at v2.6.24 111 kB view raw
1/* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75#include <asm/uaccess.h> 76#include <asm/system.h> 77#include <linux/bitops.h> 78#include <linux/capability.h> 79#include <linux/cpu.h> 80#include <linux/types.h> 81#include <linux/kernel.h> 82#include <linux/sched.h> 83#include <linux/mutex.h> 84#include <linux/string.h> 85#include <linux/mm.h> 86#include <linux/socket.h> 87#include <linux/sockios.h> 88#include <linux/errno.h> 89#include <linux/interrupt.h> 90#include <linux/if_ether.h> 91#include <linux/netdevice.h> 92#include <linux/etherdevice.h> 93#include <linux/notifier.h> 94#include <linux/skbuff.h> 95#include <net/net_namespace.h> 96#include <net/sock.h> 97#include <linux/rtnetlink.h> 98#include <linux/proc_fs.h> 99#include <linux/seq_file.h> 100#include <linux/stat.h> 101#include <linux/if_bridge.h> 102#include <linux/if_macvlan.h> 103#include <net/dst.h> 104#include <net/pkt_sched.h> 105#include <net/checksum.h> 106#include <linux/highmem.h> 107#include <linux/init.h> 108#include <linux/kmod.h> 109#include <linux/module.h> 110#include <linux/kallsyms.h> 111#include <linux/netpoll.h> 112#include <linux/rcupdate.h> 113#include <linux/delay.h> 114#include <net/wext.h> 115#include <net/iw_handler.h> 116#include <asm/current.h> 117#include <linux/audit.h> 118#include <linux/dmaengine.h> 119#include <linux/err.h> 120#include <linux/ctype.h> 121#include <linux/if_arp.h> 122 123#include "net-sysfs.h" 124 125/* 126 * The list of packet types we will receive (as opposed to discard) 127 * and the routines to invoke. 128 * 129 * Why 16. Because with 16 the only overlap we get on a hash of the 130 * low nibble of the protocol value is RARP/SNAP/X.25. 131 * 132 * NOTE: That is no longer true with the addition of VLAN tags. Not 133 * sure which should go first, but I bet it won't make much 134 * difference if we are running VLANs. The good news is that 135 * this protocol won't be in the list unless compiled in, so 136 * the average user (w/out VLANs) will not be adversely affected. 137 * --BLG 138 * 139 * 0800 IP 140 * 8100 802.1Q VLAN 141 * 0001 802.3 142 * 0002 AX.25 143 * 0004 802.2 144 * 8035 RARP 145 * 0005 SNAP 146 * 0805 X.25 147 * 0806 ARP 148 * 8137 IPX 149 * 0009 Localtalk 150 * 86DD IPv6 151 */ 152 153static DEFINE_SPINLOCK(ptype_lock); 154static struct list_head ptype_base[16] __read_mostly; /* 16 way hashed list */ 155static struct list_head ptype_all __read_mostly; /* Taps */ 156 157#ifdef CONFIG_NET_DMA 158struct net_dma { 159 struct dma_client client; 160 spinlock_t lock; 161 cpumask_t channel_mask; 162 struct dma_chan *channels[NR_CPUS]; 163}; 164 165static enum dma_state_client 166netdev_dma_event(struct dma_client *client, struct dma_chan *chan, 167 enum dma_state state); 168 169static struct net_dma net_dma = { 170 .client = { 171 .event_callback = netdev_dma_event, 172 }, 173}; 174#endif 175 176/* 177 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 178 * semaphore. 179 * 180 * Pure readers hold dev_base_lock for reading. 181 * 182 * Writers must hold the rtnl semaphore while they loop through the 183 * dev_base_head list, and hold dev_base_lock for writing when they do the 184 * actual updates. This allows pure readers to access the list even 185 * while a writer is preparing to update it. 186 * 187 * To put it another way, dev_base_lock is held for writing only to 188 * protect against pure readers; the rtnl semaphore provides the 189 * protection against other writers. 190 * 191 * See, for example usages, register_netdevice() and 192 * unregister_netdevice(), which must be called with the rtnl 193 * semaphore held. 194 */ 195DEFINE_RWLOCK(dev_base_lock); 196 197EXPORT_SYMBOL(dev_base_lock); 198 199#define NETDEV_HASHBITS 8 200#define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS) 201 202static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 203{ 204 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 205 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)]; 206} 207 208static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 209{ 210 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)]; 211} 212 213/* Device list insertion */ 214static int list_netdevice(struct net_device *dev) 215{ 216 struct net *net = dev->nd_net; 217 218 ASSERT_RTNL(); 219 220 write_lock_bh(&dev_base_lock); 221 list_add_tail(&dev->dev_list, &net->dev_base_head); 222 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name)); 223 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex)); 224 write_unlock_bh(&dev_base_lock); 225 return 0; 226} 227 228/* Device list removal */ 229static void unlist_netdevice(struct net_device *dev) 230{ 231 ASSERT_RTNL(); 232 233 /* Unlink dev from the device chain */ 234 write_lock_bh(&dev_base_lock); 235 list_del(&dev->dev_list); 236 hlist_del(&dev->name_hlist); 237 hlist_del(&dev->index_hlist); 238 write_unlock_bh(&dev_base_lock); 239} 240 241/* 242 * Our notifier list 243 */ 244 245static RAW_NOTIFIER_HEAD(netdev_chain); 246 247/* 248 * Device drivers call our routines to queue packets here. We empty the 249 * queue in the local softnet handler. 250 */ 251 252DEFINE_PER_CPU(struct softnet_data, softnet_data); 253 254#ifdef CONFIG_DEBUG_LOCK_ALLOC 255/* 256 * register_netdevice() inits dev->_xmit_lock and sets lockdep class 257 * according to dev->type 258 */ 259static const unsigned short netdev_lock_type[] = 260 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 261 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 262 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 263 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 264 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 265 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 266 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 267 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 268 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 269 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 270 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 271 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 272 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211, 273 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_VOID, 274 ARPHRD_NONE}; 275 276static const char *netdev_lock_name[] = 277 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 278 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 279 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 280 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 281 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 282 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 283 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 284 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 285 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 286 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 287 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 288 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 289 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211", 290 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_VOID", 291 "_xmit_NONE"}; 292 293static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 294 295static inline unsigned short netdev_lock_pos(unsigned short dev_type) 296{ 297 int i; 298 299 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 300 if (netdev_lock_type[i] == dev_type) 301 return i; 302 /* the last key is used by default */ 303 return ARRAY_SIZE(netdev_lock_type) - 1; 304} 305 306static inline void netdev_set_lockdep_class(spinlock_t *lock, 307 unsigned short dev_type) 308{ 309 int i; 310 311 i = netdev_lock_pos(dev_type); 312 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 313 netdev_lock_name[i]); 314} 315#else 316static inline void netdev_set_lockdep_class(spinlock_t *lock, 317 unsigned short dev_type) 318{ 319} 320#endif 321 322/******************************************************************************* 323 324 Protocol management and registration routines 325 326*******************************************************************************/ 327 328/* 329 * Add a protocol ID to the list. Now that the input handler is 330 * smarter we can dispense with all the messy stuff that used to be 331 * here. 332 * 333 * BEWARE!!! Protocol handlers, mangling input packets, 334 * MUST BE last in hash buckets and checking protocol handlers 335 * MUST start from promiscuous ptype_all chain in net_bh. 336 * It is true now, do not change it. 337 * Explanation follows: if protocol handler, mangling packet, will 338 * be the first on list, it is not able to sense, that packet 339 * is cloned and should be copied-on-write, so that it will 340 * change it and subsequent readers will get broken packet. 341 * --ANK (980803) 342 */ 343 344/** 345 * dev_add_pack - add packet handler 346 * @pt: packet type declaration 347 * 348 * Add a protocol handler to the networking stack. The passed &packet_type 349 * is linked into kernel lists and may not be freed until it has been 350 * removed from the kernel lists. 351 * 352 * This call does not sleep therefore it can not 353 * guarantee all CPU's that are in middle of receiving packets 354 * will see the new packet type (until the next received packet). 355 */ 356 357void dev_add_pack(struct packet_type *pt) 358{ 359 int hash; 360 361 spin_lock_bh(&ptype_lock); 362 if (pt->type == htons(ETH_P_ALL)) 363 list_add_rcu(&pt->list, &ptype_all); 364 else { 365 hash = ntohs(pt->type) & 15; 366 list_add_rcu(&pt->list, &ptype_base[hash]); 367 } 368 spin_unlock_bh(&ptype_lock); 369} 370 371/** 372 * __dev_remove_pack - remove packet handler 373 * @pt: packet type declaration 374 * 375 * Remove a protocol handler that was previously added to the kernel 376 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 377 * from the kernel lists and can be freed or reused once this function 378 * returns. 379 * 380 * The packet type might still be in use by receivers 381 * and must not be freed until after all the CPU's have gone 382 * through a quiescent state. 383 */ 384void __dev_remove_pack(struct packet_type *pt) 385{ 386 struct list_head *head; 387 struct packet_type *pt1; 388 389 spin_lock_bh(&ptype_lock); 390 391 if (pt->type == htons(ETH_P_ALL)) 392 head = &ptype_all; 393 else 394 head = &ptype_base[ntohs(pt->type) & 15]; 395 396 list_for_each_entry(pt1, head, list) { 397 if (pt == pt1) { 398 list_del_rcu(&pt->list); 399 goto out; 400 } 401 } 402 403 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt); 404out: 405 spin_unlock_bh(&ptype_lock); 406} 407/** 408 * dev_remove_pack - remove packet handler 409 * @pt: packet type declaration 410 * 411 * Remove a protocol handler that was previously added to the kernel 412 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 413 * from the kernel lists and can be freed or reused once this function 414 * returns. 415 * 416 * This call sleeps to guarantee that no CPU is looking at the packet 417 * type after return. 418 */ 419void dev_remove_pack(struct packet_type *pt) 420{ 421 __dev_remove_pack(pt); 422 423 synchronize_net(); 424} 425 426/****************************************************************************** 427 428 Device Boot-time Settings Routines 429 430*******************************************************************************/ 431 432/* Boot time configuration table */ 433static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 434 435/** 436 * netdev_boot_setup_add - add new setup entry 437 * @name: name of the device 438 * @map: configured settings for the device 439 * 440 * Adds new setup entry to the dev_boot_setup list. The function 441 * returns 0 on error and 1 on success. This is a generic routine to 442 * all netdevices. 443 */ 444static int netdev_boot_setup_add(char *name, struct ifmap *map) 445{ 446 struct netdev_boot_setup *s; 447 int i; 448 449 s = dev_boot_setup; 450 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 451 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 452 memset(s[i].name, 0, sizeof(s[i].name)); 453 strcpy(s[i].name, name); 454 memcpy(&s[i].map, map, sizeof(s[i].map)); 455 break; 456 } 457 } 458 459 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 460} 461 462/** 463 * netdev_boot_setup_check - check boot time settings 464 * @dev: the netdevice 465 * 466 * Check boot time settings for the device. 467 * The found settings are set for the device to be used 468 * later in the device probing. 469 * Returns 0 if no settings found, 1 if they are. 470 */ 471int netdev_boot_setup_check(struct net_device *dev) 472{ 473 struct netdev_boot_setup *s = dev_boot_setup; 474 int i; 475 476 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 477 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 478 !strncmp(dev->name, s[i].name, strlen(s[i].name))) { 479 dev->irq = s[i].map.irq; 480 dev->base_addr = s[i].map.base_addr; 481 dev->mem_start = s[i].map.mem_start; 482 dev->mem_end = s[i].map.mem_end; 483 return 1; 484 } 485 } 486 return 0; 487} 488 489 490/** 491 * netdev_boot_base - get address from boot time settings 492 * @prefix: prefix for network device 493 * @unit: id for network device 494 * 495 * Check boot time settings for the base address of device. 496 * The found settings are set for the device to be used 497 * later in the device probing. 498 * Returns 0 if no settings found. 499 */ 500unsigned long netdev_boot_base(const char *prefix, int unit) 501{ 502 const struct netdev_boot_setup *s = dev_boot_setup; 503 char name[IFNAMSIZ]; 504 int i; 505 506 sprintf(name, "%s%d", prefix, unit); 507 508 /* 509 * If device already registered then return base of 1 510 * to indicate not to probe for this interface 511 */ 512 if (__dev_get_by_name(&init_net, name)) 513 return 1; 514 515 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 516 if (!strcmp(name, s[i].name)) 517 return s[i].map.base_addr; 518 return 0; 519} 520 521/* 522 * Saves at boot time configured settings for any netdevice. 523 */ 524int __init netdev_boot_setup(char *str) 525{ 526 int ints[5]; 527 struct ifmap map; 528 529 str = get_options(str, ARRAY_SIZE(ints), ints); 530 if (!str || !*str) 531 return 0; 532 533 /* Save settings */ 534 memset(&map, 0, sizeof(map)); 535 if (ints[0] > 0) 536 map.irq = ints[1]; 537 if (ints[0] > 1) 538 map.base_addr = ints[2]; 539 if (ints[0] > 2) 540 map.mem_start = ints[3]; 541 if (ints[0] > 3) 542 map.mem_end = ints[4]; 543 544 /* Add new entry to the list */ 545 return netdev_boot_setup_add(str, &map); 546} 547 548__setup("netdev=", netdev_boot_setup); 549 550/******************************************************************************* 551 552 Device Interface Subroutines 553 554*******************************************************************************/ 555 556/** 557 * __dev_get_by_name - find a device by its name 558 * @net: the applicable net namespace 559 * @name: name to find 560 * 561 * Find an interface by name. Must be called under RTNL semaphore 562 * or @dev_base_lock. If the name is found a pointer to the device 563 * is returned. If the name is not found then %NULL is returned. The 564 * reference counters are not incremented so the caller must be 565 * careful with locks. 