at v2.6.24 64 kB view raw
1#ifndef __LINUX_USB_H 2#define __LINUX_USB_H 3 4#include <linux/mod_devicetable.h> 5#include <linux/usb/ch9.h> 6 7#define USB_MAJOR 180 8#define USB_DEVICE_MAJOR 189 9 10 11#ifdef __KERNEL__ 12 13#include <linux/errno.h> /* for -ENODEV */ 14#include <linux/delay.h> /* for mdelay() */ 15#include <linux/interrupt.h> /* for in_interrupt() */ 16#include <linux/list.h> /* for struct list_head */ 17#include <linux/kref.h> /* for struct kref */ 18#include <linux/device.h> /* for struct device */ 19#include <linux/fs.h> /* for struct file_operations */ 20#include <linux/completion.h> /* for struct completion */ 21#include <linux/sched.h> /* for current && schedule_timeout */ 22#include <linux/mutex.h> /* for struct mutex */ 23 24struct usb_device; 25struct usb_driver; 26 27/*-------------------------------------------------------------------------*/ 28 29/* 30 * Host-side wrappers for standard USB descriptors ... these are parsed 31 * from the data provided by devices. Parsing turns them from a flat 32 * sequence of descriptors into a hierarchy: 33 * 34 * - devices have one (usually) or more configs; 35 * - configs have one (often) or more interfaces; 36 * - interfaces have one (usually) or more settings; 37 * - each interface setting has zero or (usually) more endpoints. 38 * 39 * And there might be other descriptors mixed in with those. 40 * 41 * Devices may also have class-specific or vendor-specific descriptors. 42 */ 43 44struct ep_device; 45 46/** 47 * struct usb_host_endpoint - host-side endpoint descriptor and queue 48 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder 49 * @urb_list: urbs queued to this endpoint; maintained by usbcore 50 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH) 51 * with one or more transfer descriptors (TDs) per urb 52 * @ep_dev: ep_device for sysfs info 53 * @extra: descriptors following this endpoint in the configuration 54 * @extralen: how many bytes of "extra" are valid 55 * @enabled: URBs may be submitted to this endpoint 56 * 57 * USB requests are always queued to a given endpoint, identified by a 58 * descriptor within an active interface in a given USB configuration. 59 */ 60struct usb_host_endpoint { 61 struct usb_endpoint_descriptor desc; 62 struct list_head urb_list; 63 void *hcpriv; 64 struct ep_device *ep_dev; /* For sysfs info */ 65 66 unsigned char *extra; /* Extra descriptors */ 67 int extralen; 68 int enabled; 69}; 70 71/* host-side wrapper for one interface setting's parsed descriptors */ 72struct usb_host_interface { 73 struct usb_interface_descriptor desc; 74 75 /* array of desc.bNumEndpoint endpoints associated with this 76 * interface setting. these will be in no particular order. 77 */ 78 struct usb_host_endpoint *endpoint; 79 80 char *string; /* iInterface string, if present */ 81 unsigned char *extra; /* Extra descriptors */ 82 int extralen; 83}; 84 85enum usb_interface_condition { 86 USB_INTERFACE_UNBOUND = 0, 87 USB_INTERFACE_BINDING, 88 USB_INTERFACE_BOUND, 89 USB_INTERFACE_UNBINDING, 90}; 91 92/** 93 * struct usb_interface - what usb device drivers talk to 94 * @altsetting: array of interface structures, one for each alternate 95 * setting that may be selected. Each one includes a set of 96 * endpoint configurations. They will be in no particular order. 97 * @num_altsetting: number of altsettings defined. 98 * @cur_altsetting: the current altsetting. 99 * @intf_assoc: interface association descriptor 100 * @driver: the USB driver that is bound to this interface. 101 * @minor: the minor number assigned to this interface, if this 102 * interface is bound to a driver that uses the USB major number. 103 * If this interface does not use the USB major, this field should 104 * be unused. The driver should set this value in the probe() 105 * function of the driver, after it has been assigned a minor 106 * number from the USB core by calling usb_register_dev(). 107 * @condition: binding state of the interface: not bound, binding 108 * (in probe()), bound to a driver, or unbinding (in disconnect()) 109 * @is_active: flag set when the interface is bound and not suspended. 110 * @sysfs_files_created: sysfs attributes exist 111 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup 112 * capability during autosuspend. 113 * @dev: driver model's view of this device 114 * @usb_dev: if an interface is bound to the USB major, this will point 115 * to the sysfs representation for that device. 116 * @pm_usage_cnt: PM usage counter for this interface; autosuspend is not 117 * allowed unless the counter is 0. 118 * 119 * USB device drivers attach to interfaces on a physical device. Each 120 * interface encapsulates a single high level function, such as feeding 121 * an audio stream to a speaker or reporting a change in a volume control. 122 * Many USB devices only have one interface. The protocol used to talk to 123 * an interface's endpoints can be defined in a usb "class" specification, 124 * or by a product's vendor. The (default) control endpoint is part of 125 * every interface, but is never listed among the interface's descriptors. 126 * 127 * The driver that is bound to the interface can use standard driver model 128 * calls such as dev_get_drvdata() on the dev member of this structure. 129 * 130 * Each interface may have alternate settings. The initial configuration 131 * of a device sets altsetting 0, but the device driver can change 132 * that setting using usb_set_interface(). Alternate settings are often 133 * used to control the use of periodic endpoints, such as by having 134 * different endpoints use different amounts of reserved USB bandwidth. 135 * All standards-conformant USB devices that use isochronous endpoints 136 * will use them in non-default settings. 137 * 138 * The USB specification says that alternate setting numbers must run from 139 * 0 to one less than the total number of alternate settings. But some 140 * devices manage to mess this up, and the structures aren't necessarily 141 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to 142 * look up an alternate setting in the altsetting array based on its number. 143 */ 144struct usb_interface { 145 /* array of alternate settings for this interface, 146 * stored in no particular order */ 147 struct usb_host_interface *altsetting; 148 149 struct usb_host_interface *cur_altsetting; /* the currently 150 * active alternate setting */ 151 unsigned num_altsetting; /* number of alternate settings */ 152 153 /* If there is an interface association descriptor then it will list 154 * the associated interfaces */ 155 struct usb_interface_assoc_descriptor *intf_assoc; 156 157 int minor; /* minor number this interface is 158 * bound to */ 159 enum usb_interface_condition condition; /* state of binding */ 160 unsigned is_active:1; /* the interface is not suspended */ 161 unsigned sysfs_files_created:1; /* the sysfs attributes exist */ 162 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */ 163 164 struct device dev; /* interface specific device info */ 165 struct device *usb_dev; /* pointer to the usb class's device, if any */ 166 int pm_usage_cnt; /* usage counter for autosuspend */ 167}; 168#define to_usb_interface(d) container_of(d, struct usb_interface, dev) 169#define interface_to_usbdev(intf) \ 170 container_of(intf->dev.parent, struct usb_device, dev) 171 172static inline void *usb_get_intfdata (struct usb_interface *intf) 173{ 174 return dev_get_drvdata (&intf->dev); 175} 176 177static inline void usb_set_intfdata (struct usb_interface *intf, void *data) 178{ 179 dev_set_drvdata(&intf->dev, data); 180} 181 182struct usb_interface *usb_get_intf(struct usb_interface *intf); 183void usb_put_intf(struct usb_interface *intf); 184 185/* this maximum is arbitrary */ 186#define USB_MAXINTERFACES 32 187#define USB_MAXIADS USB_MAXINTERFACES/2 188 189/** 190 * struct usb_interface_cache - long-term representation of a device interface 191 * @num_altsetting: number of altsettings defined. 192 * @ref: reference counter. 193 * @altsetting: variable-length array of interface structures, one for 194 * each alternate setting that may be selected. Each one includes a 195 * set of endpoint configurations. They will be in no particular order. 