at v2.6.24 517 lines 15 kB view raw
1/* 2 * linux/include/asm-arm/cacheflush.h 3 * 4 * Copyright (C) 1999-2002 Russell King 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10#ifndef _ASMARM_CACHEFLUSH_H 11#define _ASMARM_CACHEFLUSH_H 12 13#include <linux/sched.h> 14#include <linux/mm.h> 15 16#include <asm/glue.h> 17#include <asm/shmparam.h> 18 19#define CACHE_COLOUR(vaddr) ((vaddr & (SHMLBA - 1)) >> PAGE_SHIFT) 20 21/* 22 * Cache Model 23 * =========== 24 */ 25#undef _CACHE 26#undef MULTI_CACHE 27 28#if defined(CONFIG_CPU_CACHE_V3) 29# ifdef _CACHE 30# define MULTI_CACHE 1 31# else 32# define _CACHE v3 33# endif 34#endif 35 36#if defined(CONFIG_CPU_CACHE_V4) 37# ifdef _CACHE 38# define MULTI_CACHE 1 39# else 40# define _CACHE v4 41# endif 42#endif 43 44#if defined(CONFIG_CPU_ARM920T) || defined(CONFIG_CPU_ARM922T) || \ 45 defined(CONFIG_CPU_ARM925T) || defined(CONFIG_CPU_ARM1020) 46# define MULTI_CACHE 1 47#endif 48 49#if defined(CONFIG_CPU_ARM926T) 50# ifdef _CACHE 51# define MULTI_CACHE 1 52# else 53# define _CACHE arm926 54# endif 55#endif 56 57#if defined(CONFIG_CPU_ARM940T) 58# ifdef _CACHE 59# define MULTI_CACHE 1 60# else 61# define _CACHE arm940 62# endif 63#endif 64 65#if defined(CONFIG_CPU_ARM946E) 66# ifdef _CACHE 67# define MULTI_CACHE 1 68# else 69# define _CACHE arm946 70# endif 71#endif 72 73#if defined(CONFIG_CPU_CACHE_V4WB) 74# ifdef _CACHE 75# define MULTI_CACHE 1 76# else 77# define _CACHE v4wb 78# endif 79#endif 80 81#if defined(CONFIG_CPU_XSCALE) 82# ifdef _CACHE 83# define MULTI_CACHE 1 84# else 85# define _CACHE xscale 86# endif 87#endif 88 89#if defined(CONFIG_CPU_XSC3) 90# ifdef _CACHE 91# define MULTI_CACHE 1 92# else 93# define _CACHE xsc3 94# endif 95#endif 96 97#if defined(CONFIG_CPU_V6) 98//# ifdef _CACHE 99# define MULTI_CACHE 1 100//# else 101//# define _CACHE v6 102//# endif 103#endif 104 105#if defined(CONFIG_CPU_V7) 106//# ifdef _CACHE 107# define MULTI_CACHE 1 108//# else 109//# define _CACHE v7 110//# endif 111#endif 112 113#if !defined(_CACHE) && !defined(MULTI_CACHE) 114#error Unknown cache maintainence model 115#endif 116 117/* 118 * This flag is used to indicate that the page pointed to by a pte 119 * is dirty and requires cleaning before returning it to the user. 120 */ 121#define PG_dcache_dirty PG_arch_1 122 123/* 124 * MM Cache Management 125 * =================== 126 * 127 * The arch/arm/mm/cache-*.S and arch/arm/mm/proc-*.S files 128 * implement these methods. 129 * 130 * Start addresses are inclusive and end addresses are exclusive; 131 * start addresses should be rounded down, end addresses up. 132 * 133 * See Documentation/cachetlb.txt for more information. 134 * Please note that the implementation of these, and the required 135 * effects are cache-type (VIVT/VIPT/PIPT) specific. 136 * 137 * flush_cache_kern_all() 138 * 139 * Unconditionally clean and invalidate the entire cache. 140 * 141 * flush_cache_user_mm(mm) 142 * 143 * Clean and invalidate all user space cache entries 144 * before a change of page tables. 145 * 146 * flush_cache_user_range(start, end, flags) 147 * 148 * Clean and invalidate a range of cache entries in the 149 * specified address space before a change of page tables. 150 * - start - user start address (inclusive, page aligned) 151 * - end - user end address (exclusive, page aligned) 152 * - flags - vma->vm_flags field 153 * 154 * coherent_kern_range(start, end) 155 * 156 * Ensure coherency between the Icache and the Dcache in the 157 * region described by start, end. If you have non-snooping 158 * Harvard caches, you need to implement this function. 159 * - start - virtual start address 160 * - end - virtual end address 161 * 162 * DMA Cache Coherency 163 * =================== 164 * 165 * dma_inv_range(start, end) 166 * 167 * Invalidate (discard) the specified virtual address range. 168 * May not write back any entries. If 'start' or 'end' 169 * are not cache line aligned, those lines must be written 170 * back. 171 * - start - virtual start address 172 * - end - virtual end address 173 * 174 * dma_clean_range(start, end) 175 * 176 * Clean (write back) the specified virtual address range. 