Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
76#include <asm/system.h>
77#include <linux/bitops.h>
78#include <linux/capability.h>
79#include <linux/cpu.h>
80#include <linux/types.h>
81#include <linux/kernel.h>
82#include <linux/sched.h>
83#include <linux/mutex.h>
84#include <linux/string.h>
85#include <linux/mm.h>
86#include <linux/socket.h>
87#include <linux/sockios.h>
88#include <linux/errno.h>
89#include <linux/interrupt.h>
90#include <linux/if_ether.h>
91#include <linux/netdevice.h>
92#include <linux/etherdevice.h>
93#include <linux/notifier.h>
94#include <linux/skbuff.h>
95#include <net/net_namespace.h>
96#include <net/sock.h>
97#include <linux/rtnetlink.h>
98#include <linux/proc_fs.h>
99#include <linux/seq_file.h>
100#include <linux/stat.h>
101#include <linux/if_bridge.h>
102#include <linux/if_macvlan.h>
103#include <net/dst.h>
104#include <net/pkt_sched.h>
105#include <net/checksum.h>
106#include <linux/highmem.h>
107#include <linux/init.h>
108#include <linux/kmod.h>
109#include <linux/module.h>
110#include <linux/kallsyms.h>
111#include <linux/netpoll.h>
112#include <linux/rcupdate.h>
113#include <linux/delay.h>
114#include <net/wext.h>
115#include <net/iw_handler.h>
116#include <asm/current.h>
117#include <linux/audit.h>
118#include <linux/dmaengine.h>
119#include <linux/err.h>
120#include <linux/ctype.h>
121#include <linux/if_arp.h>
122
123#include "net-sysfs.h"
124
125/*
126 * The list of packet types we will receive (as opposed to discard)
127 * and the routines to invoke.
128 *
129 * Why 16. Because with 16 the only overlap we get on a hash of the
130 * low nibble of the protocol value is RARP/SNAP/X.25.
131 *
132 * NOTE: That is no longer true with the addition of VLAN tags. Not
133 * sure which should go first, but I bet it won't make much
134 * difference if we are running VLANs. The good news is that
135 * this protocol won't be in the list unless compiled in, so
136 * the average user (w/out VLANs) will not be adversely affected.
137 * --BLG
138 *
139 * 0800 IP
140 * 8100 802.1Q VLAN
141 * 0001 802.3
142 * 0002 AX.25
143 * 0004 802.2
144 * 8035 RARP
145 * 0005 SNAP
146 * 0805 X.25
147 * 0806 ARP
148 * 8137 IPX
149 * 0009 Localtalk
150 * 86DD IPv6
151 */
152
153static DEFINE_SPINLOCK(ptype_lock);
154static struct list_head ptype_base[16] __read_mostly; /* 16 way hashed list */
155static struct list_head ptype_all __read_mostly; /* Taps */
156
157#ifdef CONFIG_NET_DMA
158struct net_dma {
159 struct dma_client client;
160 spinlock_t lock;
161 cpumask_t channel_mask;
162 struct dma_chan *channels[NR_CPUS];
163};
164
165static enum dma_state_client
166netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
167 enum dma_state state);
168
169static struct net_dma net_dma = {
170 .client = {
171 .event_callback = netdev_dma_event,
172 },
173};
174#endif
175
176/*
177 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
178 * semaphore.
179 *
180 * Pure readers hold dev_base_lock for reading.
181 *
182 * Writers must hold the rtnl semaphore while they loop through the
183 * dev_base_head list, and hold dev_base_lock for writing when they do the
184 * actual updates. This allows pure readers to access the list even
185 * while a writer is preparing to update it.
186 *
187 * To put it another way, dev_base_lock is held for writing only to
188 * protect against pure readers; the rtnl semaphore provides the
189 * protection against other writers.
190 *
191 * See, for example usages, register_netdevice() and
192 * unregister_netdevice(), which must be called with the rtnl
193 * semaphore held.
194 */
195DEFINE_RWLOCK(dev_base_lock);
196
197EXPORT_SYMBOL(dev_base_lock);
198
199#define NETDEV_HASHBITS 8
200#define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
201
202static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
203{
204 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
205 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
206}
207
208static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
209{
210 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
211}
212
213/* Device list insertion */
214static int list_netdevice(struct net_device *dev)
215{
216 struct net *net = dev->nd_net;
217
218 ASSERT_RTNL();
219
220 write_lock_bh(&dev_base_lock);
221 list_add_tail(&dev->dev_list, &net->dev_base_head);
222 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
223 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
224 write_unlock_bh(&dev_base_lock);
225 return 0;
226}
227
228/* Device list removal */
229static void unlist_netdevice(struct net_device *dev)
230{
231 ASSERT_RTNL();
232
233 /* Unlink dev from the device chain */
234 write_lock_bh(&dev_base_lock);
235 list_del(&dev->dev_list);
236 hlist_del(&dev->name_hlist);
237 hlist_del(&dev->index_hlist);
238 write_unlock_bh(&dev_base_lock);
239}
240
241/*
242 * Our notifier list
243 */
244
245static RAW_NOTIFIER_HEAD(netdev_chain);
246
247/*
248 * Device drivers call our routines to queue packets here. We empty the
249 * queue in the local softnet handler.
250 */
251
252DEFINE_PER_CPU(struct softnet_data, softnet_data);
253
254#ifdef CONFIG_DEBUG_LOCK_ALLOC
255/*
256 * register_netdevice() inits dev->_xmit_lock and sets lockdep class
257 * according to dev->type
258 */
259static const unsigned short netdev_lock_type[] =
260 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
261 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
262 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
263 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
264 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
265 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
266 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
267 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
268 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
269 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
270 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
271 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
272 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
273 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_VOID,
274 ARPHRD_NONE};
275
276static const char *netdev_lock_name[] =
277 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
278 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
279 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
280 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
281 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
282 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
283 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
284 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
285 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
286 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
287 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
288 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
289 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
290 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_VOID",
291 "_xmit_NONE"};
292
293static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
294
295static inline unsigned short netdev_lock_pos(unsigned short dev_type)
296{
297 int i;
298
299 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
300 if (netdev_lock_type[i] == dev_type)
301 return i;
302 /* the last key is used by default */
303 return ARRAY_SIZE(netdev_lock_type) - 1;
304}
305
306static inline void netdev_set_lockdep_class(spinlock_t *lock,
307 unsigned short dev_type)
308{
309 int i;
310
311 i = netdev_lock_pos(dev_type);
312 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
313 netdev_lock_name[i]);
314}
315#else
316static inline void netdev_set_lockdep_class(spinlock_t *lock,
317 unsigned short dev_type)
318{
319}
320#endif
321
322/*******************************************************************************
323
324 Protocol management and registration routines
325
326*******************************************************************************/
327
328/*
329 * Add a protocol ID to the list. Now that the input handler is
330 * smarter we can dispense with all the messy stuff that used to be
331 * here.
332 *
333 * BEWARE!!! Protocol handlers, mangling input packets,
334 * MUST BE last in hash buckets and checking protocol handlers
335 * MUST start from promiscuous ptype_all chain in net_bh.
336 * It is true now, do not change it.
337 * Explanation follows: if protocol handler, mangling packet, will
338 * be the first on list, it is not able to sense, that packet
339 * is cloned and should be copied-on-write, so that it will
340 * change it and subsequent readers will get broken packet.
341 * --ANK (980803)
342 */
343
344/**
345 * dev_add_pack - add packet handler
346 * @pt: packet type declaration
347 *
348 * Add a protocol handler to the networking stack. The passed &packet_type
349 * is linked into kernel lists and may not be freed until it has been
350 * removed from the kernel lists.
351 *
352 * This call does not sleep therefore it can not
353 * guarantee all CPU's that are in middle of receiving packets
354 * will see the new packet type (until the next received packet).
355 */
356
357void dev_add_pack(struct packet_type *pt)
358{
359 int hash;
360
361 spin_lock_bh(&ptype_lock);
362 if (pt->type == htons(ETH_P_ALL))
363 list_add_rcu(&pt->list, &ptype_all);
364 else {
365 hash = ntohs(pt->type) & 15;
366 list_add_rcu(&pt->list, &ptype_base[hash]);
367 }
368 spin_unlock_bh(&ptype_lock);
369}
370
371/**
372 * __dev_remove_pack - remove packet handler
373 * @pt: packet type declaration
374 *
375 * Remove a protocol handler that was previously added to the kernel
376 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
377 * from the kernel lists and can be freed or reused once this function
378 * returns.
379 *
380 * The packet type might still be in use by receivers
381 * and must not be freed until after all the CPU's have gone
382 * through a quiescent state.
383 */
384void __dev_remove_pack(struct packet_type *pt)
385{
386 struct list_head *head;
387 struct packet_type *pt1;
388
389 spin_lock_bh(&ptype_lock);
390
391 if (pt->type == htons(ETH_P_ALL))
392 head = &ptype_all;
393 else
394 head = &ptype_base[ntohs(pt->type) & 15];
395
396 list_for_each_entry(pt1, head, list) {
397 if (pt == pt1) {
398 list_del_rcu(&pt->list);
399 goto out;
400 }
401 }
402
403 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
404out:
405 spin_unlock_bh(&ptype_lock);
406}
407/**
408 * dev_remove_pack - remove packet handler
409 * @pt: packet type declaration
410 *
411 * Remove a protocol handler that was previously added to the kernel
412 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
413 * from the kernel lists and can be freed or reused once this function
414 * returns.
415 *
416 * This call sleeps to guarantee that no CPU is looking at the packet
417 * type after return.
418 */
419void dev_remove_pack(struct packet_type *pt)
420{
421 __dev_remove_pack(pt);
422
423 synchronize_net();
424}
425
426/******************************************************************************
427
428 Device Boot-time Settings Routines
429
430*******************************************************************************/
431
432/* Boot time configuration table */
433static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
434
435/**
436 * netdev_boot_setup_add - add new setup entry
437 * @name: name of the device
438 * @map: configured settings for the device
439 *
440 * Adds new setup entry to the dev_boot_setup list. The function
441 * returns 0 on error and 1 on success. This is a generic routine to
442 * all netdevices.
443 */
444static int netdev_boot_setup_add(char *name, struct ifmap *map)
445{
446 struct netdev_boot_setup *s;
447 int i;
448
449 s = dev_boot_setup;
450 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
451 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
452 memset(s[i].name, 0, sizeof(s[i].name));
453 strcpy(s[i].name, name);
454 memcpy(&s[i].map, map, sizeof(s[i].map));
455 break;
456 }
457 }
458
459 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
460}
461
462/**
463 * netdev_boot_setup_check - check boot time settings
464 * @dev: the netdevice
465 *
466 * Check boot time settings for the device.
467 * The found settings are set for the device to be used
468 * later in the device probing.
469 * Returns 0 if no settings found, 1 if they are.
470 */
471int netdev_boot_setup_check(struct net_device *dev)
472{
473 struct netdev_boot_setup *s = dev_boot_setup;
474 int i;
475
476 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
477 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
478 !strncmp(dev->name, s[i].name, strlen(s[i].name))) {
479 dev->irq = s[i].map.irq;
480 dev->base_addr = s[i].map.base_addr;
481 dev->mem_start = s[i].map.mem_start;
482 dev->mem_end = s[i].map.mem_end;
483 return 1;
484 }
485 }
486 return 0;
487}
488
489
490/**
491 * netdev_boot_base - get address from boot time settings
492 * @prefix: prefix for network device
493 * @unit: id for network device
494 *
495 * Check boot time settings for the base address of device.
496 * The found settings are set for the device to be used
497 * later in the device probing.
498 * Returns 0 if no settings found.
499 */
500unsigned long netdev_boot_base(const char *prefix, int unit)
501{
502 const struct netdev_boot_setup *s = dev_boot_setup;
503 char name[IFNAMSIZ];
504 int i;
505
506 sprintf(name, "%s%d", prefix, unit);
507
508 /*
509 * If device already registered then return base of 1
510 * to indicate not to probe for this interface
511 */
512 if (__dev_get_by_name(&init_net, name))
513 return 1;
514
515 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
516 if (!strcmp(name, s[i].name))
517 return s[i].map.base_addr;
518 return 0;
519}
520
521/*
522 * Saves at boot time configured settings for any netdevice.
