at v2.6.24 27 kB view raw
1/* 2 * Security plug functions 3 * 4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 */ 13 14#include <linux/capability.h> 15#include <linux/module.h> 16#include <linux/init.h> 17#include <linux/kernel.h> 18#include <linux/security.h> 19 20 21/* things that live in dummy.c */ 22extern struct security_operations dummy_security_ops; 23extern void security_fixup_ops(struct security_operations *ops); 24 25struct security_operations *security_ops; /* Initialized to NULL */ 26unsigned long mmap_min_addr; /* 0 means no protection */ 27 28static inline int verify(struct security_operations *ops) 29{ 30 /* verify the security_operations structure exists */ 31 if (!ops) 32 return -EINVAL; 33 security_fixup_ops(ops); 34 return 0; 35} 36 37static void __init do_security_initcalls(void) 38{ 39 initcall_t *call; 40 call = __security_initcall_start; 41 while (call < __security_initcall_end) { 42 (*call) (); 43 call++; 44 } 45} 46 47/** 48 * security_init - initializes the security framework 49 * 50 * This should be called early in the kernel initialization sequence. 51 */ 52int __init security_init(void) 53{ 54 printk(KERN_INFO "Security Framework initialized\n"); 55 56 if (verify(&dummy_security_ops)) { 57 printk(KERN_ERR "%s could not verify " 58 "dummy_security_ops structure.\n", __FUNCTION__); 59 return -EIO; 60 } 61 62 security_ops = &dummy_security_ops; 63 do_security_initcalls(); 64 65 return 0; 66} 67 68/** 69 * register_security - registers a security framework with the kernel 70 * @ops: a pointer to the struct security_options that is to be registered 71 * 72 * This function is to allow a security module to register itself with the 73 * kernel security subsystem. Some rudimentary checking is done on the @ops 74 * value passed to this function. 75 * 76 * If there is already a security module registered with the kernel, 77 * an error will be returned. Otherwise 0 is returned on success. 78 */ 79int register_security(struct security_operations *ops) 80{ 81 if (verify(ops)) { 82 printk(KERN_DEBUG "%s could not verify " 83 "security_operations structure.\n", __FUNCTION__); 84 return -EINVAL; 85 } 86 87 if (security_ops != &dummy_security_ops) 88 return -EAGAIN; 89 90 security_ops = ops; 91 92 return 0; 93} 94 95/** 96 * mod_reg_security - allows security modules to be "stacked" 97 * @name: a pointer to a string with the name of the security_options to be registered 98 * @ops: a pointer to the struct security_options that is to be registered 99 * 100 * This function allows security modules to be stacked if the currently loaded 101 * security module allows this to happen. It passes the @name and @ops to the 102 * register_security function of the currently loaded security module. 103 * 104 * The return value depends on the currently loaded security module, with 0 as 105 * success. 106 */ 107int mod_reg_security(const char *name, struct security_operations *ops) 108{ 109 if (verify(ops)) { 110 printk(KERN_INFO "%s could not verify " 111 "security operations.\n", __FUNCTION__); 112 return -EINVAL; 113 } 114 115 if (ops == security_ops) { 116 printk(KERN_INFO "%s security operations " 117 "already registered.