177 * - start - virtual start address 178 * - end - virtual end address 179 * 180 * dma_flush_range(start, end) 181 * 182 * Clean and invalidate the specified virtual address range. 183 * - start - virtual start address 184 * - end - virtual end address 185 */ 186 187struct cpu_cache_fns { 188 void (*flush_kern_all)(void); 189 void (*flush_user_all)(void); 190 void (*flush_user_range)(unsigned long, unsigned long, unsigned int); 191 192 void (*coherent_kern_range)(unsigned long, unsigned long); 193 void (*coherent_user_range)(unsigned long, unsigned long); 194 void (*flush_kern_dcache_page)(void *); 195 196 void (*dma_inv_range)(const void *, const void *); 197 void (*dma_clean_range)(const void *, const void *); 198 void (*dma_flush_range)(const void *, const void *); 199}; 200 201struct outer_cache_fns { 202 void (*inv_range)(unsigned long, unsigned long); 203 void (*clean_range)(unsigned long, unsigned long); 204 void (*flush_range)(unsigned long, unsigned long); 205}; 206 207/* 208 * Select the calling method 209 */ 210#ifdef MULTI_CACHE 211 212extern struct cpu_cache_fns cpu_cache; 213 214#define __cpuc_flush_kern_all cpu_cache.flush_kern_all 215#define __cpuc_flush_user_all cpu_cache.flush_user_all 216#define __cpuc_flush_user_range cpu_cache.flush_user_range 217#define __cpuc_coherent_kern_range cpu_cache.coherent_kern_range 218#define __cpuc_coherent_user_range cpu_cache.coherent_user_range 219#define __cpuc_flush_dcache_page cpu_cache.flush_kern_dcache_page 220 221/* 222 * These are private to the dma-mapping API. Do not use directly. 223 * Their sole purpose is to ensure that data held in the cache 224 * is visible to DMA, or data written by DMA to system memory is 225 * visible to the CPU. 226 */ 227#define dmac_inv_range cpu_cache.dma_inv_range 228#define dmac_clean_range cpu_cache.dma_clean_range 229#define dmac_flush_range cpu_cache.dma_flush_range 230 231#else 232 233#define __cpuc_flush_kern_all __glue(_CACHE,_flush_kern_cache_all) 234#define __cpuc_flush_user_all __glue(_CACHE,_flush_user_cache_all) 235#define __cpuc_flush_user_range __glue(_CACHE,_flush_user_cache_range) 236#define __cpuc_coherent_kern_range __glue(_CACHE,_coherent_kern_range) 237#define __cpuc_coherent_user_range __glue(_CACHE,_coherent_user_range) 238#define __cpuc_flush_dcache_page __glue(_CACHE,_flush_kern_dcache_page) 239 240extern void __cpuc_flush_kern_all(void); 241extern void __cpuc_flush_user_all(void); 242extern void __cpuc_flush_user_range(unsigned long, unsigned long, unsigned int); 243extern void __cpuc_coherent_kern_range(unsigned long, unsigned long); 244extern void __cpuc_coherent_user_range(unsigned long, unsigned long); 245extern void __cpuc_flush_dcache_page(void *); 246 247/* 248 * These are private to the dma-mapping API. Do not use directly. 249 * Their sole purpose is to ensure that data held in the cache 250 * is visible to DMA, or data written by DMA to system memory is 251 * visible to the CPU. 252 */ 253#define dmac_inv_range __glue(_CACHE,_dma_inv_range) 254#define dmac_clean_range __glue(_CACHE,_dma_clean_range) 255#define dmac_flush_range __glue(_CACHE,_dma_flush_range) 256 257extern void dmac_inv_range(const void *, const void *); 258extern void dmac_clean_range(const void *, const void *); 259extern void dmac_flush_range(const void *, const void *); 260 261#endif 262 263#ifdef CONFIG_OUTER_CACHE 264 265extern struct outer_cache_fns outer_cache; 266 267static inline void outer_inv_range(unsigned long start, unsigned long end) 268{ 269 if (outer_cache.inv_range) 270 outer_cache.inv_range(start, end); 271} 272static inline void outer_clean_range(unsigned long start, unsigned long end) 273{ 274 if (outer_cache.clean_range) 275 outer_cache.clean_range(start, end); 276} 277static inline void outer_flush_range(unsigned long start, unsigned long end) 278{ 279 if (outer_cache.flush_range) 280 outer_cache.flush_range(start, end); 281} 282 283#else 284 285static inline void outer_inv_range(unsigned long start, unsigned long end) 286{ } 287static inline void outer_clean_range(unsigned long start, unsigned long end) 288{ } 289static inline void outer_flush_range(unsigned long start, unsigned long end) 290{ } 291 292#endif 293 294/* 295 * flush_cache_vmap() is used when creating mappings (eg, via vmap, 296 * vmalloc, ioremap etc) in kernel space for pages. Since the 297 * direct-mappings of these pages may contain cached data, we need 298 * to do a full cache flush to ensure that writebacks don't corrupt 299 * data placed into these pages via the new mappings. 