523 */
524int __init netdev_boot_setup(char *str)
525{
526 int ints[5];
527 struct ifmap map;
528
529 str = get_options(str, ARRAY_SIZE(ints), ints);
530 if (!str || !*str)
531 return 0;
532
533 /* Save settings */
534 memset(&map, 0, sizeof(map));
535 if (ints[0] > 0)
536 map.irq = ints[1];
537 if (ints[0] > 1)
538 map.base_addr = ints[2];
539 if (ints[0] > 2)
540 map.mem_start = ints[3];
541 if (ints[0] > 3)
542 map.mem_end = ints[4];
543
544 /* Add new entry to the list */
545 return netdev_boot_setup_add(str, &map);
546}
547
548__setup("netdev=", netdev_boot_setup);
549
550/*******************************************************************************
551
552 Device Interface Subroutines
553
554*******************************************************************************/
555
556/**
557 * __dev_get_by_name - find a device by its name
558 * @net: the applicable net namespace
559 * @name: name to find
560 *
561 * Find an interface by name. Must be called under RTNL semaphore
562 * or @dev_base_lock. If the name is found a pointer to the device
563 * is returned. If the name is not found then %NULL is returned. The
564 * reference counters are not incremented so the caller must be
565 * careful with locks.
566 */
567
568struct net_device *__dev_get_by_name(struct net *net, const char *name)
569{
570 struct hlist_node *p;
571
572 hlist_for_each(p, dev_name_hash(net, name)) {
573 struct net_device *dev
574 = hlist_entry(p, struct net_device, name_hlist);
575 if (!strncmp(dev->name, name, IFNAMSIZ))
576 return dev;
577 }
578 return NULL;
579}
580
581/**
582 * dev_get_by_name - find a device by its name
583 * @net: the applicable net namespace
584 * @name: name to find
585 *
586 * Find an interface by name. This can be called from any
587 * context and does its own locking. The returned handle has
588 * the usage count incremented and the caller must use dev_put() to
589 * release it when it is no longer needed. %NULL is returned if no
590 * matching device is found.
591 */
592
593struct net_device *dev_get_by_name(struct net *net, const char *name)
594{
595 struct net_device *dev;
596
597 read_lock(&dev_base_lock);
598 dev = __dev_get_by_name(net, name);
599 if (dev)
600 dev_hold(dev);
601 read_unlock(&dev_base_lock);
602 return dev;
603}
604
605/**
606 * __dev_get_by_index - find a device by its ifindex
607 * @net: the applicable net namespace
608 * @ifindex: index of device
609 *
610 * Search for an interface by index. Returns %NULL if the device
611 * is not found or a pointer to the device. The device has not
612 * had its reference counter increased so the caller must be careful
613 * about locking. The caller must hold either the RTNL semaphore
614 * or @dev_base_lock.
615 */
616
617struct net_device *__dev_get_by_index(struct net *net, int ifindex)
618{
619 struct hlist_node *p;
620
621 hlist_for_each(p, dev_index_hash(net, ifindex)) {
622 struct net_device *dev
623 = hlist_entry(p, struct net_device, index_hlist);
624 if (dev->ifindex == ifindex)
625 return dev;
626 }
627 return NULL;
628}
629
630
631/**
632 * dev_get_by_index - find a device by its ifindex
633 * @net: the applicable net namespace
634 * @ifindex: index of device
635 *
636 * Search for an interface by index. Returns NULL if the device
637 * is not found or a pointer to the device. The device returned has
638 * had a reference added and the pointer is safe until the user calls
639 * dev_put to indicate they have finished with it.
640 */
641
642struct net_device *dev_get_by_index(struct net *net, int ifindex)
643{
644 struct net_device *dev;
645
646 read_lock(&dev_base_lock);
647 dev = __dev_get_by_index(net, ifindex);
648 if (dev)
649 dev_hold(dev);
650 read_unlock(&dev_base_lock);
651 return dev;
652}
653
654/**
655 * dev_getbyhwaddr - find a device by its hardware address
656 * @net: the applicable net namespace
657 * @type: media type of device
658 * @ha: hardware address
659 *
660 * Search for an interface by MAC address. Returns NULL if the device
661 * is not found or a pointer to the device. The caller must hold the
662 * rtnl semaphore. The returned device has not had its ref count increased
663 * and the caller must therefore be careful about locking
664 *
665 * BUGS:
666 * If the API was consistent this would be __dev_get_by_hwaddr
667 */
668
669struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
670{
671 struct net_device *dev;
672
673 ASSERT_RTNL();
674
675 for_each_netdev(&init_net, dev)
676 if (dev->type == type &&
677 !memcmp(dev->dev_addr, ha, dev->addr_len))
678 return dev;
679
680 return NULL;
681}
682
683EXPORT_SYMBOL(dev_getbyhwaddr);
684
685struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
686{
687 struct net_device *dev;
688
689 ASSERT_RTNL();
690 for_each_netdev(net, dev)
691 if (dev->type == type)
692 return dev;
693
694 return NULL;
695}
696
697EXPORT_SYMBOL(__dev_getfirstbyhwtype);
698
699struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
700{
701 struct net_device *dev;
702
703 rtnl_lock();
704 dev = __dev_getfirstbyhwtype(net, type);
705 if (dev)
706 dev_hold(dev);
707 rtnl_unlock();
708 return dev;
709}
710
711EXPORT_SYMBOL(dev_getfirstbyhwtype);
712
713/**
714 * dev_get_by_flags - find any device with given flags
715 * @net: the applicable net namespace
716 * @if_flags: IFF_* values
717 * @mask: bitmask of bits in if_flags to check
718 *
719 * Search for any interface with the given flags. Returns NULL if a device
720 * is not found or a pointer to the device. The device returned has
721 * had a reference added and the pointer is safe until the user calls
722 * dev_put to indicate they have finished with it.
723 */
724
725struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
726{
727 struct net_device *dev, *ret;
728
729 ret = NULL;
730 read_lock(&dev_base_lock);
731 for_each_netdev(net, dev) {
732 if (((dev->flags ^ if_flags) & mask) == 0) {
733 dev_hold(dev);
734 ret = dev;
735 break;
736 }
737 }
738 read_unlock(&dev_base_lock);
739 return ret;
740}
741
742/**
743 * dev_valid_name - check if name is okay for network device
744 * @name: name string
745 *
746 * Network device names need to be valid file names to
747 * to allow sysfs to work. We also disallow any kind of
748 * whitespace.
749 */
750int dev_valid_name(const char *name)
751{
752 if (*name == '\0')
753 return 0;
754 if (strlen(name) >= IFNAMSIZ)
755 return 0;
756 if (!strcmp(name, ".") || !strcmp(name, ".."))
757 return 0;
758
759 while (*name) {
760 if (*name == '/' || isspace(*name))
761 return 0;
762 name++;
763 }
764 return 1;
765}
766
767/**
768 * __dev_alloc_name - allocate a name for a device
769 * @net: network namespace to allocate the device name in
770 * @name: name format string
771 * @buf: scratch buffer and result name string
772 *
773 * Passed a format string - eg "lt%d" it will try and find a suitable
774 * id. It scans list of devices to build up a free map, then chooses
775 * the first empty slot. The caller must hold the dev_base or rtnl lock
776 * while allocating the name and adding the device in order to avoid
777 * duplicates.
778 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
779 * Returns the number of the unit assigned or a negative errno code.
780 */
781
782static int __dev_alloc_name(struct net *net, const char *name, char *buf)
783{
784 int i = 0;
785 const char *p;
786 const int max_netdevices = 8*PAGE_SIZE;
787 unsigned long *inuse;
788 struct net_device *d;
789
790 p = strnchr(name, IFNAMSIZ-1, '%');
791 if (p) {
792 /*
793 * Verify the string as this thing may have come from
794 * the user. There must be either one "%d" and no other "%"
795 * characters.
796 */
797 if (p[1] != 'd' || strchr(p + 2, '%'))
798 return -EINVAL;
799
800 /* Use one page as a bit array of possible slots */
801 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
802 if (!inuse)
803 return -ENOMEM;
804
805 for_each_netdev(net, d) {
806 if (!sscanf(d->name, name, &i))
807 continue;
808 if (i < 0 || i >= max_netdevices)
809 continue;
810
811 /* avoid cases where sscanf is not exact inverse of printf */
812 snprintf(buf, IFNAMSIZ, name, i);
813 if (!strncmp(buf, d->name, IFNAMSIZ))
814 set_bit(i, inuse);
815 }
816
817 i = find_first_zero_bit(inuse, max_netdevices);
818 free_page((unsigned long) inuse);
819 }
820
821 snprintf(buf, IFNAMSIZ, name, i);
822 if (!__dev_get_by_name(net, buf))
823 return i;
824
825 /* It is possible to run out of possible slots
826 * when the name is long and there isn't enough space left
827 * for the digits, or if all bits are used.
828 */
829 return -ENFILE;
830}
831
832/**
833 * dev_alloc_name - allocate a name for a device
834 * @dev: device
835 * @name: name format string
836 *
837 * Passed a format string - eg "lt%d" it will try and find a suitable
838 * id. It scans list of devices to build up a free map, then chooses
839 * the first empty slot. The caller must hold the dev_base or rtnl lock
840 * while allocating the name and adding the device in order to avoid
841 * duplicates.
842 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
843 * Returns the number of the unit assigned or a negative errno code.
844 */
845
846int dev_alloc_name(struct net_device *dev, const char *name)
847{
848 char buf[IFNAMSIZ];
849 struct net *net;
850 int ret;
851
852 BUG_ON(!dev->nd_net);
853 net = dev->nd_net;
854 ret = __dev_alloc_name(net, name, buf);
855 if (ret >= 0)
856 strlcpy(dev->name, buf, IFNAMSIZ);
857 return ret;
858}
859
860
861/**
862 * dev_change_name - change name of a device
863 * @dev: device
864 * @newname: name (or format string) must be at least IFNAMSIZ
865 *
866 * Change name of a device, can pass format strings "eth%d".
867 * for wildcarding.
868 */
869int dev_change_name(struct net_device *dev, char *newname)
870{
871 char oldname[IFNAMSIZ];
872 int err = 0;
873 int ret;
874 struct net *net;
875
876 ASSERT_RTNL();
877 BUG_ON(!dev->nd_net);
878
879 net = dev->nd_net;
880 if (dev->flags & IFF_UP)
881 return -EBUSY;
882
883 if (!dev_valid_name(newname))
884 return -EINVAL;
885
886 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
887 return 0;
888
889 memcpy(oldname, dev->name, IFNAMSIZ);
890
891 if (strchr(newname, '%')) {
892 err = dev_alloc_name(dev, newname);
893 if (err < 0)
894 return err;
895 strcpy(newname, dev->name);
896 }
897 else if (__dev_get_by_name(net, newname))
898 return -EEXIST;
899 else
900 strlcpy(dev->name, newname, IFNAMSIZ);
901
902rollback:
903 device_rename(&dev->dev, dev->name);
904
905 write_lock_bh(&dev_base_lock);
906 hlist_del(&dev->name_hlist);
907 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
908 write_unlock_bh(&dev_base_lock);
909
910 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
911 ret = notifier_to_errno(ret);
912
913 if (ret) {
914 if (err) {
915 printk(KERN_ERR
916 "%s: name change rollback failed: %d.\n",
917 dev->name, ret);
918 } else {
919 err = ret;
920 memcpy(dev->name, oldname, IFNAMSIZ);
921 goto rollback;
922 }
923 }
924
925 return err;
926}
927
928/**
929 * netdev_features_change - device changes features
930 * @dev: device to cause notification
931 *
932 * Called to indicate a device has changed features.
933 */
934void netdev_features_change(struct net_device *dev)
935{
936 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
937}
938EXPORT_SYMBOL(netdev_features_change);
939
940/**
941 * netdev_state_change - device changes state
942 * @dev: device to cause notification
943 *
944 * Called to indicate a device has changed state. This function calls
945 * the notifier chains for netdev_chain and sends a NEWLINK message
946 * to the routing socket.
947 */
948void netdev_state_change(struct net_device *dev)
949{
950 if (dev->flags & IFF_UP) {
951 call_netdevice_notifiers(NETDEV_CHANGE, dev);
952 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
953 }
954}
955
956/**
957 * dev_load - load a network module
958 * @net: the applicable net namespace
959 * @name: name of interface
960 *
961 * If a network interface is not present and the process has suitable
962 * privileges this function loads the module. If module loading is not
963 * available in this kernel then it becomes a nop.
964 */
965
966void dev_load(struct net *net, const char *name)
967{
968 struct net_device *dev;
969
970 read_lock(&dev_base_lock);
971 dev = __dev_get_by_name(net, name);
972 read_unlock(&dev_base_lock);
973
974 if (!dev && capable(CAP_SYS_MODULE))
975 request_module("%s", name);
976}
977
978/**
979 * dev_open - prepare an interface for use.
980 * @dev: device to open
981 *
982 * Takes a device from down to up state. The device's private open
983 * function is invoked and then the multicast lists are loaded. Finally
984 * the device is moved into the up state and a %NETDEV_UP message is
985 * sent to the netdev notifier chain.
986 *
987 * Calling this function on an active interface is a nop. On a failure
988 * a negative errno code is returned.