566 */ 567 568struct net_device *__dev_get_by_name(struct net *net, const char *name) 569{ 570 struct hlist_node *p; 571 572 hlist_for_each(p, dev_name_hash(net, name)) { 573 struct net_device *dev 574 = hlist_entry(p, struct net_device, name_hlist); 575 if (!strncmp(dev->name, name, IFNAMSIZ)) 576 return dev; 577 } 578 return NULL; 579} 580 581/** 582 * dev_get_by_name - find a device by its name 583 * @net: the applicable net namespace 584 * @name: name to find 585 * 586 * Find an interface by name. This can be called from any 587 * context and does its own locking. The returned handle has 588 * the usage count incremented and the caller must use dev_put() to 589 * release it when it is no longer needed. %NULL is returned if no 590 * matching device is found. 591 */ 592 593struct net_device *dev_get_by_name(struct net *net, const char *name) 594{ 595 struct net_device *dev; 596 597 read_lock(&dev_base_lock); 598 dev = __dev_get_by_name(net, name); 599 if (dev) 600 dev_hold(dev); 601 read_unlock(&dev_base_lock); 602 return dev; 603} 604 605/** 606 * __dev_get_by_index - find a device by its ifindex 607 * @net: the applicable net namespace 608 * @ifindex: index of device 609 * 610 * Search for an interface by index. Returns %NULL if the device 611 * is not found or a pointer to the device. The device has not 612 * had its reference counter increased so the caller must be careful 613 * about locking. The caller must hold either the RTNL semaphore 614 * or @dev_base_lock. 615 */ 616 617struct net_device *__dev_get_by_index(struct net *net, int ifindex) 618{ 619 struct hlist_node *p; 620 621 hlist_for_each(p, dev_index_hash(net, ifindex)) { 622 struct net_device *dev 623 = hlist_entry(p, struct net_device, index_hlist); 624 if (dev->ifindex == ifindex) 625 return dev; 626 } 627 return NULL; 628} 629 630 631/** 632 * dev_get_by_index - find a device by its ifindex 633 * @net: the applicable net namespace 634 * @ifindex: index of device 635 * 636 * Search for an interface by index. Returns NULL if the device 637 * is not found or a pointer to the device. The device returned has 638 * had a reference added and the pointer is safe until the user calls 639 * dev_put to indicate they have finished with it. 640 */ 641 642struct net_device *dev_get_by_index(struct net *net, int ifindex) 643{ 644 struct net_device *dev; 645 646 read_lock(&dev_base_lock); 647 dev = __dev_get_by_index(net, ifindex); 648 if (dev) 649 dev_hold(dev); 650 read_unlock(&dev_base_lock); 651 return dev; 652} 653 654/** 655 * dev_getbyhwaddr - find a device by its hardware address 656 * @net: the applicable net namespace 657 * @type: media type of device 658 * @ha: hardware address 659 * 660 * Search for an interface by MAC address. Returns NULL if the device 661 * is not found or a pointer to the device. The caller must hold the 662 * rtnl semaphore. The returned device has not had its ref count increased 663 * and the caller must therefore be careful about locking 664 * 665 * BUGS: 666 * If the API was consistent this would be __dev_get_by_hwaddr 667 */ 668 669struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha) 670{ 671 struct net_device *dev; 672 673 ASSERT_RTNL(); 674 675 for_each_netdev(&init_net, dev) 676 if (dev->type == type && 677 !memcmp(dev->dev_addr, ha, dev->addr_len)) 678 return dev; 679 680 return NULL; 681} 682 683EXPORT_SYMBOL(dev_getbyhwaddr); 684 685struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 686{ 687 struct net_device *dev; 688 689 ASSERT_RTNL(); 690 for_each_netdev(net, dev) 691 if (dev->type == type) 692 return dev; 693 694 return NULL; 695} 696 697EXPORT_SYMBOL(__dev_getfirstbyhwtype); 698 699struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 700{ 701 struct net_device *dev; 702 703 rtnl_lock(); 704 dev = __dev_getfirstbyhwtype(net, type); 705 if (dev) 706 dev_hold(dev); 707 rtnl_unlock(); 708 return dev; 709} 710 711EXPORT_SYMBOL(dev_getfirstbyhwtype); 712 713/** 714 * dev_get_by_flags - find any device with given flags 715 * @net: the applicable net namespace 716 * @if_flags: IFF_* values 717 * @mask: bitmask of bits in if_flags to check 718 * 719 * Search for any interface with the given flags. Returns NULL if a device 720 * is not found or a pointer to the device. The device returned has 721 * had a reference added and the pointer is safe until the user calls 722 * dev_put to indicate they have finished with it. 723 */ 724 725struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask) 726{ 727 struct net_device *dev, *ret; 728 729 ret = NULL; 730 read_lock(&dev_base_lock); 731 for_each_netdev(net, dev) { 732 if (((dev->flags ^ if_flags) & mask) == 0) { 733 dev_hold(dev); 734 ret = dev; 735 break; 736 } 737 } 738 read_unlock(&dev_base_lock); 739 return ret; 740} 741 742/** 743 * dev_valid_name - check if name is okay for network device 744 * @name: name string 745 * 746 * Network device names need to be valid file names to 747 * to allow sysfs to work. We also disallow any kind of 748 * whitespace. 749 */ 750int dev_valid_name(const char *name) 751{ 752 if (*name == '\0') 753 return 0; 754 if (strlen(name) >= IFNAMSIZ) 755 return 0; 756 if (!strcmp(name, ".") || !strcmp(name, "..")) 757 return 0; 758 759 while (*name) { 760 if (*name == '/' || isspace(*name)) 761 return 0; 762 name++; 763 } 764 return 1; 765} 766 767/** 768 * __dev_alloc_name - allocate a name for a device 769 * @net: network namespace to allocate the device name in 770 * @name: name format string 771 * @buf: scratch buffer and result name string 772 * 773 * Passed a format string - eg "lt%d" it will try and find a suitable 774 * id. It scans list of devices to build up a free map, then chooses 775 * the first empty slot. The caller must hold the dev_base or rtnl lock 776 * while allocating the name and adding the device in order to avoid 777 * duplicates. 778 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 779 * Returns the number of the unit assigned or a negative errno code. 780 */ 781 782static int __dev_alloc_name(struct net *net, const char *name, char *buf) 783{ 784 int i = 0; 785 const char *p; 786 const int max_netdevices = 8*PAGE_SIZE; 787 unsigned long *inuse; 788 struct net_device *d; 789 790 p = strnchr(name, IFNAMSIZ-1, '%'); 791 if (p) { 792 /* 793 * Verify the string as this thing may have come from 794 * the user. There must be either one "%d" and no other "%" 795 * characters. 796 */ 797 if (p[1] != 'd' || strchr(p + 2, '%')) 798 return -EINVAL; 799 800 /* Use one page as a bit array of possible slots */ 801 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 802 if (!inuse) 803 return -ENOMEM; 804 805 for_each_netdev(net, d) { 806 if (!sscanf(d->name, name, &i)) 807 continue; 808 if (i < 0 || i >= max_netdevices) 809 continue; 810 811 /* avoid cases where sscanf is not exact inverse of printf */ 812 snprintf(buf, IFNAMSIZ, name, i); 813 if (!strncmp(buf, d->name, IFNAMSIZ)) 814 set_bit(i, inuse); 815 } 816 817 i = find_first_zero_bit(inuse, max_netdevices); 818 free_page((unsigned long) inuse); 819 } 820 821 snprintf(buf, IFNAMSIZ, name, i); 822 if (!__dev_get_by_name(net, buf)) 823 return i; 824 825 /* It is possible to run out of possible slots 826 * when the name is long and there isn't enough space left 827 * for the digits, or if all bits are used. 828 */ 829 return -ENFILE; 830} 831 832/** 833 * dev_alloc_name - allocate a name for a device 834 * @dev: device 835 * @name: name format string 836 * 837 * Passed a format string - eg "lt%d" it will try and find a suitable 838 * id. It scans list of devices to build up a free map, then chooses 839 * the first empty slot. The caller must hold the dev_base or rtnl lock 840 * while allocating the name and adding the device in order to avoid 841 * duplicates. 842 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 843 * Returns the number of the unit assigned or a negative errno code. 844 */ 845 846int dev_alloc_name(struct net_device *dev, const char *name) 847{ 848 char buf[IFNAMSIZ]; 849 struct net *net; 850 int ret; 851 852 BUG_ON(!dev->nd_net); 853 net = dev->nd_net; 854 ret = __dev_alloc_name(net, name, buf); 855 if (ret >= 0) 856 strlcpy(dev->name, buf, IFNAMSIZ); 857 return ret; 858} 859 860 861/** 862 * dev_change_name - change name of a device 863 * @dev: device 864 * @newname: name (or format string) must be at least IFNAMSIZ 865 * 866 * Change name of a device, can pass format strings "eth%d". 867 * for wildcarding. 868 */ 869int dev_change_name(struct net_device *dev, char *newname) 870{ 871 char oldname[IFNAMSIZ]; 872 int err = 0; 873 int ret; 874 struct net *net; 875 876 ASSERT_RTNL(); 877 BUG_ON(!dev->nd_net); 878 879 net = dev->nd_net; 880 if (dev->flags & IFF_UP) 881 return -EBUSY; 882 883 if (!dev_valid_name(newname)) 884 return -EINVAL; 885 886 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) 887 return 0; 888 889 memcpy(oldname, dev->name, IFNAMSIZ); 890 891 if (strchr(newname, '%')) { 892 err = dev_alloc_name(dev, newname); 893 if (err < 0) 894 return err; 895 strcpy(newname, dev->name); 896 } 897 else if (__dev_get_by_name(net, newname)) 898 return -EEXIST; 899 else 900 strlcpy(dev->name, newname, IFNAMSIZ); 901 902rollback: 903 device_rename(&dev->dev, dev->name); 904 905 write_lock_bh(&dev_base_lock); 906 hlist_del(&dev->name_hlist); 907 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name)); 908 write_unlock_bh(&dev_base_lock); 909 910 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 911 ret = notifier_to_errno(ret); 912 913 if (ret) { 914 if (err) { 915 printk(KERN_ERR 916 "%s: name change rollback failed: %d.\n", 917 dev->name, ret); 918 } else { 919 err = ret; 920 memcpy(dev->name, oldname, IFNAMSIZ); 921 goto rollback; 922 } 923 } 924 925 return err; 926} 927 928/** 929 * netdev_features_change - device changes features 930 * @dev: device to cause notification 931 * 932 * Called to indicate a device has changed features. 933 */ 934void netdev_features_change(struct net_device *dev) 935{ 936 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 937} 938EXPORT_SYMBOL(netdev_features_change); 939 940/** 941 * netdev_state_change - device changes state 942 * @dev: device to cause notification 943 * 944 * Called to indicate a device has changed state. This function calls 945 * the notifier chains for netdev_chain and sends a NEWLINK message 946 * to the routing socket. 947 */ 948void netdev_state_change(struct net_device *dev) 949{ 950 if (dev->flags & IFF_UP) { 951 call_netdevice_notifiers(NETDEV_CHANGE, dev); 952 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 953 } 954} 955 956/** 957 * dev_load - load a network module 958 * @net: the applicable net namespace 959 * @name: name of interface 960 * 961 * If a network interface is not present and the process has suitable 962 * privileges this function loads the module. If module loading is not 963 * available in this kernel then it becomes a nop. 964 */ 965 966void dev_load(struct net *net, const char *name) 967{ 968 struct net_device *dev; 969 970 read_lock(&dev_base_lock); 971 dev = __dev_get_by_name(net, name); 972 read_unlock(&dev_base_lock); 973 974 if (!dev && capable(CAP_SYS_MODULE)) 975 request_module("%s", name); 976} 977 978/** 979 * dev_open - prepare an interface for use. 980 * @dev: device to open 981 * 982 * Takes a device from down to up state. The device's private open 983 * function is invoked and then the multicast lists are loaded. Finally 984 * the device is moved into the up state and a %NETDEV_UP message is 985 * sent to the netdev notifier chain. 986 * 987 * Calling this function on an active interface is a nop. On a failure 988 * a negative errno code is returned. 989 */ 990int dev_open(struct net_device *dev) 991{ 992 int ret = 0; 993 994 /* 995 * Is it already up? 996 */ 997 998 if (dev->flags & IFF_UP) 999 return 0; 1000 1001 /* 1002 * Is it even present? 1003 */ 1004 if (!netif_device_present(dev)) 1005 return -ENODEV; 1006 1007 /* 1008 * Call device private open method 1009 */ 1010 set_bit(__LINK_STATE_START, &dev->state); 1011 1012 if (dev->validate_addr) 1013 ret = dev->validate_addr(dev); 1014 1015 if (!ret && dev->open) 1016 ret = dev->open(dev); 1017 1018 /* 1019 * If it went open OK then: 1020 */ 1021 1022 if (ret) 1023 clear_bit(__LINK_STATE_START, &dev->state); 1024 else { 1025 /* 1026 * Set the flags. 1027 */ 1028 dev->flags |= IFF_UP; 1029 1030 /* 1031 * Initialize multicasting status 1032 */ 1033 dev_set_rx_mode(dev); 1034 1035 /* 1036 * Wakeup transmit queue engine 1037 */ 1038 dev_activate(dev); 1039 1040 /* 1041 * ... and announce new interface. 1042 */ 1043 call_netdevice_notifiers(NETDEV_UP, dev); 1044 } 1045 1046 return ret; 1047} 1048 1049/** 1050 * dev_close - shutdown an interface. 1051 * @dev: device to shutdown 1052 * 1053 * This function moves an active device into down state. A 1054 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1055 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1056 * chain. 1057 */ 1058int dev_close(struct net_device *dev) 1059{ 1060 might_sleep(); 1061 1062 if (!(dev->flags & IFF_UP)) 1063 return 0; 1064 1065 /* 1066 * Tell people we are going down, so that they can 1067 * prepare to death, when device is still operating. 1068 */ 1069 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1070 1071 dev_deactivate(dev); 1072 1073 clear_bit(__LINK_STATE_START, &dev->state); 1074 1075 /* Synchronize to scheduled poll. We cannot touch poll list, 1076 * it can be even on different cpu. So just clear netif_running(). 1077 * 1078 * dev->stop() will invoke napi_disable() on all of it's 1079 * napi_struct instances on this device. 1080 */ 1081 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1082 1083 /* 1084 * Call the device specific close. This cannot fail. 1085 * Only if device is UP 1086 * 1087 * We allow it to be called even after a DETACH hot-plug 1088 * event. 1089 */ 1090 if (dev->stop) 1091 dev->stop(dev); 1092 1093 /* 1094 * Device is now down. 1095 */ 1096 1097 dev->flags &= ~IFF_UP; 1098 1099 /* 1100 * Tell people we are down 1101 */ 1102 call_netdevice_notifiers(NETDEV_DOWN, dev); 1103 1104 return 0; 1105} 1106 1107 1108static int dev_boot_phase = 1; 1109 1110/* 1111 * Device change register/unregister. These are not inline or static 1112 * as we export them to the world. 1113 */ 1114 1115/** 1116 * register_netdevice_notifier - register a network notifier block 1117 * @nb: notifier 1118 * 1119 * Register a notifier to be called when network device events occur. 1120 * The notifier passed is linked into the kernel structures and must 1121 * not be reused until it has been unregistered. A negative errno code 1122 * is returned on a failure. 1123 * 1124 * When registered all registration and up events are replayed 1125 * to the new notifier to allow device to have a race free 1126 * view of the network device list. 1127 */ 1128 1129int register_netdevice_notifier(struct notifier_block *nb) 1130{ 1131 struct net_device *dev; 1132 struct net_device *last; 1133 struct net *net; 1134 int err; 1135 1136 rtnl_lock(); 1137 err = raw_notifier_chain_register(&netdev_chain, nb); 1138 if (err) 1139 goto unlock; 1140 if (dev_boot_phase) 1141 goto unlock; 1142 for_each_net(net) { 1143 for_each_netdev(net, dev) { 1144 err = nb->notifier_call(nb, NETDEV_REGISTER, dev); 1145 err = notifier_to_errno(err); 1146 if (err) 1147 goto rollback; 1148 1149 if (!