300 */ 301#define flush_cache_vmap(start, end) flush_cache_all() 302#define flush_cache_vunmap(start, end) flush_cache_all() 303 304/* 305 * Copy user data from/to a page which is mapped into a different 306 * processes address space. Really, we want to allow our "user 307 * space" model to handle this. 308 */ 309#define copy_to_user_page(vma, page, vaddr, dst, src, len) \ 310 do { \ 311 memcpy(dst, src, len); \ 312 flush_ptrace_access(vma, page, vaddr, dst, len, 1);\ 313 } while (0) 314 315#define copy_from_user_page(vma, page, vaddr, dst, src, len) \ 316 do { \ 317 memcpy(dst, src, len); \ 318 } while (0) 319 320/* 321 * Convert calls to our calling convention. 322 */ 323#define flush_cache_all() __cpuc_flush_kern_all() 324#ifndef CONFIG_CPU_CACHE_VIPT 325static inline void flush_cache_mm(struct mm_struct *mm) 326{ 327 if (cpu_isset(smp_processor_id(), mm->cpu_vm_mask)) 328 __cpuc_flush_user_all(); 329} 330 331static inline void 332flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) 333{ 334 if (cpu_isset(smp_processor_id(), vma->vm_mm->cpu_vm_mask)) 335 __cpuc_flush_user_range(start & PAGE_MASK, PAGE_ALIGN(end), 336 vma->vm_flags); 337} 338 339static inline void 340flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn) 341{ 342 if (cpu_isset(smp_processor_id(), vma->vm_mm->cpu_vm_mask)) { 343 unsigned long addr = user_addr & PAGE_MASK; 344 __cpuc_flush_user_range(addr, addr + PAGE_SIZE, vma->vm_flags); 345 } 346} 347 348static inline void 349flush_ptrace_access(struct vm_area_struct *vma, struct page *page, 350 unsigned long uaddr, void *kaddr, 351 unsigned long len, int write) 352{ 353 if (cpu_isset(smp_processor_id(), vma->vm_mm->cpu_vm_mask)) { 354 unsigned long addr = (unsigned long)kaddr; 355 __cpuc_coherent_kern_range(addr, addr + len); 356 } 357} 358#else 359extern void flush_cache_mm(struct mm_struct *mm); 360extern void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); 361extern void flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn); 362extern void flush_ptrace_access(struct vm_area_struct *vma, struct page *page, 363 unsigned long uaddr, void *kaddr, 364 unsigned long len, int write); 365#endif 366 367#define flush_cache_dup_mm(mm) flush_cache_mm(mm) 368 369/* 370 * flush_cache_user_range is used when we want to ensure that the 371 * Harvard caches are synchronised for the user space address range. 372 * This is used for the ARM private sys_cacheflush system call. 373 */ 374#define flush_cache_user_range(vma,start,end) \ 375 __cpuc_coherent_user_range((start) & PAGE_MASK, PAGE_ALIGN(end)) 376 377/* 378 * Perform necessary cache operations to ensure that data previously 379 * stored within this range of addresses can be executed by the CPU. 380 */ 381#define flush_icache_range(s,e) __cpuc_coherent_kern_range(s,e) 382 383/* 384 * Perform necessary cache operations to ensure that the TLB will 385 * see data written in the specified area. 386 */ 387#define clean_dcache_area(start,size) cpu_dcache_clean_area(start, size) 388 389/* 390 * flush_dcache_page is used when the kernel has written to the page 391 * cache page at virtual address page->virtual. 392 * 393 * If this page isn't mapped (ie, page_mapping == NULL), or it might 394 * have userspace mappings, then we _must_ always clean + invalidate 395 * the dcache entries associated with the kernel mapping. 396 * 397 * Otherwise we can defer the operation, and clean the cache when we are 398 * about to change to user space. This is the same method as used on SPARC64. 399 * See update_mmu_cache for the user space part. 400 */ 401extern void flush_dcache_page(struct page *); 402 403extern void __flush_dcache_page(struct address_space *mapping, struct page *page); 404 405#define ARCH_HAS_FLUSH_ANON_PAGE 406static inline void flush_anon_page(struct vm_area_struct *vma, 407 struct page *page, unsigned long vmaddr) 408{ 409 extern void __flush_anon_page(struct vm_area_struct *vma, 410 struct page *, unsigned long); 411 if (PageAnon(page)) 412 __flush_anon_page(vma, page, vmaddr); 413} 414 415#define flush_dcache_mmap_lock(mapping) \ 416 write_lock_irq(&(mapping)->tree_lock) 417#define flush_dcache_mmap_unlock(mapping) \ 418 write_unlock_irq(&(mapping)->tree_lock) 419 420#define flush_icache_user_range(vma,page,addr,len) \ 421 flush_dcache_page(page) 422 423/* 424 * We don't appear to need to do anything here. In fact, if we did, we'd 425 * duplicate cache flushing elsewhere performed by flush_dcache_page(). 426 */ 427#define flush_icache_page(vma,page) do { } while (0) 428 429static inline void flush_ioremap_region(unsigned long phys, void __iomem *virt, 430 unsigned offset, size_t size) 431{ 432 const void *start = (void __force *)virt + offset; 433 dmac_inv_range(start, start + size); 434} 435 436#define __cacheid_present(val) (val != read_cpuid(CPUID_ID)) 437#define __cacheid_type_v7(val) ((val & (7 << 29)) == (4 << 29)) 438 439#define __cacheid_vivt_prev7(val) ((val & (15 << 25)) != (14 << 25)) 440#define __cacheid_vipt_prev7(val) ((val & (15 << 25)) == (14 << 25)) 441#define __cacheid_vipt_nonaliasing_prev7(val) ((val & (15 << 25 | 1 << 23)) == (14 << 25)) 442#define __cacheid_vipt_aliasing_prev7(val) ((val & (15 << 25 | 1 << 23)) == (14 << 25 | 1 << 23)) 443 444#define __cacheid_vivt(val) (__cacheid_type_v7(val) ? 0 : __cacheid_vivt_prev7(val)) 445#define __cacheid_vipt(val) (__cacheid_type_v7(val) ? 1 : __cacheid_vipt_prev7(val)) 446#define __cacheid_vipt_nonaliasing(val) (__cacheid_type_v7(val) ? 1 : __cacheid_vipt_nonaliasing_prev7(val)) 447#define __cacheid_vipt_aliasing(val) (__cacheid_type_v7(val) ? 0 : __cacheid_vipt_aliasing_prev7(val)) 448#define __cacheid_vivt_asid_tagged_instr(val) (__cacheid_type_v7(val) ? ((val & (3 << 14)) == (1 << 14)) : 0) 449 450#if defined(CONFIG_CPU_CACHE_VIVT) && !defined(CONFIG_CPU_CACHE_VIPT) 451 452#define cache_is_vivt() 1 453#define cache_is_vipt() 0 454#define cache_is_vipt_nonaliasing() 0 455#define cache_is_vipt_aliasing() 0 456#define icache_is_vivt_asid_tagged() 0 457 458#elif defined(CONFIG_CPU_CACHE_VIPT) 459 460#define cache_is_vivt() 0 461#define cache_is_vipt() 1 462#define cache_is_vipt_nonaliasing() \ 463 ({ \ 464 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \ 465 __cacheid_vipt_nonaliasing(__val); \ 466 }) 467 468#define cache_is_vipt_aliasing() \ 469 ({ \ 470 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \ 471 __cacheid_vipt_aliasing(__val); \ 472 }) 473 474#define icache_is_vivt_asid_tagged() \ 475 ({ \ 476 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \ 477 __cacheid_vivt_asid_tagged_instr(__val); \ 478 }) 479 480#else 481 482#define cache_is_vivt() \ 483 ({ \ 484 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \ 485 (!__cacheid_present(__val)) || __cacheid_vivt(__val); \ 486 }) 487 488#define cache_is_vipt() \ 489 ({ \ 490 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \ 491 __cacheid_present(__val) && __cacheid_vipt(__val); \ 492 }) 493 494#define cache_is_vipt_nonaliasing() \ 495 ({ \ 496 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \ 497 __cacheid_present(__val) && \ 498 __cacheid_vipt_nonaliasing(__val); \ 499 }) 500 501#define cache_is_vipt_aliasing() \ 502 ({ \ 503 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \ 504 __cacheid_present(__val) && \ 505 __cacheid_vipt_aliasing(__val); \ 506 }) 507 508#define icache_is_vivt_asid_tagged() \ 509 ({ \ 510 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \ 511 __cacheid_present(__val) && \ 512 __cacheid_vivt_asid_tagged_instr(__val); \ 513 }) 514 515#endif 516 517#endif