default: 3406 return -EOPNOTSUPP; 3407 } 3408 return 0; 3409} 3410 3411static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 3412{ 3413 switch (cmd) { 3414 case SIOCGMIIPHY: 3415 case SIOCGMIIREG: 3416 case SIOCSMIIREG: 3417 return e1000_mii_ioctl(netdev, ifr, cmd); 3418 default: 3419 return -EOPNOTSUPP; 3420 } 3421} 3422 3423static int e1000_suspend(struct pci_dev *pdev, pm_message_t state) 3424{ 3425 struct net_device *netdev = pci_get_drvdata(pdev); 3426 struct e1000_adapter *adapter = netdev_priv(netdev); 3427 struct e1000_hw *hw = &adapter->hw; 3428 u32 ctrl, ctrl_ext, rctl, status; 3429 u32 wufc = adapter->wol; 3430 int retval = 0; 3431 3432 netif_device_detach(netdev); 3433 3434 if (netif_running(netdev)) { 3435 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state)); 3436 e1000e_down(adapter); 3437 e1000_free_irq(adapter); 3438 } 3439 3440 retval = pci_save_state(pdev); 3441 if (retval) 3442 return retval; 3443 3444 status = er32(STATUS); 3445 if (status & E1000_STATUS_LU) 3446 wufc &= ~E1000_WUFC_LNKC; 3447 3448 if (wufc) { 3449 e1000_setup_rctl(adapter); 3450 e1000_set_multi(netdev); 3451 3452 /* turn on all-multi mode if wake on multicast is enabled */ 3453 if (wufc & E1000_WUFC_MC) { 3454 rctl = er32(RCTL); 3455 rctl |= E1000_RCTL_MPE; 3456 ew32(RCTL, rctl); 3457 } 3458 3459 ctrl = er32(CTRL); 3460 /* advertise wake from D3Cold */ 3461 #define E1000_CTRL_ADVD3WUC 0x00100000 3462 /* phy power management enable */ 3463 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 3464 ctrl |= E1000_CTRL_ADVD3WUC | 3465 E1000_CTRL_EN_PHY_PWR_MGMT; 3466 ew32(CTRL, ctrl); 3467 3468 if (adapter->hw.media_type == e1000_media_type_fiber || 3469 adapter->hw.media_type == e1000_media_type_internal_serdes) { 3470 /* keep the laser running in D3 */ 3471 ctrl_ext = er32(CTRL_EXT); 3472 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA; 3473 ew32(CTRL_EXT, ctrl_ext); 3474 } 3475 3476 /* Allow time for pending master requests to run */ 3477 e1000e_disable_pcie_master(&adapter->hw); 3478 3479 ew32(WUC, E1000_WUC_PME_EN); 3480 ew32(WUFC, wufc); 3481 pci_enable_wake(pdev, PCI_D3hot, 1); 3482 pci_enable_wake(pdev, PCI_D3cold, 1); 3483 } else { 3484 ew32(WUC, 0); 3485 ew32(WUFC, 0); 3486 pci_enable_wake(pdev, PCI_D3hot, 0); 3487 pci_enable_wake(pdev, PCI_D3cold, 0); 3488 } 3489 3490 e1000_release_manageability(adapter); 3491 3492 /* make sure adapter isn't asleep if manageability is enabled */ 3493 if (adapter->flags & FLAG_MNG_PT_ENABLED) { 3494 pci_enable_wake(pdev, PCI_D3hot, 1); 3495 pci_enable_wake(pdev, PCI_D3cold, 1); 3496 } 3497 3498 if (adapter->hw.phy.type == e1000_phy_igp_3) 3499 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw); 3500 3501 /* Release control of h/w to f/w. If f/w is AMT enabled, this 3502 * would have already happened in close and is redundant. */ 3503 e1000_release_hw_control(adapter); 3504 3505 pci_disable_device(pdev); 3506 3507 pci_set_power_state(pdev, pci_choose_state(pdev, state)); 3508 3509 return 0; 3510} 3511 3512static void e1000e_disable_l1aspm(struct pci_dev *pdev) 3513{ 3514 int pos; 3515 u32 cap; 3516 u16 val; 3517 3518 /* 3519 * 82573 workaround - disable L1 ASPM on mobile chipsets 3520 * 3521 * L1 ASPM on various mobile (ich7) chipsets do not behave properly 3522 * resulting in lost data or garbage information on the pci-e link 3523 * level. This could result in (false) bad EEPROM checksum errors, 3524 * long ping times (up to 2s) or even a system freeze/hang. 3525 * 3526 * Unfortunately this feature saves about 1W power consumption when 3527 * active. 