(dev->flags & IFF_UP)) 1150 continue; 1151 1152 nb->notifier_call(nb, NETDEV_UP, dev); 1153 } 1154 } 1155 1156unlock: 1157 rtnl_unlock(); 1158 return err; 1159 1160rollback: 1161 last = dev; 1162 for_each_net(net) { 1163 for_each_netdev(net, dev) { 1164 if (dev == last) 1165 break; 1166 1167 if (dev->flags & IFF_UP) { 1168 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1169 nb->notifier_call(nb, NETDEV_DOWN, dev); 1170 } 1171 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1172 } 1173 } 1174 1175 raw_notifier_chain_unregister(&netdev_chain, nb); 1176 goto unlock; 1177} 1178 1179/** 1180 * unregister_netdevice_notifier - unregister a network notifier block 1181 * @nb: notifier 1182 * 1183 * Unregister a notifier previously registered by 1184 * register_netdevice_notifier(). The notifier is unlinked into the 1185 * kernel structures and may then be reused. A negative errno code 1186 * is returned on a failure. 1187 */ 1188 1189int unregister_netdevice_notifier(struct notifier_block *nb) 1190{ 1191 int err; 1192 1193 rtnl_lock(); 1194 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1195 rtnl_unlock(); 1196 return err; 1197} 1198 1199/** 1200 * call_netdevice_notifiers - call all network notifier blocks 1201 * @val: value passed unmodified to notifier function 1202 * @dev: net_device pointer passed unmodified to notifier function 1203 * 1204 * Call all network notifier blocks. Parameters and return value 1205 * are as for raw_notifier_call_chain(). 1206 */ 1207 1208int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1209{ 1210 return raw_notifier_call_chain(&netdev_chain, val, dev); 1211} 1212 1213/* When > 0 there are consumers of rx skb time stamps */ 1214static atomic_t netstamp_needed = ATOMIC_INIT(0); 1215 1216void net_enable_timestamp(void) 1217{ 1218 atomic_inc(&netstamp_needed); 1219} 1220 1221void net_disable_timestamp(void) 1222{ 1223 atomic_dec(&netstamp_needed); 1224} 1225 1226static inline void net_timestamp(struct sk_buff *skb) 1227{ 1228 if (atomic_read(&netstamp_needed)) 1229 __net_timestamp(skb); 1230 else 1231 skb->tstamp.tv64 = 0; 1232} 1233 1234/* 1235 * Support routine. Sends outgoing frames to any network 1236 * taps currently in use. 1237 */ 1238 1239static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1240{ 1241 struct packet_type *ptype; 1242 1243 net_timestamp(skb); 1244 1245 rcu_read_lock(); 1246 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1247 /* Never send packets back to the socket 1248 * they originated from - MvS (miquels@drinkel.ow.org) 1249 */ 1250 if ((ptype->dev == dev || !ptype->dev) && 1251 (ptype->af_packet_priv == NULL || 1252 (struct sock *)ptype->af_packet_priv != skb->sk)) { 1253 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC); 1254 if (!skb2) 1255 break; 1256 1257 /* skb->nh should be correctly 1258 set by sender, so that the second statement is 1259 just protection against buggy protocols. 1260 */ 1261 skb_reset_mac_header(skb2); 1262 1263 if (skb_network_header(skb2) < skb2->data || 1264 skb2->network_header > skb2->tail) { 1265 if (net_ratelimit()) 1266 printk(KERN_CRIT "protocol %04x is " 1267 "buggy, dev %s\n", 1268 skb2->protocol, dev->name); 1269 skb_reset_network_header(skb2); 1270 } 1271 1272 skb2->transport_header = skb2->network_header; 1273 skb2->pkt_type = PACKET_OUTGOING; 1274 ptype->func(skb2, skb->dev, ptype, skb->dev); 1275 } 1276 } 1277 rcu_read_unlock(); 1278} 1279 1280 1281void __netif_schedule(struct net_device *dev) 1282{ 1283 if (!test_and_set_bit(__LINK_STATE_SCHED, &dev->state)) { 1284 unsigned long flags; 1285 struct softnet_data *sd; 1286 1287 local_irq_save(flags); 1288 sd = &__get_cpu_var(softnet_data); 1289 dev->next_sched = sd->output_queue; 1290 sd->output_queue = dev; 1291 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1292 local_irq_restore(flags); 1293 } 1294} 1295EXPORT_SYMBOL(__netif_schedule); 1296 1297void dev_kfree_skb_irq(struct sk_buff *skb) 1298{ 1299 if (atomic_dec_and_test(&skb->users)) { 1300 struct softnet_data *sd; 1301 unsigned long flags; 1302 1303 local_irq_save(flags); 1304 sd = &__get_cpu_var(softnet_data); 1305 skb->next = sd->completion_queue; 1306 sd->completion_queue = skb; 1307 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1308 local_irq_restore(flags); 1309 } 1310} 1311EXPORT_SYMBOL(dev_kfree_skb_irq); 1312 1313void dev_kfree_skb_any(struct sk_buff *skb) 1314{ 1315 if (in_irq() || irqs_disabled()) 1316 dev_kfree_skb_irq(skb); 1317 else 1318 dev_kfree_skb(skb); 1319} 1320EXPORT_SYMBOL(dev_kfree_skb_any); 1321 1322 1323/** 1324 * netif_device_detach - mark device as removed 1325 * @dev: network device 1326 * 1327 * Mark device as removed from system and therefore no longer available. 1328 */ 1329void netif_device_detach(struct net_device *dev) 1330{ 1331 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1332 netif_running(dev)) { 1333 netif_stop_queue(dev); 1334 } 1335} 1336EXPORT_SYMBOL(netif_device_detach); 1337 1338/** 1339 * netif_device_attach - mark device as attached 1340 * @dev: network device 1341 * 1342 * Mark device as attached from system and restart if needed. 1343 */ 1344void netif_device_attach(struct net_device *dev) 1345{ 1346 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1347 netif_running(dev)) { 1348 netif_wake_queue(dev); 1349 __netdev_watchdog_up(dev); 1350 } 1351} 1352EXPORT_SYMBOL(netif_device_attach); 1353 1354 1355/* 1356 * Invalidate hardware checksum when packet is to be mangled, and 1357 * complete checksum manually on outgoing path. 1358 */ 1359int skb_checksum_help(struct sk_buff *skb) 1360{ 1361 __wsum csum; 1362 int ret = 0, offset; 1363 1364 if (skb->ip_summed == CHECKSUM_COMPLETE) 1365 goto out_set_summed; 1366 1367 if (unlikely(skb_shinfo(skb)->gso_size)) { 1368 /* Let GSO fix up the checksum. */ 1369 goto out_set_summed; 1370 } 1371 1372 offset = skb->csum_start - skb_headroom(skb); 1373 BUG_ON(offset >= skb_headlen(skb)); 1374 csum = skb_checksum(skb, offset, skb->len - offset, 0); 1375 1376 offset += skb->csum_offset; 1377 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 1378 1379 if (skb_cloned(skb) && 1380 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 1381 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1382 if (ret) 1383 goto out; 1384 } 1385 1386 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 1387out_set_summed: 1388 skb->ip_summed = CHECKSUM_NONE; 1389out: 1390 return ret; 1391} 1392 1393/** 1394 * skb_gso_segment - Perform segmentation on skb. 1395 * @skb: buffer to segment 1396 * @features: features for the output path (see dev->features) 1397 * 1398 * This function segments the given skb and returns a list of segments. 1399 * 1400 * It may return NULL if the skb requires no segmentation. This is 1401 * only possible when GSO is used for verifying header integrity. 1402 */ 1403struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features) 1404{ 1405 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 1406 struct packet_type *ptype; 1407 __be16 type = skb->protocol; 1408 int err; 1409 1410 BUG_ON(skb_shinfo(skb)->frag_list); 1411 1412 skb_reset_mac_header(skb); 1413 skb->mac_len = skb->network_header - skb->mac_header; 1414 __skb_pull(skb, skb->mac_len); 1415 1416 if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) { 1417 if (skb_header_cloned(skb) && 1418 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 1419 return ERR_PTR(err); 1420 } 1421 1422 rcu_read_lock(); 1423 list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type) & 15], list) { 1424 if (ptype->type == type && !ptype->dev && ptype->gso_segment) { 1425 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1426 err = ptype->gso_send_check(skb); 1427 segs = ERR_PTR(err); 1428 if (err || skb_gso_ok(skb, features)) 1429 break; 1430 __skb_push(skb, (skb->data - 1431 skb_network_header(skb))); 1432 } 1433 segs = ptype->gso_segment(skb, features); 1434 break; 1435 } 1436 } 1437 rcu_read_unlock(); 1438 1439 __skb_push(skb, skb->data - skb_mac_header(skb)); 1440 1441 return segs; 1442} 1443 1444EXPORT_SYMBOL(skb_gso_segment); 1445 1446/* Take action when hardware reception checksum errors are detected. */ 1447#ifdef CONFIG_BUG 1448void netdev_rx_csum_fault(struct net_device *dev) 1449{ 1450 if (net_ratelimit()) { 1451 printk(KERN_ERR "%s: hw csum failure.\n", 1452 dev ? dev->name : "<unknown>"); 1453 dump_stack(); 1454 } 1455} 1456EXPORT_SYMBOL(netdev_rx_csum_fault); 1457#endif 1458 1459/* Actually, we should eliminate this check as soon as we know, that: 1460 * 1. IOMMU is present and allows to map all the memory. 1461 * 2. No high memory really exists on this machine. 1462 */ 1463 1464static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 1465{ 1466#ifdef CONFIG_HIGHMEM 1467 int i; 1468 1469 if (dev->features & NETIF_F_HIGHDMA) 1470 return 0; 1471 1472 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1473 if (PageHighMem(skb_shinfo(skb)->frags[i].page)) 1474 return 1; 1475 1476#endif 1477 return 0; 1478} 1479 1480struct dev_gso_cb { 1481 void (*destructor)(struct sk_buff *skb); 1482}; 1483 1484#define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 1485 1486static void dev_gso_skb_destructor(struct sk_buff *skb) 1487{ 1488 struct dev_gso_cb *cb; 1489 1490 do { 1491 struct sk_buff *nskb = skb->next; 1492 1493 skb->next = nskb->next; 1494 nskb->next = NULL; 1495 kfree_skb(nskb); 1496 } while (skb->next); 1497 1498 cb = DEV_GSO_CB(skb); 1499 if (cb->destructor) 1500 cb->destructor(skb); 1501} 1502 1503/** 1504 * dev_gso_segment - Perform emulated hardware segmentation on skb. 1505 * @skb: buffer to segment 1506 * 1507 * This function segments the given skb and stores the list of segments 1508 * in skb->next. 1509 */ 1510static int dev_gso_segment(struct sk_buff *skb) 1511{ 1512 struct net_device *dev = skb->dev; 1513 struct sk_buff *segs; 1514 int features = dev->features & ~(illegal_highdma(dev, skb) ? 1515 NETIF_F_SG : 0); 1516 1517 segs = skb_gso_segment(skb, features); 1518 1519 /* Verifying header integrity only. */ 1520 if (!segs) 1521 return 0; 1522 1523 if (unlikely(IS_ERR(segs))) 1524 return PTR_ERR(segs); 1525 1526 skb->next = segs; 1527 DEV_GSO_CB(skb)->destructor = skb->destructor; 1528 skb->destructor = dev_gso_skb_destructor; 1529 1530 return 0; 1531} 1532 1533int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev) 1534{ 1535 if (likely(!skb->next)) { 1536 if (!list_empty(&ptype_all)) 1537 dev_queue_xmit_nit(skb, dev); 1538 1539 if (netif_needs_gso(dev, skb)) { 1540 if (unlikely(dev_gso_segment(skb))) 1541 goto out_kfree_skb; 1542 if (skb->next) 1543 goto gso; 1544 } 1545 1546 return dev->hard_start_xmit(skb, dev); 1547 } 1548 1549gso: 1550 do { 1551 struct sk_buff *nskb = skb->next; 1552 int rc; 1553 1554 skb->next = nskb->next; 1555 nskb->next = NULL; 1556 rc = dev->hard_start_xmit(nskb, dev); 1557 if (unlikely(rc)) { 1558 nskb->next = skb->next; 1559 skb->next = nskb; 1560 return rc; 1561 } 1562 if (unlikely((netif_queue_stopped(dev) || 1563 netif_subqueue_stopped(dev, skb)) && 1564 skb->next)) 1565 return NETDEV_TX_BUSY; 1566 } while (skb->next); 1567 1568 skb->destructor = DEV_GSO_CB(skb)->destructor; 1569 1570out_kfree_skb: 1571 kfree_skb(skb); 1572 return 0; 1573} 1574 1575/** 1576 * dev_queue_xmit - transmit a buffer 1577 * @skb: buffer to transmit 1578 * 1579 * Queue a buffer for transmission to a network device. The caller must 1580 * have set the device and priority and built the buffer before calling 1581 * this function. The function can be called from an interrupt. 1582 * 1583 * A negative errno code is returned on a failure. A success does not 1584 * guarantee the frame will be transmitted as it may be dropped due 1585 * to congestion or traffic shaping. 1586 * 1587 * ----------------------------------------------------------------------------------- 1588 * I notice this method can also return errors from the queue disciplines, 1589 * including NET_XMIT_DROP, which is a positive value. So, errors can also 1590 * be positive. 1591 * 1592 * Regardless of the return value, the skb is consumed, so it is currently 1593 * difficult to retry a send to this method. (You can bump the ref count 1594 * before sending to hold a reference for retry if you are careful.) 1595 * 1596 * When calling this method, interrupts MUST be enabled. This is because 1597 * the BH enable code must have IRQs enabled so that it will not deadlock. 1598 * --BLG 1599 */ 1600 1601int dev_queue_xmit(struct sk_buff *skb) 1602{ 1603 struct net_device *dev = skb->dev; 1604 struct Qdisc *q; 1605 int rc = -ENOMEM; 1606 1607 /* GSO will handle the following emulations directly. */ 1608 if (netif_needs_gso(dev, skb)) 1609 goto gso; 1610 1611 if (skb_shinfo(skb)->frag_list && 1612 !(dev->features & NETIF_F_FRAGLIST) && 1613 __skb_linearize(skb)) 1614 goto out_kfree_skb; 1615 1616 /* Fragmented skb is linearized if device does not support SG, 1617 * or if at least one of fragments is in highmem and device 1618 * does not support DMA from it. 1619 */ 1620 if (skb_shinfo(skb)->nr_frags && 1621 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) && 1622 __skb_linearize(skb)) 1623 goto out_kfree_skb; 1624 1625 /* If packet is not checksummed and device does not support 1626 * checksumming for this protocol, complete checksumming here. 1627 */ 1628 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1629 skb_set_transport_header(skb, skb->csum_start - 1630 skb_headroom(skb)); 1631 1632 if (!(dev->features & NETIF_F_GEN_CSUM) && 1633 !((dev->features & NETIF_F_IP_CSUM) && 1634 skb->protocol == htons(ETH_P_IP)) && 1635 !((dev->features & NETIF_F_IPV6_CSUM) && 1636 skb->protocol == htons(ETH_P_IPV6))) 1637 if (skb_checksum_help(skb)) 1638 goto out_kfree_skb; 1639 } 1640 1641gso: 1642 spin_lock_prefetch(&dev->queue_lock); 1643 1644 /* Disable soft irqs for various locks below. Also 1645 * stops preemption for RCU. 1646 */ 1647 rcu_read_lock_bh(); 1648 1649 /* Updates of qdisc are serialized by queue_lock. 1650 * The struct Qdisc which is pointed to by qdisc is now a 1651 * rcu structure - it may be accessed without acquiring 1652 * a lock (but the structure may be stale.) The freeing of the 1653 * qdisc will be deferred until it's known that there are no 1654 * more references to it. 1655 * 1656 * If the qdisc has an enqueue function, we still need to 1657 * hold the queue_lock before calling it, since queue_lock 1658 * also serializes access to the device queue. 1659 */ 1660 1661 q = rcu_dereference(dev->qdisc); 1662#ifdef CONFIG_NET_CLS_ACT 1663 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS); 1664#endif 1665 if (q->enqueue) { 1666 /* Grab device queue */ 1667 spin_lock(&dev->queue_lock); 1668 q = dev->qdisc; 1669 if (q->enqueue) { 1670 /* reset queue_mapping to zero */ 1671 skb_set_queue_mapping(skb, 0); 1672 rc = q->enqueue(skb, q); 1673 qdisc_run(dev); 1674 spin_unlock(&dev->queue_lock); 1675 1676 rc = rc == NET_XMIT_BYPASS ? NET_XMIT_SUCCESS : rc; 1677 goto out; 1678 } 1679 spin_unlock(&dev->queue_lock); 1680 } 1681 1682 /* The device has no queue. Common case for software devices: 1683 loopback, all the sorts of tunnels... 