196 * 197 * These structures persist for the lifetime of a usb_device, unlike 198 * struct usb_interface (which persists only as long as its configuration 199 * is installed). The altsetting arrays can be accessed through these 200 * structures at any time, permitting comparison of configurations and 201 * providing support for the /proc/bus/usb/devices pseudo-file. 202 */ 203struct usb_interface_cache { 204 unsigned num_altsetting; /* number of alternate settings */ 205 struct kref ref; /* reference counter */ 206 207 /* variable-length array of alternate settings for this interface, 208 * stored in no particular order */ 209 struct usb_host_interface altsetting[0]; 210}; 211#define ref_to_usb_interface_cache(r) \ 212 container_of(r, struct usb_interface_cache, ref) 213#define altsetting_to_usb_interface_cache(a) \ 214 container_of(a, struct usb_interface_cache, altsetting[0]) 215 216/** 217 * struct usb_host_config - representation of a device's configuration 218 * @desc: the device's configuration descriptor. 219 * @string: pointer to the cached version of the iConfiguration string, if 220 * present for this configuration. 221 * @intf_assoc: list of any interface association descriptors in this config 222 * @interface: array of pointers to usb_interface structures, one for each 223 * interface in the configuration. The number of interfaces is stored 224 * in desc.bNumInterfaces. These pointers are valid only while the 225 * the configuration is active. 226 * @intf_cache: array of pointers to usb_interface_cache structures, one 227 * for each interface in the configuration. These structures exist 228 * for the entire life of the device. 229 * @extra: pointer to buffer containing all extra descriptors associated 230 * with this configuration (those preceding the first interface 231 * descriptor). 232 * @extralen: length of the extra descriptors buffer. 233 * 234 * USB devices may have multiple configurations, but only one can be active 235 * at any time. Each encapsulates a different operational environment; 236 * for example, a dual-speed device would have separate configurations for 237 * full-speed and high-speed operation. The number of configurations 238 * available is stored in the device descriptor as bNumConfigurations. 239 * 240 * A configuration can contain multiple interfaces. Each corresponds to 241 * a different function of the USB device, and all are available whenever 242 * the configuration is active. The USB standard says that interfaces 243 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot 244 * of devices get this wrong. In addition, the interface array is not 245 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to 246 * look up an interface entry based on its number. 247 * 248 * Device drivers should not attempt to activate configurations. The choice 249 * of which configuration to install is a policy decision based on such 250 * considerations as available power, functionality provided, and the user's 251 * desires (expressed through userspace tools). However, drivers can call 252 * usb_reset_configuration() to reinitialize the current configuration and 253 * all its interfaces. 254 */ 255struct usb_host_config { 256 struct usb_config_descriptor desc; 257 258 char *string; /* iConfiguration string, if present */ 259 260 /* List of any Interface Association Descriptors in this 261 * configuration. */ 262 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS]; 263 264 /* the interfaces associated with this configuration, 265 * stored in no particular order */ 266 struct usb_interface *interface[USB_MAXINTERFACES]; 267 268 /* Interface information available even when this is not the 269 * active configuration */ 270 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES]; 271 272 unsigned char *extra; /* Extra descriptors */ 273 int extralen; 274}; 275 276int __usb_get_extra_descriptor(char *buffer, unsigned size, 277 unsigned char type, void **ptr); 278#define usb_get_extra_descriptor(ifpoint,type,ptr)\ 279 __usb_get_extra_descriptor((ifpoint)->extra,(ifpoint)->extralen,\ 280 type,(void**)ptr) 281 282/* ----------------------------------------------------------------------- */ 283 284/* USB device number allocation bitmap */ 285struct usb_devmap { 286 unsigned long devicemap[128 / (8*sizeof(unsigned long))]; 287}; 288 289/* 290 * Allocated per bus (tree of devices) we have: 291 */ 292struct usb_bus { 293 struct device *controller; /* host/master side hardware */ 294 int busnum; /* Bus number (in order of reg) */ 295 char *bus_name; /* stable id (PCI slot_name etc) */ 296 u8 uses_dma; /* Does the host controller use DMA? */ 297 u8 otg_port; /* 0, or number of OTG/HNP port */ 298 unsigned is_b_host:1; /* true during some HNP roleswitches */ 299 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */ 300 301 int devnum_next; /* Next open device number in 302 * round-robin allocation */ 303 304 struct usb_devmap devmap; /* device address allocation map */ 305 struct usb_device *root_hub; /* Root hub */ 306 struct list_head bus_list; /* list of busses */ 307 308 int bandwidth_allocated; /* on this bus: how much of the time 309 * reserved for periodic (intr/iso) 310 * requests is used, on average? 311 * Units: microseconds/frame. 312 * Limits: Full/low speed reserve 90%, 313 * while high speed reserves 80%. 314 */ 315 int bandwidth_int_reqs; /* number of Interrupt requests */ 316 int bandwidth_isoc_reqs; /* number of Isoc. requests */ 317 318#ifdef CONFIG_USB_DEVICEFS 319 struct dentry *usbfs_dentry; /* usbfs dentry entry for the bus */ 320#endif 321 struct class_device *class_dev; /* class device for this bus */ 322 323#if defined(CONFIG_USB_MON) 324 struct mon_bus *mon_bus; /* non-null when associated */ 325 int monitored; /* non-zero when monitored */ 326#endif 327}; 328 329/* ----------------------------------------------------------------------- */ 330 331/* This is arbitrary. 332 * From USB 2.0 spec Table 11-13, offset 7, a hub can 333 * have up to 255 ports. The most yet reported is 10. 334 * 335 * Current Wireless USB host hardware (Intel i1480 for example) allows 336 * up to 22 devices to connect. Upcoming hardware might raise that 337 * limit. Because the arrays need to add a bit for hub status data, we 338 * do 31, so plus one evens out to four bytes. 339 */ 340#define USB_MAXCHILDREN (31) 341 342struct usb_tt; 343 344/* 345 * struct usb_device - kernel's representation of a USB device 346 * 347 * FIXME: Write the kerneldoc! 348 * 349 * Usbcore drivers should not set usbdev->state directly. Instead use 350 * usb_set_device_state(). 351 * 352 * @authorized: (user space) policy determines if we authorize this 353 * device to be used or not. By default, wired USB 354 * devices are authorized. WUSB devices are not, until we 355 * authorize them from user space. FIXME -- complete doc 356 */ 357struct usb_device { 358 int devnum; /* Address on USB bus */ 359 char devpath [16]; /* Use in messages: /port/port/... */ 360 enum usb_device_state state; /* configured, not attached, etc */ 361 enum usb_device_speed speed; /* high/full/low (or error) */ 362 363 struct usb_tt *tt; /* low/full speed dev, highspeed hub */ 364 int ttport; /* device port on that tt hub */ 365 366 unsigned int toggle[2]; /* one bit for each endpoint 367 * ([0] = IN, [1] = OUT) */ 368 369 struct usb_device *parent; /* our hub, unless we're the root */ 370 struct usb_bus *bus; /* Bus we're part of */ 371 struct usb_host_endpoint ep0; 372 373 struct device dev; /* Generic device interface */ 374 375 struct usb_device_descriptor descriptor;/* Descriptor */ 376 struct usb_host_config *config; /* All of the configs */ 377 378 struct usb_host_config *actconfig;/* the active configuration */ 379 struct usb_host_endpoint *ep_in[16]; 380 struct usb_host_endpoint *ep_out[16]; 381 382 char **rawdescriptors; /* Raw descriptors for each config */ 383 384 unsigned short bus_mA; /* Current available from the bus */ 385 u8 portnum; /* Parent port number (origin 1) */ 386 u8 level; /* Number of USB hub ancestors */ 387 388 unsigned can_submit:1; /* URBs may be submitted */ 389 unsigned discon_suspended:1; /* Disconnected while suspended */ 390 unsigned have_langid:1; /* whether string_langid is valid */ 391 unsigned authorized:1; /* Policy has determined we can use it */ 392 unsigned wusb:1; /* Device is Wireless USB */ 393 int string_langid; /* language ID for strings */ 394 395 /* static strings from the device */ 396 char *product; /* iProduct string, if present */ 397 char *manufacturer; /* iManufacturer string, if present */ 398 char *serial; /* iSerialNumber string, if present */ 399 400 struct list_head filelist; 401#ifdef CONFIG_USB_DEVICE_CLASS 402 struct device *usb_classdev; 403#endif 404#ifdef CONFIG_USB_DEVICEFS 405 struct dentry *usbfs_dentry; /* usbfs dentry entry for the device */ 406#endif 407 /* 408 * Child devices - these can be either new devices 409 * (if this is a hub device), or different instances 410 * of this same device. 