3528 */ 3529 pos = pci_find_capability(pdev, PCI_CAP_ID_EXP); 3530 pci_read_config_dword(pdev, pos + PCI_EXP_LNKCAP, &cap); 3531 pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &val); 3532 if (val & 0x2) { 3533 dev_warn(&pdev->dev, "Disabling L1 ASPM\n"); 3534 val &= ~0x2; 3535 pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, val); 3536 } 3537} 3538 3539#ifdef CONFIG_PM 3540static int e1000_resume(struct pci_dev *pdev) 3541{ 3542 struct net_device *netdev = pci_get_drvdata(pdev); 3543 struct e1000_adapter *adapter = netdev_priv(netdev); 3544 struct e1000_hw *hw = &adapter->hw; 3545 u32 err; 3546 3547 pci_set_power_state(pdev, PCI_D0); 3548 pci_restore_state(pdev); 3549 e1000e_disable_l1aspm(pdev); 3550 err = pci_enable_device(pdev); 3551 if (err) { 3552 dev_err(&pdev->dev, 3553 "Cannot enable PCI device from suspend\n"); 3554 return err; 3555 } 3556 3557 pci_set_master(pdev); 3558 3559 pci_enable_wake(pdev, PCI_D3hot, 0); 3560 pci_enable_wake(pdev, PCI_D3cold, 0); 3561 3562 if (netif_running(netdev)) { 3563 err = e1000_request_irq(adapter); 3564 if (err) 3565 return err; 3566 } 3567 3568 e1000e_power_up_phy(adapter); 3569 e1000e_reset(adapter); 3570 ew32(WUS, ~0); 3571 3572 e1000_init_manageability(adapter); 3573 3574 if (netif_running(netdev)) 3575 e1000e_up(adapter); 3576 3577 netif_device_attach(netdev); 3578 3579 /* If the controller has AMT, do not set DRV_LOAD until the interface 3580 * is up. For all other cases, let the f/w know that the h/w is now 3581 * under the control of the driver. */ 3582 if (!(adapter->flags & FLAG_HAS_AMT) || !e1000e_check_mng_mode(&adapter->hw)) 3583 e1000_get_hw_control(adapter); 3584 3585 return 0; 3586} 3587#endif 3588 3589static void e1000_shutdown(struct pci_dev *pdev) 3590{ 3591 e1000_suspend(pdev, PMSG_SUSPEND); 3592} 3593 3594#ifdef CONFIG_NET_POLL_CONTROLLER 3595/* 3596 * Polling 'interrupt' - used by things like netconsole to send skbs 3597 * without having to re-enable interrupts. It's not called while 3598 * the interrupt routine is executing. 3599 */ 3600static void e1000_netpoll(struct net_device *netdev) 3601{ 3602 struct e1000_adapter *adapter = netdev_priv(netdev); 3603 3604 disable_irq(adapter->pdev->irq); 3605 e1000_intr(adapter->pdev->irq, netdev); 3606 3607 e1000_clean_tx_irq(adapter); 3608 3609 enable_irq(adapter->pdev->irq); 3610} 3611#endif 3612 3613/** 3614 * e1000_io_error_detected - called when PCI error is detected 3615 * @pdev: Pointer to PCI device 3616 * @state: The current pci connection state 3617 * 3618 * This function is called after a PCI bus error affecting 3619 * this device has been detected. 3620 */ 3621static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, 3622 pci_channel_state_t state) 3623{ 3624 struct net_device *netdev = pci_get_drvdata(pdev); 3625 struct e1000_adapter *adapter = netdev_priv(netdev); 3626 3627 netif_device_detach(netdev); 3628 3629 if (netif_running(netdev)) 3630 e1000e_down(adapter); 3631 pci_disable_device(pdev); 3632 3633 /* Request a slot slot reset. */ 3634 return PCI_ERS_RESULT_NEED_RESET; 3635} 3636 3637/** 3638 * e1000_io_slot_reset - called after the pci bus has been reset. 3639 * @pdev: Pointer to PCI device 3640 * 3641 * Restart the card from scratch, as if from a cold-boot. Implementation 3642 * resembles the first-half of the e1000_resume routine. 3643 */ 3644static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev) 3645{ 3646 struct net_device *netdev = pci_get_drvdata(pdev); 3647 struct e1000_adapter *adapter = netdev_priv(netdev); 3648 struct e1000_hw *hw = &adapter->hw; 3649 3650 e1000e_disable_l1aspm(pdev); 3651 if (pci_enable_device(pdev)) { 3652 dev_err(&pdev->dev, 3653 "Cannot re-enable PCI device after reset.