at v2.6.24 40 kB view raw
1#ifndef _LINUX_MM_H 2#define _LINUX_MM_H 3 4#include <linux/errno.h> 5 6#ifdef __KERNEL__ 7 8#include <linux/gfp.h> 9#include <linux/list.h> 10#include <linux/mmzone.h> 11#include <linux/rbtree.h> 12#include <linux/prio_tree.h> 13#include <linux/debug_locks.h> 14#include <linux/mm_types.h> 15#include <linux/security.h> 16 17struct mempolicy; 18struct anon_vma; 19struct file_ra_state; 20struct user_struct; 21struct writeback_control; 22 23#ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */ 24extern unsigned long max_mapnr; 25#endif 26 27extern unsigned long num_physpages; 28extern void * high_memory; 29extern int page_cluster; 30 31#ifdef CONFIG_SYSCTL 32extern int sysctl_legacy_va_layout; 33#else 34#define sysctl_legacy_va_layout 0 35#endif 36 37#include <asm/page.h> 38#include <asm/pgtable.h> 39#include <asm/processor.h> 40 41#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 42 43/* 44 * Linux kernel virtual memory manager primitives. 45 * The idea being to have a "virtual" mm in the same way 46 * we have a virtual fs - giving a cleaner interface to the 47 * mm details, and allowing different kinds of memory mappings 48 * (from shared memory to executable loading to arbitrary 49 * mmap() functions). 50 */ 51 52extern struct kmem_cache *vm_area_cachep; 53 54/* 55 * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is 56 * disabled, then there's a single shared list of VMAs maintained by the 57 * system, and mm's subscribe to these individually 58 */ 59struct vm_list_struct { 60 struct vm_list_struct *next; 61 struct vm_area_struct *vma; 62}; 63 64#ifndef CONFIG_MMU 65extern struct rb_root nommu_vma_tree; 66extern struct rw_semaphore nommu_vma_sem; 67 68extern unsigned int kobjsize(const void *objp); 69#endif 70 71/* 72 * vm_flags.. 73 */ 74#define VM_READ 0x00000001 /* currently active flags */ 75#define VM_WRITE 0x00000002 76#define VM_EXEC 0x00000004 77#define VM_SHARED 0x00000008 78 79/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 80#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 81#define VM_MAYWRITE 0x00000020 82#define VM_MAYEXEC 0x00000040 83#define VM_MAYSHARE 0x00000080 84 85#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 86#define VM_GROWSUP 0x00000200 87#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 88#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 89 90#define VM_EXECUTABLE 0x00001000 91#define VM_LOCKED 0x00002000 92#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 93 94 /* Used by sys_madvise() */ 95#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 96#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 97 98#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 99#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 100#define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */ 101#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 102#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 103#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */ 104#define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */ 105#define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */ 106#define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */ 107 108#define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */ 109 110#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 111#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 112#endif 113 114#ifdef CONFIG_STACK_GROWSUP 115#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 116#else 117#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 118#endif 119 120#define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ) 121#define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK 122#define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK)) 123#define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ) 124#define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ) 125 126/* 127 * mapping from the currently active vm_flags protection bits (the 128 * low four bits) to a page protection mask.. 129 */ 130extern pgprot_t protection_map[16]; 131 132#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 133#define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */ 134 135 136/* 137 * vm_fault is filled by the the pagefault handler and passed to the vma's 138 * ->fault function. The vma's ->fault is responsible for returning a bitmask 139 * of VM_FAULT_xxx flags that give details about how the fault was handled. 140 * 141 * pgoff should be used in favour of virtual_address, if possible. If pgoff 142 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear 143 * mapping support. 144 */ 145struct vm_fault { 146 unsigned int flags; /* FAULT_FLAG_xxx flags */ 147 pgoff_t pgoff; /* Logical page offset based on vma */ 148 void __user *virtual_address; /* Faulting virtual address */ 149 150 struct page *page; /* ->fault handlers should return a 151 * page here, unless VM_FAULT_NOPAGE 152 * is set (which is also implied by 153 * VM_FAULT_ERROR). 154 */ 155}; 156 157/* 158 * These are the virtual MM functions - opening of an area, closing and 159 * unmapping it (needed to keep files on disk up-to-date etc), pointer 160 * to the functions called when a no-page or a wp-page exception occurs. 161 */ 162struct vm_operations_struct { 163 void (*open)(struct vm_area_struct * area); 164 void (*close)(struct vm_area_struct * area); 165 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); 166 struct page *(*nopage)(struct vm_area_struct *area, 167 unsigned long address, int *type); 168 unsigned long (*nopfn)(struct vm_area_struct *area, 169 unsigned long address); 170 171 /* notification that a previously read-only page is about to become 172 * writable, if an error is returned it will cause a SIGBUS */ 173 int (*page_mkwrite)(struct vm_area_struct *vma, struct page *page); 174#ifdef CONFIG_NUMA 175 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 176 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 177 unsigned long addr); 178 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from, 179 const nodemask_t *to, unsigned long flags); 180#endif 181}; 182 183struct mmu_gather; 184struct inode; 185 186#define page_private(page) ((page)->private) 187#define set_page_private(page, v) ((page)->private = (v)) 188 189/* 190 * FIXME: take this include out, include page-flags.h in 191 * files which need it (119 of them) 192 */ 193#include <linux/page-flags.h> 194 195#ifdef CONFIG_DEBUG_VM 196#define VM_BUG_ON(cond) BUG_ON(cond) 197#else 198#define VM_BUG_ON(condition) do { } while(0) 199#endif 200 201/* 202 * Methods to modify the page usage count. 203 * 204 * What counts for a page usage: 205 * - cache mapping (page->mapping) 206 * - private data (page->private) 207 * - page mapped in a task's page tables, each mapping 208 * is counted separately 209 * 210 * Also, many kernel routines increase the page count before a critical 211 * routine so they can be sure the page doesn't go away from under them. 212 */ 213 214/* 215 * Drop a ref, return true if the refcount fell to zero (the page has no users) 216 */ 217static inline int put_page_testzero(struct page *page) 218{ 219 VM_BUG_ON(atomic_read(&page->_count) == 0); 220 return atomic_dec_and_test(&page->_count); 221} 222 223/* 224 * Try to grab a ref unless the page has a refcount of zero, return false if 225 * that is the case. 226 */ 227static inline int get_page_unless_zero(struct page *page) 228{ 229 VM_BUG_ON(PageCompound(page)); 230 return atomic_inc_not_zero(&page->_count); 231} 232 233static inline struct page *compound_head(struct page *page) 234{ 235 if (unlikely(PageTail(page))) 236 return page->first_page; 237 return page; 238} 239 240static inline int page_count(struct page *page) 241{ 242 return atomic_read(&compound_head(page)->_count); 243} 244 245static inline void get_page(struct page *page) 246{ 247 page = compound_head(page); 248 VM_BUG_ON(atomic_read(&page->_count) == 0); 249 atomic_inc(&page->_count); 250} 251 252static inline struct page *virt_to_head_page(const void *x) 253{ 254 struct page *page = virt_to_page(x); 255 return compound_head(page); 256} 257 258/* 259 * Setup the page count before being freed into the page allocator for 260 * the first time (boot or memory hotplug) 261 */ 262static inline void init_page_count(struct page *page) 263{ 264 atomic_set(&page->_count, 1); 265} 266 267void put_page(struct page *page); 268void put_pages_list(struct list_head *pages); 269 270void split_page(struct page *page, unsigned int order); 271 272/* 273 * Compound pages have a destructor function. Provide a 274 * prototype for that function and accessor functions. 275 * These are _only_ valid on the head of a PG_compound page. 276 */ 277typedef void compound_page_dtor(struct page *); 278 279static inline void set_compound_page_dtor(struct page *page, 280 compound_page_dtor *dtor) 281{ 282 page[1].lru.next = (void *)dtor; 283} 284 285static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 286{ 287 return (compound_page_dtor *)page[1].lru.next; 288} 289 290static inline int compound_order(struct page *page) 291{ 292 if (!PageHead(page)) 293 return 0; 294 return (unsigned long)page[1].lru.prev; 295} 296 297static inline void set_compound_order(struct page *page, unsigned long order) 298{ 299 page[1].lru.prev = (void *)order; 300} 301 302/* 303 * Multiple processes may "see" the same page. E.g. for untouched 304 * mappings of /dev/null, all processes see the same page full of 305 * zeroes, and text pages of executables and shared libraries have 306 * only one copy in memory, at most, normally. 307 * 308 * For the non-reserved pages, page_count(page) denotes a reference count. 309 * page_count() == 0 means the page is free. page->lru is then used for 310 * freelist management in the buddy allocator. 311 * page_count() > 0 means the page has been allocated. 312 * 313 * Pages are allocated by the slab allocator in order to provide memory 314 * to kmalloc and kmem_cache_alloc. In this case, the management of the 315 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 316 * unless a particular usage is carefully commented. (the responsibility of 317 * freeing the kmalloc memory is the caller's, of course). 318 * 319 * A page may be used by anyone else who does a __get_free_page(). 320 * In this case, page_count still tracks the references, and should only 321 * be used through the normal accessor functions. The top bits of page->flags 322 * and page->virtual store page management information, but all other fields 323 * are unused and could be used privately, carefully. The management of this 324 * page is the responsibility of the one who allocated it, and those who have 325 * subsequently been given references to it. 326 * 327 * The other pages (we may call them "pagecache pages") are completely 328 * managed by the Linux memory manager: I/O, buffers, swapping etc. 329 * The following discussion applies only to them. 330 * 331 * A pagecache page contains an opaque `private' member, which belongs to the 332 * page's address_space. Usually, this is the address of a circular list of 333 * the page's disk buffers. PG_private must be set to tell the VM to call 334 * into the filesystem to release these pages. 335 * 336 * A page may belong to an inode's memory mapping. In this case, page->mapping 337 * is the pointer to the inode, and page->index is the file offset of the page, 338 * in units of PAGE_CACHE_SIZE. 339 * 340 * If pagecache pages are not associated with an inode, they are said to be 341 * anonymous pages. These may become associated with the swapcache, and in that 342 * case PG_swapcache is set, and page->private is an offset into the swapcache. 343 * 344 * In either case (swapcache or inode backed), the pagecache itself holds one 345 * reference to the page. Setting PG_private should also increment the 346 * refcount. The each user mapping also has a reference to the page. 347 * 348 * The pagecache pages are stored in a per-mapping radix tree, which is 349 * rooted at mapping->page_tree, and indexed by offset. 350 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 351 * lists, we instead now tag pages as dirty/writeback in the radix tree. 352 * 353 * All pagecache pages may be subject to I/O: 354 * - inode pages may need to be read from disk, 355 * - inode pages which have been modified and are MAP_SHARED may need 356 * to be written back to the inode on disk, 357 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 358 * modified may need to be swapped out to swap space and (later) to be read 359 * back into memory. 360 */ 361 362/* 363 * The zone field is never updated after free_area_init_core() 364 * sets it, so none of the operations on it need to be atomic. 365 */ 366 367 368/* 369 * page->flags layout: 370 * 371 * There are three possibilities for how page->flags get 372 * laid out. The first is for the normal case, without 373 * sparsemem. The second is for sparsemem when there is 374 * plenty of space for node and section. The last is when 375 * we have run out of space and have to fall back to an 376 * alternate (slower) way of determining the node. 377 * 378 * No sparsemem: | NODE | ZONE | ... | FLAGS | 379 * with space for node: | SECTION | NODE | ZONE | ... | FLAGS | 380 * no space for node: | SECTION | ZONE | ... | FLAGS | 381 */ 382#ifdef CONFIG_SPARSEMEM 383#define SECTIONS_WIDTH SECTIONS_SHIFT 384#else 385#define SECTIONS_WIDTH 0 386#endif 387 388#define ZONES_WIDTH ZONES_SHIFT 389 390#if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= FLAGS_RESERVED 391#define NODES_WIDTH NODES_SHIFT 392#else 393#define NODES_WIDTH 0 394#endif 395 396/* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */ 397#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 398#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 399#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 400 401/* 402 * We are going to use the flags for the page to node mapping if its in 403 * there. This includes the case where there is no node, so it is implicit. 404 */ 405#if !(NODES_WIDTH > 0 || NODES_SHIFT == 0) 406#define NODE_NOT_IN_PAGE_FLAGS 407#endif 408 409#ifndef PFN_SECTION_SHIFT 410#define PFN_SECTION_SHIFT 0 411#endif 412 413/* 414 * Define the bit shifts to access each section. For non-existant 415 * sections we define the shift as 0; that plus a 0 mask ensures 416 * the compiler will optimise away reference to them. 417 */ 418#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 419#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 420#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 421 422/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */ 423#ifdef NODE_NOT_IN_PAGEFLAGS 424#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 425#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 426 SECTIONS_PGOFF : ZONES_PGOFF) 427#else 428#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 429#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 430 NODES_PGOFF : ZONES_PGOFF) 431#endif 432 433#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 434 435#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED 436#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED 437#endif 438 439#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 440#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 441#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 442#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 443 444static inline enum zone_type page_zonenum(struct page *page) 445{ 446 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 447} 448 449/* 450 * The identification function is only used by the buddy allocator for 451 * determining if two pages could be buddies. We are not really 452 * identifying a zone since we could be using a the section number 453 * id if we have not node id available in page flags. 454 * We guarantee only that it will return the same value for two 455 * combinable pages in a zone. 456 */ 457static inline int page_zone_id(struct page *page) 458{ 459 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 460} 461 462static inline int zone_to_nid(struct zone *zone) 463{ 464#ifdef CONFIG_NUMA 465 return zone->node; 466#else 467 return 0; 468#endif 469} 470 471#ifdef NODE_NOT_IN_PAGE_FLAGS 472extern int page_to_nid(struct page *page); 473#else 474static inline int page_to_nid(struct page *page) 475{ 476 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 477} 478#endif 479 480static inline struct zone *page_zone(struct page *page) 481{ 482 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 483} 484 485static inline unsigned long page_to_section(struct page *page) 486{ 487 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 488} 489 490static inline void set_page_zone(struct page *page, enum zone_type zone) 491{ 492 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 493 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 494} 495 496static inline void set_page_node(struct page *page, unsigned long node) 497{ 498 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 499 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 500} 501 502static inline void set_page_section(struct page *page, unsigned long section) 503{ 504 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 505 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 506} 507 508static inline void set_page_links(struct page *page, enum zone_type zone, 509 unsigned long node, unsigned long pfn) 510{ 511 set_page_zone(page, zone); 512 set_page_node(page, node); 513 set_page_section(page, pfn_to_section_nr(pfn)); 514} 515 516/* 517 * If a hint addr is less than mmap_min_addr change hint to be as 518 * low as possible but still greater than mmap_min_addr 519 */ 520static inline unsigned long round_hint_to_min(unsigned long hint) 521{ 522#ifdef CONFIG_SECURITY 523 hint &= PAGE_MASK; 524 if (((void *)hint != NULL) && 525 (hint < mmap_min_addr)) 526 return PAGE_ALIGN(mmap_min_addr); 527#endif 528 return hint; 529} 530 531/* 532 * Some inline functions in vmstat.h depend on page_zone() 533 */ 534#include <linux/vmstat.h> 535 536static __always_inline void *lowmem_page_address(struct page *page) 537{ 538 return __va(page_to_pfn(page) << PAGE_SHIFT); 539} 540 541#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 542#define HASHED_PAGE_VIRTUAL 543#endif 544 545#if defined(WANT_PAGE_VIRTUAL) 546#define page_address(page) ((page)->virtual) 547#define set_page_address(page, address) \ 548 do { \ 549 (page)->virtual = (address); \ 550 } while(0) 551#define page_address_init() do { } while(0) 552#endif 553 554#if defined(HASHED_PAGE_VIRTUAL) 555void *page_address(struct page *page); 556void set_page_address(struct page *page, void *virtual); 557void page_address_init(void); 558#endif 559 560#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 561#define page_address(page) lowmem_page_address(page) 562#define set_page_address(page, address) do { } while(0) 563#define page_address_init() do { } while(0) 564#endif 565 566/* 567 * On an anonymous page mapped into a user virtual memory area, 568 * page->mapping points to its anon_vma, not to a struct address_space; 569 * with the PAGE_MAPPING_ANON bit set to distinguish it. 570 * 571 * Please note that, confusingly, "page_mapping" refers to the inode 572 * address_space which maps the page from disk; whereas "page_mapped" 573 * refers to user virtual address space into which the page is mapped. 574 */ 575#define PAGE_MAPPING_ANON 1 576 577extern struct address_space swapper_space; 578static inline struct address_space *page_mapping(struct page *page) 579{ 580 struct address_space *mapping = page->mapping; 581 582 VM_BUG_ON(PageSlab(page)); 583 if (unlikely(PageSwapCache(page))) 584 mapping = &swapper_space; 585 else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON)) 586 mapping = NULL; 587 return mapping; 588} 589 590static inline int PageAnon(struct page *page) 591{ 592 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 593} 594 595/* 596 * Return the pagecache index of the passed page. Regular pagecache pages 597 * use ->index whereas swapcache pages use ->private 598 */ 599static inline pgoff_t page_index(struct page *page) 600{ 601 if (unlikely(PageSwapCache(page))) 602 return page_private(page); 603 return page->index; 604} 605 606/* 607 * The atomic page->_mapcount, like _count, starts from -1: 608 * so that transitions both from it and to it can be tracked, 609 * using atomic_inc_and_test and atomic_add_negative(-1). 610 */ 611static inline void reset_page_mapcount(struct page *page) 612{ 613 atomic_set(&(page)->_mapcount, -1); 614} 615 616static inline int page_mapcount(struct page *page) 617{ 618 return atomic_read(&(page)->_mapcount) + 1; 619} 620 621/* 622 * Return true if this page is mapped into pagetables. 623 */ 624static inline int page_mapped(struct page *page) 625{ 626 return atomic_read(&(page)->_mapcount) >= 0; 627} 628 629/* 630 * Error return values for the *_nopage functions 631 */ 632#define NOPAGE_SIGBUS (NULL) 633#define NOPAGE_OOM ((struct page *) (-1)) 634 635/* 636 * Error return values for the *_nopfn functions 637 */ 638#define NOPFN_SIGBUS ((unsigned long) -1) 639#define NOPFN_OOM ((unsigned long) -2) 640#define NOPFN_REFAULT ((unsigned long) -3) 641 642/* 643 * Different kinds of faults, as returned by handle_mm_fault(). 644 * Used to decide whether a process gets delivered SIGBUS or 645 * just gets major/minor fault counters bumped up. 646 */ 647 648#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */ 649 650#define VM_FAULT_OOM 0x0001 651#define VM_FAULT_SIGBUS 0x0002 652#define VM_FAULT_MAJOR 0x0004 653#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 654 655#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 656#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 657 658#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS) 659 660#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 661 662extern void show_free_areas(void); 663 664#ifdef CONFIG_SHMEM 665int shmem_lock(struct file *file, int lock, struct user_struct *user); 666#else 667static inline int shmem_lock(struct file *file, int lock, 668 struct user_struct *user) 669{ 670 return 0; 671} 672#endif 673struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags); 674 675int shmem_zero_setup(struct vm_area_struct *); 676 677#ifndef CONFIG_MMU 678extern unsigned long shmem_get_unmapped_area(struct file *file, 679 unsigned long addr, 680 unsigned long len, 681 unsigned long pgoff, 682 unsigned long flags); 683#endif 684 685extern int can_do_mlock(void); 686extern int user_shm_lock(size_t, struct user_struct *); 687extern void user_shm_unlock(size_t, struct user_struct *); 688 689/* 690 * Parameter block passed down to zap_pte_range in exceptional cases. 691 */ 692struct zap_details { 693 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */ 694 struct address_space *check_mapping; /* Check page->mapping if set */ 695 pgoff_t first_index; /* Lowest page->index to unmap */ 696 pgoff_t last_index; /* Highest page->index to unmap */ 697 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */ 698 unsigned long truncate_count; /* Compare vm_truncate_count */ 699}; 700 701struct page *vm_normal_page(struct vm_area_struct *, unsigned long, pte_t); 702unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, 703 unsigned long size, struct zap_details *); 704unsigned long unmap_vmas(struct mmu_gather **tlb, 705 struct vm_area_struct *start_vma, unsigned long start_addr, 706 unsigned long end_addr, unsigned long *nr_accounted, 707 struct zap_details *); 708void free_pgd_range(struct mmu_gather **tlb, unsigned long addr, 709 unsigned long end, unsigned long floor, unsigned long ceiling); 710void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma, 711 unsigned long floor, unsigned long ceiling); 712int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 713 struct vm_area_struct *vma); 714void unmap_mapping_range(struct address_space *mapping, 715 loff_t const holebegin, loff_t const holelen, int even_cows); 716 717static inline void unmap_shared_mapping_range(struct address_space *mapping, 718 loff_t const holebegin, loff_t const holelen) 719{ 720 unmap_mapping_range(mapping, holebegin, holelen, 0); 721} 722 723extern int vmtruncate(struct inode * inode, loff_t offset); 724extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end); 725 726#ifdef CONFIG_MMU 727extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 728 unsigned long address, int write_access); 729#else 730static inline int handle_mm_fault(struct mm_struct *mm, 731 struct vm_area_struct *vma, unsigned long address, 732 int write_access) 733{ 734 /* should never happen if there's no MMU */ 735 BUG(); 736 return VM_FAULT_SIGBUS; 737} 738#endif 739 740extern int make_pages_present(unsigned long addr, unsigned long end); 741extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 742 743int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start, 744 int len, int write, int force, struct page **pages, struct vm_area_struct **vmas); 745void print_bad_pte(struct vm_area_struct *, pte_t, unsigned long); 746 747extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 748extern void do_invalidatepage(struct page *page, unsigned long offset); 749 750int __set_page_dirty_nobuffers(struct page *page); 751int __set_page_dirty_no_writeback(struct page *page); 752int redirty_page_for_writepage(struct writeback_control *wbc, 753 struct page *page); 754int FASTCALL(set_page_dirty(struct page *page)); 755int set_page_dirty_lock(struct page *page); 756int clear_page_dirty_for_io(struct page *page); 757 758extern unsigned long move_page_tables(struct vm_area_struct *vma, 759 unsigned long old_addr, struct vm_area_struct *new_vma, 760 unsigned long new_addr, unsigned long len); 761extern unsigned long do_mremap(unsigned long addr, 762 unsigned long old_len, unsigned long new_len, 763 unsigned long flags, unsigned long new_addr); 764extern int mprotect_fixup(struct vm_area_struct *vma, 765 struct vm_area_struct **pprev, unsigned long start, 766 unsigned long end, unsigned long newflags); 767 768/* 769 * A callback you can register to apply pressure to ageable caches. 770 * 771 * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should 772 * look through the least-recently-used 'nr_to_scan' entries and 773 * attempt to free them up. It should return the number of objects 774 * which remain in the cache. If it returns -1, it means it cannot do 775 * any scanning at this time (eg. there is a risk of deadlock). 776 * 777 * The 'gfpmask' refers to the allocation we are currently trying to 778 * fulfil. 779 * 780 * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is 781 * querying the cache size, so a fastpath for that case is appropriate. 782 */ 783struct shrinker { 784 int (*shrink)(int nr_to_scan, gfp_t gfp_mask); 785 int seeks; /* seeks to recreate an obj */ 786 787 /* These are for internal use */ 788 struct list_head list; 789 long nr; /* objs pending delete */ 790}; 791#define DEFAULT_SEEKS 2 /* A good number if you don't know better. */ 792extern void register_shrinker(struct shrinker *); 793extern void unregister_shrinker(struct shrinker *); 794 795int vma_wants_writenotify(struct vm_area_struct *vma); 796 797extern pte_t *FASTCALL(get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl)); 798 799#ifdef __PAGETABLE_PUD_FOLDED 800static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, 801 unsigned long address) 802{ 803 return 0; 804} 805#else 806int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 807#endif 808 809#ifdef __PAGETABLE_PMD_FOLDED 810static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 811 unsigned long address) 812{ 813 return 0; 814} 815#else 816int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 817#endif 818 819int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address); 820int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 821 822/* 823 * The following ifdef needed to get the 4level-fixup.h header to work. 824 * Remove it when 4level-fixup.h has been removed. 825 */ 826#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 827static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 828{ 829 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 830 NULL: pud_offset(pgd, address); 831} 832 833static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 834{ 835 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 836 NULL: pmd_offset(pud, address); 837} 838#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 839 840#if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS 841/* 842 * We tuck a spinlock to guard each pagetable page into its struct page, 843 * at page->private, with BUILD_BUG_ON to make sure that this will not 844 * overflow into the next struct page (as it might with DEBUG_SPINLOCK). 845 * When freeing, reset page->mapping so free_pages_check won't complain. 846 */ 847#define __pte_lockptr(page) &((page)->ptl) 848#define pte_lock_init(_page) do { \ 849 spin_lock_init(__pte_lockptr(_page)); \ 850} while (0) 851#define pte_lock_deinit(page) ((page)->mapping = NULL) 852#define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));}) 853#else 854/* 855 * We use mm->page_table_lock to guard all pagetable pages of the mm. 856 */ 857#define pte_lock_init(page) do {} while (0) 858#define pte_lock_deinit(page) do {} while (0) 859#define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;}) 860#endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */ 861 862#define pte_offset_map_lock(mm, pmd, address, ptlp) \ 863({ \ 864 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 865 pte_t *__pte = pte_offset_map(pmd, address); \ 866 *(ptlp) = __ptl; \ 867 spin_lock(__ptl); \ 868 __pte; \ 869}) 870 871#define pte_unmap_unlock(pte, ptl) do { \ 872 spin_unlock(ptl); \ 873 pte_unmap(pte); \ 874} while (0) 875 876#define pte_alloc_map(mm, pmd, address) \ 877 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \ 878 NULL: pte_offset_map(pmd, address)) 879 880#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 881 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \ 882 NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) 883 884#define pte_alloc_kernel(pmd, address) \ 885 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 886 NULL: pte_offset_kernel(pmd, address)) 887 888extern void free_area_init(unsigned long * zones_size); 889extern void free_area_init_node(int nid, pg_data_t *pgdat, 890 unsigned long * zones_size, unsigned long zone_start_pfn, 891 unsigned long *zholes_size); 892#ifdef CONFIG_ARCH_POPULATES_NODE_MAP 893/* 894 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its 895 * zones, allocate the backing mem_map and account for memory holes in a more 896 * architecture independent manner. This is a substitute for creating the 897 * zone_sizes[] and zholes_size[] arrays and passing them to 898 * free_area_init_node() 899 * 900 * An architecture is expected to register range of page frames backed by 901 * physical memory with add_active_range() before calling 902 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 903 * usage, an architecture is expected to do something like 904 * 905 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 906 * max_highmem_pfn}; 907 * for_each_valid_physical_page_range() 908 * add_active_range(node_id, start_pfn, end_pfn) 909 * free_area_init_nodes(max_zone_pfns); 910 * 911 * If the architecture guarantees that there are no holes in the ranges 912 * registered with add_active_range(), free_bootmem_active_regions() 913 * will call free_bootmem_node() for each registered physical page range. 914 * Similarly sparse_memory_present_with_active_regions() calls 915 * memory_present() for each range when SPARSEMEM is enabled. 916 * 917 * See mm/page_alloc.c for more information on each function exposed by 918 * CONFIG_ARCH_POPULATES_NODE_MAP 919 */ 920extern void free_area_init_nodes(unsigned long *max_zone_pfn); 921extern void add_active_range(unsigned int nid, unsigned long start_pfn, 922 unsigned long end_pfn); 923extern void shrink_active_range(unsigned int nid, unsigned long old_end_pfn, 924 unsigned long new_end_pfn); 925extern void push_node_boundaries(unsigned int nid, unsigned long start_pfn, 926 unsigned long end_pfn); 927extern void remove_all_active_ranges(void); 928extern unsigned long absent_pages_in_range(unsigned long start_pfn, 929 unsigned long end_pfn); 930extern void get_pfn_range_for_nid(unsigned int nid, 931 unsigned long *start_pfn, unsigned long *end_pfn); 932extern unsigned long find_min_pfn_with_active_regions(void); 933extern unsigned long find_max_pfn_with_active_regions(void); 934extern void free_bootmem_with_active_regions(int nid, 935 unsigned long max_low_pfn); 936extern void sparse_memory_present_with_active_regions(int nid); 937#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 938extern int early_pfn_to_nid(unsigned long pfn); 939#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 940#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 941extern void set_dma_reserve(unsigned long new_dma_reserve); 942extern void memmap_init_zone(unsigned long, int, unsigned long, 943 unsigned long, enum memmap_context); 944extern void setup_per_zone_pages_min(void); 945extern void mem_init(void); 946extern void show_mem(void); 947extern void si_meminfo(struct sysinfo * val); 948extern void si_meminfo_node(struct sysinfo *val, int nid); 949 950#ifdef CONFIG_NUMA 951extern void setup_per_cpu_pageset(void); 952#else 953static inline void setup_per_cpu_pageset(void) {} 954#endif 955 956/* prio_tree.c */ 957void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old); 958void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *); 959void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *); 960struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma, 961 struct prio_tree_iter *iter); 962 963#define vma_prio_tree_foreach(vma, iter, root, begin, end) \ 964 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \ 965 (vma = vma_prio_tree_next(vma, iter)); ) 966 967static inline void vma_nonlinear_insert(struct vm_area_struct *vma, 968 struct list_head *list) 969{ 970 vma->shared.vm_set.parent = NULL; 971 list_add_tail(&vma->shared.vm_set.list, list); 972} 973 974/* mmap.c */ 975extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 976extern void vma_adjust(struct vm_area_struct *vma, unsigned long start, 977 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 978extern struct vm_area_struct *vma_merge(struct mm_struct *, 979 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 980 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 981 struct mempolicy *); 982extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 983extern int split_vma(struct mm_struct *, 984 struct vm_area_struct *, unsigned long addr, int new_below); 985extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 986extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 987 struct rb_node **, struct rb_node *); 988extern void unlink_file_vma(struct vm_area_struct *); 989extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 990 unsigned long addr, unsigned long len, pgoff_t pgoff); 991extern void exit_mmap(struct mm_struct *); 992extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); 993extern int install_special_mapping(struct mm_struct *mm, 994 unsigned long addr, unsigned long len, 995 unsigned long flags, struct page **pages); 996 997extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 998 999extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 1000 unsigned long len, unsigned long prot, 1001 unsigned long flag, unsigned long pgoff); 1002extern unsigned long mmap_region(struct file *file, unsigned long addr, 1003 unsigned long len, unsigned long flags, 1004 unsigned int vm_flags, unsigned long pgoff, 1005 int accountable); 1006 1007static inline unsigned long do_mmap(struct file *file, unsigned long addr, 1008 unsigned long len, unsigned long prot, 1009 unsigned long flag, unsigned long offset) 1010{ 1011 unsigned long ret = -EINVAL; 1012 if ((offset + PAGE_ALIGN(len)) < offset) 1013 goto out; 1014 if (!(offset & ~PAGE_MASK)) 1015 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); 1016out: 1017 return ret; 1018} 1019 1020extern int do_munmap(struct mm_struct *, unsigned long, size_t); 1021 1022extern unsigned long do_brk(unsigned long, unsigned long); 1023 1024/* filemap.c */ 1025extern unsigned long page_unuse(struct page *); 1026extern void truncate_inode_pages(struct address_space *, loff_t); 1027extern void truncate_inode_pages_range(struct address_space *, 1028 loff_t lstart, loff_t lend); 1029 1030/* generic vm_area_ops exported for stackable file systems */ 1031extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); 1032 1033/* mm/page-writeback.c */ 1034int write_one_page(struct page *page, int wait); 1035 1036/* readahead.c */ 1037#define VM_MAX_READAHEAD 128 /* kbytes */ 1038#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 1039 1040int do_page_cache_readahead(struct address_space *mapping, struct file *filp, 1041 pgoff_t offset, unsigned long nr_to_read); 1042int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 1043 pgoff_t offset, unsigned long nr_to_read); 1044 1045void page_cache_sync_readahead(struct address_space *mapping, 1046 struct file_ra_state *ra, 1047 struct file *filp, 1048 pgoff_t offset, 1049 unsigned long size); 1050 1051void page_cache_async_readahead(struct address_space *mapping, 1052 struct file_ra_state *ra, 1053 struct file *filp, 1054 struct page *pg, 1055 pgoff_t offset, 1056 unsigned long size); 1057 1058unsigned long max_sane_readahead(unsigned long nr); 1059 1060/* Do stack extension */ 1061extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 1062#ifdef CONFIG_IA64 1063extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 1064#endif 1065extern int expand_stack_downwards(struct vm_area_struct *vma, 1066 unsigned long address); 1067 1068/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1069extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 1070extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 1071 struct vm_area_struct **pprev); 1072 1073/* Look up the first VMA which intersects the interval start_addr..end_addr-1, 1074 NULL if none. Assume start_addr < end_addr. */ 1075static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 1076{ 1077 struct vm_area_struct * vma = find_vma(mm,start_addr); 1078 1079 if (vma && end_addr <= vma->vm_start) 1080 vma = NULL; 1081 return vma; 1082} 1083 1084static inline unsigned long vma_pages(struct vm_area_struct *vma) 1085{ 1086 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 1087} 1088 1089pgprot_t vm_get_page_prot(unsigned long vm_flags); 1090struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 1091struct page *vmalloc_to_page(void *addr); 1092unsigned long vmalloc_to_pfn(void *addr); 1093int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 1094 unsigned long pfn, unsigned long size, pgprot_t); 1095int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 1096int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1097 unsigned long pfn); 1098 1099struct page *follow_page(struct vm_area_struct *, unsigned long address, 1100 unsigned int foll_flags); 1101#define FOLL_WRITE 0x01 /* check pte is writable */ 1102#define FOLL_TOUCH 0x02 /* mark page accessed */ 1103#define FOLL_GET 0x04 /* do get_page on page */ 1104#define FOLL_ANON 0x08 /* give ZERO_PAGE if no pgtable */ 1105 1106typedef int (*pte_fn_t)(pte_t *pte, struct page *pmd_page, unsigned long addr, 1107 void *data); 1108extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 1109 unsigned long size, pte_fn_t fn, void *data); 1110 1111#ifdef CONFIG_PROC_FS 1112void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); 1113#else 1114static inline void vm_stat_account(struct mm_struct *mm, 1115 unsigned long flags, struct file *file, long pages) 1116{ 1117} 1118#endif /* CONFIG_PROC_FS */ 1119 1120#ifndef CONFIG_DEBUG_PAGEALLOC 1121static inline void 1122kernel_map_pages(struct page *page, int numpages, int enable) {} 1123#endif 1124 1125extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk); 1126#ifdef __HAVE_ARCH_GATE_AREA 1127int in_gate_area_no_task(unsigned long addr); 1128int in_gate_area(struct task_struct *task, unsigned long addr); 1129#else 1130int in_gate_area_no_task(unsigned long addr); 1131#define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);}) 1132#endif /* __HAVE_ARCH_GATE_AREA */ 1133 1134int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *, 1135 void __user *, size_t *, loff_t *); 1136unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask, 1137 unsigned long lru_pages); 1138void drop_pagecache(void); 1139void drop_slab(void); 1140 1141#ifndef CONFIG_MMU 1142#define randomize_va_space 0 1143#else 1144extern int randomize_va_space; 1145#endif 1146 1147const char * arch_vma_name(struct vm_area_struct *vma); 1148 1149struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 1150pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 1151pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); 1152pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 1153pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 1154void *vmemmap_alloc_block(unsigned long size, int node); 1155void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 1156int vmemmap_populate_basepages(struct page *start_page, 1157 unsigned long pages, int node); 1158int vmemmap_populate(struct page *start_page, unsigned long pages, int node); 1159 1160#endif /* __KERNEL__ */ 1161#endif /* _LINUX_MM_H */