1/* 2 * Security plug functions 3 * 4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 */ 13 14#include <linux/capability.h> 15#include <linux/module.h> 16#include <linux/init.h> 17#include <linux/kernel.h> 18#include <linux/security.h> 19 20 21/* things that live in dummy.c */ 22extern struct security_operations dummy_security_ops; 23extern void security_fixup_ops(struct security_operations *ops); 24 25struct security_operations *security_ops; /* Initialized to NULL */ 26 27/* amount of vm to protect from userspace access */ 28unsigned long mmap_min_addr = CONFIG_SECURITY_DEFAULT_MMAP_MIN_ADDR; 29 30static inline int verify(struct security_operations *ops) 31{ 32 /* verify the security_operations structure exists */ 33 if (!ops) 34 return -EINVAL; 35 security_fixup_ops(ops); 36 return 0; 37} 38 39static void __init do_security_initcalls(void) 40{ 41 initcall_t *call; 42 call = __security_initcall_start; 43 while (call < __security_initcall_end) { 44 (*call) (); 45 call++; 46 } 47} 48 49/** 50 * security_init - initializes the security framework 51 * 52 * This should be called early in the kernel initialization sequence. 53 */ 54int __init security_init(void) 55{ 56 printk(KERN_INFO "Security Framework initialized\n"); 57 58 if (verify(&dummy_security_ops)) { 59 printk(KERN_ERR "%s could not verify " 60 "dummy_security_ops structure.\n", __FUNCTION__); 61 return -EIO; 62 } 63 64 security_ops = &dummy_security_ops; 65 do_security_initcalls(); 66 67 return 0; 68} 69 70/** 71 * register_security - registers a security framework with the kernel 72 * @ops: a pointer to the struct security_options that is to be registered 73 * 74 * This function is to allow a security module to register itself with the 75 * kernel security subsystem. Some rudimentary checking is done on the @ops 76 * value passed to this function. 77 * 78 * If there is already a security module registered with the kernel, 79 * an error will be returned. Otherwise 0 is returned on success. 80 */ 81int register_security(struct security_operations *ops) 82{ 83 if (verify(ops)) { 84 printk(KERN_DEBUG "%s could not verify " 85 "security_operations structure.\n", __FUNCTION__); 86 return -EINVAL; 87 } 88 89 if (security_ops != &dummy_security_ops) 90 return -EAGAIN; 91 92 security_ops = ops; 93 94 return 0; 95} 96 97/** 98 * mod_reg_security - allows security modules to be "stacked" 99 * @name: a pointer to a string with the name of the security_options to be registered 100 * @ops: a pointer to the struct security_options that is to be registered 101 * 102 * This function allows security modules to be stacked if the currently loaded 103 * security module allows this to happen. It passes the @name and @ops to the 104 * register_security function of the currently loaded security module. 105 * 106 * The return value depends on the currently loaded security module, with 0 as 107 * success. 108 */ 109int mod_reg_security(const char *name, struct security_operations *ops) 110{ 111 if (verify(ops)) { 112 printk(KERN_INFO "%s could not verify " 113 "security operations.\n", __FUNCTION__); 114 return -EINVAL; 115 } 116 117 if (ops == security_ops) { 118 printk(KERN_INFO "%s security operations " 119 "already registered.