\n"); 3654 return PCI_ERS_RESULT_DISCONNECT; 3655 } 3656 pci_set_master(pdev); 3657 3658 pci_enable_wake(pdev, PCI_D3hot, 0); 3659 pci_enable_wake(pdev, PCI_D3cold, 0); 3660 3661 e1000e_reset(adapter); 3662 ew32(WUS, ~0); 3663 3664 return PCI_ERS_RESULT_RECOVERED; 3665} 3666 3667/** 3668 * e1000_io_resume - called when traffic can start flowing again. 3669 * @pdev: Pointer to PCI device 3670 * 3671 * This callback is called when the error recovery driver tells us that 3672 * its OK to resume normal operation. Implementation resembles the 3673 * second-half of the e1000_resume routine. 3674 */ 3675static void e1000_io_resume(struct pci_dev *pdev) 3676{ 3677 struct net_device *netdev = pci_get_drvdata(pdev); 3678 struct e1000_adapter *adapter = netdev_priv(netdev); 3679 3680 e1000_init_manageability(adapter); 3681 3682 if (netif_running(netdev)) { 3683 if (e1000e_up(adapter)) { 3684 dev_err(&pdev->dev, 3685 "can't bring device back up after reset\n"); 3686 return; 3687 } 3688 } 3689 3690 netif_device_attach(netdev); 3691 3692 /* If the controller has AMT, do not set DRV_LOAD until the interface 3693 * is up. For all other cases, let the f/w know that the h/w is now 3694 * under the control of the driver. */ 3695 if (!(adapter->flags & FLAG_HAS_AMT) || 3696 !e1000e_check_mng_mode(&adapter->hw)) 3697 e1000_get_hw_control(adapter); 3698 3699} 3700 3701static void e1000_print_device_info(struct e1000_adapter *adapter) 3702{ 3703 struct e1000_hw *hw = &adapter->hw; 3704 struct net_device *netdev = adapter->netdev; 3705 u32 part_num; 3706 3707 /* print bus type/speed/width info */ 3708 ndev_info(netdev, "(PCI Express:2.5GB/s:%s) " 3709 "%02x:%02x:%02x:%02x:%02x:%02x\n", 3710 /* bus width */ 3711 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" : 3712 "Width x1"), 3713 /* MAC address */ 3714 netdev->dev_addr[0], netdev->dev_addr[1], 3715 netdev->dev_addr[2], netdev->dev_addr[3], 3716 netdev->dev_addr[4], netdev->dev_addr[5]); 3717 ndev_info(netdev, "Intel(R) PRO/%s Network Connection\n", 3718 (hw->phy.type == e1000_phy_ife) 3719 ? "10/100" : "1000"); 3720 e1000e_read_part_num(hw, &part_num); 3721 ndev_info(netdev, "MAC: %d, PHY: %d, PBA No: %06x-%03x\n", 3722 hw->mac.type, hw->phy.type, 3723 (part_num >> 8), (part_num & 0xff)); 3724} 3725 3726/** 3727 * e1000_probe - Device Initialization Routine 3728 * @pdev: PCI device information struct 3729 * @ent: entry in e1000_pci_tbl 3730 * 3731 * Returns 0 on success, negative on failure 3732 * 3733 * e1000_probe initializes an adapter identified by a pci_dev structure. 3734 * The OS initialization, configuring of the adapter private structure, 3735 * and a hardware reset occur. 3736 **/ 3737static int __devinit e1000_probe(struct pci_dev *pdev, 3738 const struct pci_device_id *ent) 3739{ 3740 struct net_device *netdev; 3741 struct e1000_adapter *adapter; 3742 struct e1000_hw *hw; 3743 const struct e1000_info *ei = e1000_info_tbl[ent->driver_data]; 3744 unsigned long mmio_start, mmio_len; 3745 unsigned long flash_start, flash_len; 3746 3747 static int cards_found; 3748 int i, err, pci_using_dac; 3749 u16 eeprom_data = 0; 3750 u16 eeprom_apme_mask = E1000_EEPROM_APME; 3751 3752 e1000e_disable_l1aspm(pdev); 3753 err = pci_enable_device(pdev); 3754 if (err) 3755 return err; 3756 3757 pci_using_dac = 0; 3758 err = pci_set_dma_mask(pdev, DMA_64BIT_MASK); 3759 if (!err) { 3760 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK); 