411 * 412 * Each instance needs its own set of data structures. 413 */ 414 415 int maxchild; /* Number of ports if hub */ 416 struct usb_device *children[USB_MAXCHILDREN]; 417 418 int pm_usage_cnt; /* usage counter for autosuspend */ 419 u32 quirks; /* quirks of the whole device */ 420 atomic_t urbnum; /* number of URBs submitted for the whole device */ 421 422#ifdef CONFIG_PM 423 struct delayed_work autosuspend; /* for delayed autosuspends */ 424 struct mutex pm_mutex; /* protects PM operations */ 425 426 unsigned long last_busy; /* time of last use */ 427 int autosuspend_delay; /* in jiffies */ 428 429 unsigned auto_pm:1; /* autosuspend/resume in progress */ 430 unsigned do_remote_wakeup:1; /* remote wakeup should be enabled */ 431 unsigned reset_resume:1; /* needs reset instead of resume */ 432 unsigned persist_enabled:1; /* USB_PERSIST enabled for this dev */ 433 unsigned autosuspend_disabled:1; /* autosuspend and autoresume */ 434 unsigned autoresume_disabled:1; /* disabled by the user */ 435 unsigned skip_sys_resume:1; /* skip the next system resume */ 436#endif 437}; 438#define to_usb_device(d) container_of(d, struct usb_device, dev) 439 440extern struct usb_device *usb_get_dev(struct usb_device *dev); 441extern void usb_put_dev(struct usb_device *dev); 442 443/* USB device locking */ 444#define usb_lock_device(udev) down(&(udev)->dev.sem) 445#define usb_unlock_device(udev) up(&(udev)->dev.sem) 446#define usb_trylock_device(udev) down_trylock(&(udev)->dev.sem) 447extern int usb_lock_device_for_reset(struct usb_device *udev, 448 const struct usb_interface *iface); 449 450/* USB port reset for device reinitialization */ 451extern int usb_reset_device(struct usb_device *dev); 452extern int usb_reset_composite_device(struct usb_device *dev, 453 struct usb_interface *iface); 454 455extern struct usb_device *usb_find_device(u16 vendor_id, u16 product_id); 456 457/* USB autosuspend and autoresume */ 458#ifdef CONFIG_USB_SUSPEND 459extern int usb_autopm_set_interface(struct usb_interface *intf); 460extern int usb_autopm_get_interface(struct usb_interface *intf); 461extern void usb_autopm_put_interface(struct usb_interface *intf); 462 463static inline void usb_autopm_enable(struct usb_interface *intf) 464{ 465 intf->pm_usage_cnt = 0; 466 usb_autopm_set_interface(intf); 467} 468 469static inline void usb_autopm_disable(struct usb_interface *intf) 470{ 471 intf->pm_usage_cnt = 1; 472 usb_autopm_set_interface(intf); 473} 474 475static inline void usb_mark_last_busy(struct usb_device *udev) 476{ 477 udev->last_busy = jiffies; 478} 479 480#else 481 482static inline int usb_autopm_set_interface(struct usb_interface *intf) 483{ return 0; } 484 485static inline int usb_autopm_get_interface(struct usb_interface *intf) 486{ return 0; } 487 488static inline void usb_autopm_put_interface(struct usb_interface *intf) 489{ } 490static inline void usb_autopm_enable(struct usb_interface *intf) 491{ } 492static inline void usb_autopm_disable(struct usb_interface *intf) 493{ } 494static inline void usb_mark_last_busy(struct usb_device *udev) 495{ } 496#endif 497 498/*-------------------------------------------------------------------------*/ 499 500/* for drivers using iso endpoints */ 501extern int usb_get_current_frame_number (struct usb_device *usb_dev); 502 503/* used these for multi-interface device registration */ 504extern int usb_driver_claim_interface(struct usb_driver *driver, 505 struct usb_interface *iface, void* priv); 506 507/** 508 * usb_interface_claimed - returns true iff an interface is claimed 509 * @iface: the interface being checked 510 * 511 * Returns true (nonzero) iff the interface is claimed, else false (zero). 512 * Callers must own the driver model's usb bus readlock. So driver 513 * probe() entries don't need extra locking, but other call contexts 514 * may need to explicitly claim that lock. 515 * 516 */ 517static inline int usb_interface_claimed(struct usb_interface *iface) { 518 return (iface->dev.driver != NULL); 519} 520 521extern void usb_driver_release_interface(struct usb_driver *driver, 522 struct usb_interface *iface); 523const struct usb_device_id *usb_match_id(struct usb_interface *interface, 524 const struct usb_device_id *id); 525extern int usb_match_one_id(struct usb_interface *interface, 526 const struct usb_device_id *id); 527 528extern struct usb_interface *usb_find_interface(struct usb_driver *drv, 529 int minor); 530extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev, 531 unsigned ifnum); 532extern struct usb_host_interface *usb_altnum_to_altsetting( 533 const struct usb_interface *intf, unsigned int altnum); 534 535 536/** 537 * usb_make_path - returns stable device path in the usb tree 538 * @dev: the device whose path is being constructed 539 * @buf: where to put the string 540 * @size: how big is "buf"? 541 * 542 * Returns length of the string (> 0) or negative if size was too small. 543 * 544 * This identifier is intended to be "stable", reflecting physical paths in 545 * hardware such as physical bus addresses for host controllers or ports on 546 * USB hubs. That makes it stay the same until systems are physically 547 * reconfigured, by re-cabling a tree of USB devices or by moving USB host 548 * controllers. Adding and removing devices, including virtual root hubs 549 * in host controller driver modules, does not change these path identifers; 550 * neither does rebooting or re-enumerating. These are more useful identifiers 551 * than changeable ("unstable") ones like bus numbers or device addresses. 552 * 553 * With a partial exception for devices connected to USB 2.0 root hubs, these 554 * identifiers are also predictable. So long as the device tree isn't changed, 555 * plugging any USB device into a given hub port always gives it the same path. 556 * Because of the use of "companion" controllers, devices connected to ports on 557 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are 558 * high speed, and a different one if they are full or low speed. 559 */ 560static inline int usb_make_path (struct usb_device *dev, char *buf, 561 size_t size) 562{ 563 int actual; 564 actual = snprintf (buf, size, "usb-%s-%s", dev->bus->bus_name, 565 dev->devpath); 566 return (actual >= (int)size) ? -1 : actual; 567} 568 569/*-------------------------------------------------------------------------*/ 570 571/** 572 * usb_endpoint_num - get the endpoint's number 573 * @epd: endpoint to be checked 574 * 575 * Returns @epd's number: 0 to 15. 576 */ 577static inline int usb_endpoint_num(const struct usb_endpoint_descriptor *epd) 578{ 579 return epd->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK; 580} 581 582/** 583 * usb_endpoint_type - get the endpoint's transfer type 584 * @epd: endpoint to be checked 585 * 586 * Returns one of USB_ENDPOINT_XFER_{CONTROL, ISOC, BULK, INT} according 587 * to @epd's transfer type. 588 */ 589static inline int usb_endpoint_type(const struct usb_endpoint_descriptor *epd) 590{ 591 return epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK; 592} 593 594/** 595 * usb_endpoint_dir_in - check if the endpoint has IN direction 596 * @epd: endpoint to be checked 597 * 598 * Returns true if the endpoint is of type IN, otherwise it returns false. 599 */ 600static inline int usb_endpoint_dir_in(const struct usb_endpoint_descriptor *epd) 601{ 602 return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN); 603} 604 605/** 606 * usb_endpoint_dir_out - check if the endpoint has OUT direction 607 * @epd: endpoint to be checked 608 * 609 * Returns true if the endpoint is of type OUT, otherwise it returns false. 610 */ 611static inline int usb_endpoint_dir_out(const struct usb_endpoint_descriptor *epd) 612{ 613 return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT); 614} 615 616/** 617 * usb_endpoint_xfer_bulk - check if the endpoint has bulk transfer type 618 * @epd: endpoint to be checked 619 * 620 * Returns true if the endpoint is of type bulk, otherwise it returns false. 621 */ 622static inline int usb_endpoint_xfer_bulk(const struct usb_endpoint_descriptor *epd) 623{ 624 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 625 USB_ENDPOINT_XFER_BULK); 626} 627 628/** 629 * usb_endpoint_xfer_control - check if the endpoint has control transfer type 630 * @epd: endpoint to be checked 631 * 632 * Returns true if the endpoint is of type control, otherwise it returns false. 633 */ 634static inline int usb_endpoint_xfer_control(const struct usb_endpoint_descriptor *epd) 635{ 636 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 637 USB_ENDPOINT_XFER_CONTROL); 638} 639 640/** 641 * usb_endpoint_xfer_int - check if the endpoint has interrupt transfer type 642 * @epd: endpoint to be checked 643 * 644 * Returns true if the endpoint is of type interrupt, otherwise it returns 645 * false. 646 */ 647static inline int usb_endpoint_xfer_int(const struct usb_endpoint_descriptor *epd) 648{ 649 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 650 USB_ENDPOINT_XFER_INT); 651} 652 653/** 654 * usb_endpoint_xfer_isoc - check if the endpoint has isochronous transfer type 655 * @epd: endpoint to be checked 656 * 657 * Returns true if the endpoint is of type isochronous, otherwise it returns 658 * false. 659 */ 660static inline int usb_endpoint_xfer_isoc(const struct usb_endpoint_descriptor *epd) 661{ 662 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 663 USB_ENDPOINT_XFER_ISOC); 664} 665 666/** 667 * usb_endpoint_is_bulk_in - check if the endpoint is bulk IN 668 * @epd: endpoint to be checked 669 * 670 * Returns true if the endpoint has bulk transfer type and IN direction, 671 * otherwise it returns false. 672 */ 673static inline int usb_endpoint_is_bulk_in(const struct usb_endpoint_descriptor *epd) 674{ 675 return (usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_in(epd)); 676} 677 678/** 679 * usb_endpoint_is_bulk_out - check if the endpoint is bulk OUT 680 * @epd: endpoint to be checked 681 * 682 * Returns true if the endpoint has bulk transfer type and OUT direction, 683 * otherwise it returns false. 684 */ 685static inline int usb_endpoint_is_bulk_out(const struct usb_endpoint_descriptor *epd) 686{ 687 return (usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_out(epd)); 688} 689 690/** 691 * usb_endpoint_is_int_in - check if the endpoint is interrupt IN 692 * @epd: endpoint to be checked 693 * 694 * Returns true if the endpoint has interrupt transfer type and IN direction, 695 * otherwise it returns false. 696 */ 697static inline int usb_endpoint_is_int_in(const struct usb_endpoint_descriptor *epd) 698{ 699 return (usb_endpoint_xfer_int(epd) && usb_endpoint_dir_in(epd)); 700} 701 702/** 703 * usb_endpoint_is_int_out - check if the endpoint is interrupt OUT 704 * @epd: endpoint to be checked 705 * 706 * Returns true if the endpoint has interrupt transfer type and OUT direction, 707 * otherwise it returns false. 708 */ 709static inline int usb_endpoint_is_int_out(const struct usb_endpoint_descriptor *epd) 710{ 711 return (usb_endpoint_xfer_int(epd) && usb_endpoint_dir_out(epd)); 712} 713 714/** 715 * usb_endpoint_is_isoc_in - check if the endpoint is isochronous IN 716 * @epd: endpoint to be checked 717 * 718 * Returns true if the endpoint has isochronous transfer type and IN direction, 719 * otherwise it returns false. 720 */ 721static inline int usb_endpoint_is_isoc_in(const struct usb_endpoint_descriptor *epd) 722{ 723 return (usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_in(epd)); 724} 725 726/** 727 * usb_endpoint_is_isoc_out - check if the endpoint is isochronous OUT 728 * @epd: endpoint to be checked 729 * 730 * Returns true if the endpoint has isochronous transfer type and OUT direction, 731 * otherwise it returns false. 732 */ 733static inline int usb_endpoint_is_isoc_out(const struct usb_endpoint_descriptor *epd) 734{ 735 return (usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_out(epd)); 736} 737 738/*-------------------------------------------------------------------------*/ 739 740#define USB_DEVICE_ID_MATCH_DEVICE \ 741 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT) 742#define USB_DEVICE_ID_MATCH_DEV_RANGE \ 743 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI) 744#define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \ 745 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE) 746#define USB_DEVICE_ID_MATCH_DEV_INFO \ 747 (USB_DEVICE_ID_MATCH_DEV_CLASS | \ 748 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \ 749 USB_DEVICE_ID_MATCH_DEV_PROTOCOL) 750#define USB_DEVICE_ID_MATCH_INT_INFO \ 751 (USB_DEVICE_ID_MATCH_INT_CLASS | \ 752 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \ 753 USB_DEVICE_ID_MATCH_INT_PROTOCOL) 754 755/** 756 * USB_DEVICE - macro used to describe a specific usb device 757 * @vend: the 16 bit USB Vendor ID 758 * @prod: the 16 bit USB Product ID 759 * 760 * This macro is used to create a struct usb_device_id that matches a 761 * specific device. 762 */ 763#define USB_DEVICE(vend,prod) \ 764 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, .idVendor = (vend), \ 765 .idProduct = (prod) 766/** 767 * USB_DEVICE_VER - macro used to describe a specific usb device with a 768 * version range 769 * @vend: the 16 bit USB Vendor ID 770 * @prod: the 16 bit USB Product ID 771 * @lo: the bcdDevice_lo value 772 * @hi: the bcdDevice_hi value 773 * 774 * This macro is used to create a struct usb_device_id that matches a 775 * specific device, with a version range. 776 */ 777#define USB_DEVICE_VER(vend,prod,lo,hi) \ 778 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \ 779 .idVendor = (vend), .idProduct = (prod), \ 780 .bcdDevice_lo = (lo), .bcdDevice_hi = (hi) 781 782/** 783 * USB_DEVICE_INTERFACE_PROTOCOL - macro used to describe a usb 784 * device with a specific interface protocol 785 * @vend: the 16 bit USB Vendor ID 786 * @prod: the 16 bit USB Product ID 787 * @pr: bInterfaceProtocol value 788 * 789 * This macro is used to create a struct usb_device_id that matches a 790 * specific interface protocol of devices. 791 */ 792#define USB_DEVICE_INTERFACE_PROTOCOL(vend,prod,pr) \ 793 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_INT_PROTOCOL, \ 794 .idVendor = (vend), \ 795 .idProduct = (prod), \ 796 .bInterfaceProtocol = (pr) 797 798/** 799 * USB_DEVICE_INFO - macro used to describe a class of usb devices 800 * @cl: bDeviceClass value 801 * @sc: bDeviceSubClass value 802 * @pr: bDeviceProtocol value 803 * 804 * This macro is used to create a struct usb_device_id that matches a 805 * specific class of devices. 806 */ 807#define USB_DEVICE_INFO(cl,sc,pr) \ 808 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, .bDeviceClass = (cl), \ 809 .bDeviceSubClass = (sc), .bDeviceProtocol = (pr) 810 811/** 812 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces 813 * @cl: bInterfaceClass value 814 * @sc: bInterfaceSubClass value 815 * @pr: bInterfaceProtocol value 816 * 817 * This macro is used to create a struct usb_device_id that matches a 818 * specific class of interfaces. 819 */ 820#define USB_INTERFACE_INFO(cl,sc,pr) \ 821 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, .bInterfaceClass = (cl), \ 822 .bInterfaceSubClass = (sc), .bInterfaceProtocol = (pr) 823 824/** 825 * USB_DEVICE_AND_INTERFACE_INFO - macro used to describe a specific usb device 826 * with a class of usb interfaces 827 * @vend: the 16 bit USB Vendor ID 828 * @prod: the 16 bit USB Product ID 829 * @cl: bInterfaceClass value 830 * @sc: bInterfaceSubClass value 831 * @pr: bInterfaceProtocol value 832 * 833 * This macro is used to create a struct usb_device_id that matches a 834 * specific device with a specific class of interfaces. 835 * 836 * This is especially useful when explicitly matching devices that have 837 * vendor specific bDeviceClass values, but standards-compliant interfaces. 838 */ 839#define USB_DEVICE_AND_INTERFACE_INFO(vend,prod,cl,sc,pr) \ 840 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \ 841 | USB_DEVICE_ID_MATCH_DEVICE, \ 842 .idVendor = (vend), .idProduct = (prod), \ 843 .bInterfaceClass = (cl), \ 844 .bInterfaceSubClass = (sc), .bInterfaceProtocol = (pr) 845 846/* ----------------------------------------------------------------------- */ 847 848/* Stuff for dynamic usb ids */ 849struct usb_dynids { 850 spinlock_t lock; 851 struct list_head list; 852}; 853 854struct usb_dynid { 855 struct list_head node; 856 struct usb_device_id id; 857}; 858 859extern ssize_t usb_store_new_id(struct usb_dynids *dynids, 860 struct device_driver *driver, 861 const char *buf, size_t count); 862 863/** 864 * struct usbdrv_wrap - wrapper for driver-model structure 865 * @driver: The driver-model core driver structure. 866 * @for_devices: Non-zero for device drivers, 0 for interface drivers. 