\n", __FUNCTION__); 118 return -EINVAL; 119 } 120 121 return security_ops->register_security(name, ops); 122} 123 124/* Security operations */ 125 126int security_ptrace(struct task_struct *parent, struct task_struct *child) 127{ 128 return security_ops->ptrace(parent, child); 129} 130 131int security_capget(struct task_struct *target, 132 kernel_cap_t *effective, 133 kernel_cap_t *inheritable, 134 kernel_cap_t *permitted) 135{ 136 return security_ops->capget(target, effective, inheritable, permitted); 137} 138 139int security_capset_check(struct task_struct *target, 140 kernel_cap_t *effective, 141 kernel_cap_t *inheritable, 142 kernel_cap_t *permitted) 143{ 144 return security_ops->capset_check(target, effective, inheritable, permitted); 145} 146 147void security_capset_set(struct task_struct *target, 148 kernel_cap_t *effective, 149 kernel_cap_t *inheritable, 150 kernel_cap_t *permitted) 151{ 152 security_ops->capset_set(target, effective, inheritable, permitted); 153} 154 155int security_capable(struct task_struct *tsk, int cap) 156{ 157 return security_ops->capable(tsk, cap); 158} 159 160int security_acct(struct file *file) 161{ 162 return security_ops->acct(file); 163} 164 165int security_sysctl(struct ctl_table *table, int op) 166{ 167 return security_ops->sysctl(table, op); 168} 169 170int security_quotactl(int cmds, int type, int id, struct super_block *sb) 171{ 172 return security_ops->quotactl(cmds, type, id, sb); 173} 174 175int security_quota_on(struct dentry *dentry) 176{ 177 return security_ops->quota_on(dentry); 178} 179 180int security_syslog(int type) 181{ 182 return security_ops->syslog(type); 183} 184 185int security_settime(struct timespec *ts, struct timezone *tz) 186{ 187 return security_ops->settime(ts, tz); 188} 189 190int security_vm_enough_memory(long pages) 191{ 192 return security_ops->vm_enough_memory(current->mm, pages); 193} 194 195int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 196{ 197 return security_ops->vm_enough_memory(mm, pages); 198} 199 200int security_bprm_alloc(struct linux_binprm *bprm) 201{ 202 return security_ops->bprm_alloc_security(bprm); 203} 204 205void security_bprm_free(struct linux_binprm *bprm) 206{ 207 security_ops->bprm_free_security(bprm); 208} 209 210void security_bprm_apply_creds(struct linux_binprm *bprm, int unsafe) 211{ 212 security_ops->bprm_apply_creds(bprm, unsafe); 213} 214 215void security_bprm_post_apply_creds(struct linux_binprm *bprm) 216{ 217 security_ops->bprm_post_apply_creds(bprm); 218} 219 220int security_bprm_set(struct linux_binprm *bprm) 221{ 222 return security_ops->bprm_set_security(bprm); 223} 224 225int security_bprm_check(struct linux_binprm *bprm) 226{ 227 return security_ops->bprm_check_security(bprm); 228} 229 230int security_bprm_secureexec(struct linux_binprm *bprm) 231{ 232 return security_ops->bprm_secureexec(bprm); 233} 234 235int security_sb_alloc(struct super_block *sb) 236{ 237 return security_ops->sb_alloc_security(sb); 238} 239 240void security_sb_free(struct super_block *sb) 241{ 242 security_ops->sb_free_security(sb); 243} 244 245int security_sb_copy_data(struct file_system_type *type, void *orig, void *copy) 246{ 247 return security_ops->sb_copy_data(type, orig, copy); 248} 249 250int security_sb_kern_mount(struct super_block *sb, void *data) 251{ 252 return security_ops->sb_kern_mount(sb, data); 253} 254 255int security_sb_statfs(struct dentry *dentry) 256{ 257 return security_ops->sb_statfs(dentry); 258} 259 260int security_sb_mount(char *dev_name, struct nameidata *nd, 261 char *type, unsigned long flags, void *data) 262{ 263 return security_ops->sb_mount(dev_name, nd, type, flags, data); 264} 265 266int security_sb_check_sb(struct vfsmount *mnt, struct nameidata *nd) 267{ 268 return security_ops->sb_check_sb(mnt, nd); 269} 270 271int security_sb_umount(struct vfsmount *mnt, int flags) 272{ 273 return security_ops->sb_umount(mnt, flags); 274} 275 276void security_sb_umount_close(struct vfsmount *mnt) 277{ 278 security_ops->sb_umount_close(mnt); 279} 280 281void security_sb_umount_busy(struct vfsmount *mnt) 282{ 283 