3761 if (!err) 3762 pci_using_dac = 1; 3763 } else { 3764 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK); 3765 if (err) { 3766 err = pci_set_consistent_dma_mask(pdev, 3767 DMA_32BIT_MASK); 3768 if (err) { 3769 dev_err(&pdev->dev, "No usable DMA " 3770 "configuration, aborting\n"); 3771 goto err_dma; 3772 } 3773 } 3774 } 3775 3776 err = pci_request_regions(pdev, e1000e_driver_name); 3777 if (err) 3778 goto err_pci_reg; 3779 3780 pci_set_master(pdev); 3781 3782 err = -ENOMEM; 3783 netdev = alloc_etherdev(sizeof(struct e1000_adapter)); 3784 if (!netdev) 3785 goto err_alloc_etherdev; 3786 3787 SET_NETDEV_DEV(netdev, &pdev->dev); 3788 3789 pci_set_drvdata(pdev, netdev); 3790 adapter = netdev_priv(netdev); 3791 hw = &adapter->hw; 3792 adapter->netdev = netdev; 3793 adapter->pdev = pdev; 3794 adapter->ei = ei; 3795 adapter->pba = ei->pba; 3796 adapter->flags = ei->flags; 3797 adapter->hw.adapter = adapter; 3798 adapter->hw.mac.type = ei->mac; 3799 adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1; 3800 3801 mmio_start = pci_resource_start(pdev, 0); 3802 mmio_len = pci_resource_len(pdev, 0); 3803 3804 err = -EIO; 3805 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len); 3806 if (!adapter->hw.hw_addr) 3807 goto err_ioremap; 3808 3809 if ((adapter->flags & FLAG_HAS_FLASH) && 3810 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) { 3811 flash_start = pci_resource_start(pdev, 1); 3812 flash_len = pci_resource_len(pdev, 1); 3813 adapter->hw.flash_address = ioremap(flash_start, flash_len); 3814 if (!adapter->hw.flash_address) 3815 goto err_flashmap; 3816 } 3817 3818 /* construct the net_device struct */ 3819 netdev->open = &e1000_open; 3820 netdev->stop = &e1000_close; 3821 netdev->hard_start_xmit = &e1000_xmit_frame; 3822 netdev->get_stats = &e1000_get_stats; 3823 netdev->set_multicast_list = &e1000_set_multi; 3824 netdev->set_mac_address = &e1000_set_mac; 3825 netdev->change_mtu = &e1000_change_mtu; 3826 netdev->do_ioctl = &e1000_ioctl; 3827 e1000e_set_ethtool_ops(netdev); 3828 netdev->tx_timeout = &e1000_tx_timeout; 3829 netdev->watchdog_timeo = 5 * HZ; 3830 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64); 3831 netdev->vlan_rx_register = e1000_vlan_rx_register; 3832 netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid; 3833 netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid; 3834#ifdef CONFIG_NET_POLL_CONTROLLER 3835 netdev->poll_controller = e1000_netpoll; 3836#endif 3837 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); 3838 3839 netdev->mem_start = mmio_start; 3840 netdev->mem_end = mmio_start + mmio_len; 3841 3842 adapter->bd_number = cards_found++; 3843 3844 /* setup adapter struct */ 3845 err = e1000_sw_init(adapter); 3846 if (err) 3847 goto err_sw_init; 3848 3849 err = -EIO; 3850 3851 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops)); 3852 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops)); 3853 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops)); 3854 3855 err = ei->get_invariants(adapter); 3856 if (err) 3857 goto err_hw_init; 3858 3859 hw->mac.ops.get_bus_info(&adapter->hw); 3860 3861 adapter->hw.phy.wait_for_link = 0; 3862 3863 /* Copper options */ 3864 if (adapter->hw.media_type == e1000_media_type_copper) { 3865 adapter->hw.phy.mdix = AUTO_ALL_MODES; 3866 adapter->hw.phy.disable_polarity_correction = 0; 3867 adapter->hw.phy.ms_type = e1000_ms_hw_default; 3868 } 3869 3870 if (e1000_check_reset_block(&adapter->hw)) 3871 ndev_info(netdev, 3872 "PHY reset is blocked due to SOL/IDER session.