1684 1685 Really, it is unlikely that netif_tx_lock protection is necessary 1686 here. (f.e. loopback and IP tunnels are clean ignoring statistics 1687 counters.) 1688 However, it is possible, that they rely on protection 1689 made by us here. 1690 1691 Check this and shot the lock. It is not prone from deadlocks. 1692 Either shot noqueue qdisc, it is even simpler 8) 1693 */ 1694 if (dev->flags & IFF_UP) { 1695 int cpu = smp_processor_id(); /* ok because BHs are off */ 1696 1697 if (dev->xmit_lock_owner != cpu) { 1698 1699 HARD_TX_LOCK(dev, cpu); 1700 1701 if (!netif_queue_stopped(dev) && 1702 !netif_subqueue_stopped(dev, skb)) { 1703 rc = 0; 1704 if (!dev_hard_start_xmit(skb, dev)) { 1705 HARD_TX_UNLOCK(dev); 1706 goto out; 1707 } 1708 } 1709 HARD_TX_UNLOCK(dev); 1710 if (net_ratelimit()) 1711 printk(KERN_CRIT "Virtual device %s asks to " 1712 "queue packet!\n", dev->name); 1713 } else { 1714 /* Recursion is detected! It is possible, 1715 * unfortunately */ 1716 if (net_ratelimit()) 1717 printk(KERN_CRIT "Dead loop on virtual device " 1718 "%s, fix it urgently!\n", dev->name); 1719 } 1720 } 1721 1722 rc = -ENETDOWN; 1723 rcu_read_unlock_bh(); 1724 1725out_kfree_skb: 1726 kfree_skb(skb); 1727 return rc; 1728out: 1729 rcu_read_unlock_bh(); 1730 return rc; 1731} 1732 1733 1734/*======================================================================= 1735 Receiver routines 1736 =======================================================================*/ 1737 1738int netdev_max_backlog __read_mostly = 1000; 1739int netdev_budget __read_mostly = 300; 1740int weight_p __read_mostly = 64; /* old backlog weight */ 1741 1742DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, }; 1743 1744 1745/** 1746 * netif_rx - post buffer to the network code 1747 * @skb: buffer to post 1748 * 1749 * This function receives a packet from a device driver and queues it for 1750 * the upper (protocol) levels to process. It always succeeds. The buffer 1751 * may be dropped during processing for congestion control or by the 1752 * protocol layers. 1753 * 1754 * return values: 1755 * NET_RX_SUCCESS (no congestion) 1756 * NET_RX_DROP (packet was dropped) 1757 * 1758 */ 1759 1760int netif_rx(struct sk_buff *skb) 1761{ 1762 struct softnet_data *queue; 1763 unsigned long flags; 1764 1765 /* if netpoll wants it, pretend we never saw it */ 1766 if (netpoll_rx(skb)) 1767 return NET_RX_DROP; 1768 1769 if (!skb->tstamp.tv64) 1770 net_timestamp(skb); 1771 1772 /* 1773 * The code is rearranged so that the path is the most 1774 * short when CPU is congested, but is still operating. 1775 */ 1776 local_irq_save(flags); 1777 queue = &__get_cpu_var(softnet_data); 1778 1779 __get_cpu_var(netdev_rx_stat).total++; 1780 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) { 1781 if (queue->input_pkt_queue.qlen) { 1782enqueue: 1783 dev_hold(skb->dev); 1784 __skb_queue_tail(&queue->input_pkt_queue, skb); 1785 local_irq_restore(flags); 1786 return NET_RX_SUCCESS; 1787 } 1788 1789 napi_schedule(&queue->backlog); 1790 goto enqueue; 1791 } 1792 1793 __get_cpu_var(netdev_rx_stat).dropped++; 1794 local_irq_restore(flags); 1795 1796 kfree_skb(skb); 1797 return NET_RX_DROP; 1798} 1799 1800int netif_rx_ni(struct sk_buff *skb) 1801{ 1802 int err; 1803 1804 preempt_disable(); 1805 err = netif_rx(skb); 1806 if (local_softirq_pending()) 1807 do_softirq(); 1808 preempt_enable(); 1809 1810 return err; 1811} 1812 1813EXPORT_SYMBOL(netif_rx_ni); 1814 1815static inline struct net_device *skb_bond(struct sk_buff *skb) 1816{ 1817 struct net_device *dev = skb->dev; 1818 1819 if (dev->master) { 1820 if (skb_bond_should_drop(skb)) { 1821 kfree_skb(skb); 1822 return NULL; 1823 } 1824 skb->dev = dev->master; 1825 } 1826 1827 return dev; 1828} 1829 1830 1831static void net_tx_action(struct softirq_action *h) 1832{ 1833 struct softnet_data *sd = &__get_cpu_var(softnet_data); 1834 1835 if (sd->completion_queue) { 1836 struct sk_buff *clist; 1837 1838 local_irq_disable(); 1839 clist = sd->completion_queue; 1840 sd->completion_queue = NULL; 1841 local_irq_enable(); 1842 1843 while (clist) { 1844 struct sk_buff *skb = clist; 1845 clist = clist->next; 1846 1847 BUG_TRAP(!atomic_read(&skb->users)); 1848 __kfree_skb(skb); 1849 } 1850 } 1851 1852 if (sd->output_queue) { 1853 struct net_device *head; 1854 1855 local_irq_disable(); 1856 head = sd->output_queue; 1857 sd->output_queue = NULL; 1858 local_irq_enable(); 1859 1860 while (head) { 1861 struct net_device *dev = head; 1862 head = head->next_sched; 1863 1864 smp_mb__before_clear_bit(); 1865 clear_bit(__LINK_STATE_SCHED, &dev->state); 1866 1867 if (spin_trylock(&dev->queue_lock)) { 1868 qdisc_run(dev); 1869 spin_unlock(&dev->queue_lock); 1870 } else { 1871 netif_schedule(dev); 1872 } 1873 } 1874 } 1875} 1876 1877static inline int deliver_skb(struct sk_buff *skb, 1878 struct packet_type *pt_prev, 1879 struct net_device *orig_dev) 1880{ 1881 atomic_inc(&skb->users); 1882 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1883} 1884 1885#if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE) 1886/* These hooks defined here for ATM */ 1887struct net_bridge; 1888struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br, 1889 unsigned char *addr); 1890void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly; 1891 1892/* 1893 * If bridge module is loaded call bridging hook. 1894 * returns NULL if packet was consumed. 1895 */ 1896struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p, 1897 struct sk_buff *skb) __read_mostly; 1898static inline struct sk_buff *handle_bridge(struct sk_buff *skb, 1899 struct packet_type **pt_prev, int *ret, 1900 struct net_device *orig_dev) 1901{ 1902 struct net_bridge_port *port; 1903 1904 if (skb->pkt_type == PACKET_LOOPBACK || 1905 (port = rcu_dereference(skb->dev->br_port)) == NULL) 1906 return skb; 1907 1908 if (*pt_prev) { 1909 *ret = deliver_skb(skb, *pt_prev, orig_dev); 1910 *pt_prev = NULL; 1911 } 1912 1913 return br_handle_frame_hook(port, skb); 1914} 1915#else 1916#define handle_bridge(skb, pt_prev, ret, orig_dev) (skb) 1917#endif 1918 1919#if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE) 1920struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly; 1921EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook); 1922 1923static inline struct sk_buff *handle_macvlan(struct sk_buff *skb, 1924 struct packet_type **pt_prev, 1925 int *ret, 1926 struct net_device *orig_dev) 1927{ 1928 if (skb->dev->macvlan_port == NULL) 1929 return skb; 1930 1931 if (*pt_prev) { 1932 *ret = deliver_skb(skb, *pt_prev, orig_dev); 1933 *pt_prev = NULL; 1934 } 1935 return macvlan_handle_frame_hook(skb); 1936} 1937#else 1938#define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb) 1939#endif 1940 1941#ifdef CONFIG_NET_CLS_ACT 1942/* TODO: Maybe we should just force sch_ingress to be compiled in 1943 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 1944 * a compare and 2 stores extra right now if we dont have it on 1945 * but have CONFIG_NET_CLS_ACT 1946 * NOTE: This doesnt stop any functionality; if you dont have 1947 * the ingress scheduler, you just cant add policies on ingress. 1948 * 1949 */ 1950static int ing_filter(struct sk_buff *skb) 1951{ 1952 struct Qdisc *q; 1953 struct net_device *dev = skb->dev; 1954 int result = TC_ACT_OK; 1955 u32 ttl = G_TC_RTTL(skb->tc_verd); 1956 1957 if (MAX_RED_LOOP < ttl++) { 1958 printk(KERN_WARNING 1959 "Redir loop detected Dropping packet (%d->%d)\n", 1960 skb->iif, dev->ifindex); 1961 return TC_ACT_SHOT; 1962 } 1963 1964 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 1965 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 1966 1967 spin_lock(&dev->ingress_lock); 1968 if ((q = dev->qdisc_ingress) != NULL) 1969 result = q->enqueue(skb, q); 1970 spin_unlock(&dev->ingress_lock); 1971 1972 return result; 1973} 1974 1975static inline struct sk_buff *handle_ing(struct sk_buff *skb, 1976 struct packet_type **pt_prev, 1977 int *ret, struct net_device *orig_dev) 1978{ 1979 if (!skb->dev->qdisc_ingress) 1980 goto out; 1981 1982 if (*pt_prev) { 1983 *ret = deliver_skb(skb, *pt_prev, orig_dev); 1984 *pt_prev = NULL; 1985 } else { 1986 /* Huh? Why does turning on AF_PACKET affect this? */ 1987 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd); 1988 } 1989 1990 switch (ing_filter(skb)) { 1991 case TC_ACT_SHOT: 1992 case TC_ACT_STOLEN: 1993 kfree_skb(skb); 1994 return NULL; 1995 } 1996 1997out: 1998 skb->tc_verd = 0; 1999 return skb; 2000} 2001#endif 2002 2003/** 2004 * netif_receive_skb - process receive buffer from network 2005 * @skb: buffer to process 2006 * 2007 * netif_receive_skb() is the main receive data processing function. 2008 * It always succeeds. The buffer may be dropped during processing 2009 * for congestion control or by the protocol layers. 2010 * 2011 * This function may only be called from softirq context and interrupts 2012 * should be enabled. 2013 * 2014 * Return values (usually ignored): 2015 * NET_RX_SUCCESS: no congestion 2016 * NET_RX_DROP: packet was dropped 2017 */ 2018int netif_receive_skb(struct sk_buff *skb) 2019{ 2020 struct packet_type *ptype, *pt_prev; 2021 struct net_device *orig_dev; 2022 int ret = NET_RX_DROP; 2023 __be16 type; 2024 2025 /* if we've gotten here through NAPI, check netpoll */ 2026 if (netpoll_receive_skb(skb)) 2027 return NET_RX_DROP; 2028 2029 if (!skb->tstamp.tv64) 2030 net_timestamp(skb); 2031 2032 if (!skb->iif) 2033 skb->iif = skb->dev->ifindex; 2034 2035 orig_dev = skb_bond(skb); 2036 2037 if (!orig_dev) 2038 return NET_RX_DROP; 2039 2040 __get_cpu_var(netdev_rx_stat).total++; 2041 2042 skb_reset_network_header(skb); 2043 skb_reset_transport_header(skb); 2044 skb->mac_len = skb->network_header - skb->mac_header; 2045 2046 pt_prev = NULL; 2047 2048 rcu_read_lock(); 2049 2050#ifdef CONFIG_NET_CLS_ACT 2051 if (skb->tc_verd & TC_NCLS) { 2052 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 2053 goto ncls; 2054 } 2055#endif 2056 2057 list_for_each_entry_rcu(ptype, &ptype_all, list) { 2058 if (!ptype->dev || ptype->dev == skb->dev) { 2059 if (pt_prev) 2060 ret = deliver_skb(skb, pt_prev, orig_dev); 2061 pt_prev = ptype; 2062 } 2063 } 2064 2065#ifdef CONFIG_NET_CLS_ACT 2066 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 2067 if (!skb) 2068 goto out; 2069ncls: 2070#endif 2071 2072 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev); 2073 if (!skb) 2074 goto out; 2075 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev); 2076 if (!skb) 2077 goto out; 2078 2079 type = skb->protocol; 2080 list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type)&15], list) { 2081 if (ptype->type == type && 2082 (!ptype->dev || ptype->dev == skb->dev)) { 2083 if (pt_prev) 2084 ret = deliver_skb(skb, pt_prev, orig_dev); 2085 pt_prev = ptype; 2086 } 2087 } 2088 2089 if (pt_prev) { 2090 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2091 } else { 2092 kfree_skb(skb); 2093 /* Jamal, now you will not able to escape explaining 2094 * me how you were going to use this. :-) 2095 */ 2096 ret = NET_RX_DROP; 2097 } 2098 2099out: 2100 rcu_read_unlock(); 2101 return ret; 2102} 2103 2104static int process_backlog(struct napi_struct *napi, int quota) 2105{ 2106 int work = 0; 2107 struct softnet_data *queue = &__get_cpu_var(softnet_data); 2108 unsigned long start_time = jiffies; 2109 2110 napi->weight = weight_p; 2111 do { 2112 struct sk_buff *skb; 2113 struct net_device *dev; 2114 2115 local_irq_disable(); 2116 skb = __skb_dequeue(&queue->input_pkt_queue); 2117 if (!skb) { 2118 __napi_complete(napi); 2119 local_irq_enable(); 2120 break; 2121 } 2122 2123 local_irq_enable(); 2124 2125 dev = skb->dev; 2126 2127 netif_receive_skb(skb); 2128 2129 dev_put(dev); 2130 } while (++work < quota && jiffies == start_time); 2131 2132 return work; 2133} 2134 2135/** 2136 * __napi_schedule - schedule for receive 2137 * @n: entry to schedule 2138 * 2139 * The entry's receive function will be scheduled to run 2140 */ 2141void fastcall __napi_schedule(struct napi_struct *n) 2142{ 2143 unsigned long flags; 2144 2145 local_irq_save(flags); 2146 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list); 2147 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2148 local_irq_restore(flags); 2149} 2150EXPORT_SYMBOL(__napi_schedule); 2151 2152 2153static void net_rx_action(struct softirq_action *h) 2154{ 2155 struct list_head *list = &__get_cpu_var(softnet_data).poll_list; 2156 unsigned long start_time = jiffies; 2157 int budget = netdev_budget; 2158 void *have; 2159 2160 local_irq_disable(); 2161 2162 while (!list_empty(list)) { 2163 struct napi_struct *n; 2164 int work, weight; 2165 2166 /* If softirq window is exhuasted then punt. 2167 * 2168 * Note that this is a slight policy change from the 2169 * previous NAPI code, which would allow up to 2 2170 * jiffies to pass before breaking out. The test 2171 * used to be "jiffies - start_time > 1". 2172 */ 2173 if (unlikely(budget <= 0 || jiffies != start_time)) 2174 goto softnet_break; 2175 2176 local_irq_enable(); 2177 2178 /* Even though interrupts have been re-enabled, this 2179 * access is safe because interrupts can only add new 2180 * entries to the tail of this list, and only ->poll() 2181 * calls can remove this head entry from the list. 2182 */ 2183 n = list_entry(list->next, struct napi_struct, poll_list); 2184 2185 have = netpoll_poll_lock(n); 2186 2187 weight = n->weight; 2188 2189 /* This NAPI_STATE_SCHED test is for avoiding a race 2190 * with netpoll's poll_napi(). Only the entity which 2191 * obtains the lock and sees NAPI_STATE_SCHED set will 2192 * actually make the ->poll() call. Therefore we avoid 2193 * accidently calling ->poll() when NAPI is not scheduled. 2194 */ 2195 work = 0; 2196 if (test_bit(NAPI_STATE_SCHED, &n->state)) 2197 work = n->poll(n, weight); 2198 2199 WARN_ON_ONCE(work > weight); 2200 2201 budget -= work; 2202 2203 local_irq_disable(); 2204 2205 /* Drivers must not modify the NAPI state if they 2206 * consume the entire weight. In such cases this code 2207 * still "owns" the NAPI instance and therefore can 2208 * move the instance around on the list at-will. 2209 */ 2210 if (unlikely(work == weight)) { 2211 if (unlikely(napi_disable_pending(n))) 2212 __napi_complete(n); 2213 else 2214 list_move_tail(&n->poll_list, list); 2215 } 2216 2217 netpoll_poll_unlock(have); 2218 } 2219out: 2220 local_irq_enable(); 2221 2222#ifdef CONFIG_NET_DMA 2223 /* 2224 * There may not be any more sk_buffs coming right now, so push 2225 * any pending DMA copies to hardware 2226 */ 2227 if (!cpus_empty(net_dma.channel_mask)) { 2228 int chan_idx; 2229 for_each_cpu_mask(chan_idx, net_dma.channel_mask) { 2230 struct dma_chan *chan = net_dma.channels[chan_idx]; 2231 if (chan) 2232 dma_async_memcpy_issue_pending(chan); 2233 } 2234 } 2235#endif 2236 2237 return; 2238 2239softnet_break: 2240 __get_cpu_var(netdev_rx_stat).time_squeeze++; 2241 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2242 goto out; 2243} 2244 2245static gifconf_func_t * gifconf_list [NPROTO]; 2246 2247/** 2248 * register_gifconf - register a SIOCGIF handler 2249 * @family: Address family 2250 * @gifconf: Function handler 2251 * 2252 * Register protocol dependent address dumping routines. The handler 2253 * that is passed must not be freed or reused until it has been replaced 2254 * by another handler. 2255 */ 2256int register_gifconf(unsigned int family, gifconf_func_t * gifconf) 2257{ 2258 if (family >= NPROTO) 2259 return -EINVAL; 2260 gifconf_list[family] = gifconf; 2261 return 0; 2262} 2263 2264 2265/* 2266 * Map an interface index to its name (SIOCGIFNAME) 2267 */ 2268 2269/* 2270 * We need this ioctl for efficient implementation of the 2271 * if_indextoname() function required by the IPv6 API. Without 2272 * it, we would have to search all the interfaces to find a 2273 * match. --pb 2274 */ 2275 2276static int dev_ifname(struct net *net, struct ifreq __user *arg) 2277{ 2278 struct net_device *dev; 2279 struct ifreq ifr; 2280 2281 /* 2282 * Fetch the caller's info block. 2283 */ 2284 2285 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 2286 return -EFAULT; 2287 2288 read_lock(&dev_base_lock); 2289 dev = __dev_get_by_index(net, ifr.ifr_ifindex); 2290 if (!dev) { 2291 read_unlock(&dev_base_lock); 2292 return -ENODEV; 2293 } 2294 2295 strcpy(ifr.ifr_name, dev->name); 2296 read_unlock(&dev_base_lock); 2297 2298 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 2299 return -EFAULT; 2300 return 0; 2301} 2302 2303/* 2304 * Perform a SIOCGIFCONF call. This structure will change 2305 * size eventually, and there is nothing I can do about it. 2306 * Thus we will need a 'compatibility mode'. 2307 */ 2308 2309static int dev_ifconf(struct net *net, char __user *arg) 2310{ 2311 struct ifconf ifc; 2312 struct net_device *dev; 2313 char __user *pos; 2314 int len; 2315 int total; 2316 int i; 2317 2318 /* 2319 * Fetch the caller's info block. 2320 */ 2321 2322 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 2323 return -EFAULT; 2324 2325 pos = ifc.ifc_buf; 2326 len = ifc.ifc_len; 2327 2328 /* 2329 * Loop over the interfaces, and write an info block for each. 2330 */ 2331 2332 total = 0; 2333 for_each_netdev(net, dev) { 2334 for (i = 0; i < NPROTO; i++) { 2335 if (gifconf_list[i]) { 2336 int done; 2337 if (!pos) 2338 done = gifconf_list[i](dev, NULL, 0); 2339 else 2340 done = gifconf_list[i](dev, pos + total, 2341 len - total); 2342 if (done < 0) 2343 return -EFAULT; 2344 total += done; 2345 } 2346 } 2347 } 2348 2349 /* 2350 * All done. Write the updated control block back to the caller. 2351 */ 2352 ifc.ifc_len = total; 2353 2354 /* 2355 * Both BSD and Solaris return 0 here, so we do too. 2356 */ 2357 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 2358} 2359 2360#ifdef CONFIG_PROC_FS 2361/* 2362 * This is invoked by the /proc filesystem handler to display a device 2363 * in detail. 2364 */ 2365void *dev_seq_start(struct seq_file *seq, loff_t *pos) 2366{ 2367 struct net *net = seq->private; 2368 loff_t off; 2369 struct net_device *dev; 2370 2371 read_lock(&dev_base_lock); 2372 if (!*pos) 2373 return SEQ_START_TOKEN; 2374 2375 off = 1; 2376 for_each_netdev(net, dev) 2377 if (off++ == *pos) 2378 return dev; 2379 2380 return NULL; 2381} 2382 2383void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2384{ 2385 struct net *net = seq->private; 2386 ++*pos; 2387 return v == SEQ_START_TOKEN ? 2388 first_net_device(net) : next_net_device((struct net_device *)v); 2389} 2390 2391void dev_seq_stop(struct seq_file *seq, void *v) 2392{ 2393 read_unlock(&dev_base_lock); 2394} 2395 2396static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 2397{ 2398 struct net_device_stats *stats = dev->get_stats(dev); 2399 2400 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu " 2401 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n", 2402 dev->name, stats->rx_bytes, stats->rx_packets, 2403 stats->rx_errors, 2404 stats->rx_dropped + stats->rx_missed_errors, 2405 stats->rx_fifo_errors, 2406 stats->rx_length_errors + stats->rx_over_errors + 2407 stats->rx_crc_errors + stats->rx_frame_errors, 2408 stats->rx_compressed, stats->multicast, 2409 stats->tx_bytes, stats->tx_packets, 2410 stats->tx_errors, stats->tx_dropped, 2411 stats->tx_fifo_errors, stats->collisions, 2412 stats->tx_carrier_errors + 2413 stats->tx_aborted_errors + 2414 stats->tx_window_errors + 2415 stats->tx_heartbeat_errors, 2416 stats->tx_compressed); 2417} 2418 2419/* 2420 * Called from the PROCfs module. This now uses the new arbitrary sized 2421 * /proc/net interface to create /proc/net/dev 2422 */ 2423static int dev_seq_show(struct seq_file *seq, void *v) 2424{ 2425 if (v == SEQ_START_TOKEN) 2426 seq_puts(seq, "Inter-| Receive " 2427 " | Transmit\n" 2428 " face |bytes packets errs drop fifo frame " 2429 "compressed multicast|bytes packets errs " 2430 "drop fifo colls carrier compressed\n"); 2431 else 2432 dev_seq_printf_stats(seq, v); 2433 return 0; 2434} 2435 2436static struct netif_rx_stats *softnet_get_online(loff_t *pos) 2437{ 2438 struct netif_rx_stats *rc = NULL; 2439 2440 while (*pos < NR_CPUS) 2441 if (cpu_online(*pos)) { 2442 rc = &per_cpu(netdev_rx_stat, *pos); 2443 break; 2444 } else 2445 ++*pos; 2446 return rc; 2447} 2448 2449static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 2450{ 2451 return softnet_get_online(pos); 2452} 2453 2454static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2455{ 2456 ++*pos; 2457 return softnet_get_online(pos); 2458} 2459 2460static void softnet_seq_stop(struct seq_file *seq, void *v) 2461{ 2462} 2463 2464static int softnet_seq_show(struct seq_file *seq, void *v) 2465{ 2466 struct netif_rx_stats *s = v; 2467 2468 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 2469 s->total, s->dropped, s->time_squeeze, 0, 2470 0, 0, 0, 0, /* was fastroute */ 2471 s->cpu_collision ); 2472 return 0; 2473} 2474 2475static const struct seq_operations dev_seq_ops = { 2476 .start = dev_seq_start, 2477 .next = dev_seq_next, 2478 .stop = dev_seq_stop, 2479 .show = dev_seq_show, 2480}; 2481 2482static int dev_seq_open(struct inode *inode, struct file *file) 2483{ 2484 struct seq_file *seq; 2485 int res; 2486 res = seq_open(file, &dev_seq_ops); 2487 if (!res) { 2488 seq = file->private_data; 2489 seq->private = get_proc_net(inode); 2490 if (!seq->private) { 2491 seq_release(inode, file); 2492 res = -ENXIO; 2493 } 2494 } 2495 return res; 2496} 2497 2498static int dev_seq_release(struct inode *inode, struct file *file) 2499{ 2500 struct seq_file *seq = file->private_data; 2501 struct net *net = seq->private; 2502 put_net(net); 2503 return seq_release(inode, file); 2504} 2505 2506static const struct file_operations dev_seq_fops = { 2507 .owner = THIS_MODULE, 2508 .open = dev_seq_open, 2509 .read = seq_read, 2510 .llseek = seq_lseek, 2511 .release = dev_seq_release, 2512}; 2513 2514static const struct seq_operations softnet_seq_ops = { 2515 .start = softnet_seq_start, 2516 .next = softnet_seq_next, 2517 .stop = softnet_seq_stop, 2518 .show = softnet_seq_show, 2519}; 2520 2521static int softnet_seq_open(struct inode *inode, struct file *file) 2522{ 2523 return seq_open(file, &softnet_seq_ops); 2524} 2525 2526static const struct file_operations softnet_seq_fops = { 2527 .owner = THIS_MODULE, 2528 .open = softnet_seq_open, 2529 .read = seq_read, 2530 .llseek = seq_lseek, 2531 .release = seq_release, 2532}; 2533 2534static void *ptype_get_idx(loff_t pos) 2535{ 2536 struct packet_type *pt = NULL; 2537 loff_t i = 0; 2538 int t; 2539 2540 list_for_each_entry_rcu(pt, &ptype_all, list) { 2541 if (i == pos) 2542 return pt; 2543 ++i; 2544 } 2545 2546 for (t = 0; t < 16; t++) { 2547 list_for_each_entry_rcu(pt, &ptype_base[t], list) { 2548 if (i == pos) 2549 return pt; 2550 ++i; 2551 } 2552 } 2553 return NULL; 2554} 2555 2556static void *ptype_seq_start(struct seq_file *seq, loff_t *pos) 2557{ 2558 rcu_read_lock(); 2559 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN; 2560} 2561 2562static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2563{ 2564 struct packet_type *pt; 2565 struct list_head *nxt; 2566 int hash; 2567 2568 ++*pos; 2569 if (v == SEQ_START_TOKEN) 2570 return ptype_get_idx(0); 2571 2572 pt = v; 2573 nxt = pt->list.next; 2574 if (pt->type == htons(ETH_P_ALL)) { 2575 if (nxt != &ptype_all) 2576 goto found; 2577 hash = 0; 2578 nxt = ptype_base[0].next; 2579 } else 2580 hash = ntohs(pt->type) & 15; 2581 2582 while (nxt == &ptype_base[hash]) { 2583 if (++hash >= 16) 2584 return NULL; 2585 nxt = ptype_base[hash].next; 2586 } 2587found: 2588 return list_entry(nxt, struct packet_type, list); 2589} 2590 2591static void ptype_seq_stop(struct seq_file *seq, void *v) 2592{ 2593 rcu_read_unlock(); 2594} 2595 2596static void ptype_seq_decode(struct seq_file *seq, void *sym) 2597{ 2598#ifdef CONFIG_KALLSYMS 2599 unsigned long offset = 0, symsize; 2600 const char *symname; 2601 char *modname; 2602 char namebuf[128]; 2603 2604 symname = kallsyms_lookup((unsigned long)sym, &symsize, &offset, 2605 &modname, namebuf); 2606 2607 if (symname) { 2608 char *delim = ":"; 2609 2610 if (!modname) 2611 modname = delim = ""; 2612 seq_printf(seq, "%s%s%s%s+0x%lx", delim, modname, delim, 2613 symname, offset); 2614 return; 2615 } 2616#endif 2617 2618 seq_printf(seq, "[%p]", sym); 2619} 2620 2621static int ptype_seq_show(struct seq_file *seq, void *v) 2622{ 2623 struct packet_type *pt = v; 2624 2625 if (v == SEQ_START_TOKEN) 2626 seq_puts(seq, "Type Device Function\n"); 2627 else { 2628 if (pt->type == htons(ETH_P_ALL)) 2629 seq_puts(seq, "ALL "); 2630 else 2631 seq_printf(seq, "%04x", ntohs(pt->type)); 2632 2633 seq_printf(seq, " %-8s ", 2634 pt->dev ? pt->dev->name : ""); 2635 ptype_seq_decode(seq, pt->func); 2636 seq_putc(seq, '\n'); 2637 } 2638 2639 return 0; 2640} 2641 2642static const struct seq_operations ptype_seq_ops = { 2643 .start = ptype_seq_start, 2644 .next = ptype_seq_next, 2645 .stop = ptype_seq_stop, 2646 .show = ptype_seq_show, 2647}; 2648 2649static int ptype_seq_open(struct inode *inode, struct file *file) 2650{ 2651 return seq_open(file, &ptype_seq_ops); 2652} 2653 2654static const struct file_operations ptype_seq_fops = { 2655 .owner = THIS_MODULE, 2656 .open = ptype_seq_open, 2657 .read = seq_read, 2658 .llseek = seq_lseek, 2659 .release = seq_release, 2660}; 2661 2662 2663static int __net_init dev_proc_net_init(struct net *net) 2664{ 2665 int rc = -ENOMEM; 2666 2667 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops)) 2668 goto out; 2669 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops)) 2670 goto out_dev; 2671 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops)) 2672 goto out_softnet; 2673 2674 if (wext_proc_init(net)) 2675 goto out_ptype; 2676 rc = 0; 2677out: 2678 return rc; 2679out_ptype: 2680 proc_net_remove(net, "ptype"); 2681out_softnet: 2682 proc_net_remove(net, "softnet_stat"); 2683out_dev: 2684 proc_net_remove(net, "dev"); 2685 goto out; 2686} 2687 2688static void __net_exit dev_proc_net_exit(struct net *net) 2689{ 2690 wext_proc_exit(net); 2691 2692 proc_net_remove(net, "ptype"); 2693 proc_net_remove(net, "softnet_stat"); 2694 proc_net_remove(net, "dev"); 2695} 2696 2697static struct pernet_operations __net_initdata dev_proc_ops = { 2698 .init = dev_proc_net_init, 2699 .exit = dev_proc_net_exit, 2700}; 2701 2702static int __init dev_proc_init(void) 2703{ 2704 return register_pernet_subsys(&dev_proc_ops); 2705} 2706#else 2707#define dev_proc_init() 0 2708#endif /* CONFIG_PROC_FS */ 2709 2710 2711/** 2712 * netdev_set_master - set up master/slave pair 2713 * @slave: slave device 2714 * @master: new master device 2715 * 2716 * Changes the master device of the slave. Pass %NULL to break the 2717 * bonding. The caller must hold the RTNL semaphore. On a failure 2718 * a negative errno code is returned. On success the reference counts 2719 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the 2720 * function returns zero. 2721 */ 2722int netdev_set_master(struct net_device *slave, struct net_device *master) 2723{ 2724 struct net_device *old = slave->master; 2725 2726 ASSERT_RTNL(); 2727 2728 if (master) { 2729 if (old) 2730 return -EBUSY; 2731 dev_hold(master); 2732 } 2733 2734 slave->master = master; 2735 2736 synchronize_net(); 2737 2738 if (old) 2739 dev_put(old); 2740 2741 if (master) 2742 slave->flags |= IFF_SLAVE; 2743 else 2744 slave->flags &= ~IFF_SLAVE; 2745 2746 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 2747 return 0; 2748} 2749 2750static void __dev_set_promiscuity(struct net_device *dev, int inc) 2751{ 2752 unsigned short old_flags = dev->flags; 2753 2754 ASSERT_RTNL(); 2755 2756 if ((dev->promiscuity += inc) == 0) 2757 dev->flags &= ~IFF_PROMISC; 2758 else 2759 dev->flags |= IFF_PROMISC; 2760 if (dev->flags != old_flags) { 2761 printk(KERN_INFO "device %s %s promiscuous mode\n", 2762 dev->name, (dev->flags & IFF_PROMISC) ? "entered" : 2763 "left"); 2764 audit_log(current->audit_context, GFP_ATOMIC, 2765 AUDIT_ANOM_PROMISCUOUS, 2766 "dev=%s prom=%d old_prom=%d auid=%u", 2767 dev->name, (dev->flags & IFF_PROMISC), 2768 (old_flags & IFF_PROMISC), 2769 audit_get_loginuid(current->audit_context)); 2770 2771 if (dev->change_rx_flags) 2772 dev->change_rx_flags(dev, IFF_PROMISC); 2773 } 2774} 2775 2776/** 2777 * dev_set_promiscuity - update promiscuity count on a device 2778 * @dev: device 2779 * @inc: modifier 2780 * 2781 * Add or remove promiscuity from a device. While the count in the device 2782 * remains above zero the interface remains promiscuous. Once it hits zero 2783 * the device reverts back to normal filtering operation. A negative inc 2784 * value is used to drop promiscuity on the device. 2785 */ 2786void dev_set_promiscuity(struct net_device *dev, int inc) 2787{ 2788 unsigned short old_flags = dev->flags; 2789 2790 __dev_set_promiscuity(dev, inc); 2791 if (dev->flags != old_flags) 2792 dev_set_rx_mode(dev); 2793} 2794 2795/** 2796 * dev_set_allmulti - update allmulti count on a device 2797 * @dev: device 2798 * @inc: modifier 2799 * 2800 * Add or remove reception of all multicast frames to a device. While the 2801 * count in the device remains above zero the interface remains listening 2802 * to all interfaces. Once it hits zero the device reverts back to normal 2803 * filtering operation. A negative @inc value is used to drop the counter 2804 * when releasing a resource needing all multicasts. 2805 */ 2806 2807void dev_set_allmulti(struct net_device *dev, int inc) 2808{ 2809 unsigned short old_flags = dev->flags; 2810 2811 ASSERT_RTNL(); 2812 2813 dev->flags |= IFF_ALLMULTI; 2814 if ((dev->allmulti += inc) == 0) 2815 dev->flags &= ~IFF_ALLMULTI; 2816 if (dev->flags ^ old_flags) { 2817 if (dev->change_rx_flags) 2818 dev->change_rx_flags(dev, IFF_ALLMULTI); 2819 dev_set_rx_mode(dev); 2820 } 2821} 2822 2823/* 2824 * Upload unicast and multicast address lists to device and 2825 * configure RX filtering. When the device doesn't support unicast 2826 * filtering it is put in promiscuous mode while unicast addresses 2827 * are present. 2828 */ 2829void __dev_set_rx_mode(struct net_device *dev) 2830{ 2831 /* dev_open will call this function so the list will stay sane. */ 2832 if (!(dev->flags&IFF_UP)) 2833 return; 2834 2835 if (!netif_device_present(dev)) 2836 return; 2837 2838 if (dev->set_rx_mode) 2839 dev->set_rx_mode(dev); 2840 else { 2841 /* Unicast addresses changes may only happen under the rtnl, 2842 * therefore calling __dev_set_promiscuity here is safe. 2843 */ 2844 if (dev->uc_count > 0 && !dev->uc_promisc) { 2845 __dev_set_promiscuity(dev, 1); 2846 dev->uc_promisc = 1; 2847 } else if (dev->uc_count == 0 && dev->uc_promisc) { 2848 __dev_set_promiscuity(dev, -1); 2849 dev->uc_promisc = 0; 2850 } 2851 2852 if (dev->set_multicast_list) 2853 dev->set_multicast_list(dev); 2854 } 2855} 2856 2857void dev_set_rx_mode(struct net_device *dev) 2858{ 2859 netif_tx_lock_bh(dev); 2860 __dev_set_rx_mode(dev); 2861 netif_tx_unlock_bh(dev); 2862} 2863 2864int __dev_addr_delete(struct dev_addr_list **list, int *count, 2865 void *addr, int alen, int glbl) 2866{ 2867 struct dev_addr_list *da; 2868 2869 for (; (da = *list) != NULL; list = &da->next) { 2870 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 && 2871 alen == da->da_addrlen) { 2872 if (glbl) { 2873 int old_glbl = da->da_gusers; 2874 da->da_gusers = 0; 2875 if (old_glbl == 0) 2876 break; 2877 } 2878 if (--da->da_users) 2879 return 0; 2880 2881 *list = da->next; 2882 kfree(da); 2883 (*count)--; 2884 return 0; 2885 } 2886 } 2887 return -ENOENT; 2888} 2889 2890int __dev_addr_add(struct dev_addr_list **list, int *count, 2891 void *addr, int alen, int glbl) 2892{ 2893 struct dev_addr_list *da; 2894 2895 for (da = *list; da != NULL; da = da->next) { 2896 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 && 2897 da->da_addrlen == alen) { 2898 if (glbl) { 2899 int old_glbl = da->da_gusers; 2900 da->da_gusers = 1; 2901 if (old_glbl) 2902 return 0; 2903 } 2904 da->da_users++; 2905 return 0; 2906 } 2907 } 2908 2909 da = kmalloc(sizeof(*da), GFP_ATOMIC); 2910 if (da == NULL) 2911 return -ENOMEM; 2912 memcpy(da->da_addr, addr, alen); 2913 da->da_addrlen = alen; 2914 da->da_users = 1; 2915 da->da_gusers = glbl ? 1 : 0; 2916 da->next = *list; 2917 *list = da; 2918 (*count)++; 2919 return 0; 2920} 2921 2922/** 2923 * dev_unicast_delete - Release secondary unicast address. 2924 * @dev: device 2925 * @addr: address to delete 2926 * @alen: length of @addr 2927 * 2928 * Release reference to a secondary unicast address and remove it 2929 * from the device if the reference count drops to zero. 2930 * 2931 * The caller must hold the rtnl_mutex. 2932 */ 2933int dev_unicast_delete(struct net_device *dev, void *addr, int alen) 2934{ 2935 int err; 2936 2937 ASSERT_RTNL(); 2938 2939 netif_tx_lock_bh(dev); 2940 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0); 2941 if (!err) 2942 __dev_set_rx_mode(dev); 2943 netif_tx_unlock_bh(dev); 2944 return err; 2945} 2946EXPORT_SYMBOL(dev_unicast_delete); 2947 2948/** 2949 * dev_unicast_add - add a secondary unicast address 2950 * @dev: device 2951 * @addr: address to delete 2952 * @alen: length of @addr 2953 * 2954 * Add a secondary unicast address to the device or increase 2955 * the reference count if it already exists. 2956 * 2957 * The caller must hold the rtnl_mutex. 2958 */ 2959int dev_unicast_add(struct net_device *dev, void *addr, int alen) 2960{ 2961 int err; 2962 2963 ASSERT_RTNL(); 2964 2965 netif_tx_lock_bh(dev); 2966 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0); 2967 if (!err) 2968 __dev_set_rx_mode(dev); 2969 netif_tx_unlock_bh(dev); 2970 return err; 2971} 2972EXPORT_SYMBOL(dev_unicast_add); 2973 2974static void __dev_addr_discard(struct dev_addr_list **list) 2975{ 2976 struct dev_addr_list *tmp; 2977 2978 while (*list != NULL) { 2979 tmp = *list; 2980 *list = tmp->next; 2981 if (tmp->da_users > tmp->da_gusers) 2982 printk("__dev_addr_discard: address leakage! " 2983 "da_users=%d\n", tmp->da_users); 2984 kfree(tmp); 2985 } 2986} 2987 2988static void dev_addr_discard(struct net_device *dev) 2989{ 2990 netif_tx_lock_bh(dev); 2991 2992 __dev_addr_discard(&dev->uc_list); 2993 dev->uc_count = 0; 2994 2995 __dev_addr_discard(&dev->mc_list); 2996 dev->mc_count = 0; 2997 2998 netif_tx_unlock_bh(dev); 2999} 3000 3001unsigned dev_get_flags(const struct net_device *dev) 3002{ 3003 unsigned flags; 3004 3005 flags = (dev->flags & ~(IFF_PROMISC | 3006 IFF_ALLMULTI | 3007 IFF_RUNNING | 3008 IFF_LOWER_UP | 3009 IFF_DORMANT)) | 3010 (dev->gflags & (IFF_PROMISC | 3011 IFF_ALLMULTI)); 3012 3013 if (netif_running(dev)) { 3014 if (netif_oper_up(dev)) 3015 flags |= IFF_RUNNING; 3016 if (netif_carrier_ok(dev)) 3017 flags |= IFF_LOWER_UP; 3018 if (netif_dormant(dev)) 3019 flags |= IFF_DORMANT; 3020 } 3021 3022 return flags; 3023} 3024 3025int dev_change_flags(struct net_device *dev, unsigned flags) 3026{ 3027 int ret, changes; 3028 int old_flags = dev->flags; 3029 3030 ASSERT_RTNL(); 3031 3032 /* 3033 * Set the flags on our device. 3034 */ 3035 3036 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 3037 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 3038 IFF_AUTOMEDIA)) | 3039 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 3040 IFF_ALLMULTI)); 3041 3042 /* 3043 * Load in the correct multicast list now the flags have changed. 3044 */ 3045 3046 if (dev->change_rx_flags && (dev->flags ^ flags) & IFF_MULTICAST) 3047 dev->change_rx_flags(dev, IFF_MULTICAST); 3048 3049 dev_set_rx_mode(dev); 3050 3051 /* 3052 * Have we downed the interface. We handle IFF_UP ourselves 3053 * according to user attempts to set it, rather than blindly 3054 * setting it. 3055 */ 3056 3057 ret = 0; 3058 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 3059 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev); 3060 3061 if (!ret) 3062 dev_set_rx_mode(dev); 3063 } 3064 3065 if (dev->flags & IFF_UP && 3066 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI | 3067 IFF_VOLATILE))) 3068 call_netdevice_notifiers(NETDEV_CHANGE, dev); 3069 3070 if ((flags ^ dev->gflags) & IFF_PROMISC) { 3071 int inc = (flags & IFF_PROMISC) ? +1 : -1; 3072 dev->gflags ^= IFF_PROMISC; 3073 dev_set_promiscuity(dev, inc); 3074 } 3075 3076 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 3077 is important. Some (broken) drivers set IFF_PROMISC, when 3078 IFF_ALLMULTI is requested not asking us and not reporting. 3079 */ 3080 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 3081 int inc = (flags & IFF_ALLMULTI) ? +1 : -1; 3082 dev->gflags ^= IFF_ALLMULTI; 3083 dev_set_allmulti(dev, inc); 3084 } 3085 3086 /* Exclude state transition flags, already notified */ 3087 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING); 3088 if (changes) 3089 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 3090 3091 return ret; 3092} 3093 3094int dev_set_mtu(struct net_device *dev, int new_mtu) 3095{ 3096 int err; 3097 3098 if (new_mtu == dev->mtu) 3099 return 0; 3100 3101 /* MTU must be positive. */ 3102 if (new_mtu < 0) 3103 return -EINVAL; 3104 3105 if (!netif_device_present(dev)) 3106 return -ENODEV; 3107 3108 err = 0; 3109 if (dev->change_mtu) 3110 err = dev->change_mtu(dev, new_mtu); 3111 else 3112 dev->mtu = new_mtu; 3113 if (!err && dev->flags & IFF_UP) 3114 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 3115 return err; 3116} 3117 3118int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 3119{ 3120 int err; 3121 3122 if (!dev->set_mac_address) 3123 return -EOPNOTSUPP; 3124 if (sa->sa_family != dev->type) 3125 return -EINVAL; 3126 if (!netif_device_present(dev)) 3127 return -ENODEV; 3128 err = dev->set_mac_address(dev, sa); 3129 if (!err) 3130 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 3131 return err; 3132} 3133 3134/* 3135 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock) 3136 */ 3137static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd) 3138{ 3139 int err; 3140 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 3141 3142 if (!dev) 3143 return -ENODEV; 3144 3145 switch (cmd) { 3146 case SIOCGIFFLAGS: /* Get interface flags */ 3147 ifr->ifr_flags = dev_get_flags(dev); 3148 return 0; 3149 3150 case SIOCGIFMETRIC: /* Get the metric on the interface 3151 (currently unused) */ 3152 ifr->ifr_metric = 0; 3153 return 0; 3154 3155 case SIOCGIFMTU: /* Get the MTU of a device */ 3156 ifr->ifr_mtu = dev->mtu; 3157 return 0; 3158 3159 case SIOCGIFHWADDR: 3160 if (!dev->addr_len) 3161 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 3162 else 3163 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 3164 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 3165 ifr->ifr_hwaddr.sa_family = dev->type; 3166 return 0; 3167 3168 case SIOCGIFSLAVE: 3169 err = -EINVAL; 3170 break; 3171 3172 case SIOCGIFMAP: 3173 ifr->ifr_map.mem_start = dev->mem_start; 3174 ifr->ifr_map.mem_end = dev->mem_end; 3175 ifr->ifr_map.base_addr = dev->base_addr; 3176 ifr->ifr_map.irq = dev->irq; 3177 ifr->ifr_map.dma = dev->dma; 3178 ifr->ifr_map.port = dev->if_port; 3179 return 0; 3180 3181 case SIOCGIFINDEX: 3182 ifr->ifr_ifindex = dev->ifindex; 3183 return 0; 3184 3185 case SIOCGIFTXQLEN: 3186 ifr->ifr_qlen = dev->tx_queue_len; 3187 return 0; 3188 3189 default: 3190 /* dev_ioctl() should ensure this case 3191 * is never reached 3192 */ 3193 WARN_ON(1); 3194 err = -EINVAL; 3195 break; 3196 3197 } 3198 return err; 3199} 3200 3201/* 3202 * Perform the SIOCxIFxxx calls, inside rtnl_lock() 3203 */ 3204static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd) 3205{ 3206 int err; 3207 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 3208 3209 if (!dev) 3210 return -ENODEV; 3211 3212 switch (cmd) { 3213 case SIOCSIFFLAGS: /* Set interface flags */ 3214 return dev_change_flags(dev, ifr->ifr_flags); 3215 3216 case SIOCSIFMETRIC: /* Set the metric on the interface 3217 (currently unused) */ 3218 return -EOPNOTSUPP; 3219 3220 case SIOCSIFMTU: /* Set the MTU of a device */ 3221 return dev_set_mtu(dev, ifr->ifr_mtu); 3222 3223 case SIOCSIFHWADDR: 3224 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 3225 3226 case SIOCSIFHWBROADCAST: 3227 if (ifr->ifr_hwaddr.sa_family != dev->type) 3228 return -EINVAL; 3229 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 3230 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 3231 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 3232 return 0; 3233 3234 case SIOCSIFMAP: 3235 if (dev->set_config) { 3236 if (!netif_device_present(dev)) 3237 return -ENODEV; 3238 return dev->set_config(dev, &ifr->ifr_map); 3239 } 3240 return -EOPNOTSUPP; 3241 3242 case SIOCADDMULTI: 3243 if (!dev->set_multicast_list || 3244 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 3245 return -EINVAL; 3246 if (!netif_device_present(dev)) 3247 return -ENODEV; 3248 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data, 3249 dev->addr_len, 1); 3250 3251 case SIOCDELMULTI: 3252 if (!dev->set_multicast_list || 3253 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 3254 return -EINVAL; 3255 if (!netif_device_present(dev)) 3256 return -ENODEV; 3257 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data, 3258 dev->addr_len, 1); 3259 3260 case SIOCSIFTXQLEN: 3261 if (ifr->ifr_qlen < 0) 3262 return -EINVAL; 3263 dev->tx_queue_len = ifr->ifr_qlen; 3264 return 0; 3265 3266 case SIOCSIFNAME: 3267 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 3268 return dev_change_name(dev, ifr->ifr_newname); 3269 3270 /* 3271 * Unknown or private ioctl 3272 */ 3273 3274 default: 3275 if ((cmd >= SIOCDEVPRIVATE && 3276 cmd <= SIOCDEVPRIVATE + 15) || 3277 cmd == SIOCBONDENSLAVE || 3278 cmd == SIOCBONDRELEASE || 3279 cmd == SIOCBONDSETHWADDR || 3280 cmd == SIOCBONDSLAVEINFOQUERY || 3281 cmd == SIOCBONDINFOQUERY || 3282 cmd == SIOCBONDCHANGEACTIVE || 3283 cmd == SIOCGMIIPHY || 3284 cmd == SIOCGMIIREG || 3285 cmd == SIOCSMIIREG || 3286 cmd == SIOCBRADDIF || 3287 cmd == SIOCBRDELIF || 3288 cmd == SIOCWANDEV) { 3289 err = -EOPNOTSUPP; 3290 if (dev->do_ioctl) { 3291 if (netif_device_present(dev)) 3292 err = dev->do_ioctl(dev, ifr, 3293 cmd); 3294 else 3295 err = -ENODEV; 3296 } 3297 } else 3298 err = -EINVAL; 3299 3300 } 3301 return err; 3302} 3303 3304/* 3305 * This function handles all "interface"-type I/O control requests. The actual 3306 * 'doing' part of this is dev_ifsioc above. 3307 */ 3308 3309/** 3310 * dev_ioctl - network device ioctl 3311 * @net: the applicable net namespace 3312 * @cmd: command to issue 3313 * @arg: pointer to a struct ifreq in user space 3314 * 3315 * Issue ioctl functions to devices. This is normally called by the 3316 * user space syscall interfaces but can sometimes be useful for 3317 * other purposes. The return value is the return from the syscall if 3318 * positive or a negative errno code on error. 3319 */ 3320 3321int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg) 3322{ 3323 struct ifreq ifr; 3324 int ret; 3325 char *colon; 3326 3327 /* One special case: SIOCGIFCONF takes ifconf argument 3328 and requires shared lock, because it sleeps writing 3329 to user space. 3330 */ 3331 3332 if (cmd == SIOCGIFCONF) { 3333 rtnl_lock(); 3334 ret = dev_ifconf(net, (char __user *) arg); 3335 rtnl_unlock(); 3336 return ret; 3337 } 3338 if (cmd == SIOCGIFNAME) 3339 return dev_ifname(net, (struct ifreq __user *)arg); 3340 3341 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 3342 return -EFAULT; 3343 3344 ifr.ifr_name[IFNAMSIZ-1] = 0; 3345 3346 colon = strchr(ifr.ifr_name, ':'); 3347 if (colon) 3348 *colon = 0; 3349 3350 /* 3351 * See which interface the caller is talking about. 3352 */ 3353 3354 switch (cmd) { 3355 /* 3356 * These ioctl calls: 3357 * - can be done by all. 3358 * - atomic and do not require locking. 3359 * - return a value 3360 */ 3361 case SIOCGIFFLAGS: 3362 case SIOCGIFMETRIC: 3363 case SIOCGIFMTU: 3364 case SIOCGIFHWADDR: 3365 case SIOCGIFSLAVE: 3366 case SIOCGIFMAP: 3367 case SIOCGIFINDEX: 3368 case SIOCGIFTXQLEN: 3369 dev_load(net, ifr.ifr_name); 3370 read_lock(&dev_base_lock); 3371 ret = dev_ifsioc_locked(net, &ifr, cmd); 3372 read_unlock(&dev_base_lock); 3373 if (!ret) { 3374 if (colon) 3375 *colon = ':'; 3376 if (copy_to_user(arg, &ifr, 3377 sizeof(struct ifreq))) 3378 ret = -EFAULT; 3379 } 3380 return ret; 3381 3382 case SIOCETHTOOL: 3383 dev_load(net, ifr.ifr_name); 3384 rtnl_lock(); 3385 ret = dev_ethtool(net, &ifr); 3386 rtnl_unlock(); 3387 if (!ret) { 3388 if (colon) 3389 *colon = ':'; 3390 if (copy_to_user(arg, &ifr, 3391 sizeof(struct ifreq))) 3392 ret = -EFAULT; 3393 } 3394 return ret; 3395 3396 /* 3397 * These ioctl calls: 3398 * - require superuser power. 3399 * - require strict serialization. 3400 * - return a value 3401 */ 3402 case SIOCGMIIPHY: 3403 case SIOCGMIIREG: 3404 case SIOCSIFNAME: 3405 if (!capable(CAP_NET_ADMIN)) 3406 return -EPERM; 3407 dev_load(net, ifr.ifr_name); 3408 rtnl_lock(); 3409 ret = dev_ifsioc(net, &ifr, cmd); 3410 rtnl_unlock(); 3411 if (!ret) { 3412 if (colon) 3413 *colon = ':'; 3414 if (copy_to_user(arg, &ifr, 3415 sizeof(struct ifreq))) 3416 ret = -EFAULT; 3417 } 3418 return ret; 3419 3420 /* 3421 * These ioctl calls: 3422 * - require superuser power. 3423 * - require strict serialization. 3424 * - do not return a value 3425 */ 3426 case SIOCSIFFLAGS: 3427 case SIOCSIFMETRIC: 3428 case SIOCSIFMTU: 3429 case SIOCSIFMAP: 3430 case SIOCSIFHWADDR: 3431 case SIOCSIFSLAVE: 3432 case SIOCADDMULTI: 3433 case SIOCDELMULTI: 3434 case SIOCSIFHWBROADCAST: 3435 case SIOCSIFTXQLEN: 3436 case SIOCSMIIREG: 3437 case SIOCBONDENSLAVE: 3438 case SIOCBONDRELEASE: 3439 case SIOCBONDSETHWADDR: 3440 case SIOCBONDCHANGEACTIVE: 3441 case SIOCBRADDIF: 3442 case SIOCBRDELIF: 3443 if (!capable(CAP_NET_ADMIN)) 3444 return -EPERM; 3445 /* fall through */ 3446 case SIOCBONDSLAVEINFOQUERY: 3447 case SIOCBONDINFOQUERY: 3448 dev_load(net, ifr.ifr_name); 3449 rtnl_lock(); 3450 ret = dev_ifsioc(net, &ifr, cmd); 3451 rtnl_unlock(); 3452 return ret; 3453 3454 case SIOCGIFMEM: 3455 /* Get the per device memory space. We can add this but 3456 * currently do not support it */ 3457 case SIOCSIFMEM: 3458 /* Set the per device memory buffer space. 3459 * Not applicable in our case */ 3460 case SIOCSIFLINK: 3461 return -EINVAL; 3462 3463 /* 3464 * Unknown or private ioctl. 3465 */ 3466 default: 3467 if (cmd == SIOCWANDEV || 3468 (cmd >= SIOCDEVPRIVATE && 3469 cmd <= SIOCDEVPRIVATE + 15)) { 3470 dev_load(net, ifr.ifr_name); 3471 rtnl_lock(); 3472 ret = dev_ifsioc(net, &ifr, cmd); 3473 rtnl_unlock(); 3474 if (!ret && copy_to_user(arg, &ifr, 3475 sizeof(struct ifreq))) 3476 ret = -EFAULT; 3477 return ret; 3478 } 3479 /* Take care of Wireless Extensions */ 3480 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) 3481 return wext_handle_ioctl(net, &ifr, cmd, arg); 3482 return -EINVAL; 3483 } 3484} 3485 3486 3487/** 3488 * dev_new_index - allocate an ifindex 3489 * @net: the applicable net namespace 3490 * 3491 * Returns a suitable unique value for a new device interface 3492 * number. The caller must hold the rtnl semaphore or the 3493 * dev_base_lock to be sure it remains unique. 3494 */ 3495static int dev_new_index(struct net *net) 3496{ 3497 static int ifindex; 3498 for (;;) { 3499 if (++ifindex <= 0) 3500 ifindex = 1; 3501 if (!__dev_get_by_index(net, ifindex)) 3502 return ifindex; 3503 } 3504} 3505 3506/* Delayed registration/unregisteration */ 3507static DEFINE_SPINLOCK(net_todo_list_lock); 3508static struct list_head net_todo_list = LIST_HEAD_INIT(net_todo_list); 3509 3510static void net_set_todo(struct net_device *dev) 3511{ 3512 spin_lock(&net_todo_list_lock); 3513 list_add_tail(&dev->todo_list, &net_todo_list); 3514 spin_unlock(&net_todo_list_lock); 3515} 3516 3517static void rollback_registered(struct net_device *dev) 3518{ 3519 BUG_ON(dev_boot_phase); 3520 ASSERT_RTNL(); 3521 3522 /* Some devices call without registering for initialization unwind. */ 3523 if (dev->reg_state == NETREG_UNINITIALIZED) { 3524 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never " 3525 "was registered\n", dev->name, dev); 3526 3527 WARN_ON(1); 3528 return; 3529 } 3530 3531 BUG_ON(dev->reg_state != NETREG_REGISTERED); 3532 3533 /* If device is running, close it first. */ 3534 dev_close(dev); 3535 3536 /* And unlink it from device chain. */ 3537 unlist_netdevice(dev); 3538 3539 dev->reg_state = NETREG_UNREGISTERING; 3540 3541 synchronize_net(); 3542 3543 /* Shutdown queueing discipline. */ 3544 dev_shutdown(dev); 3545 3546 3547 /* Notify protocols, that we are about to destroy 3548 this device. They should clean all the things. 3549 */ 3550 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 3551 3552 /* 3553 * Flush the unicast and multicast chains 3554 */ 3555 dev_addr_discard(dev); 3556 3557 if (dev->uninit) 3558 dev->uninit(dev); 3559 3560 /* Notifier chain MUST detach us from master device. */ 3561 BUG_TRAP(!dev->master); 3562 3563 /* Remove entries from kobject tree */ 3564 netdev_unregister_kobject(dev); 3565 3566 synchronize_net(); 3567 3568 dev_put(dev); 3569} 3570 3571/** 3572 * register_netdevice - register a network device 3573 * @dev: device to register 3574 * 3575 * Take a completed network device structure and add it to the kernel 3576 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 3577 * chain. 0 is returned on success. A negative errno code is returned 3578 * on a failure to set up the device, or if the name is a duplicate. 3579 * 3580 * Callers must hold the rtnl semaphore. You may want 3581 * register_netdev() instead of this. 3582 * 3583 * BUGS: 3584 * The locking appears insufficient to guarantee two parallel registers 3585 * will not get the same name. 3586 */ 3587 3588int register_netdevice(struct net_device *dev) 3589{ 3590 struct hlist_head *head; 3591 struct hlist_node *p; 3592 int ret; 3593 struct net *net; 3594 3595 BUG_ON(dev_boot_phase); 3596 ASSERT_RTNL(); 3597 3598 might_sleep(); 3599 3600 /* When net_device's are persistent, this will be fatal. */ 3601 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 3602 BUG_ON(!dev->nd_net); 3603 net = dev->nd_net; 3604 3605 spin_lock_init(&dev->queue_lock); 3606 spin_lock_init(&dev->_xmit_lock); 3607 netdev_set_lockdep_class(&dev->_xmit_lock, dev->type); 3608 dev->xmit_lock_owner = -1; 3609 spin_lock_init(&dev->ingress_lock); 3610 3611 dev->iflink = -1; 3612 3613 /* Init, if this function is available */ 3614 if (dev->init) { 3615 ret = dev->init(dev); 3616 if (ret) { 3617 if (ret > 0) 3618 ret = -EIO; 3619 goto out; 3620 } 3621 } 3622 3623 if (!dev_valid_name(dev->name)) { 3624 ret = -EINVAL; 3625 goto err_uninit; 3626 } 3627 3628 dev->ifindex = dev_new_index(net); 3629 if (dev->iflink == -1) 3630 dev->iflink = dev->ifindex; 3631 3632 /* Check for existence of name */ 3633 head = dev_name_hash(net, dev->name); 3634 hlist_for_each(p, head) { 3635 struct net_device *d 3636 = hlist_entry(p, struct net_device, name_hlist); 3637 if (!strncmp(d->name, dev->name, IFNAMSIZ)) { 3638 ret = -EEXIST; 3639 goto err_uninit; 3640 } 3641 } 3642 3643 /* Fix illegal checksum combinations */ 3644 if ((dev->features & NETIF_F_HW_CSUM) && 3645 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 3646 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n", 3647 dev->name); 3648 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 3649 } 3650 3651 if ((dev->features & NETIF_F_NO_CSUM) && 3652 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 3653 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n", 3654 dev->name); 3655 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM); 3656 } 3657 3658 3659 /* Fix illegal SG+CSUM combinations. */ 3660 if ((dev->features & NETIF_F_SG) && 3661 !(dev->features & NETIF_F_ALL_CSUM)) { 3662 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no checksum feature.\n", 3663 dev->name); 3664 dev->features &= ~NETIF_F_SG; 3665 } 3666 3667 /* TSO requires that SG is present as well. */ 3668 if ((dev->features & NETIF_F_TSO) && 3669 !(dev->features & NETIF_F_SG)) { 3670 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no SG feature.\n", 3671 dev->name); 3672 dev->features &= ~NETIF_F_TSO; 3673 } 3674 if (dev->features & NETIF_F_UFO) { 3675 if (!(dev->features & NETIF_F_HW_CSUM)) { 3676 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no " 3677 "NETIF_F_HW_CSUM feature.\n", 3678 dev->name); 3679 dev->features &= ~NETIF_F_UFO; 3680 } 3681 if (!(dev->features & NETIF_F_SG)) { 3682 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no " 3683 "NETIF_F_SG feature.\n", 3684 dev->name); 3685 dev->features &= ~NETIF_F_UFO; 3686 } 3687 } 3688 3689 ret = netdev_register_kobject(dev); 3690 if (ret) 3691 goto err_uninit; 3692 dev->reg_state = NETREG_REGISTERED; 3693 3694 /* 3695 * Default initial state at registry is that the 3696 * device is present. 3697 */ 3698 3699 set_bit(__LINK_STATE_PRESENT, &dev->state); 3700 3701 dev_init_scheduler(dev); 3702 dev_hold(dev); 3703 list_netdevice(dev); 3704 3705 /* Notify protocols, that a new device appeared. */ 3706 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 3707 ret = notifier_to_errno(ret); 3708 if (ret) { 3709 rollback_registered(dev); 3710 dev->reg_state = NETREG_UNREGISTERED; 3711 } 3712 3713out: 3714 return ret; 3715 3716err_uninit: 3717 if (dev->uninit) 3718 dev->uninit(dev); 3719 goto out; 3720} 3721 3722/** 3723 * register_netdev - register a network device 3724 * @dev: device to register 3725 * 3726 * Take a completed network device structure and add it to the kernel 3727 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 3728 * chain. 0 is returned on success. A negative errno code is returned 3729 * on a failure to set up the device, or if the name is a duplicate. 3730 * 3731 * This is a wrapper around register_netdevice that takes the rtnl semaphore 3732 * and expands the device name if you passed a format string to 3733 * alloc_netdev. 3734 */ 3735int register_netdev(struct net_device *dev) 3736{ 3737 int err; 3738 3739 rtnl_lock(); 3740 3741 /* 3742 * If the name is a format string the caller wants us to do a 3743 * name allocation. 3744 */ 3745 if (strchr(dev->name, '%')) { 3746 err = dev_alloc_name(dev, dev->name); 3747 if (err < 0) 3748 goto out; 3749 } 3750 3751 err = register_netdevice(dev); 3752out: 3753 rtnl_unlock(); 3754 return err; 3755} 3756EXPORT_SYMBOL(register_netdev); 3757 3758/* 3759 * netdev_wait_allrefs - wait until all references are gone. 3760 * 3761 * This is called when unregistering network devices. 3762 * 3763 * Any protocol or device that holds a reference should register 3764 * for netdevice notification, and cleanup and put back the 3765 * reference if they receive an UNREGISTER event. 3766 * We can get stuck here if buggy protocols don't correctly 3767 * call dev_put. 3768 */ 3769static void netdev_wait_allrefs(struct net_device *dev) 3770{ 3771 unsigned long rebroadcast_time, warning_time; 3772 3773 rebroadcast_time = warning_time = jiffies; 3774 while (atomic_read(&dev->refcnt) != 0) { 3775 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 3776 rtnl_lock(); 3777 3778 /* Rebroadcast unregister notification */ 3779 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 3780 3781 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 3782 &dev->state)) { 3783 /* We must not have linkwatch events 3784 * pending on unregister. If this 3785 * happens, we simply run the queue 3786 * unscheduled, resulting in a noop 3787 * for this device. 3788 */ 3789 linkwatch_run_queue(); 3790 } 3791 3792 __rtnl_unlock(); 3793 3794 rebroadcast_time = jiffies; 3795 } 3796 3797 msleep(250); 3798 3799 if (time_after(jiffies, warning_time + 10 * HZ)) { 3800 printk(KERN_EMERG "unregister_netdevice: " 3801 "waiting for %s to become free. Usage " 3802 "count = %d\n", 3803 dev->name, atomic_read(&dev->refcnt)); 3804 warning_time = jiffies; 3805 } 3806 } 3807} 3808 3809/* The sequence is: 3810 * 3811 * rtnl_lock(); 3812 * ... 3813 * register_netdevice(x1); 3814 * register_netdevice(x2); 3815 * ... 3816 * unregister_netdevice(y1); 3817 * unregister_netdevice(y2); 3818 * ... 3819 * rtnl_unlock(); 3820 * free_netdev(y1); 3821 * free_netdev(y2); 3822 * 3823 * We are invoked by rtnl_unlock() after it drops the semaphore. 3824 * This allows us to deal with problems: 3825 * 1) We can delete sysfs objects which invoke hotplug 3826 * without deadlocking with linkwatch via keventd. 3827 * 2) Since we run with the RTNL semaphore not held, we can sleep 3828 * safely in order to wait for the netdev refcnt to drop to zero. 3829 */ 3830static DEFINE_MUTEX(net_todo_run_mutex); 3831void netdev_run_todo(void) 3832{ 3833 struct list_head list; 3834 3835 /* Need to guard against multiple cpu's getting out of order. */ 3836 mutex_lock(&net_todo_run_mutex); 3837 3838 /* Not safe to do outside the semaphore. We must not return 3839 * until all unregister events invoked by the local processor 3840 * have been completed (either by this todo run, or one on 3841 * another cpu). 3842 */ 3843 if (list_empty(&net_todo_list)) 3844 goto out; 3845 3846 /* Snapshot list, allow later requests */ 3847 spin_lock(&net_todo_list_lock); 3848 list_replace_init(&net_todo_list, &list); 3849 spin_unlock(&net_todo_list_lock); 3850 3851 while (!list_empty(&list)) { 3852 struct net_device *dev 3853 = list_entry(list.next, struct net_device, todo_list); 3854 list_del(&dev->todo_list); 3855 3856 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 3857 printk(KERN_ERR "network todo '%s' but state %d\n", 3858 dev->name, dev->reg_state); 3859 dump_stack(); 3860 continue; 3861 } 3862 3863 dev->reg_state = NETREG_UNREGISTERED; 3864 3865 netdev_wait_allrefs(dev); 3866 3867 /* paranoia */ 3868 BUG_ON(atomic_read(&dev->refcnt)); 3869 BUG_TRAP(!dev->ip_ptr); 3870 BUG_TRAP(!dev->ip6_ptr); 3871 BUG_TRAP(!dev->dn_ptr); 3872 3873 if (dev->destructor) 3874 dev->destructor(dev); 3875 3876 /* Free network device */ 3877 kobject_put(&dev->dev.kobj); 3878 } 3879 3880out: 3881 mutex_unlock(&net_todo_run_mutex); 3882} 3883 3884static struct net_device_stats *internal_stats(struct net_device *dev) 3885{ 3886 return &dev->stats; 3887} 3888 3889/** 3890 * alloc_netdev_mq - allocate network device 3891 * @sizeof_priv: size of private data to allocate space for 3892 * @name: device name format string 3893 * @setup: callback to initialize device 3894 * @queue_count: the number of subqueues to allocate 3895 * 3896 * Allocates a struct net_device with private data area for driver use 3897 * and performs basic initialization. Also allocates subquue structs 3898 * for each queue on the device at the end of the netdevice. 3899 */ 3900struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name, 3901 void (*setup)(struct net_device *), unsigned int queue_count) 3902{ 3903 void *p; 3904 struct net_device *dev; 3905 int alloc_size; 3906 3907 BUG_ON(strlen(name) >= sizeof(dev->name)); 3908 3909 /* ensure 32-byte alignment of both the device and private area */ 3910 alloc_size = (sizeof(*dev) + NETDEV_ALIGN_CONST + 3911 (sizeof(struct net_device_subqueue) * (queue_count - 1))) & 3912 ~NETDEV_ALIGN_CONST; 3913 alloc_size += sizeof_priv + NETDEV_ALIGN_CONST; 3914 3915 p = kzalloc(alloc_size, GFP_KERNEL); 3916 if (!p) { 3917 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n"); 3918 return NULL; 3919 } 3920 3921 dev = (struct net_device *) 3922 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST); 3923 dev->padded = (char *)dev - (char *)p; 3924 dev->nd_net = &init_net; 3925 3926 if (sizeof_priv) { 3927 dev->priv = ((char *)dev + 3928 ((sizeof(struct net_device) + 3929 (sizeof(struct net_device_subqueue) * 3930 (queue_count - 1)) + NETDEV_ALIGN_CONST) 3931 & ~NETDEV_ALIGN_CONST)); 3932 } 3933 3934 dev->egress_subqueue_count = queue_count; 3935 3936 dev->get_stats = internal_stats; 3937 netpoll_netdev_init(dev); 3938 setup(dev); 3939 strcpy(dev->name, name); 3940 return dev; 3941} 3942EXPORT_SYMBOL(alloc_netdev_mq); 3943 3944/** 3945 * free_netdev - free network device 3946 * @dev: device 3947 * 3948 * This function does the last stage of destroying an allocated device 3949 * interface. The reference to the device object is released. 3950 * If this is the last reference then it will be freed. 3951 */ 3952void free_netdev(struct net_device *dev) 3953{ 3954 /* Compatibility with error handling in drivers */ 3955 if (dev->reg_state == NETREG_UNINITIALIZED) { 3956 kfree((char *)dev - dev->padded); 3957 return; 3958 } 3959 3960 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 3961 dev->reg_state = NETREG_RELEASED; 3962 3963 /* will free via device release */ 3964 put_device(&dev->dev); 3965} 3966 3967/* Synchronize with packet receive processing. */ 3968void synchronize_net(void) 3969{ 3970 might_sleep(); 3971 synchronize_rcu(); 3972} 3973 3974/** 3975 * unregister_netdevice - remove device from the kernel 3976 * @dev: device 3977 * 3978 * This function shuts down a device interface and removes it 3979 * from the kernel tables. 3980 * 3981 * Callers must hold the rtnl semaphore. You may want 3982 * unregister_netdev() instead of this. 3983 */ 3984 3985void unregister_netdevice(struct net_device *dev) 3986{ 3987 rollback_registered(dev); 3988 /* Finish processing unregister after unlock */ 3989 net_set_todo(dev); 3990} 3991 3992/** 3993 * unregister_netdev - remove device from the kernel 3994 * @dev: device 3995 * 3996 * This function shuts down a device interface and removes it 3997 * from the kernel tables. 3998 * 3999 * This is just a wrapper for unregister_netdevice that takes 4000 * the rtnl semaphore. In general you want to use this and not 4001 * unregister_netdevice. 4002 */ 4003void unregister_netdev(struct net_device *dev) 4004{ 4005 rtnl_lock(); 4006 unregister_netdevice(dev); 4007 rtnl_unlock(); 4008} 4009 4010EXPORT_SYMBOL(unregister_netdev); 4011 4012/** 4013 * dev_change_net_namespace - move device to different nethost namespace 4014 * @dev: device 4015 * @net: network namespace 4016 * @pat: If not NULL name pattern to try if the current device name 4017 * is already taken in the destination network namespace. 4018 * 4019 * This function shuts down a device interface and moves it 4020 * to a new network namespace. On success 0 is returned, on 4021 * a failure a netagive errno code is returned. 4022 * 4023 * Callers must hold the rtnl semaphore. 4024 */ 4025 4026int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 4027{ 4028 char buf[IFNAMSIZ]; 4029 const char *destname; 4030 int err; 4031 4032 ASSERT_RTNL(); 4033 4034 /* Don't allow namespace local devices to be moved. */ 4035 err = -EINVAL; 4036 if (dev->features & NETIF_F_NETNS_LOCAL) 4037 goto out; 4038 4039 /* Ensure the device has been registrered */ 4040 err = -EINVAL; 4041 if (dev->reg_state != NETREG_REGISTERED) 4042 goto out; 4043 4044 /* Get out if there is nothing todo */ 4045 err = 0; 4046 if (dev->nd_net == net) 4047 goto out; 4048 4049 /* Pick the destination device name, and ensure 4050 * we can use it in the destination network namespace. 4051 */ 4052 err = -EEXIST; 4053 destname = dev->name; 4054 if (__dev_get_by_name(net, destname)) { 4055 /* We get here if we can't use the current device name */ 4056 if (!pat) 4057 goto out; 4058 if (!dev_valid_name(pat)) 4059 goto out; 4060 if (strchr(pat, '%')) { 4061 if (__dev_alloc_name(net, pat, buf) < 0) 4062 goto out; 4063 destname = buf; 4064 } else 4065 destname = pat; 4066 if (__dev_get_by_name(net, destname)) 4067 goto out; 4068 } 4069 4070 /* 4071 * And now a mini version of register_netdevice unregister_netdevice. 4072 */ 4073 4074 /* If device is running close it first. */ 4075 dev_close(dev); 4076 4077 /* And unlink it from device chain */ 4078 err = -ENODEV; 4079 unlist_netdevice(dev); 4080 4081 synchronize_net(); 4082 4083 /* Shutdown queueing discipline. */ 4084 dev_shutdown(dev); 4085 4086 /* Notify protocols, that we are about to destroy 4087 this device. They should clean all the things. 4088 */ 4089 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 4090 4091 /* 4092 * Flush the unicast and multicast chains 4093 */ 4094 dev_addr_discard(dev); 4095 4096 /* Actually switch the network namespace */ 4097 dev->nd_net = net; 4098 4099 /* Assign the new device name */ 4100 if (destname != dev->name) 4101 strcpy(dev->name, destname); 4102 4103 /* If there is an ifindex conflict assign a new one */ 4104 if (__dev_get_by_index(net, dev->ifindex)) { 4105 int iflink = (dev->iflink == dev->ifindex); 4106 dev->ifindex = dev_new_index(net); 4107 if (iflink) 4108 dev->iflink = dev->ifindex; 4109 } 4110 4111 /* Fixup kobjects */ 4112 err = device_rename(&dev->dev, dev->name); 4113 WARN_ON(err); 4114 4115 /* Add the device back in the hashes */ 4116 list_netdevice(dev); 4117 4118 /* Notify protocols, that a new device appeared. */ 4119 call_netdevice_notifiers(NETDEV_REGISTER, dev); 4120 4121 synchronize_net(); 4122 err = 0; 4123out: 4124 return err; 4125} 4126 4127static int dev_cpu_callback(struct notifier_block *nfb, 4128 unsigned long action, 4129 void *ocpu) 4130{ 4131 struct sk_buff **list_skb; 4132 struct net_device **list_net; 4133 struct sk_buff *skb; 4134 unsigned int cpu, oldcpu = (unsigned long)ocpu; 4135 struct softnet_data *sd, *oldsd; 4136 4137 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 4138 return NOTIFY_OK; 4139 4140 local_irq_disable(); 4141 cpu = smp_processor_id(); 4142 sd = &per_cpu(softnet_data, cpu); 4143 oldsd = &per_cpu(softnet_data, oldcpu); 4144 4145 /* Find end of our completion_queue. */ 4146 list_skb = &sd->completion_queue; 4147 while (*list_skb) 4148 list_skb = &(*list_skb)->next; 4149 /* Append completion queue from offline CPU. */ 4150 *list_skb = oldsd->completion_queue; 4151 oldsd->completion_queue = NULL; 4152 4153 /* Find end of our output_queue. */ 4154 list_net = &sd->output_queue; 4155 while (*list_net) 4156 list_net = &(*list_net)->next_sched; 4157 /* Append output queue from offline CPU. */ 4158 *list_net = oldsd->output_queue; 4159 oldsd->output_queue = NULL; 4160 4161 raise_softirq_irqoff(NET_TX_SOFTIRQ); 4162 local_irq_enable(); 4163 4164 /* Process offline CPU's input_pkt_queue */ 4165 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) 4166 netif_rx(skb); 4167 4168 return NOTIFY_OK; 4169} 4170 4171#ifdef CONFIG_NET_DMA 4172/** 4173 * net_dma_rebalance - try to maintain one DMA channel per CPU 4174 * @net_dma: DMA client and associated data (lock, channels, channel_mask) 4175 * 4176 * This is called when the number of channels allocated to the net_dma client 4177 * changes. The net_dma client tries to have one DMA channel per CPU. 4178 */ 4179 4180static void net_dma_rebalance(struct net_dma *net_dma) 4181{ 4182 unsigned int cpu, i, n, chan_idx; 4183 struct dma_chan *chan; 4184 4185 if (cpus_empty(net_dma->channel_mask)) { 4186 for_each_online_cpu(cpu) 4187 rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL); 4188 return; 4189 } 4190 4191 i = 0; 4192 cpu = first_cpu(cpu_online_map); 4193 4194 for_each_cpu_mask(chan_idx, net_dma->channel_mask) { 4195 chan = net_dma->channels[chan_idx]; 4196 4197 n = ((num_online_cpus() / cpus_weight(net_dma->channel_mask)) 4198 + (i < (num_online_cpus() % 4199 cpus_weight(net_dma->channel_mask)) ? 1 : 0)); 4200 4201 while(n) { 4202 per_cpu(softnet_data, cpu).net_dma = chan; 4203 cpu = next_cpu(cpu, cpu_online_map); 4204 n--; 4205 } 4206 i++; 4207 } 4208} 4209 4210/** 4211 * netdev_dma_event - event callback for the net_dma_client 4212 * @client: should always be net_dma_client 4213 * @chan: DMA channel for the event 4214 * @state: DMA state to be handled 4215 */ 4216static enum dma_state_client 4217netdev_dma_event(struct dma_client *client, struct dma_chan *chan, 4218 enum dma_state state) 4219{ 4220 int i, found = 0, pos = -1; 4221 struct net_dma *net_dma = 4222 container_of(client, struct net_dma, client); 4223 enum dma_state_client ack = DMA_DUP; /* default: take no action */ 4224 4225 spin_lock(&net_dma->lock); 4226 switch (state) { 4227 case DMA_RESOURCE_AVAILABLE: 4228 for (i = 0; i < NR_CPUS; i++) 4229 if (net_dma->channels[i] == chan) { 4230 found = 1; 4231 break; 4232 } else if (net_dma->channels[i] == NULL && pos < 0) 4233 pos = i; 4234 4235 if (!found && pos >= 0) { 4236 ack = DMA_ACK; 4237 net_dma->channels[pos] = chan; 4238 cpu_set(pos, net_dma->channel_mask); 4239 net_dma_rebalance(net_dma); 4240 } 4241 break; 4242 case DMA_RESOURCE_REMOVED: 4243 for (i = 0; i < NR_CPUS; i++) 4244 if (net_dma->channels[i] == chan) { 4245 found = 1; 4246 pos = i; 4247 break; 4248 } 4249 4250 if (found) { 4251 ack = DMA_ACK; 4252 cpu_clear(pos, net_dma->channel_mask); 4253 net_dma->channels[i] = NULL; 4254 net_dma_rebalance(net_dma); 4255 } 4256 break; 4257 default: 4258 break; 4259 } 4260 spin_unlock(&net_dma->lock); 4261 4262 return ack; 4263} 4264 4265/** 4266 * netdev_dma_regiser - register the networking subsystem as a DMA client 4267 */ 4268static int __init netdev_dma_register(void) 4269{ 4270 spin_lock_init(&net_dma.lock); 4271 dma_cap_set(DMA_MEMCPY, net_dma.client.cap_mask); 4272 dma_async_client_register(&net_dma.client); 4273 dma_async_client_chan_request(&net_dma.client); 4274 return 0; 4275} 4276 4277#else 4278static int __init netdev_dma_register(void) { return -ENODEV; } 4279#endif /* CONFIG_NET_DMA */ 4280 4281/** 4282 * netdev_compute_feature - compute conjunction of two feature sets 4283 * @all: first feature set 4284 * @one: second feature set 4285 * 4286 * Computes a new feature set after adding a device with feature set 4287 * @one to the master device with current feature set @all. Returns 4288 * the new feature set. 4289 */ 4290int netdev_compute_features(unsigned long all, unsigned long one) 4291{ 4292 /* if device needs checksumming, downgrade to hw checksumming */ 4293 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM)) 4294 all ^= NETIF_F_NO_CSUM | NETIF_F_HW_CSUM; 4295 4296 /* if device can't do all checksum, downgrade to ipv4/ipv6 */ 4297 if (all & NETIF_F_HW_CSUM && !(one & NETIF_F_HW_CSUM)) 4298 all ^= NETIF_F_HW_CSUM 4299 | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; 4300 4301 if (one & NETIF_F_GSO) 4302 one |= NETIF_F_GSO_SOFTWARE; 4303 one |= NETIF_F_GSO; 4304 4305 /* If even one device supports robust GSO, enable it for all. */ 4306 if (one & NETIF_F_GSO_ROBUST) 4307 all |= NETIF_F_GSO_ROBUST; 4308 4309 all &= one | NETIF_F_LLTX; 4310 4311 if (!(all & NETIF_F_ALL_CSUM)) 4312 all &= ~NETIF_F_SG; 4313 if (!(all & NETIF_F_SG)) 4314 all &= ~NETIF_F_GSO_MASK; 4315 4316 return all; 4317} 4318EXPORT_SYMBOL(netdev_compute_features); 4319 4320static struct hlist_head *netdev_create_hash(void) 4321{ 4322 int i; 4323 struct hlist_head *hash; 4324 4325 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 4326 if (hash != NULL) 4327 for (i = 0; i < NETDEV_HASHENTRIES; i++) 4328 INIT_HLIST_HEAD(&hash[i]); 4329 4330 return hash; 4331} 4332 4333/* Initialize per network namespace state */ 4334static int __net_init netdev_init(struct net *net) 4335{ 4336 INIT_LIST_HEAD(&net->dev_base_head); 4337 4338 net->dev_name_head = netdev_create_hash(); 4339 if (net->dev_name_head == NULL) 4340 goto err_name; 4341 4342 net->dev_index_head = netdev_create_hash(); 4343 if (net->dev_index_head == NULL) 4344 goto err_idx; 4345 4346 return 0; 4347 4348err_idx: 4349 kfree(net->dev_name_head); 4350err_name: 4351 return -ENOMEM; 4352} 4353 4354static void __net_exit netdev_exit(struct net *net) 4355{ 4356 kfree(net->dev_name_head); 4357 kfree(net->dev_index_head); 4358} 4359 4360static struct pernet_operations __net_initdata netdev_net_ops = { 4361 .init = netdev_init, 4362 .exit = netdev_exit, 4363}; 4364 4365static void __net_exit default_device_exit(struct net *net) 4366{ 4367 struct net_device *dev, *next; 4368 /* 4369 * Push all migratable of the network devices back to the 4370 * initial network namespace 4371 */ 4372 rtnl_lock(); 4373 for_each_netdev_safe(net, dev, next) { 4374 int err; 4375 4376 /* Ignore unmoveable devices (i.e. loopback) */ 4377 if (dev->features & NETIF_F_NETNS_LOCAL) 4378 continue; 4379 4380 /* Push remaing network devices to init_net */ 4381 err = dev_change_net_namespace(dev, &init_net, "dev%d"); 4382 if (err) { 4383 printk(KERN_WARNING "%s: failed to move %s to init_net: %d\n", 4384 __func__, dev->name, err); 4385 unregister_netdevice(dev); 4386 } 4387 } 4388 rtnl_unlock(); 4389} 4390 4391static struct pernet_operations __net_initdata default_device_ops = { 4392 .exit = default_device_exit, 4393}; 4394 4395/* 4396 * Initialize the DEV module. At boot time this walks the device list and 4397 * unhooks any devices that fail to initialise (normally hardware not 4398 * present) and leaves us with a valid list of present and active devices. 4399 * 4400 */ 4401 4402/* 4403 * This is called single threaded during boot, so no need 4404 * to take the rtnl semaphore. 4405 */ 4406static int __init net_dev_init(void) 4407{ 4408 int i, rc = -ENOMEM; 4409 4410 BUG_ON(!dev_boot_phase); 4411 4412 if (dev_proc_init()) 4413 goto out; 4414 4415 if (netdev_kobject_init()) 4416 goto out; 4417 4418 INIT_LIST_HEAD(&ptype_all); 4419 for (i = 0; i < 16; i++) 4420 INIT_LIST_HEAD(&ptype_base[i]); 4421 4422 if (register_pernet_subsys(&netdev_net_ops)) 4423 goto out; 4424 4425 if (register_pernet_device(&default_device_ops)) 4426 goto out; 4427 4428 /* 4429 * Initialise the packet receive queues. 4430 */ 4431 4432 for_each_possible_cpu(i) { 4433 struct softnet_data *queue; 4434 4435 queue = &per_cpu(softnet_data, i); 4436 skb_queue_head_init(&queue->input_pkt_queue); 4437 queue->completion_queue = NULL; 4438 INIT_LIST_HEAD(&queue->poll_list); 4439 4440 queue->backlog.poll = process_backlog; 4441 queue->backlog.weight = weight_p; 4442 } 4443 4444 netdev_dma_register(); 4445 4446 dev_boot_phase = 0; 4447 4448 open_softirq(NET_TX_SOFTIRQ, net_tx_action, NULL); 4449 open_softirq(NET_RX_SOFTIRQ, net_rx_action, NULL); 4450 4451 hotcpu_notifier(dev_cpu_callback, 0); 4452 dst_init(); 4453 dev_mcast_init(); 4454 rc = 0; 4455out: 4456 return rc; 4457} 4458 4459subsys_initcall(net_dev_init); 4460 4461EXPORT_SYMBOL(__dev_get_by_index); 4462EXPORT_SYMBOL(__dev_get_by_name); 4463EXPORT_SYMBOL(__dev_remove_pack); 4464EXPORT_SYMBOL(dev_valid_name); 4465EXPORT_SYMBOL(dev_add_pack); 4466EXPORT_SYMBOL(dev_alloc_name); 4467EXPORT_SYMBOL(dev_close); 4468EXPORT_SYMBOL(dev_get_by_flags); 4469EXPORT_SYMBOL(dev_get_by_index); 4470EXPORT_SYMBOL(dev_get_by_name); 4471EXPORT_SYMBOL(dev_open); 4472EXPORT_SYMBOL(dev_queue_xmit); 4473EXPORT_SYMBOL(dev_remove_pack); 4474EXPORT_SYMBOL(dev_set_allmulti); 4475EXPORT_SYMBOL(dev_set_promiscuity); 4476EXPORT_SYMBOL(dev_change_flags); 4477EXPORT_SYMBOL(dev_set_mtu); 4478EXPORT_SYMBOL(dev_set_mac_address); 4479EXPORT_SYMBOL(free_netdev); 4480EXPORT_SYMBOL(netdev_boot_setup_check); 4481EXPORT_SYMBOL(netdev_set_master); 4482EXPORT_SYMBOL(netdev_state_change); 4483EXPORT_SYMBOL(netif_receive_skb); 4484EXPORT_SYMBOL(netif_rx); 4485EXPORT_SYMBOL(register_gifconf); 4486EXPORT_SYMBOL(register_netdevice); 4487EXPORT_SYMBOL(register_netdevice_notifier); 4488EXPORT_SYMBOL(skb_checksum_help); 4489EXPORT_SYMBOL(synchronize_net); 4490EXPORT_SYMBOL(unregister_netdevice); 4491EXPORT_SYMBOL(unregister_netdevice_notifier); 4492EXPORT_SYMBOL(net_enable_timestamp); 4493EXPORT_SYMBOL(net_disable_timestamp); 4494EXPORT_SYMBOL(dev_get_flags); 4495 4496#if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE) 4497EXPORT_SYMBOL(br_handle_frame_hook); 4498EXPORT_SYMBOL(br_fdb_get_hook); 4499EXPORT_SYMBOL(br_fdb_put_hook); 4500#endif 4501 4502#ifdef CONFIG_KMOD 4503EXPORT_SYMBOL(dev_load); 4504#endif 4505 4506EXPORT_PER_CPU_SYMBOL(softnet_data);