\n", __FUNCTION__); 120 return -EINVAL; 121 } 122 123 return security_ops->register_security(name, ops); 124} 125 126/* Security operations */ 127 128int security_ptrace(struct task_struct *parent, struct task_struct *child) 129{ 130 return security_ops->ptrace(parent, child); 131} 132 133int security_capget(struct task_struct *target, 134 kernel_cap_t *effective, 135 kernel_cap_t *inheritable, 136 kernel_cap_t *permitted) 137{ 138 return security_ops->capget(target, effective, inheritable, permitted); 139} 140 141int security_capset_check(struct task_struct *target, 142 kernel_cap_t *effective, 143 kernel_cap_t *inheritable, 144 kernel_cap_t *permitted) 145{ 146 return security_ops->capset_check(target, effective, inheritable, permitted); 147} 148 149void security_capset_set(struct task_struct *target, 150 kernel_cap_t *effective, 151 kernel_cap_t *inheritable, 152 kernel_cap_t *permitted) 153{ 154 security_ops->capset_set(target, effective, inheritable, permitted); 155} 156 157int security_capable(struct task_struct *tsk, int cap) 158{ 159 return security_ops->capable(tsk, cap); 160} 161 162int security_acct(struct file *file) 163{ 164 return security_ops->acct(file); 165} 166 167int security_sysctl(struct ctl_table *table, int op) 168{ 169 return security_ops->sysctl(table, op); 170} 171 172int security_quotactl(int cmds, int type, int id, struct super_block *sb) 173{ 174 return security_ops->quotactl(cmds, type, id, sb); 175} 176 177int security_quota_on(struct dentry *dentry) 178{ 179 return security_ops->quota_on(dentry); 180} 181 182int security_syslog(int type) 183{ 184 return security_ops->syslog(type); 185} 186 187int security_settime(struct timespec *ts, struct timezone *tz) 188{ 189 return security_ops->settime(ts, tz); 190} 191 192int security_vm_enough_memory(long pages) 193{ 194 return security_ops->vm_enough_memory(current->mm, pages); 195} 196 197int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 198{ 199 return security_ops->vm_enough_memory(mm, pages); 200} 201 202int security_bprm_alloc(struct linux_binprm *bprm) 203{ 204 return security_ops->bprm_alloc_security(bprm); 205} 206 207void security_bprm_free(struct linux_binprm *bprm) 208{ 209 security_ops->bprm_free_security(bprm); 210} 211 212void security_bprm_apply_creds(struct linux_binprm *bprm, int unsafe) 213{ 214 security_ops->bprm_apply_creds(bprm, unsafe); 215} 216 217void security_bprm_post_apply_creds(struct linux_binprm *bprm) 218{ 219 security_ops->bprm_post_apply_creds(bprm); 220} 221 222int security_bprm_set(struct linux_binprm *bprm) 223{ 224 return security_ops->bprm_set_security(bprm); 225} 226 227int security_bprm_check(struct linux_binprm *bprm) 228{ 229 return security_ops->bprm_check_security(bprm); 230} 231 232int security_bprm_secureexec(struct linux_binprm *bprm) 233{ 234 return security_ops->bprm_secureexec(bprm); 235} 236 237int security_sb_alloc(struct super_block *sb) 238{ 239 return security_ops->sb_alloc_security(sb); 240} 241 242void security_sb_free(struct super_block *sb) 243{ 244 security_ops->sb_free_security(sb); 245} 246 247int security_sb_copy_data(struct file_system_type *type, void *orig, void *copy) 248{ 249 return security_ops->sb_copy_data(type, orig, copy); 250} 251 252int security_sb_kern_mount(struct super_block *sb, void *data) 253{ 254 return security_ops->sb_kern_mount(sb, data); 255} 256 257int security_sb_statfs(struct dentry *dentry) 258{ 259 return security_ops->sb_statfs(dentry); 260} 261 262int security_sb_mount(char *dev_name, struct nameidata *nd, 263 char *type, unsigned long flags, void *data) 264{ 265 return security_ops->sb_mount(dev_name, nd, type, flags, data); 266} 267 268int security_sb_check_sb(struct vfsmount *mnt, struct nameidata *nd) 269{ 270 return security_ops->sb_check_sb(mnt, nd); 271} 272 273int security_sb_umount(struct vfsmount *mnt, int flags) 274{ 275 return security_ops->sb_umount(mnt, flags); 276} 277 278void security_sb_umount_close(struct vfsmount *mnt) 279{ 280 security_ops->sb_umount_close(mnt); 281} 282 283void security_sb_umount_busy(struct vfsmount *mnt) 284{ 285 security_ops->sb_umount_busy(mnt); 286} 287 288void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data) 289{ 290 security_ops->sb_post_remount(mnt, flags, data); 291} 292 293void security_sb_post_addmount(struct vfsmount *mnt, struct nameidata *mountpoint_nd) 294{ 295 security_ops->sb_post_addmount(mnt, mountpoint_nd); 296} 297 298int security_sb_pivotroot(struct nameidata *old_nd, struct nameidata *new_nd) 299{ 300 return security_ops->sb_pivotroot(old_nd, new_nd); 301} 302 303void security_sb_post_pivotroot(struct nameidata *old_nd, struct nameidata *new_nd) 304{ 305 security_ops->sb_post_pivotroot(old_nd, new_nd); 306} 307 308int security_sb_get_mnt_opts(const struct super_block *sb, 309 char ***mount_options, 310 int **flags, int *num_opts) 311{ 312 return security_ops->sb_get_mnt_opts(sb, mount_options, flags, num_opts); 313} 314 315int security_sb_set_mnt_opts(struct super_block *sb, 316 char **mount_options, 317 int *flags, int num_opts) 318{ 319 return security_ops->sb_set_mnt_opts(sb, mount_options, flags, num_opts); 320} 321 322void security_sb_clone_mnt_opts(const struct super_block *oldsb, 323 struct super_block *newsb) 324{ 325 security_ops->sb_clone_mnt_opts(oldsb, newsb); 326} 327 328int security_inode_alloc(struct inode *inode) 329{ 330 inode->i_security = NULL; 331 return security_ops->inode_alloc_security(inode); 332} 333 334void security_inode_free(struct inode *inode) 335{ 336 security_ops->inode_free_security(inode); 337} 338 339int security_inode_init_security(struct inode *inode, struct inode *dir, 340 char **name, void **value, size_t *len) 341{ 342 if (unlikely(IS_PRIVATE(inode))) 343 return -EOPNOTSUPP; 344 return security_ops->inode_init_security(inode, dir, name, value, len); 345} 346EXPORT_SYMBOL(security_inode_init_security); 347 348int security_inode_create(struct inode *dir, struct dentry *dentry, int mode) 349{ 350 if (unlikely(IS_PRIVATE(dir))) 351 return 0; 352 return security_ops->inode_create(dir, dentry, mode); 353} 354 355int security_inode_link(struct dentry *old_dentry, struct inode *dir, 356 struct dentry *new_dentry) 357{ 358 if (unlikely(IS_PRIVATE(old_dentry->d_inode))) 359 return 0; 360 return security_ops->inode_link(old_dentry, dir, new_dentry); 361} 362 363int security_inode_unlink(struct inode *dir, struct dentry *dentry) 364{ 365 if (unlikely(IS_PRIVATE(dentry->d_inode))) 366 return 0; 367 return security_ops->inode_unlink(dir, dentry); 368} 369 370int security_inode_symlink(struct inode *dir, struct dentry *dentry, 371 const char *old_name) 372{ 373 if (unlikely(IS_PRIVATE(dir))) 374 return 0; 375 return security_ops->inode_symlink(dir, dentry, old_name); 376} 377 378int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode) 379{ 380 if (unlikely(IS_PRIVATE(dir))) 381 return 0; 382 return security_ops->inode_mkdir(dir, dentry, mode); 383} 384 385int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 386{ 387 if (unlikely(IS_PRIVATE(dentry->d_inode))) 388 return 0; 389 return security_ops->inode_rmdir(dir, dentry); 390} 391 392int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 393{ 394 if (unlikely(IS_PRIVATE(dir))) 395 return 0; 396 return security_ops->inode_mknod(dir, dentry, mode, dev); 397} 398 399int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 400 struct inode *new_dir, struct dentry *new_dentry) 401{ 402 if (unlikely(IS_PRIVATE(old_dentry->d_inode) || 403 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode)))) 404 return 0; 405 return security_ops->inode_rename(old_dir, old_dentry, 406 new_dir, new_dentry); 407} 408 409int security_inode_readlink(struct dentry *dentry) 410{ 411 if (unlikely(IS_PRIVATE(dentry->d_inode))) 412 return 0; 413 return security_ops->inode_readlink(dentry); 414} 415 416int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd) 417{ 418 if (unlikely(IS_PRIVATE(dentry->d_inode))) 419 return 0; 420 return security_ops->inode_follow_link(dentry, nd); 421} 422 423int security_inode_permission(struct inode *inode, int mask, struct nameidata *nd) 424{ 425 if (unlikely(IS_PRIVATE(inode))) 426 return 0; 427 return security_ops->inode_permission(inode, mask, nd); 428} 429 430int security_inode_setattr(struct dentry *dentry, struct iattr *attr) 431{ 432 if (unlikely(IS_PRIVATE(dentry->d_inode))) 433 return 0; 434 return security_ops->inode_setattr(dentry, attr); 435} 436 437int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry) 438{ 439 if (unlikely(IS_PRIVATE(dentry->d_inode))) 440 return 0; 441 return security_ops->inode_getattr(mnt, dentry); 442} 443 444void security_inode_delete(struct inode *inode) 445{ 446 if (unlikely(IS_PRIVATE(inode))) 447 return; 448 security_ops->inode_delete(inode); 449} 450 451int security_inode_setxattr(struct dentry *dentry, char *name, 452 void *value, size_t size, int flags) 453{ 454 if (unlikely(IS_PRIVATE(dentry->d_inode))) 455 return 0; 456 return security_ops->inode_setxattr(dentry, name, value, size, flags); 457} 458 459void security_inode_post_setxattr(struct dentry *dentry, char *name, 460 void *value, size_t size, int flags) 461{ 462 if (unlikely(IS_PRIVATE(dentry->d_inode))) 463 return; 464 security_ops->inode_post_setxattr(dentry, name, value, size, flags); 465} 466 467int security_inode_getxattr(struct dentry *dentry, char *name) 468{ 469 if (unlikely(IS_PRIVATE(dentry->d_inode))) 470 return 0; 471 return security_ops->inode_getxattr(dentry, name); 472} 473 474int security_inode_listxattr(struct dentry *dentry) 475{ 476 if (unlikely(IS_PRIVATE(dentry->d_inode))) 477 return 0; 478 return security_ops->inode_listxattr(dentry); 479} 480 481int security_inode_removexattr(struct dentry *dentry, char *name) 482{ 483 if (unlikely(IS_PRIVATE(dentry->d_inode))) 484 return 0; 485 return security_ops->inode_removexattr(dentry, name); 486} 487 488int security_inode_need_killpriv(struct dentry *dentry) 489{ 490 return security_ops->inode_need_killpriv(dentry); 491} 492 493int security_inode_killpriv(struct dentry *dentry) 494{ 495 return security_ops->inode_killpriv(dentry); 496} 497 498int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc) 499{ 500 if (unlikely(IS_PRIVATE(inode))) 501 return 0; 502 return security_ops->inode_getsecurity(inode, name, buffer, alloc); 503} 504 505int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 506{ 507 if (unlikely(IS_PRIVATE(inode))) 508 return 0; 509 return security_ops->inode_setsecurity(inode, name, value, size, flags); 510} 511 512int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 513{ 514 if (unlikely(IS_PRIVATE(inode))) 515 return 0; 516 return security_ops->inode_listsecurity(inode, buffer, buffer_size); 517} 518 519int security_file_permission(struct file *file, int mask) 520{ 521 return security_ops->file_permission(file, mask); 522} 523 524int security_file_alloc(struct file *file) 525{ 526 return security_ops->file_alloc_security(file); 527} 528 529void security_file_free(struct file *file) 530{ 531 security_ops->file_free_security(file); 532} 533 534int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 535{ 536 return security_ops->file_ioctl(file, cmd, arg); 537} 538 539int security_file_mmap(struct file *file, unsigned long reqprot, 540 unsigned long prot, unsigned long flags, 541 unsigned long addr, unsigned long addr_only) 542{ 543 return security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only); 544} 545 546int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 547 unsigned long prot) 548{ 549 return security_ops->file_mprotect(vma, reqprot, prot); 550} 551 552int security_file_lock(struct file *file, unsigned int cmd) 553{ 554 return security_ops->file_lock(file, cmd); 555} 556 557int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 558{ 559 return security_ops->file_fcntl(file, cmd, arg); 560} 561 562int security_file_set_fowner(struct file *file) 563{ 564 return security_ops->file_set_fowner(file); 565} 566 567int security_file_send_sigiotask(struct task_struct *tsk, 568 struct fown_struct *fown, int sig) 569{ 570 return security_ops->file_send_sigiotask(tsk, fown, sig); 571} 572 573int security_file_receive(struct file *file) 574{ 575 return security_ops->file_receive(file); 576} 577 578int security_dentry_open(struct file *file) 579{ 580 return security_ops->dentry_open(file); 581} 582 583int security_task_create(unsigned long clone_flags) 584{ 585 return security_ops->task_create(clone_flags); 586} 587 588int security_task_alloc(struct task_struct *p) 589{ 590 return security_ops->task_alloc_security(p); 591} 592 593void security_task_free(struct task_struct *p) 594{ 595 security_ops->task_free_security(p); 596} 597 598int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags) 599{ 600 return security_ops->task_setuid(id0, id1, id2, flags); 601} 602 603int security_task_post_setuid(uid_t old_ruid, uid_t old_euid, 604 uid_t old_suid, int flags) 605{ 606 return security_ops->task_post_setuid(old_ruid, old_euid, old_suid, flags); 607} 608 609int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags) 610{ 611 return security_ops->task_setgid(id0, id1, id2, flags); 612} 613 614int security_task_setpgid(struct task_struct *p, pid_t pgid) 615{ 616 return security_ops->task_setpgid(p, pgid); 617} 618 619int security_task_getpgid(struct task_struct *p) 620{ 621 return security_ops->task_getpgid(p); 622} 623 624int security_task_getsid(struct task_struct *p) 625{ 626 return security_ops->task_getsid(p); 627} 628 629void security_task_getsecid(struct task_struct *p, u32 *secid) 630{ 631 security_ops->task_getsecid(p, secid); 632} 633EXPORT_SYMBOL(security_task_getsecid); 634 635int security_task_setgroups(struct group_info *group_info) 636{ 637 return security_ops->task_setgroups(group_info); 638} 639 640int security_task_setnice(struct task_struct *p, int nice) 641{ 642 return security_ops->task_setnice(p, nice); 643} 644 645int security_task_setioprio(struct task_struct *p, int ioprio) 646{ 647 return security_ops->task_setioprio(p, ioprio); 648} 649 650int security_task_getioprio(struct task_struct *p) 651{ 652 return security_ops->task_getioprio(p); 653} 654 655int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim) 656{ 657 return security_ops->task_setrlimit(resource, new_rlim); 658} 659 660int security_task_setscheduler(struct task_struct *p, 661 int policy, struct sched_param *lp) 662{ 663 return security_ops->task_setscheduler(p, policy, lp); 664} 665 666int security_task_getscheduler(struct task_struct *p) 667{ 668 return security_ops->task_getscheduler(p); 669} 670 671int security_task_movememory(struct task_struct *p) 672{ 673 return security_ops->task_movememory(p); 674} 675 676int security_task_kill(struct task_struct *p, struct siginfo *info, 677 int sig, u32 secid) 678{ 679 return security_ops->task_kill(p, info, sig, secid); 680} 681 682int security_task_wait(struct task_struct *p) 683{ 684 return security_ops->task_wait(p); 685} 686 687int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 688 unsigned long arg4, unsigned long arg5) 689{ 690 return security_ops->task_prctl(option, arg2, arg3, arg4, arg5); 691} 692 693void security_task_reparent_to_init(struct task_struct *p) 694{ 695 security_ops->task_reparent_to_init(p); 696} 697 698void security_task_to_inode(struct task_struct *p, struct inode *inode) 699{ 700 security_ops->task_to_inode(p, inode); 701} 702 703int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 704{ 705 return security_ops->ipc_permission(ipcp, flag); 706} 707 708int security_msg_msg_alloc(struct msg_msg *msg) 709{ 710 return security_ops->msg_msg_alloc_security(msg); 711} 712 713void security_msg_msg_free(struct msg_msg *msg) 714{ 715 security_ops->msg_msg_free_security(msg); 716} 717 718int security_msg_queue_alloc(struct msg_queue *msq) 719{ 720 return security_ops->msg_queue_alloc_security(msq); 721} 722 723void security_msg_queue_free(struct msg_queue *msq) 724{ 725 security_ops->msg_queue_free_security(msq); 726} 727 728int security_msg_queue_associate(struct msg_queue *msq, int msqflg) 729{ 730 return security_ops->msg_queue_associate(msq, msqflg); 731} 732 733int security_msg_queue_msgctl(struct msg_queue *msq, int cmd) 734{ 735 return security_ops->msg_queue_msgctl(msq, cmd); 736} 737 738int security_msg_queue_msgsnd(struct msg_queue *msq, 739 struct msg_msg *msg, int msqflg) 740{ 741 return security_ops->msg_queue_msgsnd(msq, msg, msqflg); 742} 743 744int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg, 745 struct task_struct *target, long type, int mode) 746{ 747 return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode); 748} 749 750int security_shm_alloc(struct shmid_kernel *shp) 751{ 752 return security_ops->shm_alloc_security(shp); 753} 754 755void security_shm_free(struct shmid_kernel *shp) 756{ 757 security_ops->shm_free_security(shp); 758} 759 760int security_shm_associate(struct shmid_kernel *shp, int shmflg) 761{ 762 return security_ops->shm_associate(shp, shmflg); 763} 764 765int security_shm_shmctl(struct shmid_kernel *shp, int cmd) 766{ 767 return security_ops->shm_shmctl(shp, cmd); 768} 769 770int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg) 771{ 772 return security_ops->shm_shmat(shp, shmaddr, shmflg); 773} 774 775int security_sem_alloc(struct sem_array *sma) 776{ 777 return security_ops->sem_alloc_security(sma); 778} 779 780void security_sem_free(struct sem_array *sma) 781{ 782 security_ops->sem_free_security(sma); 783} 784 785int security_sem_associate(struct sem_array *sma, int semflg) 786{ 787 return security_ops->sem_associate(sma, semflg); 788} 789 790int security_sem_semctl(struct sem_array *sma, int cmd) 791{ 792 return security_ops->sem_semctl(sma, cmd); 793} 794 795int security_sem_semop(struct sem_array *sma, struct sembuf *sops, 796 unsigned nsops, int alter) 797{ 798 return security_ops->sem_semop(sma, sops, nsops, alter); 799} 800 801void security_d_instantiate(struct dentry *dentry, struct inode *inode) 802{ 803 if (unlikely(inode && IS_PRIVATE(inode))) 804 return; 805 security_ops->d_instantiate(dentry, inode); 806} 807EXPORT_SYMBOL(security_d_instantiate); 808 809int security_getprocattr(struct task_struct *p, char *name, char **value) 810{ 811 return security_ops->getprocattr(p, name, value); 812} 813 814int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size) 815{ 816 return security_ops->setprocattr(p, name, value, size); 817} 818 819int security_netlink_send(struct sock *sk, struct sk_buff *skb) 820{ 821 return security_ops->netlink_send(sk, skb); 822} 823 824int security_netlink_recv(struct sk_buff *skb, int cap) 825{ 826 return security_ops->netlink_recv(skb, cap); 827} 828EXPORT_SYMBOL(security_netlink_recv); 829 830int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 831{ 832 return security_ops->secid_to_secctx(secid, secdata, seclen); 833} 834EXPORT_SYMBOL(security_secid_to_secctx); 835 836int security_secctx_to_secid(char *secdata, u32 seclen, u32 *secid) 837{ 838 return security_ops->secctx_to_secid(secdata, seclen, secid); 839} 840EXPORT_SYMBOL(security_secctx_to_secid); 841 842void security_release_secctx(char *secdata, u32 seclen) 843{ 844 return security_ops->release_secctx(secdata, seclen); 845} 846EXPORT_SYMBOL(security_release_secctx); 847 848#ifdef CONFIG_SECURITY_NETWORK 849 850int security_unix_stream_connect(struct socket *sock, struct socket *other, 851 struct sock *newsk) 852{ 853 return security_ops->unix_stream_connect(sock, other, newsk); 854} 855EXPORT_SYMBOL(security_unix_stream_connect); 856 857int security_unix_may_send(struct socket *sock, struct socket *other) 858{ 859 return security_ops->unix_may_send(sock, other); 860} 861EXPORT_SYMBOL(security_unix_may_send); 862 863int security_socket_create(int family, int type, int protocol, int kern) 864{ 865 return security_ops->socket_create(family, type, protocol, kern); 866} 867 868int security_socket_post_create(struct socket *sock, int family, 869 int type, int protocol, int kern) 870{ 871 return security_ops->socket_post_create(sock, family, type, 872 protocol, kern); 873} 874 875int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 876{ 877 return security_ops->socket_bind(sock, address, addrlen); 878} 879 880int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 881{ 882 return security_ops->socket_connect(sock, address, addrlen); 883} 884 885int security_socket_listen(struct socket *sock, int backlog) 886{ 887 return security_ops->socket_listen(sock, backlog); 888} 889 890int security_socket_accept(struct socket *sock, struct socket *newsock) 891{ 892 return security_ops->socket_accept(sock, newsock); 893} 894 895void security_socket_post_accept(struct socket *sock, struct socket *newsock) 896{ 897 security_ops->socket_post_accept(sock, newsock); 898} 899 900int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 901{ 902 return security_ops->socket_sendmsg(sock, msg, size); 903} 904 905int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 906 int size, int flags) 907{ 908 return security_ops->socket_recvmsg(sock, msg, size, flags); 909} 910 911int security_socket_getsockname(struct socket *sock) 912{ 913 return security_ops->socket_getsockname(sock); 914} 915 916int security_socket_getpeername(struct socket *sock) 917{ 918 return security_ops->socket_getpeername(sock); 919} 920 921int security_socket_getsockopt(struct socket *sock, int level, int optname) 922{ 923 return security_ops->socket_getsockopt(sock, level, optname); 924} 925 926int security_socket_setsockopt(struct socket *sock, int level, int optname) 927{ 928 return security_ops->socket_setsockopt(sock, level, optname); 929} 930 931int security_socket_shutdown(struct socket *sock, int how) 932{ 933 return security_ops->socket_shutdown(sock, how); 934} 935 936int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 937{ 938 return security_ops->socket_sock_rcv_skb(sk, skb); 939} 940EXPORT_SYMBOL(security_sock_rcv_skb); 941 942int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 943 int __user *optlen, unsigned len) 944{ 945 return security_ops->socket_getpeersec_stream(sock, optval, optlen, len); 946} 947 948int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 949{ 950 return security_ops->socket_getpeersec_dgram(sock, skb, secid); 951} 952EXPORT_SYMBOL(security_socket_getpeersec_dgram); 953 954int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 955{ 956 return security_ops->sk_alloc_security(sk, family, priority); 957} 958 959void security_sk_free(struct sock *sk) 960{ 961 return security_ops->sk_free_security(sk); 962} 963 964void security_sk_clone(const struct sock *sk, struct sock *newsk) 965{ 966 return security_ops->sk_clone_security(sk, newsk); 967} 968 969void security_sk_classify_flow(struct sock *sk, struct flowi *fl) 970{ 971 security_ops->sk_getsecid(sk, &fl->secid); 972} 973EXPORT_SYMBOL(security_sk_classify_flow); 974 975void security_req_classify_flow(const struct request_sock *req, struct flowi *fl) 976{ 977 security_ops->req_classify_flow(req, fl); 978} 979EXPORT_SYMBOL(security_req_classify_flow); 980 981void security_sock_graft(struct sock *sk, struct socket *parent) 982{ 983 security_ops->sock_graft(sk, parent); 984} 985EXPORT_SYMBOL(security_sock_graft); 986 987int security_inet_conn_request(struct sock *sk, 988 struct sk_buff *skb, struct request_sock *req) 989{ 990 return security_ops->inet_conn_request(sk, skb, req); 991} 992EXPORT_SYMBOL(security_inet_conn_request); 993 994void security_inet_csk_clone(struct sock *newsk, 995 const struct request_sock *req) 996{ 997 security_ops->inet_csk_clone(newsk, req); 998} 999 1000void security_inet_conn_established(struct sock *sk, 1001 struct sk_buff *skb) 1002{ 1003 security_ops->inet_conn_established(sk, skb); 1004} 1005 1006#endif /* CONFIG_SECURITY_NETWORK */ 1007 1008#ifdef CONFIG_SECURITY_NETWORK_XFRM 1009 1010int security_xfrm_policy_alloc(struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx) 1011{ 1012 return security_ops->xfrm_policy_alloc_security(xp, sec_ctx); 1013} 1014EXPORT_SYMBOL(security_xfrm_policy_alloc); 1015 1016int security_xfrm_policy_clone(struct xfrm_policy *old, struct xfrm_policy *new) 1017{ 1018 return security_ops->xfrm_policy_clone_security(old, new); 1019} 1020 1021void security_xfrm_policy_free(struct xfrm_policy *xp) 1022{ 1023 security_ops->xfrm_policy_free_security(xp); 1024} 1025EXPORT_SYMBOL(security_xfrm_policy_free); 1026 1027int security_xfrm_policy_delete(struct xfrm_policy *xp) 1028{ 1029 return security_ops->xfrm_policy_delete_security(xp); 1030} 1031 1032int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx) 1033{ 1034 return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0); 1035} 1036EXPORT_SYMBOL(security_xfrm_state_alloc); 1037 1038int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 1039 struct xfrm_sec_ctx *polsec, u32 secid) 1040{ 1041 if (!polsec) 1042 return 0; 1043 /* 1044 * We want the context to be taken from secid which is usually 1045 * from the sock. 1046 */ 1047 return security_ops->xfrm_state_alloc_security(x, NULL, secid); 1048} 1049 1050int security_xfrm_state_delete(struct xfrm_state *x) 1051{ 1052 return security_ops->xfrm_state_delete_security(x); 1053} 1054EXPORT_SYMBOL(security_xfrm_state_delete); 1055 1056void security_xfrm_state_free(struct xfrm_state *x) 1057{ 1058 security_ops->xfrm_state_free_security(x); 1059} 1060 1061int security_xfrm_policy_lookup(struct xfrm_policy *xp, u32 fl_secid, u8 dir) 1062{ 1063 return security_ops->xfrm_policy_lookup(xp, fl_secid, dir); 1064} 1065 1066int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 1067 struct xfrm_policy *xp, struct flowi *fl) 1068{ 1069 return security_ops->xfrm_state_pol_flow_match(x, xp, fl); 1070} 1071 1072int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 1073{ 1074 return security_ops->xfrm_decode_session(skb, secid, 1); 1075} 1076 1077void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl) 1078{ 1079 int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0); 1080 1081 BUG_ON(rc); 1082} 1083EXPORT_SYMBOL(security_skb_classify_flow); 1084 1085#endif /* CONFIG_SECURITY_NETWORK_XFRM */ 1086 1087#ifdef CONFIG_KEYS 1088 1089int security_key_alloc(struct key *key, struct task_struct *tsk, unsigned long flags) 1090{ 1091 return security_ops->key_alloc(key, tsk, flags); 1092} 1093 1094void security_key_free(struct key *key) 1095{ 1096 security_ops->key_free(key); 1097} 1098 1099int security_key_permission(key_ref_t key_ref, 1100 struct task_struct *context, key_perm_t perm) 1101{ 1102 return security_ops->key_permission(key_ref, context, perm); 1103} 1104 1105#endif /* CONFIG_KEYS */