security_ops->sb_umount_busy(mnt); 284} 285 286void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data) 287{ 288 security_ops->sb_post_remount(mnt, flags, data); 289} 290 291void security_sb_post_mountroot(void) 292{ 293 security_ops->sb_post_mountroot(); 294} 295 296void security_sb_post_addmount(struct vfsmount *mnt, struct nameidata *mountpoint_nd) 297{ 298 security_ops->sb_post_addmount(mnt, mountpoint_nd); 299} 300 301int security_sb_pivotroot(struct nameidata *old_nd, struct nameidata *new_nd) 302{ 303 return security_ops->sb_pivotroot(old_nd, new_nd); 304} 305 306void security_sb_post_pivotroot(struct nameidata *old_nd, struct nameidata *new_nd) 307{ 308 security_ops->sb_post_pivotroot(old_nd, new_nd); 309} 310 311int security_inode_alloc(struct inode *inode) 312{ 313 inode->i_security = NULL; 314 return security_ops->inode_alloc_security(inode); 315} 316 317void security_inode_free(struct inode *inode) 318{ 319 security_ops->inode_free_security(inode); 320} 321 322int security_inode_init_security(struct inode *inode, struct inode *dir, 323 char **name, void **value, size_t *len) 324{ 325 if (unlikely(IS_PRIVATE(inode))) 326 return -EOPNOTSUPP; 327 return security_ops->inode_init_security(inode, dir, name, value, len); 328} 329EXPORT_SYMBOL(security_inode_init_security); 330 331int security_inode_create(struct inode *dir, struct dentry *dentry, int mode) 332{ 333 if (unlikely(IS_PRIVATE(dir))) 334 return 0; 335 return security_ops->inode_create(dir, dentry, mode); 336} 337 338int security_inode_link(struct dentry *old_dentry, struct inode *dir, 339 struct dentry *new_dentry) 340{ 341 if (unlikely(IS_PRIVATE(old_dentry->d_inode))) 342 return 0; 343 return security_ops->inode_link(old_dentry, dir, new_dentry); 344} 345 346int security_inode_unlink(struct inode *dir, struct dentry *dentry) 347{ 348 if (unlikely(IS_PRIVATE(dentry->d_inode))) 349 return 0; 350 return security_ops->inode_unlink(dir, dentry); 351} 352 353int security_inode_symlink(struct inode *dir, struct dentry *dentry, 354 const char *old_name) 355{ 356 if (unlikely(IS_PRIVATE(dir))) 357 return 0; 358 return security_ops->inode_symlink(dir, dentry, old_name); 359} 360 361int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode) 362{ 363 if (unlikely(IS_PRIVATE(dir))) 364 return 0; 365 return security_ops->inode_mkdir(dir, dentry, mode); 366} 367 368int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 369{ 370 if (unlikely(IS_PRIVATE(dentry->d_inode))) 371 return 0; 372 return security_ops->inode_rmdir(dir, dentry); 373} 374 375int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 376{ 377 if (unlikely(IS_PRIVATE(dir))) 378 return 0; 379 return security_ops->inode_mknod(dir, dentry, mode, dev); 380} 381 382int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 383 struct inode *new_dir, struct dentry *new_dentry) 384{ 385 if (unlikely(IS_PRIVATE(old_dentry->d_inode) || 386 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode)))) 387 return 0; 388 return security_ops->inode_rename(old_dir, old_dentry, 389 new_dir, new_dentry); 390} 391 392int security_inode_readlink(struct dentry *dentry) 393{ 394 if (unlikely(IS_PRIVATE(dentry->d_inode))) 395 return 0; 396 return security_ops->inode_readlink(dentry); 397} 398 399int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd) 400{ 401 if (unlikely(IS_PRIVATE(dentry->d_inode))) 402 return 0; 403 return security_ops->inode_follow_link(dentry, nd); 404} 405 406int security_inode_permission(struct inode *inode, int mask, struct nameidata *nd) 407{ 408 if (unlikely(IS_PRIVATE(inode))) 409 return 0; 410 return security_ops->inode_permission(inode, mask, nd); 