989 */
990int dev_open(struct net_device *dev)
991{
992 int ret = 0;
993
994 /*
995 * Is it already up?
996 */
997
998 if (dev->flags & IFF_UP)
999 return 0;
1000
1001 /*
1002 * Is it even present?
1003 */
1004 if (!netif_device_present(dev))
1005 return -ENODEV;
1006
1007 /*
1008 * Call device private open method
1009 */
1010 set_bit(__LINK_STATE_START, &dev->state);
1011
1012 if (dev->validate_addr)
1013 ret = dev->validate_addr(dev);
1014
1015 if (!ret && dev->open)
1016 ret = dev->open(dev);
1017
1018 /*
1019 * If it went open OK then:
1020 */
1021
1022 if (ret)
1023 clear_bit(__LINK_STATE_START, &dev->state);
1024 else {
1025 /*
1026 * Set the flags.
1027 */
1028 dev->flags |= IFF_UP;
1029
1030 /*
1031 * Initialize multicasting status
1032 */
1033 dev_set_rx_mode(dev);
1034
1035 /*
1036 * Wakeup transmit queue engine
1037 */
1038 dev_activate(dev);
1039
1040 /*
1041 * ... and announce new interface.
1042 */
1043 call_netdevice_notifiers(NETDEV_UP, dev);
1044 }
1045
1046 return ret;
1047}
1048
1049/**
1050 * dev_close - shutdown an interface.
1051 * @dev: device to shutdown
1052 *
1053 * This function moves an active device into down state. A
1054 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1055 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1056 * chain.
1057 */
1058int dev_close(struct net_device *dev)
1059{
1060 might_sleep();
1061
1062 if (!(dev->flags & IFF_UP))
1063 return 0;
1064
1065 /*
1066 * Tell people we are going down, so that they can
1067 * prepare to death, when device is still operating.
1068 */
1069 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1070
1071 dev_deactivate(dev);
1072
1073 clear_bit(__LINK_STATE_START, &dev->state);
1074
1075 /* Synchronize to scheduled poll. We cannot touch poll list,
1076 * it can be even on different cpu. So just clear netif_running().
1077 *
1078 * dev->stop() will invoke napi_disable() on all of it's
1079 * napi_struct instances on this device.
1080 */
1081 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1082
1083 /*
1084 * Call the device specific close. This cannot fail.
1085 * Only if device is UP
1086 *
1087 * We allow it to be called even after a DETACH hot-plug
1088 * event.
1089 */
1090 if (dev->stop)
1091 dev->stop(dev);
1092
1093 /*
1094 * Device is now down.
1095 */
1096
1097 dev->flags &= ~IFF_UP;
1098
1099 /*
1100 * Tell people we are down
1101 */
1102 call_netdevice_notifiers(NETDEV_DOWN, dev);
1103
1104 return 0;
1105}
1106
1107
1108static int dev_boot_phase = 1;
1109
1110/*
1111 * Device change register/unregister. These are not inline or static
1112 * as we export them to the world.
1113 */
1114
1115/**
1116 * register_netdevice_notifier - register a network notifier block
1117 * @nb: notifier
1118 *
1119 * Register a notifier to be called when network device events occur.
1120 * The notifier passed is linked into the kernel structures and must
1121 * not be reused until it has been unregistered. A negative errno code
1122 * is returned on a failure.
1123 *
1124 * When registered all registration and up events are replayed
1125 * to the new notifier to allow device to have a race free
1126 * view of the network device list.
1127 */
1128
1129int register_netdevice_notifier(struct notifier_block *nb)
1130{
1131 struct net_device *dev;
1132 struct net_device *last;
1133 struct net *net;
1134 int err;
1135
1136 rtnl_lock();
1137 err = raw_notifier_chain_register(&netdev_chain, nb);
1138 if (err)
1139 goto unlock;
1140 if (dev_boot_phase)
1141 goto unlock;
1142 for_each_net(net) {
1143 for_each_netdev(net, dev) {
1144 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1145 err = notifier_to_errno(err);
1146 if (err)
1147 goto rollback;
1148
1149 if (!(dev->flags & IFF_UP))
1150 continue;
1151
1152 nb->notifier_call(nb, NETDEV_UP, dev);
1153 }
1154 }
1155
1156unlock:
1157 rtnl_unlock();
1158 return err;
1159
1160rollback:
1161 last = dev;
1162 for_each_net(net) {
1163 for_each_netdev(net, dev) {
1164 if (dev == last)
1165 break;
1166
1167 if (dev->flags & IFF_UP) {
1168 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1169 nb->notifier_call(nb, NETDEV_DOWN, dev);
1170 }
1171 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1172 }
1173 }
1174
1175 raw_notifier_chain_unregister(&netdev_chain, nb);
1176 goto unlock;
1177}
1178
1179/**
1180 * unregister_netdevice_notifier - unregister a network notifier block
1181 * @nb: notifier
1182 *
1183 * Unregister a notifier previously registered by
1184 * register_netdevice_notifier(). The notifier is unlinked into the
1185 * kernel structures and may then be reused. A negative errno code
1186 * is returned on a failure.
1187 */
1188
1189int unregister_netdevice_notifier(struct notifier_block *nb)
1190{
1191 int err;
1192
1193 rtnl_lock();
1194 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1195 rtnl_unlock();
1196 return err;
1197}
1198
1199/**
1200 * call_netdevice_notifiers - call all network notifier blocks
1201 * @val: value passed unmodified to notifier function
1202 * @dev: net_device pointer passed unmodified to notifier function
1203 *
1204 * Call all network notifier blocks. Parameters and return value
1205 * are as for raw_notifier_call_chain().
1206 */
1207
1208int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1209{
1210 return raw_notifier_call_chain(&netdev_chain, val, dev);
1211}
1212
1213/* When > 0 there are consumers of rx skb time stamps */
1214static atomic_t netstamp_needed = ATOMIC_INIT(0);
1215
1216void net_enable_timestamp(void)
1217{
1218 atomic_inc(&netstamp_needed);
1219}
1220
1221void net_disable_timestamp(void)
1222{
1223 atomic_dec(&netstamp_needed);
1224}
1225
1226static inline void net_timestamp(struct sk_buff *skb)
1227{
1228 if (atomic_read(&netstamp_needed))
1229 __net_timestamp(skb);
1230 else
1231 skb->tstamp.tv64 = 0;
1232}
1233
1234/*
1235 * Support routine. Sends outgoing frames to any network
1236 * taps currently in use.
1237 */
1238
1239static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1240{
1241 struct packet_type *ptype;
1242
1243 net_timestamp(skb);
1244
1245 rcu_read_lock();
1246 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1247 /* Never send packets back to the socket
1248 * they originated from - MvS (miquels@drinkel.ow.org)
1249 */
1250 if ((ptype->dev == dev || !ptype->dev) &&
1251 (ptype->af_packet_priv == NULL ||
1252 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1253 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1254 if (!skb2)
1255 break;
1256
1257 /* skb->nh should be correctly
1258 set by sender, so that the second statement is
1259 just protection against buggy protocols.
1260 */
1261 skb_reset_mac_header(skb2);
1262
1263 if (skb_network_header(skb2) < skb2->data ||
1264 skb2->network_header > skb2->tail) {
1265 if (net_ratelimit())
1266 printk(KERN_CRIT "protocol %04x is "
1267 "buggy, dev %s\n",
1268 skb2->protocol, dev->name);
1269 skb_reset_network_header(skb2);
1270 }
1271
1272 skb2->transport_header = skb2->network_header;
1273 skb2->pkt_type = PACKET_OUTGOING;
1274 ptype->func(skb2, skb->dev, ptype, skb->dev);
1275 }
1276 }
1277 rcu_read_unlock();
1278}
1279
1280
1281void __netif_schedule(struct net_device *dev)
1282{
1283 if (!test_and_set_bit(__LINK_STATE_SCHED, &dev->state)) {
1284 unsigned long flags;
1285 struct softnet_data *sd;
1286
1287 local_irq_save(flags);
1288 sd = &__get_cpu_var(softnet_data);
1289 dev->next_sched = sd->output_queue;
1290 sd->output_queue = dev;
1291 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1292 local_irq_restore(flags);
1293 }
1294}
1295EXPORT_SYMBOL(__netif_schedule);
1296
1297void dev_kfree_skb_irq(struct sk_buff *skb)
1298{
1299 if (atomic_dec_and_test(&skb->users)) {
1300 struct softnet_data *sd;
1301 unsigned long flags;
1302
1303 local_irq_save(flags);
1304 sd = &__get_cpu_var(softnet_data);
1305 skb->next = sd->completion_queue;
1306 sd->completion_queue = skb;
1307 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1308 local_irq_restore(flags);
1309 }
1310}
1311EXPORT_SYMBOL(dev_kfree_skb_irq);
1312
1313void dev_kfree_skb_any(struct sk_buff *skb)
1314{
1315 if (in_irq() || irqs_disabled())
1316 dev_kfree_skb_irq(skb);
1317 else
1318 dev_kfree_skb(skb);
1319}
1320EXPORT_SYMBOL(dev_kfree_skb_any);
1321
1322
1323/**
1324 * netif_device_detach - mark device as removed
1325 * @dev: network device
1326 *
1327 * Mark device as removed from system and therefore no longer available.
1328 */
1329void netif_device_detach(struct net_device *dev)
1330{
1331 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1332 netif_running(dev)) {
1333 netif_stop_queue(dev);
1334 }
1335}
1336EXPORT_SYMBOL(netif_device_detach);
1337
1338/**
1339 * netif_device_attach - mark device as attached
1340 * @dev: network device
1341 *
1342 * Mark device as attached from system and restart if needed.
1343 */
1344void netif_device_attach(struct net_device *dev)
1345{
1346 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1347 netif_running(dev)) {
1348 netif_wake_queue(dev);
1349 __netdev_watchdog_up(dev);
1350 }
1351}
1352EXPORT_SYMBOL(netif_device_attach);
1353
1354
1355/*
1356 * Invalidate hardware checksum when packet is to be mangled, and
1357 * complete checksum manually on outgoing path.
1358 */
1359int skb_checksum_help(struct sk_buff *skb)
1360{
1361 __wsum csum;
1362 int ret = 0, offset;
1363
1364 if (skb->ip_summed == CHECKSUM_COMPLETE)
1365 goto out_set_summed;
1366
1367 if (unlikely(skb_shinfo(skb)->gso_size)) {
1368 /* Let GSO fix up the checksum. */
1369 goto out_set_summed;
1370 }
1371
1372 offset = skb->csum_start - skb_headroom(skb);
1373 BUG_ON(offset >= skb_headlen(skb));
1374 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1375
1376 offset += skb->csum_offset;
1377 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1378
1379 if (skb_cloned(skb) &&
1380 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1381 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1382 if (ret)
1383 goto out;
1384 }
1385
1386 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1387out_set_summed:
1388 skb->ip_summed = CHECKSUM_NONE;
1389out:
1390 return ret;
1391}
1392
1393/**
1394 * skb_gso_segment - Perform segmentation on skb.
1395 * @skb: buffer to segment
1396 * @features: features for the output path (see dev->features)
1397 *
1398 * This function segments the given skb and returns a list of segments.
1399 *
1400 * It may return NULL if the skb requires no segmentation. This is
1401 * only possible when GSO is used for verifying header integrity.
1402 */
1403struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1404{
1405 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1406 struct packet_type *ptype;
1407 __be16 type = skb->protocol;
1408 int err;
1409
1410 BUG_ON(skb_shinfo(skb)->frag_list);
1411
1412 skb_reset_mac_header(skb);
1413 skb->mac_len = skb->network_header - skb->mac_header;
1414 __skb_pull(skb, skb->mac_len);
1415
1416 if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) {
1417 if (skb_header_cloned(skb) &&
1418 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1419 return ERR_PTR(err);
1420 }
1421
1422 rcu_read_lock();
1423 list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type) & 15], list) {
1424 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1425 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1426 err = ptype->gso_send_check(skb);
1427 segs = ERR_PTR(err);
1428 if (err || skb_gso_ok(skb, features))
1429 break;
1430 __skb_push(skb, (skb->data -
1431 skb_network_header(skb)));
1432 }
1433 segs = ptype->gso_segment(skb, features);
1434 break;
1435 }
1436 }
1437 rcu_read_unlock();
1438
1439 __skb_push(skb, skb->data - skb_mac_header(skb));
1440
1441 return segs;
1442}
1443
1444EXPORT_SYMBOL(skb_gso_segment);
1445
1446/* Take action when hardware reception checksum errors are detected. */
1447#ifdef CONFIG_BUG
1448void netdev_rx_csum_fault(struct net_device *dev)
1449{
1450 if (net_ratelimit()) {
1451 printk(KERN_ERR "%s: hw csum failure.\n",
1452 dev ? dev->name : "<unknown>");
1453 dump_stack();
1454 }
1455}
1456EXPORT_SYMBOL(netdev_rx_csum_fault);
1457#endif
1458
1459/* Actually, we should eliminate this check as soon as we know, that:
1460 * 1. IOMMU is present and allows to map all the memory.
1461 * 2. No high memory really exists on this machine.
1462 */
1463
1464static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1465{
1466#ifdef CONFIG_HIGHMEM
1467 int i;
1468
1469 if (dev->features & NETIF_F_HIGHDMA)
1470 return 0;
1471
1472 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1473 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1474 return 1;
1475
1476#endif
1477 return 0;
1478}
1479
1480struct dev_gso_cb {
1481 void (*destructor)(struct sk_buff *skb);
1482};
1483
1484#define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1485
1486static void dev_gso_skb_destructor(struct sk_buff *skb)
1487{
1488 struct dev_gso_cb *cb;
1489
1490 do {
1491 struct sk_buff *nskb = skb->next;
1492
1493 skb->next = nskb->next;
1494 nskb->next = NULL;
1495 kfree_skb(nskb);
1496 } while (skb->next);
1497
1498 cb = DEV_GSO_CB(skb);
1499 if (cb->destructor)
1500 cb->destructor(skb);
1501}
1502
1503/**
1504 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1505 * @skb: buffer to segment
1506 *
1507 * This function segments the given skb and stores the list of segments
1508 * in skb->next.
1509 */
1510static int dev_gso_segment(struct sk_buff *skb)
1511{
1512 struct net_device *dev = skb->dev;
1513 struct sk_buff *segs;
1514 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1515 NETIF_F_SG : 0);
1516
1517 segs = skb_gso_segment(skb, features);
1518
1519 /* Verifying header integrity only. */
1520 if (!segs)
1521 return 0;
1522
1523 if (unlikely(IS_ERR(segs)))
1524 return PTR_ERR(segs);
1525
1526 skb->next = segs;
1527 DEV_GSO_CB(skb)->destructor = skb->destructor;
1528 skb->destructor = dev_gso_skb_destructor;
1529
1530 return 0;
1531}
1532
1533int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
1534{
1535 if (likely(!skb->next)) {
1536 if (!list_empty(&ptype_all))
1537 dev_queue_xmit_nit(skb, dev);
1538
1539 if (netif_needs_gso(dev, skb)) {
1540 if (unlikely(dev_gso_segment(skb)))
1541 goto out_kfree_skb;
1542 if (skb->next)
1543 goto gso;
1544 }
1545
1546 return dev->hard_start_xmit(skb, dev);
1547 }
1548
1549gso:
1550 do {
1551 struct sk_buff *nskb = skb->next;
1552 int rc;
1553
1554 skb->next = nskb->next;
1555 nskb->next = NULL;
1556 rc = dev->hard_start_xmit(nskb, dev);
1557 if (unlikely(rc)) {
1558 nskb->next = skb->next;
1559 skb->next = nskb;
1560 return rc;
1561 }
1562 if (unlikely((netif_queue_stopped(dev) ||
1563 netif_subqueue_stopped(dev, skb)) &&
1564 skb->next))
1565 return NETDEV_TX_BUSY;
1566 } while (skb->next);
1567
1568 skb->destructor = DEV_GSO_CB(skb)->destructor;
1569
1570out_kfree_skb:
1571 kfree_skb(skb);
1572 return 0;
1573}
1574
1575/**
1576 * dev_queue_xmit - transmit a buffer
1577 * @skb: buffer to transmit
1578 *
1579 * Queue a buffer for transmission to a network device. The caller must
1580 * have set the device and priority and built the buffer before calling
1581 * this function. The function can be called from an interrupt.
1582 *
1583 * A negative errno code is returned on a failure. A success does not
1584 * guarantee the frame will be transmitted as it may be dropped due
1585 * to congestion or traffic shaping.
1586 *
1587 * -----------------------------------------------------------------------------------
1588 * I notice this method can also return errors from the queue disciplines,
1589 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1590 * be positive.
1591 *
1592 * Regardless of the return value, the skb is consumed, so it is currently
1593 * difficult to retry a send to this method. (You can bump the ref count
1594 * before sending to hold a reference for retry if you are careful.)
1595 *
1596 * When calling this method, interrupts MUST be enabled. This is because
1597 * the BH enable code must have IRQs enabled so that it will not deadlock.
1598 * --BLG
1599 */
1600
1601int dev_queue_xmit(struct sk_buff *skb)
1602{
1603 struct net_device *dev = skb->dev;
1604 struct Qdisc *q;
1605 int rc = -ENOMEM;
1606
1607 /* GSO will handle the following emulations directly. */
1608 if (netif_needs_gso(dev, skb))
1609 goto gso;
1610
1611 if (skb_shinfo(skb)->frag_list &&
1612 !(dev->features & NETIF_F_FRAGLIST) &&
1613 __skb_linearize(skb))
1614 goto out_kfree_skb;
1615
1616 /* Fragmented skb is linearized if device does not support SG,
1617 * or if at least one of fragments is in highmem and device
1618 * does not support DMA from it.
1619 */
1620 if (skb_shinfo(skb)->nr_frags &&
1621 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1622 __skb_linearize(skb))
1623 goto out_kfree_skb;
1624
1625 /* If packet is not checksummed and device does not support
1626 * checksumming for this protocol, complete checksumming here.
1627 */
1628 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1629 skb_set_transport_header(skb, skb->csum_start -
1630 skb_headroom(skb));
1631
1632 if (!(dev->features & NETIF_F_GEN_CSUM) &&
1633 !((dev->features & NETIF_F_IP_CSUM) &&
1634 skb->protocol == htons(ETH_P_IP)) &&
1635 !((dev->features & NETIF_F_IPV6_CSUM) &&
1636 skb->protocol == htons(ETH_P_IPV6)))
1637 if (skb_checksum_help(skb))
1638 goto out_kfree_skb;
1639 }
1640
1641gso:
1642 spin_lock_prefetch(&dev->queue_lock);
1643
1644 /* Disable soft irqs for various locks below. Also
1645 * stops preemption for RCU.
1646 */
1647 rcu_read_lock_bh();
1648
1649 /* Updates of qdisc are serialized by queue_lock.
1650 * The struct Qdisc which is pointed to by qdisc is now a
1651 * rcu structure - it may be accessed without acquiring
1652 * a lock (but the structure may be stale.) The freeing of the
1653 * qdisc will be deferred until it's known that there are no
1654 * more references to it.
1655 *
1656 * If the qdisc has an enqueue function, we still need to
1657 * hold the queue_lock before calling it, since queue_lock
1658 * also serializes access to the device queue.
1659 */
1660
1661 q = rcu_dereference(dev->qdisc);
1662#ifdef CONFIG_NET_CLS_ACT
1663 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1664#endif
1665 if (q->enqueue) {
1666 /* Grab device queue */
1667 spin_lock(&dev->queue_lock);
1668 q = dev->qdisc;
1669 if (q->enqueue) {
1670 /* reset queue_mapping to zero */
1671 skb_set_queue_mapping(skb, 0);
1672 rc = q->enqueue(skb, q);
1673 qdisc_run(dev);
1674 spin_unlock(&dev->queue_lock);
1675
1676 rc = rc == NET_XMIT_BYPASS ? NET_XMIT_SUCCESS : rc;
1677 goto out;
1678 }
1679 spin_unlock(&dev->queue_lock);
1680 }
1681
1682 /* The device has no queue. Common case for software devices:
1683 loopback, all the sorts of tunnels...
1684
1685 Really, it is unlikely that netif_tx_lock protection is necessary
1686 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1687 counters.)
1688 However, it is possible, that they rely on protection
1689 made by us here.
1690
1691 Check this and shot the lock. It is not prone from deadlocks.
1692 Either shot noqueue qdisc, it is even simpler 8)
1693 */
1694 if (dev->flags & IFF_UP) {
1695 int cpu = smp_processor_id(); /* ok because BHs are off */
1696
1697 if (dev->xmit_lock_owner != cpu) {
1698
1699 HARD_TX_LOCK(dev, cpu);
1700
1701 if (!netif_queue_stopped(dev) &&
1702 !netif_subqueue_stopped(dev, skb)) {
1703 rc = 0;
1704 if (!dev_hard_start_xmit(skb, dev)) {
1705 HARD_TX_UNLOCK(dev);
1706 goto out;
1707 }
1708 }
1709 HARD_TX_UNLOCK(dev);
1710 if (net_ratelimit())
1711 printk(KERN_CRIT "Virtual device %s asks to "
1712 "queue packet!\n", dev->name);
1713 } else {
1714 /* Recursion is detected! It is possible,
1715 * unfortunately */
1716 if (net_ratelimit())
1717 printk(KERN_CRIT "Dead loop on virtual device "
1718 "%s, fix it urgently!\n", dev->name);
1719 }
1720 }
1721
1722 rc = -ENETDOWN;
1723 rcu_read_unlock_bh();
1724
1725out_kfree_skb:
1726 kfree_skb(skb);
1727 return rc;
1728out:
1729 rcu_read_unlock_bh();
1730 return rc;
1731}
1732
1733
1734/*=======================================================================
1735 Receiver routines
1736 =======================================================================*/
1737
1738int netdev_max_backlog __read_mostly = 1000;
1739int netdev_budget __read_mostly = 300;
1740int weight_p __read_mostly = 64; /* old backlog weight */
1741
1742DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1743
1744
1745/**
1746 * netif_rx - post buffer to the network code
1747 * @skb: buffer to post
1748 *
1749 * This function receives a packet from a device driver and queues it for
1750 * the upper (protocol) levels to process. It always succeeds. The buffer
1751 * may be dropped during processing for congestion control or by the
1752 * protocol layers.
1753 *
1754 * return values:
1755 * NET_RX_SUCCESS (no congestion)
1756 * NET_RX_DROP (packet was dropped)
1757 *
1758 */
1759
1760int netif_rx(struct sk_buff *skb)
1761{
1762 struct softnet_data *queue;
1763 unsigned long flags;
1764
1765 /* if netpoll wants it, pretend we never saw it */
1766 if (netpoll_rx(skb))
1767 return NET_RX_DROP;
1768
1769 if (!skb->tstamp.tv64)
1770 net_timestamp(skb);
1771
1772 /*
1773 * The code is rearranged so that the path is the most
1774 * short when CPU is congested, but is still operating.
1775 */
1776 local_irq_save(flags);
1777 queue = &__get_cpu_var(softnet_data);
1778
1779 __get_cpu_var(netdev_rx_stat).total++;
1780 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1781 if (queue->input_pkt_queue.qlen) {
1782enqueue:
1783 dev_hold(skb->dev);
1784 __skb_queue_tail(&queue->input_pkt_queue, skb);
1785 local_irq_restore(flags);
1786 return NET_RX_SUCCESS;
1787 }
1788
1789 napi_schedule(&queue->backlog);
1790 goto enqueue;
1791 }
1792
1793 __get_cpu_var(netdev_rx_stat).dropped++;
1794 local_irq_restore(flags);
1795
1796 kfree_skb(skb);
1797 return NET_RX_DROP;
1798}
1799
1800int netif_rx_ni(struct sk_buff *skb)
1801{
1802 int err;
1803
1804 preempt_disable();
1805 err = netif_rx(skb);
1806 if (local_softirq_pending())
1807 do_softirq();
1808 preempt_enable();
1809
1810 return err;
1811}
1812
1813EXPORT_SYMBOL(netif_rx_ni);
1814
1815static inline struct net_device *skb_bond(struct sk_buff *skb)
1816{
1817 struct net_device *dev = skb->dev;
1818
1819 if (dev->master) {
1820 if (skb_bond_should_drop(skb)) {
1821 kfree_skb(skb);
1822 return NULL;
1823 }
1824 skb->dev = dev->master;
1825 }
1826
1827 return dev;
1828}
1829
1830
1831static void net_tx_action(struct softirq_action *h)
1832{
1833 struct softnet_data *sd = &__get_cpu_var(softnet_data);
1834
1835 if (sd->completion_queue) {
1836 struct sk_buff *clist;
1837
1838 local_irq_disable();
1839 clist = sd->completion_queue;
1840 sd->completion_queue = NULL;
1841 local_irq_enable();
1842
1843 while (clist) {
1844 struct sk_buff *skb = clist;
1845 clist = clist->next;
1846
1847 BUG_TRAP(!atomic_read(&skb->users));
1848 __kfree_skb(skb);
1849 }
1850 }
1851
1852 if (sd->output_queue) {
1853 struct net_device *head;
1854
1855 local_irq_disable();
1856 head = sd->output_queue;
1857 sd->output_queue = NULL;
1858 local_irq_enable();
1859
1860 while (head) {
1861 struct net_device *dev = head;
1862 head = head->next_sched;
1863
1864 smp_mb__before_clear_bit();
1865 clear_bit(__LINK_STATE_SCHED, &dev->state);
1866
1867 if (spin_trylock(&dev->queue_lock)) {
1868 qdisc_run(dev);
1869 spin_unlock(&dev->queue_lock);
1870 } else {
1871 netif_schedule(dev);
1872 }
1873 }
1874 }
1875}
1876
1877static inline int deliver_skb(struct sk_buff *skb,
1878 struct packet_type *pt_prev,
1879 struct net_device *orig_dev)
1880{
1881 atomic_inc(&skb->users);
1882 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1883}
1884
1885#if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
1886/* These hooks defined here for ATM */
1887struct net_bridge;
1888struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
1889 unsigned char *addr);
1890void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
1891
1892/*
1893 * If bridge module is loaded call bridging hook.
1894 * returns NULL if packet was consumed.
1895 */
1896struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
1897 struct sk_buff *skb) __read_mostly;
1898static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
1899 struct packet_type **pt_prev, int *ret,
1900 struct net_device *orig_dev)
1901{
1902 struct net_bridge_port *port;
1903
1904 if (skb->pkt_type == PACKET_LOOPBACK ||
1905 (port = rcu_dereference(skb->dev->br_port)) == NULL)
1906 return skb;
1907
1908 if (*pt_prev) {
1909 *ret = deliver_skb(skb, *pt_prev, orig_dev);
1910 *pt_prev = NULL;
1911 }
1912
1913 return br_handle_frame_hook(port, skb);
1914}
1915#else
1916#define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
1917#endif
1918
1919#if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
1920struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
1921EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
1922
1923static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
1924 struct packet_type **pt_prev,
1925 int *ret,
1926 struct net_device *orig_dev)
1927{
1928 if (skb->dev->macvlan_port == NULL)
1929 return skb;
1930
1931 if (*pt_prev) {
1932 *ret = deliver_skb(skb, *pt_prev, orig_dev);
1933 *pt_prev = NULL;
1934 }
1935 return macvlan_handle_frame_hook(skb);
1936}
1937#else
1938#define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
1939#endif
1940
1941#ifdef CONFIG_NET_CLS_ACT
1942/* TODO: Maybe we should just force sch_ingress to be compiled in
1943 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
1944 * a compare and 2 stores extra right now if we dont have it on
1945 * but have CONFIG_NET_CLS_ACT
1946 * NOTE: This doesnt stop any functionality; if you dont have
1947 * the ingress scheduler, you just cant add policies on ingress.
1948 *
1949 */
1950static int ing_filter(struct sk_buff *skb)
1951{
1952 struct Qdisc *q;
1953 struct net_device *dev = skb->dev;
1954 int result = TC_ACT_OK;
1955 u32 ttl = G_TC_RTTL(skb->tc_verd);
1956
1957 if (MAX_RED_LOOP < ttl++) {
1958 printk(KERN_WARNING
1959 "Redir loop detected Dropping packet (%d->%d)\n",
1960 skb->iif, dev->ifindex);
1961 return TC_ACT_SHOT;
1962 }
1963
1964 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
1965 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
1966
1967 spin_lock(&dev->ingress_lock);
1968 if ((q = dev->qdisc_ingress) != NULL)
1969 result = q->enqueue(skb, q);
1970 spin_unlock(&dev->ingress_lock);
1971
1972 return result;
1973}
1974
1975static inline struct sk_buff *handle_ing(struct sk_buff *skb,
1976 struct packet_type **pt_prev,
1977 int *ret, struct net_device *orig_dev)
1978{
1979 if (!skb->dev->qdisc_ingress)
1980 goto out;
1981
1982 if (*pt_prev) {
1983 *ret = deliver_skb(skb, *pt_prev, orig_dev);
1984 *pt_prev = NULL;
1985 } else {
1986 /* Huh? Why does turning on AF_PACKET affect this? */
1987 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
1988 }
1989
1990 switch (ing_filter(skb)) {
1991 case TC_ACT_SHOT:
1992 case TC_ACT_STOLEN:
1993 kfree_skb(skb);
1994 return NULL;
1995 }
1996
1997out:
1998 skb->tc_verd = 0;
1999 return skb;
2000}
2001#endif
2002
2003/**
2004 * netif_receive_skb - process receive buffer from network
2005 * @skb: buffer to process
2006 *
2007 * netif_receive_skb() is the main receive data processing function.
2008 * It always succeeds. The buffer may be dropped during processing
2009 * for congestion control or by the protocol layers.
2010 *
2011 * This function may only be called from softirq context and interrupts
2012 * should be enabled.
2013 *
2014 * Return values (usually ignored):
2015 * NET_RX_SUCCESS: no congestion
2016 * NET_RX_DROP: packet was dropped
2017 */
2018int netif_receive_skb(struct sk_buff *skb)
2019{
2020 struct packet_type *ptype, *pt_prev;
2021 struct net_device *orig_dev;
2022 int ret = NET_RX_DROP;
2023 __be16 type;
2024
2025 /* if we've gotten here through NAPI, check netpoll */
2026 if (netpoll_receive_skb(skb))
2027 return NET_RX_DROP;
2028
2029 if (!skb->tstamp.tv64)
2030 net_timestamp(skb);
2031
2032 if (!skb->iif)
2033 skb->iif = skb->dev->ifindex;
2034
2035 orig_dev = skb_bond(skb);
2036
2037 if (!orig_dev)
2038 return NET_RX_DROP;
2039
2040 __get_cpu_var(netdev_rx_stat).total++;
2041
2042 skb_reset_network_header(skb);
2043 skb_reset_transport_header(skb);
2044 skb->mac_len = skb->network_header - skb->mac_header;
2045
2046 pt_prev = NULL;
2047
2048 rcu_read_lock();
2049
2050#ifdef CONFIG_NET_CLS_ACT
2051 if (skb->tc_verd & TC_NCLS) {
2052 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2053 goto ncls;
2054 }
2055#endif
2056
2057 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2058 if (!ptype->dev || ptype->dev == skb->dev) {
2059 if (pt_prev)
2060 ret = deliver_skb(skb, pt_prev, orig_dev);
2061 pt_prev = ptype;
2062 }
2063 }
2064
2065#ifdef CONFIG_NET_CLS_ACT
2066 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2067 if (!skb)
2068 goto out;
2069ncls:
2070#endif
2071
2072 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2073 if (!skb)
2074 goto out;
2075 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2076 if (!skb)
2077 goto out;
2078
2079 type = skb->protocol;
2080 list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type)&15], list) {
2081 if (ptype->type == type &&
2082 (!ptype->dev || ptype->dev == skb->dev)) {
2083 if (pt_prev)
2084 ret = deliver_skb(skb, pt_prev, orig_dev);
2085 pt_prev = ptype;
2086 }
2087 }
2088
2089 if (pt_prev) {
2090 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2091 } else {
2092 kfree_skb(skb);
2093 /* Jamal, now you will not able to escape explaining
2094 * me how you were going to use this. :-)
2095 */
2096 ret = NET_RX_DROP;
2097 }
2098
2099out:
2100 rcu_read_unlock();
2101 return ret;
2102}
2103
2104static int process_backlog(struct napi_struct *napi, int quota)
2105{
2106 int work = 0;
2107 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2108 unsigned long start_time = jiffies;
2109
2110 napi->weight = weight_p;
2111 do {
2112 struct sk_buff *skb;
2113 struct net_device *dev;
2114
2115 local_irq_disable();
2116 skb = __skb_dequeue(&queue->input_pkt_queue);
2117 if (!skb) {
2118 __napi_complete(napi);
2119 local_irq_enable();
2120 break;
2121 }
2122
2123 local_irq_enable();
2124
2125 dev = skb->dev;
2126
2127 netif_receive_skb(skb);
2128
2129 dev_put(dev);
2130 } while (++work < quota && jiffies == start_time);
2131
2132 return work;
2133}
2134
2135/**
2136 * __napi_schedule - schedule for receive
2137 * @n: entry to schedule
2138 *
2139 * The entry's receive function will be scheduled to run
2140 */
2141void fastcall __napi_schedule(struct napi_struct *n)
2142{
2143 unsigned long flags;
2144
2145 local_irq_save(flags);
2146 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2147 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2148 local_irq_restore(flags);
2149}
2150EXPORT_SYMBOL(__napi_schedule);
2151
2152
2153static void net_rx_action(struct softirq_action *h)
2154{
2155 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2156 unsigned long start_time = jiffies;
2157 int budget = netdev_budget;
2158 void *have;
2159
2160 local_irq_disable();
2161
2162 while (!list_empty(list)) {
2163 struct napi_struct *n;
2164 int work, weight;
2165
2166 /* If softirq window is exhuasted then punt.
2167 *
2168 * Note that this is a slight policy change from the
2169 * previous NAPI code, which would allow up to 2
2170 * jiffies to pass before breaking out. The test
2171 * used to be "jiffies - start_time > 1".
2172 */
2173 if (unlikely(budget <= 0 || jiffies != start_time))
2174 goto softnet_break;
2175
2176 local_irq_enable();
2177
2178 /* Even though interrupts have been re-enabled, this
2179 * access is safe because interrupts can only add new
2180 * entries to the tail of this list, and only ->poll()
2181 * calls can remove this head entry from the list.
2182 */
2183 n = list_entry(list->next, struct napi_struct, poll_list);
2184
2185 have = netpoll_poll_lock(n);
2186
2187 weight = n->weight;
2188
2189 /* This NAPI_STATE_SCHED test is for avoiding a race
2190 * with netpoll's poll_napi(). Only the entity which
2191 * obtains the lock and sees NAPI_STATE_SCHED set will
2192 * actually make the ->poll() call. Therefore we avoid
2193 * accidently calling ->poll() when NAPI is not scheduled.
2194 */
2195 work = 0;
2196 if (test_bit(NAPI_STATE_SCHED, &n->state))
2197 work = n->poll(n, weight);
2198
2199 WARN_ON_ONCE(work > weight);
2200
2201 budget -= work;
2202
2203 local_irq_disable();
2204
2205 /* Drivers must not modify the NAPI state if they
2206 * consume the entire weight. In such cases this code
2207 * still "owns" the NAPI instance and therefore can
2208 * move the instance around on the list at-will.
2209 */
2210 if (unlikely(work == weight))
2211 list_move_tail(&n->poll_list, list);
2212
2213 netpoll_poll_unlock(have);
2214 }
2215out:
2216 local_irq_enable();
2217
2218#ifdef CONFIG_NET_DMA
2219 /*
2220 * There may not be any more sk_buffs coming right now, so push
2221 * any pending DMA copies to hardware
2222 */
2223 if (!cpus_empty(net_dma.channel_mask)) {
2224 int chan_idx;
2225 for_each_cpu_mask(chan_idx, net_dma.channel_mask) {
2226 struct dma_chan *chan = net_dma.channels[chan_idx];
2227 if (chan)
2228 dma_async_memcpy_issue_pending(chan);
2229 }
2230 }
2231#endif
2232
2233 return;
2234
2235softnet_break:
2236 __get_cpu_var(netdev_rx_stat).time_squeeze++;
2237 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2238 goto out;
2239}
2240
2241static gifconf_func_t * gifconf_list [NPROTO];
2242
2243/**
2244 * register_gifconf - register a SIOCGIF handler
2245 * @family: Address family
2246 * @gifconf: Function handler
2247 *
2248 * Register protocol dependent address dumping routines. The handler
2249 * that is passed must not be freed or reused until it has been replaced
2250 * by another handler.
2251 */
2252int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2253{
2254 if (family >= NPROTO)
2255 return -EINVAL;
2256 gifconf_list[family] = gifconf;
2257 return 0;
2258}
2259
2260
2261/*
2262 * Map an interface index to its name (SIOCGIFNAME)
2263 */
2264
2265/*
2266 * We need this ioctl for efficient implementation of the
2267 * if_indextoname() function required by the IPv6 API. Without
2268 * it, we would have to search all the interfaces to find a
2269 * match. --pb
2270 */
2271
2272static int dev_ifname(struct net *net, struct ifreq __user *arg)
2273{
2274 struct net_device *dev;
2275 struct ifreq ifr;
2276
2277 /*
2278 * Fetch the caller's info block.
2279 */
2280
2281 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2282 return -EFAULT;
2283
2284 read_lock(&dev_base_lock);
2285 dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2286 if (!dev) {
2287 read_unlock(&dev_base_lock);
2288 return -ENODEV;
2289 }
2290
2291 strcpy(ifr.ifr_name, dev->name);
2292 read_unlock(&dev_base_lock);
2293
2294 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2295 return -EFAULT;
2296 return 0;
2297}
2298
2299/*
2300 * Perform a SIOCGIFCONF call. This structure will change
2301 * size eventually, and there is nothing I can do about it.
2302 * Thus we will need a 'compatibility mode'.
2303 */
2304
2305static int dev_ifconf(struct net *net, char __user *arg)
2306{
2307 struct ifconf ifc;
2308 struct net_device *dev;
2309 char __user *pos;
2310 int len;
2311 int total;
2312 int i;
2313
2314 /*
2315 * Fetch the caller's info block.
2316 */
2317
2318 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2319 return -EFAULT;
2320
2321 pos = ifc.ifc_buf;
2322 len = ifc.ifc_len;
2323
2324 /*
2325 * Loop over the interfaces, and write an info block for each.
2326 */
2327
2328 total = 0;
2329 for_each_netdev(net, dev) {
2330 for (i = 0; i < NPROTO; i++) {
2331 if (gifconf_list[i]) {
2332 int done;
2333 if (!pos)
2334 done = gifconf_list[i](dev, NULL, 0);
2335 else
2336 done = gifconf_list[i](dev, pos + total,
2337 len - total);
2338 if (done < 0)
2339 return -EFAULT;
2340 total += done;
2341 }
2342 }
2343 }
2344
2345 /*
2346 * All done. Write the updated control block back to the caller.
2347 */
2348 ifc.ifc_len = total;
2349
2350 /*
2351 * Both BSD and Solaris return 0 here, so we do too.
2352 */
2353 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2354}
2355
2356#ifdef CONFIG_PROC_FS
2357/*
2358 * This is invoked by the /proc filesystem handler to display a device
2359 * in detail.
2360 */
2361void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2362{
2363 struct net *net = seq->private;
2364 loff_t off;
2365 struct net_device *dev;
2366
2367 read_lock(&dev_base_lock);
2368 if (!*pos)
2369 return SEQ_START_TOKEN;
2370
2371 off = 1;
2372 for_each_netdev(net, dev)
2373 if (off++ == *pos)
2374 return dev;
2375
2376 return NULL;
2377}
2378
2379void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2380{
2381 struct net *net = seq->private;
2382 ++*pos;
2383 return v == SEQ_START_TOKEN ?
2384 first_net_device(net) : next_net_device((struct net_device *)v);
2385}
2386
2387void dev_seq_stop(struct seq_file *seq, void *v)
2388{
2389 read_unlock(&dev_base_lock);
2390}
2391
2392static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2393{
2394 struct net_device_stats *stats = dev->get_stats(dev);
2395
2396 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2397 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2398 dev->name, stats->rx_bytes, stats->rx_packets,
2399 stats->rx_errors,
2400 stats->rx_dropped + stats->rx_missed_errors,
2401 stats->rx_fifo_errors,
2402 stats->rx_length_errors + stats->rx_over_errors +
2403 stats->rx_crc_errors + stats->rx_frame_errors,
2404 stats->rx_compressed, stats->multicast,
2405 stats->tx_bytes, stats->tx_packets,
2406 stats->tx_errors, stats->tx_dropped,
2407 stats->tx_fifo_errors, stats->collisions,
2408 stats->tx_carrier_errors +
2409 stats->tx_aborted_errors +
2410 stats->tx_window_errors +
2411 stats->tx_heartbeat_errors,
2412 stats->tx_compressed);
2413}
2414
2415/*
2416 * Called from the PROCfs module. This now uses the new arbitrary sized
2417 * /proc/net interface to create /proc/net/dev
2418 */
2419static int dev_seq_show(struct seq_file *seq, void *v)
2420{
2421 if (v == SEQ_START_TOKEN)
2422 seq_puts(seq, "Inter-| Receive "
2423 " | Transmit\n"
2424 " face |bytes packets errs drop fifo frame "
2425 "compressed multicast|bytes packets errs "
2426 "drop fifo colls carrier compressed\n");
2427 else
2428 dev_seq_printf_stats(seq, v);
2429 return 0;
2430}
2431
2432static struct netif_rx_stats *softnet_get_online(loff_t *pos)
2433{
2434 struct netif_rx_stats *rc = NULL;
2435
2436 while (*pos < NR_CPUS)
2437 if (cpu_online(*pos)) {
2438 rc = &per_cpu(netdev_rx_stat, *pos);
2439 break;
2440 } else
2441 ++*pos;
2442 return rc;
2443}
2444
2445static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
2446{
2447 return softnet_get_online(pos);
2448}
2449
2450static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2451{
2452 ++*pos;
2453 return softnet_get_online(pos);
2454}
2455
2456static void softnet_seq_stop(struct seq_file *seq, void *v)
2457{
2458}
2459
2460static int softnet_seq_show(struct seq_file *seq, void *v)
2461{
2462 struct netif_rx_stats *s = v;
2463
2464 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
2465 s->total, s->dropped, s->time_squeeze, 0,
2466 0, 0, 0, 0, /* was fastroute */
2467 s->cpu_collision );
2468 return 0;
2469}
2470
2471static const struct seq_operations dev_seq_ops = {
2472 .start = dev_seq_start,
2473 .next = dev_seq_next,
2474 .stop = dev_seq_stop,
2475 .show = dev_seq_show,
2476};
2477
2478static int dev_seq_open(struct inode *inode, struct file *file)
2479{
2480 struct seq_file *seq;
2481 int res;
2482 res = seq_open(file, &dev_seq_ops);
2483 if (!res) {
2484 seq = file->private_data;
2485 seq->private = get_proc_net(inode);
2486 if (!seq->private) {
2487 seq_release(inode, file);
2488 res = -ENXIO;
2489 }
2490 }
2491 return res;
2492}
2493
2494static int dev_seq_release(struct inode *inode, struct file *file)
2495{
2496 struct seq_file *seq = file->private_data;
2497 struct net *net = seq->private;
2498 put_net(net);
2499 return seq_release(inode, file);
2500}
2501
2502static const struct file_operations dev_seq_fops = {
2503 .owner = THIS_MODULE,
2504 .open = dev_seq_open,
2505 .read = seq_read,
2506 .llseek = seq_lseek,
2507 .release = dev_seq_release,
2508};
2509
2510static const struct seq_operations softnet_seq_ops = {
2511 .start = softnet_seq_start,
2512 .next = softnet_seq_next,
2513 .stop = softnet_seq_stop,
2514 .show = softnet_seq_show,
2515};
2516
2517static int softnet_seq_open(struct inode *inode, struct file *file)
2518{
2519 return seq_open(file, &softnet_seq_ops);
2520}
2521
2522static const struct file_operations softnet_seq_fops = {
2523 .owner = THIS_MODULE,
2524 .open = softnet_seq_open,
2525 .read = seq_read,
2526 .llseek = seq_lseek,
2527 .release = seq_release,
2528};
2529
2530static void *ptype_get_idx(loff_t pos)
2531{
2532 struct packet_type *pt = NULL;
2533 loff_t i = 0;
2534 int t;
2535
2536 list_for_each_entry_rcu(pt, &ptype_all, list) {
2537 if (i == pos)
2538 return pt;
2539 ++i;
2540 }
2541
2542 for (t = 0; t < 16; t++) {
2543 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
2544 if (i == pos)
2545 return pt;
2546 ++i;
2547 }
2548 }
2549 return NULL;
2550}
2551
2552static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
2553{
2554 rcu_read_lock();
2555 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
2556}
2557
2558static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2559{
2560 struct packet_type *pt;
2561 struct list_head *nxt;
2562 int hash;
2563
2564 ++*pos;
2565 if (v == SEQ_START_TOKEN)
2566 return ptype_get_idx(0);
2567
2568 pt = v;
2569 nxt = pt->list.next;
2570 if (pt->type == htons(ETH_P_ALL)) {
2571 if (nxt != &ptype_all)
2572 goto found;
2573 hash = 0;
2574 nxt = ptype_base[0].next;
2575 } else
2576 hash = ntohs(pt->type) & 15;
2577
2578 while (nxt == &ptype_base[hash]) {
2579 if (++hash >= 16)
2580 return NULL;
2581 nxt = ptype_base[hash].next;
2582 }
2583found:
2584 return list_entry(nxt, struct packet_type, list);
2585}
2586
2587static void ptype_seq_stop(struct seq_file *seq, void *v)
2588{
2589 rcu_read_unlock();
2590}
2591
2592static void ptype_seq_decode(struct seq_file *seq, void *sym)
2593{
2594#ifdef CONFIG_KALLSYMS
2595 unsigned long offset = 0, symsize;
2596 const char *symname;
2597 char *modname;
2598 char namebuf[128];
2599
2600 symname = kallsyms_lookup((unsigned long)sym, &symsize, &offset,
2601 &modname, namebuf);
2602
2603 if (symname) {
2604 char *delim = ":";
2605
2606 if (!modname)
2607 modname = delim = "";
2608 seq_printf(seq, "%s%s%s%s+0x%lx", delim, modname, delim,
2609 symname, offset);
2610 return;
2611 }
2612#endif
2613
2614 seq_printf(seq, "[%p]", sym);
2615}
2616
2617static int ptype_seq_show(struct seq_file *seq, void *v)
2618{
2619 struct packet_type *pt = v;
2620
2621 if (v == SEQ_START_TOKEN)
2622 seq_puts(seq, "Type Device Function\n");
2623 else {
2624 if (pt->type == htons(ETH_P_ALL))
2625 seq_puts(seq, "ALL ");
2626 else
2627 seq_printf(seq, "%04x", ntohs(pt->type));
2628
2629 seq_printf(seq, " %-8s ",
2630 pt->dev ? pt->dev->name : "");
2631 ptype_seq_decode(seq, pt->func);
2632 seq_putc(seq, '\n');
2633 }
2634
2635 return 0;
2636}
2637
2638static const struct seq_operations ptype_seq_ops = {
2639 .start = ptype_seq_start,
2640 .next = ptype_seq_next,
2641 .stop = ptype_seq_stop,
2642 .show = ptype_seq_show,
2643};
2644
2645static int ptype_seq_open(struct inode *inode, struct file *file)
2646{
2647 return seq_open(file, &ptype_seq_ops);
2648}
2649
2650static const struct file_operations ptype_seq_fops = {
2651 .owner = THIS_MODULE,
2652 .open = ptype_seq_open,
2653 .read = seq_read,
2654 .llseek = seq_lseek,
2655 .release = seq_release,
2656};
2657
2658
2659static int __net_init dev_proc_net_init(struct net *net)
2660{
2661 int rc = -ENOMEM;
2662
2663 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
2664 goto out;
2665 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
2666 goto out_dev;
2667 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
2668 goto out_softnet;
2669
2670 if (wext_proc_init(net))
2671 goto out_ptype;
2672 rc = 0;
2673out:
2674 return rc;
2675out_ptype:
2676 proc_net_remove(net, "ptype");
2677out_softnet:
2678 proc_net_remove(net, "softnet_stat");
2679out_dev:
2680 proc_net_remove(net, "dev");
2681 goto out;
2682}
2683
2684static void __net_exit dev_proc_net_exit(struct net *net)
2685{
2686 wext_proc_exit(net);
2687
2688 proc_net_remove(net, "ptype");
2689 proc_net_remove(net, "softnet_stat");
2690 proc_net_remove(net, "dev");
2691}
2692
2693static struct pernet_operations __net_initdata dev_proc_ops = {
2694 .init = dev_proc_net_init,
2695 .exit = dev_proc_net_exit,
2696};
2697
2698static int __init dev_proc_init(void)
2699{
2700 return register_pernet_subsys(&dev_proc_ops);
2701}
2702#else
2703#define dev_proc_init() 0
2704#endif /* CONFIG_PROC_FS */
2705
2706
2707/**
2708 * netdev_set_master - set up master/slave pair
2709 * @slave: slave device
2710 * @master: new master device
2711 *
2712 * Changes the master device of the slave. Pass %NULL to break the
2713 * bonding. The caller must hold the RTNL semaphore. On a failure
2714 * a negative errno code is returned. On success the reference counts
2715 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
2716 * function returns zero.
2717 */
2718int netdev_set_master(struct net_device *slave, struct net_device *master)
2719{
2720 struct net_device *old = slave->master;
2721
2722 ASSERT_RTNL();
2723
2724 if (master) {
2725 if (old)
2726 return -EBUSY;
2727 dev_hold(master);
2728 }
2729
2730 slave->master = master;
2731
2732 synchronize_net();
2733
2734 if (old)
2735 dev_put(old);
2736
2737 if (master)
2738 slave->flags |= IFF_SLAVE;
2739 else
2740 slave->flags &= ~IFF_SLAVE;
2741
2742 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
2743 return 0;
2744}
2745
2746static void __dev_set_promiscuity(struct net_device *dev, int inc)
2747{
2748 unsigned short old_flags = dev->flags;
2749
2750 ASSERT_RTNL();
2751
2752 if ((dev->promiscuity += inc) == 0)
2753 dev->flags &= ~IFF_PROMISC;
2754 else
2755 dev->flags |= IFF_PROMISC;
2756 if (dev->flags != old_flags) {
2757 printk(KERN_INFO "device %s %s promiscuous mode\n",
2758 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
2759 "left");
2760 audit_log(current->audit_context, GFP_ATOMIC,
2761 AUDIT_ANOM_PROMISCUOUS,
2762 "dev=%s prom=%d old_prom=%d auid=%u",
2763 dev->name, (dev->flags & IFF_PROMISC),
2764 (old_flags & IFF_PROMISC),
2765 audit_get_loginuid(current->audit_context));
2766
2767 if (dev->change_rx_flags)
2768 dev->change_rx_flags(dev, IFF_PROMISC);
2769 }
2770}
2771
2772/**
2773 * dev_set_promiscuity - update promiscuity count on a device
2774 * @dev: device
2775 * @inc: modifier
2776 *
2777 * Add or remove promiscuity from a device. While the count in the device
2778 * remains above zero the interface remains promiscuous. Once it hits zero
2779 * the device reverts back to normal filtering operation. A negative inc
2780 * value is used to drop promiscuity on the device.
2781 */
2782void dev_set_promiscuity(struct net_device *dev, int inc)
2783{
2784 unsigned short old_flags = dev->flags;
2785
2786 __dev_set_promiscuity(dev, inc);
2787 if (dev->flags != old_flags)
2788 dev_set_rx_mode(dev);
2789}
2790
2791/**
2792 * dev_set_allmulti - update allmulti count on a device
2793 * @dev: device
2794 * @inc: modifier
2795 *
2796 * Add or remove reception of all multicast frames to a device. While the
2797 * count in the device remains above zero the interface remains listening
2798 * to all interfaces. Once it hits zero the device reverts back to normal
2799 * filtering operation. A negative @inc value is used to drop the counter
2800 * when releasing a resource needing all multicasts.
2801 */
2802
2803void dev_set_allmulti(struct net_device *dev, int inc)
2804{
2805 unsigned short old_flags = dev->flags;
2806
2807 ASSERT_RTNL();
2808
2809 dev->flags |= IFF_ALLMULTI;
2810 if ((dev->allmulti += inc) == 0)
2811 dev->flags &= ~IFF_ALLMULTI;
2812 if (dev->flags ^ old_flags) {
2813 if (dev->change_rx_flags)
2814 dev->change_rx_flags(dev, IFF_ALLMULTI);
2815 dev_set_rx_mode(dev);
2816 }
2817}
2818
2819/*
2820 * Upload unicast and multicast address lists to device and
2821 * configure RX filtering. When the device doesn't support unicast
2822 * filtering it is put in promiscous mode while unicast addresses
2823 * are present.
2824 */
2825void __dev_set_rx_mode(struct net_device *dev)
2826{
2827 /* dev_open will call this function so the list will stay sane. */
2828 if (!(dev->flags&IFF_UP))
2829 return;
2830
2831 if (!netif_device_present(dev))
2832 return;
2833
2834 if (dev->set_rx_mode)
2835 dev->set_rx_mode(dev);
2836 else {
2837 /* Unicast addresses changes may only happen under the rtnl,
2838 * therefore calling __dev_set_promiscuity here is safe.
2839 */
2840 if (dev->uc_count > 0 && !dev->uc_promisc) {
2841 __dev_set_promiscuity(dev, 1);
2842 dev->uc_promisc = 1;
2843 } else if (dev->uc_count == 0 && dev->uc_promisc) {
2844 __dev_set_promiscuity(dev, -1);
2845 dev->uc_promisc = 0;
2846 }
2847
2848 if (dev->set_multicast_list)
2849 dev->set_multicast_list(dev);
2850 }
2851}
2852
2853void dev_set_rx_mode(struct net_device *dev)
2854{
2855 netif_tx_lock_bh(dev);
2856 __dev_set_rx_mode(dev);
2857 netif_tx_unlock_bh(dev);
2858}
2859
2860int __dev_addr_delete(struct dev_addr_list **list, int *count,
2861 void *addr, int alen, int glbl)
2862{
2863 struct dev_addr_list *da;
2864
2865 for (; (da = *list) != NULL; list = &da->next) {
2866 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
2867 alen == da->da_addrlen) {
2868 if (glbl) {
2869 int old_glbl = da->da_gusers;
2870 da->da_gusers = 0;
2871 if (old_glbl == 0)
2872 break;
2873 }
2874 if (--da->da_users)
2875 return 0;
2876
2877 *list = da->next;
2878 kfree(da);
2879 (*count)--;
2880 return 0;
2881 }
2882 }
2883 return -ENOENT;
2884}
2885
2886int __dev_addr_add(struct dev_addr_list **list, int *count,
2887 void *addr, int alen, int glbl)
2888{
2889 struct dev_addr_list *da;
2890
2891 for (da = *list; da != NULL; da = da->next) {
2892 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
2893 da->da_addrlen == alen) {
2894 if (glbl) {
2895 int old_glbl = da->da_gusers;
2896 da->da_gusers = 1;
2897 if (old_glbl)
2898 return 0;
2899 }
2900 da->da_users++;
2901 return 0;
2902 }
2903 }
2904
2905 da = kmalloc(sizeof(*da), GFP_ATOMIC);
2906 if (da == NULL)
2907 return -ENOMEM;
2908 memcpy(da->da_addr, addr, alen);
2909 da->da_addrlen = alen;
2910 da->da_users = 1;
2911 da->da_gusers = glbl ? 1 : 0;
2912 da->next = *list;
2913 *list = da;
2914 (*count)++;
2915 return 0;
2916}
2917
2918/**
2919 * dev_unicast_delete - Release secondary unicast address.
2920 * @dev: device
2921 * @addr: address to delete
2922 * @alen: length of @addr
2923 *
2924 * Release reference to a secondary unicast address and remove it
2925 * from the device if the reference count drops to zero.
2926 *
2927 * The caller must hold the rtnl_mutex.
2928 */
2929int dev_unicast_delete(struct net_device *dev, void *addr, int alen)
2930{
2931 int err;
2932
2933 ASSERT_RTNL();
2934
2935 netif_tx_lock_bh(dev);
2936 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0);
2937 if (!err)
2938 __dev_set_rx_mode(dev);
2939 netif_tx_unlock_bh(dev);
2940 return err;
2941}
2942EXPORT_SYMBOL(dev_unicast_delete);
2943
2944/**
2945 * dev_unicast_add - add a secondary unicast address
2946 * @dev: device
2947 * @addr: address to delete
2948 * @alen: length of @addr
2949 *
2950 * Add a secondary unicast address to the device or increase
2951 * the reference count if it already exists.
2952 *
2953 * The caller must hold the rtnl_mutex.
2954 */
2955int dev_unicast_add(struct net_device *dev, void *addr, int alen)
2956{
2957 int err;
2958
2959 ASSERT_RTNL();
2960
2961 netif_tx_lock_bh(dev);
2962 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0);
2963 if (!err)
2964 __dev_set_rx_mode(dev);
2965 netif_tx_unlock_bh(dev);
2966 return err;
2967}
2968EXPORT_SYMBOL(dev_unicast_add);
2969
2970static void __dev_addr_discard(struct dev_addr_list **list)
2971{
2972 struct dev_addr_list *tmp;
2973
2974 while (*list != NULL) {
2975 tmp = *list;
2976 *list = tmp->next;
2977 if (tmp->da_users > tmp->da_gusers)
2978 printk("__dev_addr_discard: address leakage! "
2979 "da_users=%d\n", tmp->da_users);
2980 kfree(tmp);
2981 }
2982}
2983
2984static void dev_addr_discard(struct net_device *dev)
2985{
2986 netif_tx_lock_bh(dev);
2987
2988 __dev_addr_discard(&dev->uc_list);
2989 dev->uc_count = 0;
2990
2991 __dev_addr_discard(&dev->mc_list);
2992 dev->mc_count = 0;
2993
2994 netif_tx_unlock_bh(dev);
2995}
2996
2997unsigned dev_get_flags(const struct net_device *dev)
2998{
2999 unsigned flags;
3000
3001 flags = (dev->flags & ~(IFF_PROMISC |
3002 IFF_ALLMULTI |
3003 IFF_RUNNING |
3004 IFF_LOWER_UP |
3005 IFF_DORMANT)) |
3006 (dev->gflags & (IFF_PROMISC |
3007 IFF_ALLMULTI));
3008
3009 if (netif_running(dev)) {
3010 if (netif_oper_up(dev))
3011 flags |= IFF_RUNNING;
3012 if (netif_carrier_ok(dev))
3013 flags |= IFF_LOWER_UP;
3014 if (netif_dormant(dev))
3015 flags |= IFF_DORMANT;
3016 }
3017
3018 return flags;
3019}
3020
3021int dev_change_flags(struct net_device *dev, unsigned flags)
3022{
3023 int ret, changes;
3024 int old_flags = dev->flags;
3025
3026 ASSERT_RTNL();
3027
3028 /*
3029 * Set the flags on our device.
3030 */
3031
3032 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
3033 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
3034 IFF_AUTOMEDIA)) |
3035 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
3036 IFF_ALLMULTI));
3037
3038 /*
3039 * Load in the correct multicast list now the flags have changed.
3040 */
3041
3042 if (dev->change_rx_flags && (dev->flags ^ flags) & IFF_MULTICAST)
3043 dev->change_rx_flags(dev, IFF_MULTICAST);
3044
3045 dev_set_rx_mode(dev);
3046
3047 /*
3048 * Have we downed the interface. We handle IFF_UP ourselves
3049 * according to user attempts to set it, rather than blindly
3050 * setting it.
3051 */
3052
3053 ret = 0;
3054 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
3055 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
3056
3057 if (!ret)
3058 dev_set_rx_mode(dev);
3059 }
3060
3061 if (dev->flags & IFF_UP &&
3062 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
3063 IFF_VOLATILE)))
3064 call_netdevice_notifiers(NETDEV_CHANGE, dev);
3065
3066 if ((flags ^ dev->gflags) & IFF_PROMISC) {
3067 int inc = (flags & IFF_PROMISC) ? +1 : -1;
3068 dev->gflags ^= IFF_PROMISC;
3069 dev_set_promiscuity(dev, inc);
3070 }
3071
3072 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
3073 is important. Some (broken) drivers set IFF_PROMISC, when
3074 IFF_ALLMULTI is requested not asking us and not reporting.
3075 */
3076 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
3077 int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
3078 dev->gflags ^= IFF_ALLMULTI;
3079 dev_set_allmulti(dev, inc);
3080 }
3081
3082 /* Exclude state transition flags, already notified */
3083 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
3084 if (changes)
3085 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
3086
3087 return ret;
3088}
3089
3090int dev_set_mtu(struct net_device *dev, int new_mtu)
3091{
3092 int err;
3093
3094 if (new_mtu == dev->mtu)
3095 return 0;
3096
3097 /* MTU must be positive. */
3098 if (new_mtu < 0)
3099 return -EINVAL;
3100
3101 if (!netif_device_present(dev))
3102 return -ENODEV;
3103
3104 err = 0;
3105 if (dev->change_mtu)
3106 err = dev->change_mtu(dev, new_mtu);
3107 else
3108 dev->mtu = new_mtu;
3109 if (!err && dev->flags & IFF_UP)
3110 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
3111 return err;
3112}
3113
3114int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
3115{
3116 int err;
3117
3118 if (!dev->set_mac_address)
3119 return -EOPNOTSUPP;
3120 if (sa->sa_family != dev->type)
3121 return -EINVAL;
3122 if (!netif_device_present(dev))
3123 return -ENODEV;
3124 err = dev->set_mac_address(dev, sa);
3125 if (!err)
3126 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3127 return err;
3128}
3129
3130/*
3131 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
3132 */
3133static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
3134{
3135 int err;
3136 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3137
3138 if (!dev)
3139 return -ENODEV;
3140
3141 switch (cmd) {
3142 case SIOCGIFFLAGS: /* Get interface flags */
3143 ifr->ifr_flags = dev_get_flags(dev);
3144 return 0;
3145
3146 case SIOCGIFMETRIC: /* Get the metric on the interface
3147 (currently unused) */
3148 ifr->ifr_metric = 0;
3149 return 0;
3150
3151 case SIOCGIFMTU: /* Get the MTU of a device */
3152 ifr->ifr_mtu = dev->mtu;
3153 return 0;
3154
3155 case SIOCGIFHWADDR:
3156 if (!dev->addr_len)
3157 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
3158 else
3159 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
3160 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3161 ifr->ifr_hwaddr.sa_family = dev->type;
3162 return 0;
3163
3164 case SIOCGIFSLAVE:
3165 err = -EINVAL;
3166 break;
3167
3168 case SIOCGIFMAP:
3169 ifr->ifr_map.mem_start = dev->mem_start;
3170 ifr->ifr_map.mem_end = dev->mem_end;
3171 ifr->ifr_map.base_addr = dev->base_addr;
3172 ifr->ifr_map.irq = dev->irq;
3173 ifr->ifr_map.dma = dev->dma;
3174 ifr->ifr_map.port = dev->if_port;
3175 return 0;
3176
3177 case SIOCGIFINDEX:
3178 ifr->ifr_ifindex = dev->ifindex;
3179 return 0;
3180
3181 case SIOCGIFTXQLEN:
3182 ifr->ifr_qlen = dev->tx_queue_len;
3183 return 0;
3184
3185 default:
3186 /* dev_ioctl() should ensure this case
3187 * is never reached
3188 */
3189 WARN_ON(1);
3190 err = -EINVAL;
3191 break;
3192
3193 }
3194 return err;
3195}
3196
3197/*
3198 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
3199 */
3200static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
3201{
3202 int err;
3203 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3204
3205 if (!dev)
3206 return -ENODEV;
3207
3208 switch (cmd) {
3209 case SIOCSIFFLAGS: /* Set interface flags */
3210 return dev_change_flags(dev, ifr->ifr_flags);
3211
3212 case SIOCSIFMETRIC: /* Set the metric on the interface
3213 (currently unused) */
3214 return -EOPNOTSUPP;
3215
3216 case SIOCSIFMTU: /* Set the MTU of a device */
3217 return dev_set_mtu(dev, ifr->ifr_mtu);
3218
3219 case SIOCSIFHWADDR:
3220 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
3221
3222 case SIOCSIFHWBROADCAST:
3223 if (ifr->ifr_hwaddr.sa_family != dev->type)
3224 return -EINVAL;
3225 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
3226 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3227 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3228 return 0;
3229
3230 case SIOCSIFMAP:
3231 if (dev->set_config) {
3232 if (!netif_device_present(dev))
3233 return -ENODEV;
3234 return dev->set_config(dev, &ifr->ifr_map);
3235 }
3236 return -EOPNOTSUPP;
3237
3238 case SIOCADDMULTI:
3239 if (!dev->set_multicast_list ||
3240 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3241 return -EINVAL;
3242 if (!netif_device_present(dev))
3243 return -ENODEV;
3244 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
3245 dev->addr_len, 1);
3246
3247 case SIOCDELMULTI:
3248 if (!dev->set_multicast_list ||
3249 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3250 return -EINVAL;
3251 if (!netif_device_present(dev))
3252 return -ENODEV;
3253 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
3254 dev->addr_len, 1);
3255
3256 case SIOCSIFTXQLEN:
3257 if (ifr->ifr_qlen < 0)
3258 return -EINVAL;
3259 dev->tx_queue_len = ifr->ifr_qlen;
3260 return 0;
3261
3262 case SIOCSIFNAME:
3263 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
3264 return dev_change_name(dev, ifr->ifr_newname);
3265
3266 /*
3267 * Unknown or private ioctl
3268 */
3269
3270 default:
3271 if ((cmd >= SIOCDEVPRIVATE &&
3272 cmd <= SIOCDEVPRIVATE + 15) ||
3273 cmd == SIOCBONDENSLAVE ||
3274 cmd == SIOCBONDRELEASE ||
3275 cmd == SIOCBONDSETHWADDR ||
3276 cmd == SIOCBONDSLAVEINFOQUERY ||
3277 cmd == SIOCBONDINFOQUERY ||
3278 cmd == SIOCBONDCHANGEACTIVE ||
3279 cmd == SIOCGMIIPHY ||
3280 cmd == SIOCGMIIREG ||
3281 cmd == SIOCSMIIREG ||
3282 cmd == SIOCBRADDIF ||
3283 cmd == SIOCBRDELIF ||
3284 cmd == SIOCWANDEV) {
3285 err = -EOPNOTSUPP;
3286 if (dev->do_ioctl) {
3287 if (netif_device_present(dev))
3288 err = dev->do_ioctl(dev, ifr,
3289 cmd);
3290 else
3291 err = -ENODEV;
3292 }
3293 } else
3294 err = -EINVAL;
3295
3296 }
3297 return err;
3298}
3299
3300/*
3301 * This function handles all "interface"-type I/O control requests. The actual
3302 * 'doing' part of this is dev_ifsioc above.
3303 */
3304
3305/**
3306 * dev_ioctl - network device ioctl
3307 * @net: the applicable net namespace
3308 * @cmd: command to issue
3309 * @arg: pointer to a struct ifreq in user space
3310 *
3311 * Issue ioctl functions to devices. This is normally called by the
3312 * user space syscall interfaces but can sometimes be useful for
3313 * other purposes. The return value is the return from the syscall if
3314 * positive or a negative errno code on error.
3315 */
3316
3317int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
3318{
3319 struct ifreq ifr;
3320 int ret;
3321 char *colon;
3322
3323 /* One special case: SIOCGIFCONF takes ifconf argument
3324 and requires shared lock, because it sleeps writing
3325 to user space.
3326 */
3327
3328 if (cmd == SIOCGIFCONF) {
3329 rtnl_lock();
3330 ret = dev_ifconf(net, (char __user *) arg);
3331 rtnl_unlock();
3332 return ret;
3333 }
3334 if (cmd == SIOCGIFNAME)
3335 return dev_ifname(net, (struct ifreq __user *)arg);
3336
3337 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3338 return -EFAULT;
3339
3340 ifr.ifr_name[IFNAMSIZ-1] = 0;
3341
3342 colon = strchr(ifr.ifr_name, ':');
3343 if (colon)
3344 *colon = 0;
3345
3346 /*
3347 * See which interface the caller is talking about.
3348 */
3349
3350 switch (cmd) {
3351 /*
3352 * These ioctl calls:
3353 * - can be done by all.
3354 * - atomic and do not require locking.
3355 * - return a value
3356 */
3357 case SIOCGIFFLAGS:
3358 case SIOCGIFMETRIC:
3359 case SIOCGIFMTU:
3360 case SIOCGIFHWADDR:
3361 case SIOCGIFSLAVE:
3362 case SIOCGIFMAP:
3363 case SIOCGIFINDEX:
3364 case SIOCGIFTXQLEN:
3365 dev_load(net, ifr.ifr_name);
3366 read_lock(&dev_base_lock);
3367 ret = dev_ifsioc_locked(net, &ifr, cmd);
3368 read_unlock(&dev_base_lock);
3369 if (!ret) {
3370 if (colon)
3371 *colon = ':';
3372 if (copy_to_user(arg, &ifr,
3373 sizeof(struct ifreq)))
3374 ret = -EFAULT;
3375 }
3376 return ret;
3377
3378 case SIOCETHTOOL:
3379 dev_load(net, ifr.ifr_name);
3380 rtnl_lock();
3381 ret = dev_ethtool(net, &ifr);
3382 rtnl_unlock();
3383 if (!ret) {
3384 if (colon)
3385 *colon = ':';
3386 if (copy_to_user(arg, &ifr,
3387 sizeof(struct ifreq)))
3388 ret = -EFAULT;
3389 }
3390 return ret;
3391
3392 /*
3393 * These ioctl calls:
3394 * - require superuser power.
3395 * - require strict serialization.
3396 * - return a value
3397 */
3398 case SIOCGMIIPHY:
3399 case SIOCGMIIREG:
3400 case SIOCSIFNAME:
3401 if (!capable(CAP_NET_ADMIN))
3402 return -EPERM;
3403 dev_load(net, ifr.ifr_name);
3404 rtnl_lock();
3405 ret = dev_ifsioc(net, &ifr, cmd);
3406 rtnl_unlock();
3407 if (!ret) {
3408 if (colon)
3409 *colon = ':';
3410 if (copy_to_user(arg, &ifr,
3411 sizeof(struct ifreq)))
3412 ret = -EFAULT;
3413 }
3414 return ret;
3415
3416 /*
3417 * These ioctl calls:
3418 * - require superuser power.
3419 * - require strict serialization.
3420 * - do not return a value
3421 */
3422 case SIOCSIFFLAGS:
3423 case SIOCSIFMETRIC:
3424 case SIOCSIFMTU:
3425 case SIOCSIFMAP:
3426 case SIOCSIFHWADDR:
3427 case SIOCSIFSLAVE:
3428 case SIOCADDMULTI:
3429 case SIOCDELMULTI:
3430 case SIOCSIFHWBROADCAST:
3431 case SIOCSIFTXQLEN:
3432 case SIOCSMIIREG:
3433 case SIOCBONDENSLAVE:
3434 case SIOCBONDRELEASE:
3435 case SIOCBONDSETHWADDR:
3436 case SIOCBONDCHANGEACTIVE:
3437 case SIOCBRADDIF:
3438 case SIOCBRDELIF:
3439 if (!capable(CAP_NET_ADMIN))
3440 return -EPERM;
3441 /* fall through */
3442 case SIOCBONDSLAVEINFOQUERY:
3443 case SIOCBONDINFOQUERY:
3444 dev_load(net, ifr.ifr_name);
3445 rtnl_lock();
3446 ret = dev_ifsioc(net, &ifr, cmd);
3447 rtnl_unlock();
3448 return ret;
3449
3450 case SIOCGIFMEM:
3451 /* Get the per device memory space. We can add this but
3452 * currently do not support it */
3453 case SIOCSIFMEM:
3454 /* Set the per device memory buffer space.
3455 * Not applicable in our case */
3456 case SIOCSIFLINK:
3457 return -EINVAL;
3458
3459 /*
3460 * Unknown or private ioctl.
3461 */
3462 default:
3463 if (cmd == SIOCWANDEV ||
3464 (cmd >= SIOCDEVPRIVATE &&
3465 cmd <= SIOCDEVPRIVATE + 15)) {
3466 dev_load(net, ifr.ifr_name);
3467 rtnl_lock();
3468 ret = dev_ifsioc(net, &ifr, cmd);
3469 rtnl_unlock();
3470 if (!ret && copy_to_user(arg, &ifr,
3471 sizeof(struct ifreq)))
3472 ret = -EFAULT;
3473 return ret;
3474 }
3475 /* Take care of Wireless Extensions */
3476 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
3477 return wext_handle_ioctl(net, &ifr, cmd, arg);
3478 return -EINVAL;
3479 }
3480}
3481
3482
3483/**
3484 * dev_new_index - allocate an ifindex
3485 * @net: the applicable net namespace
3486 *
3487 * Returns a suitable unique value for a new device interface
3488 * number. The caller must hold the rtnl semaphore or the
3489 * dev_base_lock to be sure it remains unique.
3490 */
3491static int dev_new_index(struct net *net)
3492{
3493 static int ifindex;
3494 for (;;) {
3495 if (++ifindex <= 0)
3496 ifindex = 1;
3497 if (!__dev_get_by_index(net, ifindex))
3498 return ifindex;
3499 }
3500}
3501
3502/* Delayed registration/unregisteration */
3503static DEFINE_SPINLOCK(net_todo_list_lock);
3504static struct list_head net_todo_list = LIST_HEAD_INIT(net_todo_list);
3505
3506static void net_set_todo(struct net_device *dev)
3507{
3508 spin_lock(&net_todo_list_lock);
3509 list_add_tail(&dev->todo_list, &net_todo_list);
3510 spin_unlock(&net_todo_list_lock);
3511}
3512
3513static void rollback_registered(struct net_device *dev)
3514{
3515 BUG_ON(dev_boot_phase);
3516 ASSERT_RTNL();
3517
3518 /* Some devices call without registering for initialization unwind. */
3519 if (dev->reg_state == NETREG_UNINITIALIZED) {
3520 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
3521 "was registered\n", dev->name, dev);
3522
3523 WARN_ON(1);
3524 return;
3525 }
3526
3527 BUG_ON(dev->reg_state != NETREG_REGISTERED);
3528
3529 /* If device is running, close it first. */
3530 dev_close(dev);
3531
3532 /* And unlink it from device chain. */
3533 unlist_netdevice(dev);
3534
3535 dev->reg_state = NETREG_UNREGISTERING;
3536
3537 synchronize_net();
3538
3539 /* Shutdown queueing discipline. */
3540 dev_shutdown(dev);
3541
3542
3543 /* Notify protocols, that we are about to destroy
3544 this device. They should clean all the things.
3545 */
3546 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
3547
3548 /*
3549 * Flush the unicast and multicast chains
3550 */
3551 dev_addr_discard(dev);
3552
3553 if (dev->uninit)
3554 dev->uninit(dev);
3555
3556 /* