at v2.6.24 265 lines 7.5 kB view raw
1#ifndef _LINUX_PAGEMAP_H 2#define _LINUX_PAGEMAP_H 3 4/* 5 * Copyright 1995 Linus Torvalds 6 */ 7#include <linux/mm.h> 8#include <linux/fs.h> 9#include <linux/list.h> 10#include <linux/highmem.h> 11#include <linux/compiler.h> 12#include <asm/uaccess.h> 13#include <linux/gfp.h> 14#include <linux/bitops.h> 15 16/* 17 * Bits in mapping->flags. The lower __GFP_BITS_SHIFT bits are the page 18 * allocation mode flags. 19 */ 20#define AS_EIO (__GFP_BITS_SHIFT + 0) /* IO error on async write */ 21#define AS_ENOSPC (__GFP_BITS_SHIFT + 1) /* ENOSPC on async write */ 22 23static inline void mapping_set_error(struct address_space *mapping, int error) 24{ 25 if (error) { 26 if (error == -ENOSPC) 27 set_bit(AS_ENOSPC, &mapping->flags); 28 else 29 set_bit(AS_EIO, &mapping->flags); 30 } 31} 32 33static inline gfp_t mapping_gfp_mask(struct address_space * mapping) 34{ 35 return (__force gfp_t)mapping->flags & __GFP_BITS_MASK; 36} 37 38/* 39 * This is non-atomic. Only to be used before the mapping is activated. 40 * Probably needs a barrier... 41 */ 42static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask) 43{ 44 m->flags = (m->flags & ~(__force unsigned long)__GFP_BITS_MASK) | 45 (__force unsigned long)mask; 46} 47 48/* 49 * The page cache can done in larger chunks than 50 * one page, because it allows for more efficient 51 * throughput (it can then be mapped into user 52 * space in smaller chunks for same flexibility). 53 * 54 * Or rather, it _will_ be done in larger chunks. 55 */ 56#define PAGE_CACHE_SHIFT PAGE_SHIFT 57#define PAGE_CACHE_SIZE PAGE_SIZE 58#define PAGE_CACHE_MASK PAGE_MASK 59#define PAGE_CACHE_ALIGN(addr) (((addr)+PAGE_CACHE_SIZE-1)&PAGE_CACHE_MASK) 60 61#define page_cache_get(page) get_page(page) 62#define page_cache_release(page) put_page(page) 63void release_pages(struct page **pages, int nr, int cold); 64 65#ifdef CONFIG_NUMA 66extern struct page *__page_cache_alloc(gfp_t gfp); 67#else 68static inline struct page *__page_cache_alloc(gfp_t gfp) 69{ 70 return alloc_pages(gfp, 0); 71} 72#endif 73 74static inline struct page *page_cache_alloc(struct address_space *x) 75{ 76 return __page_cache_alloc(mapping_gfp_mask(x)); 77} 78 79static inline struct page *page_cache_alloc_cold(struct address_space *x) 80{ 81 return __page_cache_alloc(mapping_gfp_mask(x)|__GFP_COLD); 82} 83 84typedef int filler_t(void *, struct page *); 85 86extern struct page * find_get_page(struct address_space *mapping, 87 pgoff_t index); 88extern struct page * find_lock_page(struct address_space *mapping, 89 pgoff_t index); 90extern struct page * find_or_create_page(struct address_space *mapping, 91 pgoff_t index, gfp_t gfp_mask); 92unsigned find_get_pages(struct address_space *mapping, pgoff_t start, 93 unsigned int nr_pages, struct page **pages); 94unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start, 95 unsigned int nr_pages, struct page **pages); 96unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, 97 int tag, unsigned int nr_pages, struct page **pages); 98 99struct page *__grab_cache_page(struct address_space *mapping, pgoff_t index); 100 101/* 102 * Returns locked page at given index in given cache, creating it if needed. 103 */ 104static inline struct page *grab_cache_page(struct address_space *mapping, 105 pgoff_t index) 106{ 107 return find_or_create_page(mapping, index, mapping_gfp_mask(mapping)); 108} 109 110extern struct page * grab_cache_page_nowait(struct address_space *mapping, 111 pgoff_t index); 112extern struct page * read_cache_page_async(struct address_space *mapping, 113 pgoff_t index, filler_t *filler, 114 void *data); 115extern struct page * read_cache_page(struct address_space *mapping, 116 pgoff_t index, filler_t *filler, 117 void *data); 118extern int read_cache_pages(struct address_space *mapping, 119 struct list_head *pages, filler_t *filler, void *data); 120 121static inline struct page *read_mapping_page_async( 122 struct address_space *mapping, 123 pgoff_t index, void *data) 124{ 125 filler_t *filler = (filler_t *)mapping->a_ops->readpage; 126 return read_cache_page_async(mapping, index, filler, data); 127} 128 129static inline struct page *read_mapping_page(struct address_space *mapping, 130 pgoff_t index, void *data) 131{ 132 filler_t *filler = (filler_t *)mapping->a_ops->readpage; 133 return read_cache_page(mapping, index, filler, data); 134} 135 136int add_to_page_cache(struct page *page, struct address_space *mapping, 137 pgoff_t index, gfp_t gfp_mask); 138int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 139 pgoff_t index, gfp_t gfp_mask); 140extern void remove_from_page_cache(struct page *page); 141extern void __remove_from_page_cache(struct page *page); 142 143/* 144 * Return byte-offset into filesystem object for page. 145 */ 146static inline loff_t page_offset(struct page *page) 147{ 148 return ((loff_t)page->index) << PAGE_CACHE_SHIFT; 149} 150 151static inline pgoff_t linear_page_index(struct vm_area_struct *vma, 152 unsigned long address) 153{ 154 pgoff_t pgoff = (address - vma->vm_start) >> PAGE_SHIFT; 155 pgoff += vma->vm_pgoff; 156 return pgoff >> (PAGE_CACHE_SHIFT - PAGE_SHIFT); 157} 158 159extern void FASTCALL(__lock_page(struct page *page)); 160extern void FASTCALL(__lock_page_nosync(struct page *page)); 161extern void FASTCALL(unlock_page(struct page *page)); 162 163/* 164 * lock_page may only be called if we have the page's inode pinned. 165 */ 166static inline void lock_page(struct page *page) 167{ 168 might_sleep(); 169 if (TestSetPageLocked(page)) 170 __lock_page(page); 171} 172 173/* 174 * lock_page_nosync should only be used if we can't pin the page's inode. 175 * Doesn't play quite so well with block device plugging. 176 */ 177static inline void lock_page_nosync(struct page *page) 178{ 179 might_sleep(); 180 if (TestSetPageLocked(page)) 181 __lock_page_nosync(page); 182} 183 184/* 185 * This is exported only for wait_on_page_locked/wait_on_page_writeback. 186 * Never use this directly! 187 */ 188extern void FASTCALL(wait_on_page_bit(struct page *page, int bit_nr)); 189 190/* 191 * Wait for a page to be unlocked. 192 * 193 * This must be called with the caller "holding" the page, 194 * ie with increased "page->count" so that the page won't 195 * go away during the wait.. 196 */ 197static inline void wait_on_page_locked(struct page *page) 198{ 199 if (PageLocked(page)) 200 wait_on_page_bit(page, PG_locked); 201} 202 203/* 204 * Wait for a page to complete writeback 205 */ 206static inline void wait_on_page_writeback(struct page *page) 207{ 208 if (PageWriteback(page)) 209 wait_on_page_bit(page, PG_writeback); 210} 211 212extern void end_page_writeback(struct page *page); 213 214/* 215 * Fault a userspace page into pagetables. Return non-zero on a fault. 216 * 217 * This assumes that two userspace pages are always sufficient. That's 218 * not true if PAGE_CACHE_SIZE > PAGE_SIZE. 219 */ 220static inline int fault_in_pages_writeable(char __user *uaddr, int size) 221{ 222 int ret; 223 224 if (unlikely(size == 0)) 225 return 0; 226 227 /* 228 * Writing zeroes into userspace here is OK, because we know that if 229 * the zero gets there, we'll be overwriting it. 230 */ 231 ret = __put_user(0, uaddr); 232 if (ret == 0) { 233 char __user *end = uaddr + size - 1; 234 235 /* 236 * If the page was already mapped, this will get a cache miss 237 * for sure, so try to avoid doing it. 238 */ 239 if (((unsigned long)uaddr & PAGE_MASK) != 240 ((unsigned long)end & PAGE_MASK)) 241 ret = __put_user(0, end); 242 } 243 return ret; 244} 245 246static inline int fault_in_pages_readable(const char __user *uaddr, int size) 247{ 248 volatile char c; 249 int ret; 250 251 if (unlikely(size == 0)) 252 return 0; 253 254 ret = __get_user(c, uaddr); 255 if (ret == 0) { 256 const char __user *end = uaddr + size - 1; 257 258 if (((unsigned long)uaddr & PAGE_MASK) != 259 ((unsigned long)end & PAGE_MASK)) 260 ret = __get_user(c, end); 261 } 262 return ret; 263} 264 265#endif /* _LINUX_PAGEMAP_H */