411} 412 413int security_inode_setattr(struct dentry *dentry, struct iattr *attr) 414{ 415 if (unlikely(IS_PRIVATE(dentry->d_inode))) 416 return 0; 417 return security_ops->inode_setattr(dentry, attr); 418} 419 420int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry) 421{ 422 if (unlikely(IS_PRIVATE(dentry->d_inode))) 423 return 0; 424 return security_ops->inode_getattr(mnt, dentry); 425} 426 427void security_inode_delete(struct inode *inode) 428{ 429 if (unlikely(IS_PRIVATE(inode))) 430 return; 431 security_ops->inode_delete(inode); 432} 433 434int security_inode_setxattr(struct dentry *dentry, char *name, 435 void *value, size_t size, int flags) 436{ 437 if (unlikely(IS_PRIVATE(dentry->d_inode))) 438 return 0; 439 return security_ops->inode_setxattr(dentry, name, value, size, flags); 440} 441 442void security_inode_post_setxattr(struct dentry *dentry, char *name, 443 void *value, size_t size, int flags) 444{ 445 if (unlikely(IS_PRIVATE(dentry->d_inode))) 446 return; 447 security_ops->inode_post_setxattr(dentry, name, value, size, flags); 448} 449 450int security_inode_getxattr(struct dentry *dentry, char *name) 451{ 452 if (unlikely(IS_PRIVATE(dentry->d_inode))) 453 return 0; 454 return security_ops->inode_getxattr(dentry, name); 455} 456 457int security_inode_listxattr(struct dentry *dentry) 458{ 459 if (unlikely(IS_PRIVATE(dentry->d_inode))) 460 return 0; 461 return security_ops->inode_listxattr(dentry); 462} 463 464int security_inode_removexattr(struct dentry *dentry, char *name) 465{ 466 if (unlikely(IS_PRIVATE(dentry->d_inode))) 467 return 0; 468 return security_ops->inode_removexattr(dentry, name); 469} 470 471int security_inode_need_killpriv(struct dentry *dentry) 472{ 473 return security_ops->inode_need_killpriv(dentry); 474} 475 476int security_inode_killpriv(struct dentry *dentry) 477{ 478 return security_ops->inode_killpriv(dentry); 479} 480 481int security_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err) 482{ 483 if (unlikely(IS_PRIVATE(inode))) 484 return 0; 485 return security_ops->inode_getsecurity(inode, name, buffer, size, err); 486} 487 488int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 489{ 490 if (unlikely(IS_PRIVATE(inode))) 491 return 0; 492 return security_ops->inode_setsecurity(inode, name, value, size, flags); 493} 494 495int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 496{ 497 if (unlikely(IS_PRIVATE(inode))) 498 return 0; 499 return security_ops->inode_listsecurity(inode, buffer, buffer_size); 500} 501 502int security_file_permission(struct file *file, int mask) 503{ 504 return security_ops->file_permission(file, mask); 505} 506 507int security_file_alloc(struct file *file) 508{ 509 return security_ops->file_alloc_security(file); 510} 511 512void security_file_free(struct file *file) 513{ 514 security_ops->file_free_security(file); 515} 516 517int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 518{ 519 return security_ops->file_ioctl(file, cmd, arg); 520} 521 522int security_file_mmap(struct file *file, unsigned long reqprot, 523 unsigned long prot, unsigned long flags, 524 unsigned long addr, unsigned long addr_only) 525{ 526 return security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only); 527} 528 529int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 530 unsigned long prot) 531{ 532 return security_ops->file_mprotect(vma, reqprot, prot); 533} 534 535int security_file_lock(struct file *file, unsigned int cmd) 536{ 537 return security_ops->file_lock(file, cmd); 538} 539 540int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 541{ 542 return security_ops->file_fcntl(file, cmd, arg); 543} 544 545int security_file_set_fowner(struct file *file) 546{ 547 return security_ops->file_set_fowner(file); 548} 549 550int security_file_send_sigiotask(struct task_struct *tsk, 551 struct fown_struct *fown, int sig) 552{ 553 return security_ops->file_send_sigiotask(tsk, fown, sig); 554} 555 556int security_file_receive(struct file *file) 557{ 558 return security_ops->file_receive(file); 559} 560 561int security_dentry_open(struct file *file) 562{ 563 return security_ops->dentry_open(file); 564} 565 566int security_task_create(unsigned long clone_flags) 567{ 568 return security_ops->task_create(clone_flags); 569} 570 571int security_task_alloc(struct task_struct *p) 572{ 573 return security_ops->task_alloc_security(p); 574} 575 576void security_task_free(struct task_struct *p) 577{ 578 security_ops->task_free_security(p); 579} 580 581int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags) 582{ 583 return security_ops->task_setuid(id0, id1, id2, flags); 584} 585 586int security_task_post_setuid(uid_t old_ruid, uid_t old_euid, 587 uid_t old_suid, int flags) 588{ 589 return security_ops->task_post_setuid(old_ruid, old_euid, old_suid, flags); 590} 591 592int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags) 593{ 594 return security_ops->task_setgid(id0, id1, id2, flags); 595} 596 597int security_task_setpgid(struct task_struct *p, pid_t pgid) 598{ 599 return security_ops->task_setpgid(p, pgid); 600} 601 602int security_task_getpgid(struct task_struct *p) 603{ 604 return security_ops->task_getpgid(p); 605} 606 607int security_task_getsid(struct task_struct *p) 608{ 609 return security_ops->task_getsid(p); 610} 611 612void security_task_getsecid(struct task_struct *p, u32 *secid) 613{ 614 security_ops->task_getsecid(p, secid); 615} 616EXPORT_SYMBOL(security_task_getsecid); 617 618int security_task_setgroups(struct group_info *group_info) 619{ 620 return security_ops->task_setgroups(group_info); 621} 622 623int security_task_setnice(struct task_struct *p, int nice) 624{ 625 return security_ops->task_setnice(p, nice); 626} 627 628int security_task_setioprio(struct task_struct *p, int ioprio) 629{ 630 return security_ops->task_setioprio(p, ioprio); 631} 632 633int security_task_getioprio(struct task_struct *p) 634{ 635 return security_ops->task_getioprio(p); 636} 637 638int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim) 639{ 640 return security_ops->task_setrlimit(resource, new_rlim); 641} 642 643int security_task_setscheduler(struct task_struct *p, 644 int policy, struct sched_param *lp) 645{ 646 return security_ops->task_setscheduler(p, policy, lp); 647} 648 649int security_task_getscheduler(struct task_struct *p) 650{ 651 return security_ops->task_getscheduler(p); 652} 653 654int security_task_movememory(struct task_struct *p) 655{ 656 return security_ops->task_movememory(p); 657} 658 659int security_task_kill(struct task_struct *p, struct siginfo *info, 660 int sig, u32 secid) 661{ 662 return security_ops->task_kill(p, info, sig, secid); 663} 664 665int security_task_wait(struct task_struct *p) 666{ 667 return security_ops->task_wait(p); 668} 669 670int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 671 unsigned long arg4, unsigned long arg5) 672{ 673 return security_ops->task_prctl(option, arg2, arg3, arg4, arg5); 674} 675 676void security_task_reparent_to_init(struct task_struct *p) 677{ 678 security_ops->task_reparent_to_init(p); 679} 680 681void security_task_to_inode(struct task_struct *p, struct inode *inode) 682{ 683 security_ops->task_to_inode(p, inode); 684} 685 686int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 687{ 688 return security_ops->ipc_permission(ipcp, flag); 689} 690 691int security_msg_msg_alloc(struct msg_msg *msg) 692{ 693 return security_ops->msg_msg_alloc_security(msg); 694} 695 696void security_msg_msg_free(struct msg_msg *msg) 697{ 698 security_ops->msg_msg_free_security(msg); 699} 700 701int security_msg_queue_alloc(struct msg_queue *msq) 702{ 703 return security_ops->msg_queue_alloc_security(msq); 704} 705 706void security_msg_queue_free(struct msg_queue *msq) 707{ 708 security_ops->msg_queue_free_security(msq); 709} 710 711int security_msg_queue_associate(struct msg_queue *msq, int msqflg) 712{ 713 return security_ops->msg_queue_associate(msq, msqflg); 714} 715 716int security_msg_queue_msgctl(struct msg_queue *msq, int cmd) 717{ 718 return security_ops->msg_queue_msgctl(msq, cmd); 719} 720 721int security_msg_queue_msgsnd(struct msg_queue *msq, 722 struct msg_msg *msg, int msqflg) 723{ 724 return security_ops->msg_queue_msgsnd(msq, msg, msqflg); 725} 726 727int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg, 728 struct task_struct *target, long type, int mode) 729{ 730 return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode); 731} 732 733int security_shm_alloc(struct shmid_kernel *shp) 734{ 735 return security_ops->shm_alloc_security(shp); 736} 737 738void security_shm_free(struct shmid_kernel *shp) 739{ 740 security_ops->shm_free_security(shp); 741} 742 743int security_shm_associate(struct shmid_kernel *shp, int shmflg) 744{ 745 return security_ops->shm_associate(shp, shmflg); 746} 747 748int security_shm_shmctl(struct shmid_kernel *shp, int cmd) 749{ 750 return security_ops->shm_shmctl(shp, cmd); 751} 752 753int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg) 754{ 755 return security_ops->shm_shmat(shp, shmaddr, shmflg); 756} 757 758int security_sem_alloc(struct sem_array *sma) 759{ 760 return security_ops->sem_alloc_security(sma); 761} 762 763void security_sem_free(struct sem_array *sma) 764{ 765 security_ops->sem_free_security(sma); 766} 767 768int security_sem_associate(struct sem_array *sma, int semflg) 769{ 770 return security_ops->sem_associate(sma, semflg); 771} 772 773int security_sem_semctl(struct sem_array *sma, int cmd) 774{ 775 return security_ops->sem_semctl(sma, cmd); 776} 777 778int security_sem_semop(struct sem_array *sma, struct sembuf *sops, 779 unsigned nsops, int alter) 780{ 781 return security_ops->sem_semop(sma, sops, nsops, alter); 782} 783 784void security_d_instantiate(struct dentry *dentry, struct inode *inode) 785{ 786 if (unlikely(inode && IS_PRIVATE(inode))) 787 return; 788 security_ops->d_instantiate(dentry, inode); 789} 790EXPORT_SYMBOL(security_d_instantiate); 791 792int security_getprocattr(struct task_struct *p, char *name, char **value) 793{ 794 return security_ops->getprocattr(p, name, value); 795} 796 797int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size) 798{ 799 return security_ops->setprocattr(p, name, value, size); 800} 801 802int security_netlink_send(struct sock *sk, struct sk_buff *skb) 803{ 804 return security_ops->netlink_send(sk, skb); 805} 806 807int security_netlink_recv(struct sk_buff *skb, int cap) 808{ 809 return security_ops->netlink_recv(skb, cap); 810} 811EXPORT_SYMBOL(security_netlink_recv); 812 813int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 814{ 815 return security_ops->secid_to_secctx(secid, secdata, seclen); 816} 817EXPORT_SYMBOL(security_secid_to_secctx); 818 819void security_release_secctx(char *secdata, u32 seclen) 820{ 821 return security_ops->release_secctx(secdata, seclen); 822} 823EXPORT_SYMBOL(security_release_secctx); 824 825#ifdef CONFIG_SECURITY_NETWORK 826 827int security_unix_stream_connect(struct socket *sock, struct socket *other, 828 struct sock *newsk) 829{ 830 return security_ops->unix_stream_connect(sock, other, newsk); 831} 832EXPORT_SYMBOL(security_unix_stream_connect); 833 834int security_unix_may_send(struct socket *sock, struct socket *other) 835{ 836 return security_ops->unix_may_send(sock, other); 837} 838EXPORT_SYMBOL(security_unix_may_send); 839 840int security_socket_create(int family, int type, int protocol, int kern) 841{ 842 return security_ops->socket_create(family, type, protocol, kern); 843} 844 845int security_socket_post_create(struct socket *sock, int family, 846 int type, int protocol, int kern) 847{ 848 return security_ops->socket_post_create(sock, family, type, 849 protocol, kern); 850} 851 852int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 853{ 854 return security_ops->socket_bind(sock, address, addrlen); 855} 856 857int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 858{ 859 return security_ops->socket_connect(sock, address, addrlen); 860} 861 862int security_socket_listen(struct socket *sock, int backlog) 863{ 864 return security_ops->socket_listen(sock, backlog); 865} 866 867int security_socket_accept(struct socket *sock, struct socket *newsock) 868{ 869 return security_ops->socket_accept(sock, newsock); 870} 871 872void security_socket_post_accept(struct socket *sock, struct socket *newsock) 873{ 874 security_ops->socket_post_accept(sock, newsock); 875} 876 877int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 878{ 879 return security_ops->socket_sendmsg(sock, msg, size); 880} 881 882int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 883 int size, int flags) 884{ 885 return security_ops->socket_recvmsg(sock, msg, size, flags); 886} 887 888int security_socket_getsockname(struct socket *sock) 889{ 890 return security_ops->socket_getsockname(sock); 891} 892 893int security_socket_getpeername(struct socket *sock) 894{ 895 return security_ops->socket_getpeername(sock); 896} 897 898int security_socket_getsockopt(struct socket *sock, int level, int optname) 899{ 900 return security_ops->socket_getsockopt(sock, level, optname); 901} 902 903int security_socket_setsockopt(struct socket *sock, int level, int optname) 904{ 905 return security_ops->socket_setsockopt(sock, level, optname); 906} 907 908int security_socket_shutdown(struct socket *sock, int how) 909{ 910 return security_ops->socket_shutdown(sock, how); 911} 912 913int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 914{ 915 return security_ops->socket_sock_rcv_skb(sk, skb); 916} 917EXPORT_SYMBOL(security_sock_rcv_skb); 918 919int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 920 int __user *optlen, unsigned len) 921{ 922 return security_ops->socket_getpeersec_stream(sock, optval, optlen, len); 923} 924 925int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 926{ 927 return security_ops->socket_getpeersec_dgram(sock, skb, secid); 928} 929EXPORT_SYMBOL(security_socket_getpeersec_dgram); 930 931int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 932{ 933 return security_ops->sk_alloc_security(sk, family, priority); 934} 935 936void security_sk_free(struct sock *sk) 937{ 938 return security_ops->sk_free_security(sk); 939} 940 941void security_sk_clone(const struct sock *sk, struct sock *newsk) 942{ 943 return security_ops->sk_clone_security(sk, newsk); 944} 945 946void security_sk_classify_flow(struct sock *sk, struct flowi *fl) 947{ 948 security_ops->sk_getsecid(sk, &fl->secid); 949} 950EXPORT_SYMBOL(security_sk_classify_flow); 951 952void security_req_classify_flow(const struct request_sock *req, struct flowi *fl) 953{ 954 security_ops->req_classify_flow(req, fl); 955} 956EXPORT_SYMBOL(security_req_classify_flow); 957 958void security_sock_graft(struct sock *sk, struct socket *parent) 959{ 960 security_ops->sock_graft(sk, parent); 961} 962EXPORT_SYMBOL(security_sock_graft); 963 964int security_inet_conn_request(struct sock *sk, 965 struct sk_buff *skb, struct request_sock *req) 966{ 967 return security_ops->inet_conn_request(sk, skb, req); 968} 969EXPORT_SYMBOL(security_inet_conn_request); 970 971void security_inet_csk_clone(struct sock *newsk, 972 const struct request_sock *req) 973{ 974 security_ops->inet_csk_clone(newsk, req); 975} 976 977void security_inet_conn_established(struct sock *sk, 978 struct sk_buff *skb) 979{ 980 security_ops->inet_conn_established(sk, skb); 981} 982 983#endif /* CONFIG_SECURITY_NETWORK */ 984 985#ifdef CONFIG_SECURITY_NETWORK_XFRM 986 987int security_xfrm_policy_alloc(struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx) 988{ 989 return security_ops->xfrm_policy_alloc_security(xp, sec_ctx); 990} 991EXPORT_SYMBOL(security_xfrm_policy_alloc); 992 993int security_xfrm_policy_clone(struct xfrm_policy *old, struct xfrm_policy *new) 994{ 995 return security_ops->xfrm_policy_clone_security(old, new); 996} 997 998void security_xfrm_policy_free(struct xfrm_policy *xp) 999{ 1000 security_ops->xfrm_policy_free_security(xp); 1001} 1002EXPORT_SYMBOL(security_xfrm_policy_free); 1003 1004int security_xfrm_policy_delete(struct xfrm_policy *xp) 1005{ 1006 return security_ops->xfrm_policy_delete_security(xp); 1007} 1008 1009int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx) 1010{ 1011 return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0); 1012} 1013EXPORT_SYMBOL(security_xfrm_state_alloc); 1014 1015int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 1016 struct xfrm_sec_ctx *polsec, u32 secid) 1017{ 1018 if (!polsec) 1019 return 0; 1020 /* 1021 * We want the context to be taken from secid which is usually 1022 * from the sock. 1023 */ 1024 return security_ops->xfrm_state_alloc_security(x, NULL, secid); 1025} 1026 1027int security_xfrm_state_delete(struct xfrm_state *x) 1028{ 1029 return security_ops->xfrm_state_delete_security(x); 1030} 1031EXPORT_SYMBOL(security_xfrm_state_delete); 1032 1033void security_xfrm_state_free(struct xfrm_state *x) 1034{ 1035 security_ops->xfrm_state_free_security(x); 1036} 1037 1038int security_xfrm_policy_lookup(struct xfrm_policy *xp, u32 fl_secid, u8 dir) 1039{ 1040 return security_ops->xfrm_policy_lookup(xp, fl_secid, dir); 1041} 1042 1043int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 1044 struct xfrm_policy *xp, struct flowi *fl) 1045{ 1046 return security_ops->xfrm_state_pol_flow_match(x, xp, fl); 1047} 1048 1049int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 1050{ 1051 return security_ops->xfrm_decode_session(skb, secid, 1); 1052} 1053 1054void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl) 1055{ 1056 int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0); 1057 1058 BUG_ON(rc); 1059} 1060EXPORT_SYMBOL(security_skb_classify_flow); 1061 1062#endif /* CONFIG_SECURITY_NETWORK_XFRM */ 1063 1064#ifdef CONFIG_KEYS 1065 1066int security_key_alloc(struct key *key, struct task_struct *tsk, unsigned long flags) 1067{ 1068 return security_ops->key_alloc(key, tsk, flags); 1069} 1070 1071void security_key_free(struct key *key) 1072{ 1073 security_ops->key_free(key); 1074} 1075 1076int security_key_permission(key_ref_t key_ref, 1077 struct task_struct *context, key_perm_t perm) 1078{ 1079 return security_ops->key_permission(key_ref, context, perm); 1080} 1081 1082#endif /* CONFIG_KEYS */