\n"); 3873 3874 netdev->features = NETIF_F_SG | 3875 NETIF_F_HW_CSUM | 3876 NETIF_F_HW_VLAN_TX | 3877 NETIF_F_HW_VLAN_RX; 3878 3879 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) 3880 netdev->features |= NETIF_F_HW_VLAN_FILTER; 3881 3882 netdev->features |= NETIF_F_TSO; 3883 netdev->features |= NETIF_F_TSO6; 3884 3885 if (pci_using_dac) 3886 netdev->features |= NETIF_F_HIGHDMA; 3887 3888 /* We should not be using LLTX anymore, but we are still TX faster with 3889 * it. */ 3890 netdev->features |= NETIF_F_LLTX; 3891 3892 if (e1000e_enable_mng_pass_thru(&adapter->hw)) 3893 adapter->flags |= FLAG_MNG_PT_ENABLED; 3894 3895 /* before reading the NVM, reset the controller to 3896 * put the device in a known good starting state */ 3897 adapter->hw.mac.ops.reset_hw(&adapter->hw); 3898 3899 /* 3900 * systems with ASPM and others may see the checksum fail on the first 3901 * attempt. Let's give it a few tries 3902 */ 3903 for (i = 0;; i++) { 3904 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0) 3905 break; 3906 if (i == 2) { 3907 ndev_err(netdev, "The NVM Checksum Is Not Valid\n"); 3908 err = -EIO; 3909 goto err_eeprom; 3910 } 3911 } 3912 3913 /* copy the MAC address out of the NVM */ 3914 if (e1000e_read_mac_addr(&adapter->hw)) 3915 ndev_err(netdev, "NVM Read Error while reading MAC address\n"); 3916 3917 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len); 3918 memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len); 3919 3920 if (!is_valid_ether_addr(netdev->perm_addr)) { 3921 ndev_err(netdev, "Invalid MAC Address: " 3922 "%02x:%02x:%02x:%02x:%02x:%02x\n", 3923 netdev->perm_addr[0], netdev->perm_addr[1], 3924 netdev->perm_addr[2], netdev->perm_addr[3], 3925 netdev->perm_addr[4], netdev->perm_addr[5]); 3926 err = -EIO; 3927 goto err_eeprom; 3928 } 3929 3930 init_timer(&adapter->watchdog_timer); 3931 adapter->watchdog_timer.function = &e1000_watchdog; 3932 adapter->watchdog_timer.data = (unsigned long) adapter; 3933 3934 init_timer(&adapter->phy_info_timer); 3935 adapter->phy_info_timer.function = &e1000_update_phy_info; 3936 adapter->phy_info_timer.data = (unsigned long) adapter; 3937 3938 INIT_WORK(&adapter->reset_task, e1000_reset_task); 3939 INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task); 3940 3941 e1000e_check_options(adapter); 3942 3943 /* Initialize link parameters. User can change them with ethtool */ 3944 adapter->hw.mac.autoneg = 1; 3945 adapter->fc_autoneg = 1; 3946 adapter->hw.mac.original_fc = e1000_fc_default; 3947 adapter->hw.mac.fc = e1000_fc_default; 3948 adapter->hw.phy.autoneg_advertised = 0x2f; 3949 3950 /* ring size defaults */ 3951 adapter->rx_ring->count = 256; 3952 adapter->tx_ring->count = 256; 3953 3954 /* 3955 * Initial Wake on LAN setting - If APM wake is enabled in 3956 * the EEPROM, enable the ACPI Magic Packet filter 3957 */ 3958 if (adapter->flags & FLAG_APME_IN_WUC) { 3959 /* APME bit in EEPROM is mapped to WUC.APME */ 3960 eeprom_data = er32(WUC); 3961 eeprom_apme_mask = E1000_WUC_APME; 3962 } else if (adapter->flags & FLAG_APME_IN_CTRL3) { 3963 if (adapter->flags & FLAG_APME_CHECK_PORT_B && 3964 (adapter->hw.bus.func == 1)) 3965 e1000_read_nvm(&adapter->hw, 3966 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); 3967 else 3968 e1000_read_nvm(&adapter->hw, 3969 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); 3970 } 3971 3972 /* fetch WoL from EEPROM */ 3973 if (eeprom_data & eeprom_apme_mask) 3974 adapter->eeprom_wol |= E1000_WUFC_MAG; 3975 3976 /* 3977 * now that we have the eeprom settings, apply the special cases 3978 * where the eeprom may be wrong or the board simply won't support 3979 * wake on lan on a particular port 3980 */ 3981 if (!(adapter->flags & FLAG_HAS_WOL)) 3982 adapter->eeprom_wol = 0; 3983 3984 /* initialize the wol settings based on the eeprom settings */ 3985 adapter->wol = adapter->eeprom_wol; 3986 3987 /* reset the hardware with the new settings */ 3988 e1000e_reset(adapter); 3989 3990 /* If the controller has AMT, do not set DRV_LOAD until the interface 3991 * is up. For all other cases, let the f/w know that the h/w is now 3992 * under the control of the driver. */ 3993 if (!(adapter->flags & FLAG_HAS_AMT) || 3994 !e1000e_check_mng_mode(&adapter->hw)) 3995 e1000_get_hw_control(adapter); 3996 3997 /* tell the stack to leave us alone until e1000_open() is called */ 3998 netif_carrier_off(netdev); 3999 netif_stop_queue(netdev); 4000 4001 strcpy(netdev->name, "eth%d"); 4002 err = register_netdev(netdev); 4003 if (err) 4004 goto err_register; 4005 4006 e1000_print_device_info(adapter); 4007 4008 return 0; 4009 4010err_register: 4011err_hw_init: 4012 e1000_release_hw_control(adapter); 4013err_eeprom: 4014 if (!e1000_check_reset_block(&adapter->hw)) 4015 e1000_phy_hw_reset(&adapter->hw); 4016 4017 if (adapter->hw.flash_address) 4018 iounmap(adapter->hw.flash_address); 4019 4020err_flashmap: 4021 kfree(adapter->tx_ring); 4022 kfree(adapter->rx_ring); 4023err_sw_init: 4024 iounmap(adapter->hw.hw_addr); 4025err_ioremap: 4026 free_netdev(netdev); 4027err_alloc_etherdev: 4028 pci_release_regions(pdev); 4029err_pci_reg: 4030err_dma: 4031 pci_disable_device(pdev); 4032 return err; 4033} 4034 4035/** 4036 * e1000_remove - Device Removal Routine 4037 * @pdev: PCI device information struct 4038 * 4039 * e1000_remove is called by the PCI subsystem to alert the driver 4040 * that it should release a PCI device. The could be caused by a 4041 * Hot-Plug event, or because the driver is going to be removed from 4042 * memory. 4043 **/ 4044static void __devexit e1000_remove(struct pci_dev *pdev) 4045{ 4046 struct net_device *netdev = pci_get_drvdata(pdev); 4047 struct e1000_adapter *adapter = netdev_priv(netdev); 4048 4049 /* flush_scheduled work may reschedule our watchdog task, so 4050 * explicitly disable watchdog tasks from being rescheduled */ 4051 set_bit(__E1000_DOWN, &adapter->state); 4052 del_timer_sync(&adapter->watchdog_timer); 4053 del_timer_sync(&adapter->phy_info_timer); 4054 4055 flush_scheduled_work(); 4056 4057 e1000_release_manageability(adapter); 4058 4059 /* Release control of h/w to f/w. If f/w is AMT enabled, this 4060 * would have already happened in close and is redundant. */ 4061 e1000_release_hw_control(adapter); 4062 4063 unregister_netdev(netdev); 4064 4065 if (!e1000_check_reset_block(&adapter->hw)) 4066 e1000_phy_hw_reset(&adapter->hw); 4067 4068 kfree(adapter->tx_ring); 4069 kfree(adapter->rx_ring); 4070 4071 iounmap(adapter->hw.hw_addr); 4072 if (adapter->hw.flash_address) 4073 iounmap(adapter->hw.flash_address); 4074 pci_release_regions(pdev); 4075 4076 free_netdev(netdev); 4077 4078 pci_disable_device(pdev); 4079} 4080 4081/* PCI Error Recovery (ERS) */ 4082static struct pci_error_handlers e1000_err_handler = { 4083 .error_detected = e1000_io_error_detected, 4084 .slot_reset = e1000_io_slot_reset, 4085 .resume = e1000_io_resume, 4086}; 4087 4088static struct pci_device_id e1000_pci_tbl[] = { 4089 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 }, 4090 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 }, 4091 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 }, 4092 