867 */ 868struct usbdrv_wrap { 869 struct device_driver driver; 870 int for_devices; 871}; 872 873/** 874 * struct usb_driver - identifies USB interface driver to usbcore 875 * @name: The driver name should be unique among USB drivers, 876 * and should normally be the same as the module name. 877 * @probe: Called to see if the driver is willing to manage a particular 878 * interface on a device. If it is, probe returns zero and uses 879 * dev_set_drvdata() to associate driver-specific data with the 880 * interface. It may also use usb_set_interface() to specify the 881 * appropriate altsetting. If unwilling to manage the interface, 882 * return a negative errno value. 883 * @disconnect: Called when the interface is no longer accessible, usually 884 * because its device has been (or is being) disconnected or the 885 * driver module is being unloaded. 886 * @ioctl: Used for drivers that want to talk to userspace through 887 * the "usbfs" filesystem. This lets devices provide ways to 888 * expose information to user space regardless of where they 889 * do (or don't) show up otherwise in the filesystem. 890 * @suspend: Called when the device is going to be suspended by the system. 891 * @resume: Called when the device is being resumed by the system. 892 * @reset_resume: Called when the suspended device has been reset instead 893 * of being resumed. 894 * @pre_reset: Called by usb_reset_composite_device() when the device 895 * is about to be reset. 896 * @post_reset: Called by usb_reset_composite_device() after the device 897 * has been reset, or in lieu of @resume following a reset-resume 898 * (i.e., the device is reset instead of being resumed, as might 899 * happen if power was lost). The second argument tells which is 900 * the reason. 901 * @id_table: USB drivers use ID table to support hotplugging. 902 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set 903 * or your driver's probe function will never get called. 904 * @dynids: used internally to hold the list of dynamically added device 905 * ids for this driver. 906 * @drvwrap: Driver-model core structure wrapper. 907 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be 908 * added to this driver by preventing the sysfs file from being created. 909 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 910 * for interfaces bound to this driver. 911 * 912 * USB interface drivers must provide a name, probe() and disconnect() 913 * methods, and an id_table. Other driver fields are optional. 914 * 915 * The id_table is used in hotplugging. It holds a set of descriptors, 916 * and specialized data may be associated with each entry. That table 917 * is used by both user and kernel mode hotplugging support. 918 * 919 * The probe() and disconnect() methods are called in a context where 920 * they can sleep, but they should avoid abusing the privilege. Most 921 * work to connect to a device should be done when the device is opened, 922 * and undone at the last close. The disconnect code needs to address 923 * concurrency issues with respect to open() and close() methods, as 924 * well as forcing all pending I/O requests to complete (by unlinking 925 * them as necessary, and blocking until the unlinks complete). 926 */ 927struct usb_driver { 928 const char *name; 929 930 int (*probe) (struct usb_interface *intf, 931 const struct usb_device_id *id); 932 933 void (*disconnect) (struct usb_interface *intf); 934 935 int (*ioctl) (struct usb_interface *intf, unsigned int code, 936 void *buf); 937 938 int (*suspend) (struct usb_interface *intf, pm_message_t message); 939 int (*resume) (struct usb_interface *intf); 940 int (*reset_resume)(struct usb_interface *intf); 941 942 int (*pre_reset)(struct usb_interface *intf); 943 int (*post_reset)(struct usb_interface *intf); 944 945 const struct usb_device_id *id_table; 946 947 struct usb_dynids dynids; 948 struct usbdrv_wrap drvwrap; 949 unsigned int no_dynamic_id:1; 950 unsigned int supports_autosuspend:1; 951}; 952#define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver) 953 954/** 955 * struct usb_device_driver - identifies USB device driver to usbcore 956 * @name: The driver name should be unique among USB drivers, 957 * and should normally be the same as the module name. 958 * @probe: Called to see if the driver is willing to manage a particular 959 * device. If it is, probe returns zero and uses dev_set_drvdata() 960 * to associate driver-specific data with the device. If unwilling 961 * to manage the device, return a negative errno value. 962 * @disconnect: Called when the device is no longer accessible, usually 963 * because it has been (or is being) disconnected or the driver's 964 * module is being unloaded. 965 * @suspend: Called when the device is going to be suspended by the system. 966 * @resume: Called when the device is being resumed by the system. 967 * @drvwrap: Driver-model core structure wrapper. 968 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 969 * for devices bound to this driver. 970 * 971 * USB drivers must provide all the fields listed above except drvwrap. 972 */ 973struct usb_device_driver { 974 const char *name; 975 976 int (*probe) (struct usb_device *udev); 977 void (*disconnect) (struct usb_device *udev); 978 979 int (*suspend) (struct usb_device *udev, pm_message_t message); 980 int (*resume) (struct usb_device *udev); 981 struct usbdrv_wrap drvwrap; 982 unsigned int supports_autosuspend:1; 983}; 984#define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \ 985 drvwrap.driver) 986 987extern struct bus_type usb_bus_type; 988 989/** 990 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number 991 * @name: the usb class device name for this driver. Will show up in sysfs. 992 * @fops: pointer to the struct file_operations of this driver. 993 * @minor_base: the start of the minor range for this driver. 994 * 995 * This structure is used for the usb_register_dev() and 996 * usb_unregister_dev() functions, to consolidate a number of the 997 * parameters used for them. 998 */ 999struct usb_class_driver { 1000 char *name; 1001 const struct file_operations *fops; 1002 int minor_base; 1003}; 1004 1005/* 1006 * use these in module_init()/module_exit() 1007 * and don't forget MODULE_DEVICE_TABLE(usb, ...) 1008 */ 1009extern int usb_register_driver(struct usb_driver *, struct module *, 1010 const char *); 1011static inline int usb_register(struct usb_driver *driver) 1012{ 1013 return usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME); 1014} 1015extern void usb_deregister(struct usb_driver *); 1016 1017extern int usb_register_device_driver(struct usb_device_driver *, 1018 struct module *); 1019extern void usb_deregister_device_driver(struct usb_device_driver *); 1020 1021extern int usb_register_dev(struct usb_interface *intf, 1022 struct usb_class_driver *class_driver); 1023extern void usb_deregister_dev(struct usb_interface *intf, 1024 struct usb_class_driver *class_driver); 1025 1026extern int usb_disabled(void); 1027 1028/* ----------------------------------------------------------------------- */ 1029 1030/* 1031 * URB support, for asynchronous request completions 1032 */ 1033 1034/* 1035 * urb->transfer_flags: 1036 * 1037 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb(). 1038 */ 1039#define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */ 1040#define URB_ISO_ASAP 0x0002 /* iso-only, urb->start_frame 1041 * ignored */ 1042#define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */ 1043#define URB_NO_SETUP_DMA_MAP 0x0008 /* urb->setup_dma valid on submit */ 1044#define URB_NO_FSBR 0x0020 /* UHCI-specific */ 1045#define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */ 1046#define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt 1047 * needed */ 1048#define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */ 1049 1050#define URB_DIR_IN 0x0200 /* Transfer from device to host */ 1051#define URB_DIR_OUT 0 1052#define URB_DIR_MASK URB_DIR_IN 1053 1054struct usb_iso_packet_descriptor { 1055 unsigned int offset; 1056 unsigned int length; /* expected length */ 1057 unsigned int actual_length; 1058 int status; 1059}; 1060 1061struct urb; 1062 1063struct usb_anchor { 1064 struct list_head urb_list; 1065 wait_queue_head_t wait; 1066 spinlock_t lock; 1067}; 1068 1069static inline void init_usb_anchor(struct usb_anchor *anchor) 1070{ 1071 INIT_LIST_HEAD(&anchor->urb_list); 1072 init_waitqueue_head(&anchor->wait); 1073 spin_lock_init(&anchor->lock); 1074} 1075 1076typedef void (*usb_complete_t)(struct urb *); 1077 1078/** 1079 * struct urb - USB Request Block 1080 * @urb_list: For use by current owner of the URB. 1081 * @anchor_list: membership in the list of an anchor 1082 * @anchor: to anchor URBs to a common mooring 1083 * @ep: Points to the endpoint's data structure. Will eventually 1084 * replace @pipe. 1085 * @pipe: Holds endpoint number, direction, type, and more. 1086 * Create these values with the eight macros available; 1087 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl" 1088 * (control), "bulk", "int" (interrupt), or "iso" (isochronous). 1089 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint 1090 * numbers range from zero to fifteen. Note that "in" endpoint two 1091 * is a different endpoint (and pipe) from "out" endpoint two. 1092 * The current configuration controls the existence, type, and 1093 * maximum packet size of any given endpoint. 1094 * @dev: Identifies the USB device to perform the request. 1095 * @status: This is read in non-iso completion functions to get the 1096 * status of the particular request. ISO requests only use it 1097 * to tell whether the URB was unlinked; detailed status for 1098 * each frame is in the fields of the iso_frame-desc. 1099 * @transfer_flags: A variety of flags may be used to affect how URB 1100 * submission, unlinking, or operation are handled. Different 1101 * kinds of URB can use different flags. 1102 * @transfer_buffer: This identifies the buffer to (or from) which 1103 * the I/O request will be performed (unless URB_NO_TRANSFER_DMA_MAP 1104 * is set). This buffer must be suitable for DMA; allocate it with 1105 * kmalloc() or equivalent. For transfers to "in" endpoints, contents 1106 * of this buffer will be modified. This buffer is used for the data 1107 * stage of control transfers. 1108 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP, 1109 * the device driver is saying that it provided this DMA address, 1110 * which the host controller driver should use in preference to the 1111 * transfer_buffer. 1112 * @transfer_buffer_length: How big is transfer_buffer. The transfer may 1113 * be broken up into chunks according to the current maximum packet 1114 * size for the endpoint, which is a function of the configuration 1115 * and is encoded in the pipe. When the length is zero, neither 1116 * transfer_buffer nor transfer_dma is used. 1117 * @actual_length: This is read in non-iso completion functions, and 1118 * it tells how many bytes (out of transfer_buffer_length) were 1119 * transferred. It will normally be the same as requested, unless 1120 * either an error was reported or a short read was performed. 1121 * The URB_SHORT_NOT_OK transfer flag may be used to make such 1122 * short reads be reported as errors. 1123 * @setup_packet: Only used for control transfers, this points to eight bytes 1124 * of setup data. Control transfers always start by sending this data 1125 * to the device. Then transfer_buffer is read or written, if needed. 1126 * @setup_dma: For control transfers with URB_NO_SETUP_DMA_MAP set, the 1127 * device driver has provided this DMA address for the setup packet. 1128 * The host controller driver should use this in preference to 1129 * setup_packet. 1130 * @start_frame: Returns the initial frame for isochronous transfers. 1131 * @number_of_packets: Lists the number of ISO transfer buffers. 1132 * @interval: Specifies the polling interval for interrupt or isochronous 1133 * transfers. The units are frames (milliseconds) for for full and low 1134 * speed devices, and microframes (1/8 millisecond) for highspeed ones. 1135 * @error_count: Returns the number of ISO transfers that reported errors. 1136 * @context: For use in completion functions. This normally points to 1137 * request-specific driver context. 1138 * @complete: Completion handler. This URB is passed as the parameter to the 1139 * completion function. The completion function may then do what 1140 * it likes with the URB, including resubmitting or freeing it. 1141 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to 1142 * collect the transfer status for each buffer. 1143 * 1144 * This structure identifies USB transfer requests. URBs must be allocated by 1145 * calling usb_alloc_urb() and freed with a call to usb_free_urb(). 1146 * Initialization may be done using various usb_fill_*_urb() functions. URBs 1147 * are submitted using usb_submit_urb(), and pending requests may be canceled 1148 * using usb_unlink_urb() or usb_kill_urb(). 1149 * 1150 * Data Transfer Buffers: 1151 * 1152 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise 1153 * taken from the general page pool. That is provided by transfer_buffer 1154 * (control requests also use setup_packet), and host controller drivers 1155 * perform a dma mapping (and unmapping) for each buffer transferred. Those 1156 * mapping operations can be expensive on some platforms (perhaps using a dma 1157 * bounce buffer or talking to an IOMMU), 1158 * although they're cheap on commodity x86 and ppc hardware. 1159 * 1160 * Alternatively, drivers may pass the URB_NO_xxx_DMA_MAP transfer flags, 1161 * which tell the host controller driver that no such mapping is needed since 1162 * the device driver is DMA-aware. For example, a device driver might 1163 * allocate a DMA buffer with usb_buffer_alloc() or call usb_buffer_map(). 1164 * When these transfer flags are provided, host controller drivers will 1165 * attempt to use the dma addresses found in the transfer_dma and/or 1166 * setup_dma fields rather than determining a dma address themselves. (Note 1167 * that transfer_buffer and setup_packet must still be set because not all 1168 * host controllers use DMA, nor do virtual root hubs). 1169 * 1170 * Initialization: 1171 * 1172 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be 1173 * zero), and complete fields. All URBs must also initialize 1174 * transfer_buffer and transfer_buffer_length. They may provide the 1175 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are 1176 * to be treated as errors; that flag is invalid for write requests. 1177 * 1178 * Bulk URBs may 1179 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers 1180 * should always terminate with a short packet, even if it means adding an 1181 * extra zero length packet. 1182 * 1183 * Control URBs must provide a setup_packet. The setup_packet and 1184 * transfer_buffer may each be mapped for DMA or not, independently of 1185 * the other. The transfer_flags bits URB_NO_TRANSFER_DMA_MAP and 1186 * URB_NO_SETUP_DMA_MAP indicate which buffers have already been mapped. 1187 * URB_NO_SETUP_DMA_MAP is ignored for non-control URBs. 1188 * 1189 * Interrupt URBs must provide an interval, saying how often (in milliseconds 1190 * or, for highspeed devices, 125 microsecond units) 1191 * to poll for transfers. After the URB has been submitted, the interval 1192 * field reflects how the transfer was actually scheduled. 1193 * The polling interval may be more frequent than requested. 1194 * For example, some controllers have a maximum interval of 32 milliseconds, 1195 * while others support intervals of up to 1024 milliseconds. 1196 * Isochronous URBs also have transfer intervals. (Note that for isochronous 1197 * endpoints, as well as high speed interrupt endpoints, the encoding of 1198 * the transfer interval in the endpoint descriptor is logarithmic. 1199 * Device drivers must convert that value to linear units themselves.) 1200 * 1201 * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling 1202 * the host controller to schedule the transfer as soon as bandwidth 1203 * utilization allows, and then set start_frame to reflect the actual frame 1204 * selected during submission. Otherwise drivers must specify the start_frame 1205 * and handle the case where the transfer can't begin then. However, drivers 1206 * won't know how bandwidth is currently allocated, and while they can 1207 * find the current frame using usb_get_current_frame_number () they can't 1208 * know the range for that frame number. (Ranges for frame counter values 1209 * are HC-specific, and can go from 256 to 65536 frames from "now".) 1210 * 1211 * Isochronous URBs have a different data transfer model, in part because 1212 * the quality of service is only "best effort". Callers provide specially 1213 * allocated URBs, with number_of_packets worth of iso_frame_desc structures 1214 * at the end. Each such packet is an individual ISO transfer. Isochronous 1215 * URBs are normally queued, submitted by drivers to arrange that 1216 * transfers are at least double buffered, and then explicitly resubmitted 1217 * in completion handlers, so 1218 * that data (such as audio or video) streams at as constant a rate as the 1219 * host controller scheduler can support. 1220 * 1221 * Completion Callbacks: 1222 * 1223 * The completion callback is made in_interrupt(), and one of the first 1224 * things that a completion handler should do is check the status field. 1225 * The status field is provided for all URBs. It is used to report 1226 * unlinked URBs, and status for all non-ISO transfers. It should not 1227 * be examined before the URB is returned to the completion handler. 1228 * 1229 * The context field is normally used to link URBs back to the relevant 1230 * driver or request state. 1231 * 1232 * When the completion callback is invoked for non-isochronous URBs, the 1233 * actual_length field tells how many bytes were transferred. This field 1234 * is updated even when the URB terminated with an error or was unlinked. 1235 * 1236 * ISO transfer status is reported in the status and actual_length fields 1237 * of the iso_frame_desc array, and the number of errors is reported in 1238 * error_count. Completion callbacks for ISO transfers will normally 1239 * (re)submit URBs to ensure a constant transfer rate. 1240 * 1241 * Note that even fields marked "public" should not be touched by the driver 1242 * when the urb is owned by the hcd, that is, since the call to 1243 * usb_submit_urb() till the entry into the completion routine. 1244 */ 1245struct urb 1246{ 1247 /* private: usb core and host controller only fields in the urb */ 1248 struct kref kref; /* reference count of the URB */ 1249 void *hcpriv; /* private data for host controller */ 1250 atomic_t use_count; /* concurrent submissions counter */ 1251 u8 reject; /* submissions will fail */ 1252 int unlinked; /* unlink error code */ 1253 1254 /* public: documented fields in the urb that can be used by drivers */ 1255 struct list_head urb_list; /* list head for use by the urb's 1256 * current owner */ 1257 struct list_head anchor_list; /* the URB may be anchored by the driver */ 1258 struct usb_anchor *anchor; 1259 struct usb_device *dev; /* (in) pointer to associated device */ 1260 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint struct */ 1261 unsigned int pipe; /* (in) pipe information */ 1262 int status; /* (return) non-ISO status */ 1263 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/ 1264 void *transfer_buffer; /* (in) associated data buffer */ 1265 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */ 1266 int transfer_buffer_length; /* (in) data buffer length */ 1267 int actual_length; /* (return) actual transfer length */ 1268 unsigned char *setup_packet; /* (in) setup packet (control only) */ 1269 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */ 1270 int start_frame; /* (modify) start frame (ISO) */ 1271 int number_of_packets; /* (in) number of ISO packets */ 1272 int interval; /* (modify) transfer interval 1273 * (INT/ISO) */ 1274 int error_count; /* (return) number of ISO errors */ 1275 void *context; /* (in) context for completion */ 1276 usb_complete_t complete; /* (in) completion routine */ 1277 struct usb_iso_packet_descriptor iso_frame_desc[0]; 1278 /* (in) ISO ONLY */ 1279}; 1280 1281/* ----------------------------------------------------------------------- */ 1282 1283/** 1284 * usb_fill_control_urb - initializes a control urb 1285 * @urb: pointer to the urb to initialize. 1286 * @dev: pointer to the struct usb_device for this urb. 1287 * @pipe: the endpoint pipe 1288 * @setup_packet: pointer to the setup_packet buffer 1289 * @transfer_buffer: pointer to the transfer buffer 1290 * @buffer_length: length of the transfer buffer 1291 * @complete_fn: pointer to the usb_complete_t function 1292 * @context: what to set the urb context to. 1293 * 1294 * Initializes a control urb with the proper information needed to submit 1295 * it to a device. 1296 */ 1297static inline void usb_fill_control_urb (struct urb *urb, 1298 struct usb_device *dev, 1299 unsigned int pipe, 1300 unsigned char *setup_packet, 1301 void *transfer_buffer, 1302 int buffer_length, 1303 usb_complete_t complete_fn, 1304 void *context) 1305{ 1306 urb->dev = dev; 1307 urb->pipe = pipe; 1308 urb->setup_packet = setup_packet; 1309 urb->transfer_buffer = transfer_buffer; 1310 urb->transfer_buffer_length = buffer_length; 1311 urb->complete = complete_fn; 1312 urb->context = context; 1313} 1314 1315/** 1316 * usb_fill_bulk_urb - macro to help initialize a bulk urb 1317 * @urb: pointer to the urb to initialize. 1318 * @dev: pointer to the struct usb_device for this urb. 1319 * @pipe: the endpoint pipe 1320 * @transfer_buffer: pointer to the transfer buffer 1321 * @buffer_length: length of the transfer buffer 1322 * @complete_fn: pointer to the usb_complete_t function 1323 * @context: what to set the urb context to. 1324 * 1325 * Initializes a bulk urb with the proper information needed to submit it 1326 * to a device. 1327 */ 1328static inline void usb_fill_bulk_urb (struct urb *urb, 1329 struct usb_device *dev, 1330 unsigned int pipe, 1331 void *transfer_buffer, 1332 int buffer_length, 1333 usb_complete_t complete_fn, 1334 void *context) 1335{ 1336 urb->dev = dev; 1337 urb->pipe = pipe; 1338 urb->transfer_buffer = transfer_buffer; 1339 urb->transfer_buffer_length = buffer_length; 1340 urb->complete = complete_fn; 1341 urb->context = context; 1342} 1343 1344/** 1345 * usb_fill_int_urb - macro to help initialize a interrupt urb 1346 * @urb: pointer to the urb to initialize. 1347 * @dev: pointer to the struct usb_device for this urb. 1348 * @pipe: the endpoint pipe 1349 * @transfer_buffer: pointer to the transfer buffer 1350 * @buffer_length: length of the transfer buffer 1351 * @complete_fn: pointer to the usb_complete_t function 1352 * @context: what to set the urb context to. 1353 * @interval: what to set the urb interval to, encoded like 1354 * the endpoint descriptor's bInterval value. 1355 * 1356 * Initializes a interrupt urb with the proper information needed to submit 1357 * it to a device. 1358 * Note that high speed interrupt endpoints use a logarithmic encoding of 1359 * the endpoint interval, and express polling intervals in microframes 1360 * (eight per millisecond) rather than in frames (one per millisecond). 1361 */ 1362static inline void usb_fill_int_urb (struct urb *urb, 1363 struct usb_device *dev, 1364 unsigned int pipe, 1365 void *transfer_buffer, 1366 int buffer_length, 1367 usb_complete_t complete_fn, 1368 void *context, 1369 int interval) 1370{ 1371 urb->dev = dev; 1372 urb->pipe = pipe; 1373 urb->transfer_buffer = transfer_buffer; 1374 urb->transfer_buffer_length = buffer_length; 1375 urb->complete = complete_fn; 1376 urb->context = context; 1377 if (dev->speed == USB_SPEED_HIGH) 1378 urb->interval = 1 << (interval - 1); 1379 else 1380 urb->interval = interval; 1381 urb->start_frame = -1; 1382} 1383 1384extern void usb_init_urb(struct urb *urb); 1385extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags); 1386extern void usb_free_urb(struct urb *urb); 1387#define usb_put_urb usb_free_urb 1388extern struct urb *usb_get_urb(struct urb *urb); 1389extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags); 1390extern int usb_unlink_urb(struct urb *urb); 1391extern void usb_kill_urb(struct urb *urb); 1392extern void usb_kill_anchored_urbs(struct usb_anchor *anchor); 1393extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor); 1394extern void usb_unanchor_urb(struct urb *urb); 1395extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor, 1396 unsigned int timeout); 1397 1398/** 1399 * usb_urb_dir_in - check if an URB describes an IN transfer 1400 * @urb: URB to be checked 1401 * 1402 * Returns 1 if @urb describes an IN transfer (device-to-host), 1403 * otherwise 0. 1404 */ 1405static inline int usb_urb_dir_in(struct urb *urb) 1406{ 1407 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN; 1408} 1409 1410/** 1411 * usb_urb_dir_out - check if an URB describes an OUT transfer 1412 * @urb: URB to be checked 1413 * 1414 * Returns 1 if @urb describes an OUT transfer (host-to-device), 1415 * otherwise 0. 1416 */ 1417static inline int usb_urb_dir_out(struct urb *urb) 1418{ 1419 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT; 1420} 1421 1422void *usb_buffer_alloc (struct usb_device *dev, size_t size, 1423 gfp_t mem_flags, dma_addr_t *dma); 1424void usb_buffer_free (struct usb_device *dev, size_t size, 1425 void *addr, dma_addr_t dma); 1426 1427#if 0 1428struct urb *usb_buffer_map (struct urb *urb); 1429void usb_buffer_dmasync (struct urb *urb); 1430void usb_buffer_unmap (struct urb *urb); 1431#endif 1432 1433struct scatterlist; 1434int usb_buffer_map_sg(const struct usb_device *dev, int is_in, 1435 struct scatterlist *sg, int nents); 1436#if 0 1437void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in, 1438 struct scatterlist *sg, int n_hw_ents); 1439#endif 1440void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in, 1441 struct scatterlist *sg, int n_hw_ents); 1442 1443/*-------------------------------------------------------------------* 1444 * SYNCHRONOUS CALL SUPPORT * 1445 *-------------------------------------------------------------------*/ 1446 1447extern int usb_control_msg(struct usb_device *dev, unsigned int pipe, 1448 __u8 request, __u8 requesttype, __u16 value, __u16 index, 1449 void *data, __u16 size, int timeout); 1450extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 1451 void *data, int len, int *actual_length, int timeout); 1452extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 1453 void *data, int len, int *actual_length, 1454 int timeout); 1455 1456/* wrappers around usb_control_msg() for the most common standard requests */ 1457extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype, 1458 unsigned char descindex, void *buf, int size); 1459extern int usb_get_status(struct usb_device *dev, 1460 int type, int target, void *data); 1461extern int usb_string(struct usb_device *dev, int index, 1462 char *buf, size_t size); 1463 1464/* wrappers that also update important state inside usbcore */ 1465extern int usb_clear_halt(struct usb_device *dev, int pipe); 1466extern int usb_reset_configuration(struct usb_device *dev); 1467extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate); 1468 1469/* this request isn't really synchronous, but it belongs with the others */ 1470extern int usb_driver_set_configuration(struct usb_device *udev, int config); 1471 1472/* 1473 * timeouts, in milliseconds, used for sending/receiving control messages 1474 * they typically complete within a few frames (msec) after they're issued 1475 * USB identifies 5 second timeouts, maybe more in a few cases, and a few 1476 * slow devices (like some MGE Ellipse UPSes) actually push that limit. 1477 */ 1478#define USB_CTRL_GET_TIMEOUT 5000 1479#define USB_CTRL_SET_TIMEOUT 5000 1480 1481 1482/** 1483 * struct usb_sg_request - support for scatter/gather I/O 1484 * @status: zero indicates success, else negative errno 1485 * @bytes: counts bytes transferred. 1486 * 1487 * These requests are initialized using usb_sg_init(), and then are used 1488 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most 1489 * members of the request object aren't for driver access. 1490 * 1491 * The status and bytecount values are valid only after usb_sg_wait() 1492 * returns. If the status is zero, then the bytecount matches the total 1493 * from the request. 1494 * 1495 * After an error completion, drivers may need to clear a halt condition 1496 * on the endpoint. 1497 */ 1498struct usb_sg_request { 1499 int status; 1500 size_t bytes; 1501 1502 /* 1503 * members below are private: to usbcore, 1504 * and are not provided for driver access! 1505 */ 1506 spinlock_t lock; 1507 1508 struct usb_device *dev; 1509 int pipe; 1510 struct scatterlist *sg; 1511 int nents; 1512 1513 int entries; 1514 struct urb **urbs; 1515 1516 int count; 1517 struct completion complete; 1518}; 1519 1520int usb_sg_init ( 1521 struct usb_sg_request *io, 1522 struct usb_device *dev, 1523 unsigned pipe, 1524 unsigned period, 1525 struct scatterlist *sg, 1526 int nents, 1527 size_t length, 1528 gfp_t mem_flags 1529); 1530void usb_sg_cancel (struct usb_sg_request *io); 1531void usb_sg_wait (struct usb_sg_request *io); 1532 1533 1534/* ----------------------------------------------------------------------- */ 1535 1536/* 1537 * For various legacy reasons, Linux has a small cookie that's paired with 1538 * a struct usb_device to identify an endpoint queue. Queue characteristics 1539 * are defined by the endpoint's descriptor. This cookie is called a "pipe", 1540 * an unsigned int encoded as: 1541 * 1542 * - direction: bit 7 (0 = Host-to-Device [Out], 1543 * 1 = Device-to-Host [In] ... 1544 * like endpoint bEndpointAddress) 1545 * - device address: bits 8-14 ... bit positions known to uhci-hcd 1546 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd 1547 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt, 1548 * 10 = control, 11 = bulk) 1549 * 1550 * Given the device address and endpoint descriptor, pipes are redundant. 1551 */ 1552 1553/* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */ 1554/* (yet ... they're the values used by usbfs) */ 1555#define PIPE_ISOCHRONOUS 0 1556#define PIPE_INTERRUPT 1 1557#define PIPE_CONTROL 2 1558#define PIPE_BULK 3 1559 1560#define usb_pipein(pipe) ((pipe) & USB_DIR_IN) 1561#define usb_pipeout(pipe) (!usb_pipein(pipe)) 1562 1563#define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f) 1564#define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf) 1565 1566#define usb_pipetype(pipe) (((pipe) >> 30) & 3) 1567#define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS) 1568#define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT) 1569#define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL) 1570#define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK) 1571 1572/* The D0/D1 toggle bits ... USE WITH CAUTION (they're almost hcd-internal) */ 1573#define usb_gettoggle(dev, ep, out) (((dev)->toggle[out] >> (ep)) & 1) 1574#define usb_dotoggle(dev, ep, out) ((dev)->toggle[out] ^= (1 << (ep))) 1575#define usb_settoggle(dev, ep, out, bit) \ 1576 ((dev)->toggle[out] = ((dev)->toggle[out] & ~(1 << (ep))) | \ 1577 ((bit) << (ep))) 1578 1579 1580static inline unsigned int __create_pipe(struct usb_device *dev, 1581 unsigned int endpoint) 1582{ 1583 return (dev->devnum << 8) | (endpoint << 15); 1584} 1585 1586/* Create various pipes... */ 1587#define usb_sndctrlpipe(dev,endpoint) \ 1588 ((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint)) 1589#define usb_rcvctrlpipe(dev,endpoint) \ 1590 ((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN) 1591#define usb_sndisocpipe(dev,endpoint) \ 1592 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint)) 1593#define usb_rcvisocpipe(dev,endpoint) \ 1594 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN) 1595#define usb_sndbulkpipe(dev,endpoint) \ 1596 ((PIPE_BULK << 30) | __create_pipe(dev,endpoint)) 1597#define usb_rcvbulkpipe(dev,endpoint) \ 1598 ((PIPE_BULK << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN) 1599#define usb_sndintpipe(dev,endpoint) \ 1600 ((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint)) 1601#define usb_rcvintpipe(dev,endpoint) \ 1602 ((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN) 1603 1604/*-------------------------------------------------------------------------*/ 1605 1606static inline __u16 1607usb_maxpacket(struct usb_device *udev, int pipe, int is_out) 1608{ 1609 struct usb_host_endpoint *ep; 1610 unsigned epnum = usb_pipeendpoint(pipe); 1611 1612 if (is_out) { 1613 WARN_ON(usb_pipein(pipe)); 1614 ep = udev->ep_out[epnum]; 1615 } else { 1616 WARN_ON(usb_pipeout(pipe)); 1617 ep = udev->ep_in[epnum]; 1618 } 1619 if (!ep) 1620 return 0; 1621 1622 /* NOTE: only 0x07ff bits are for packet size... */ 1623 return le16_to_cpu(ep->desc.wMaxPacketSize); 1624} 1625 1626/* ----------------------------------------------------------------------- */ 1627 1628/* Events from the usb core */ 1629#define USB_DEVICE_ADD 0x0001 1630#define USB_DEVICE_REMOVE 0x0002 1631#define USB_BUS_ADD 0x0003 1632#define USB_BUS_REMOVE 0x0004 1633extern void usb_register_notify(struct notifier_block *nb); 1634extern void usb_unregister_notify(struct notifier_block *nb); 1635 1636#ifdef DEBUG 1637#define dbg(format, arg...) printk(KERN_DEBUG "%s: " format "\n" , \ 1638 __FILE__ , ## arg) 1639#else 1640#define dbg(format, arg...) do {} while (0) 1641#endif 1642 1643#define err(format, arg...) printk(KERN_ERR "%s: " format "\n" , \ 1644 __FILE__ , ## arg) 1645#define info(format, arg...) printk(KERN_INFO "%s: " format "\n" , \ 1646 __FILE__ , ## arg) 1647#define warn(format, arg...) printk(KERN_WARNING "%s: " format "\n" , \ 1648 __FILE__ , ## arg) 1649 1650 1651#endif /* __KERNEL__ */ 1652 1653#endif