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 }, 4093 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 }, 4094 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 }, 4095 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 }, 4096 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 }, 4097 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 }, 4098 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 }, 4099 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 }, 4100 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 }, 4101 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 }, 4102 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 }, 4103 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 }, 4104 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 }, 4105 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT), 4106 board_80003es2lan }, 4107 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT), 4108 board_80003es2lan }, 4109 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT), 4110 board_80003es2lan }, 4111 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT), 4112 board_80003es2lan }, 4113 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan }, 4114 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan }, 4115 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan }, 4116 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan }, 4117 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan }, 4118 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan }, 4119 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan }, 4120 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan }, 4121 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan }, 4122 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan }, 4123 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan }, 4124 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan }, 4125 4126 { } /* terminate list */ 4127}; 4128MODULE_DEVICE_TABLE(pci, e1000_pci_tbl); 4129 4130/* PCI Device API Driver */ 4131static struct pci_driver e1000_driver = { 4132 .name = e1000e_driver_name, 4133 .id_table = e1000_pci_tbl, 4134 .probe = e1000_probe, 4135 .remove = __devexit_p(e1000_remove), 4136#ifdef CONFIG_PM 4137 /* Power Managment Hooks */ 4138 .suspend = e1000_suspend, 4139 .resume = e1000_resume, 4140#endif 4141 .shutdown = e1000_shutdown, 4142 .err_handler = &e1000_err_handler 4143}; 4144 4145/** 4146 * e1000_init_module - Driver Registration Routine 4147 * 4148 * e1000_init_module is the first routine called when the driver is 4149 * loaded. All it does is register with the PCI subsystem. 4150 **/ 4151static int __init e1000_init_module(void) 4152{ 4153 int ret; 4154 printk(KERN_INFO "%s: Intel(R) PRO/1000 Network Driver - %s\n", 4155 e1000e_driver_name, e1000e_driver_version); 4156 printk(KERN_INFO "%s: Copyright (c) 1999-2007 Intel Corporation.\n", 4157 e1000e_driver_name); 4158 ret = pci_register_driver(&e1000_driver); 4159 4160 return ret; 4161} 4162module_init(e1000_init_module); 4163 4164/** 4165 * e1000_exit_module - Driver Exit Cleanup Routine 4166 * 4167 * e1000_exit_module is called just before the driver is removed 4168 * from memory. 4169 **/ 4170static void __exit e1000_exit_module(void) 4171{ 4172 pci_unregister_driver(&e1000_driver); 4173} 4174module_exit(e1000_exit_module); 4175 4176 4177MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 4178MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver"); 4179MODULE_LICENSE("GPL"); 4180MODULE_VERSION(DRV_VERSION); 4181 4182/* e1000_main.c */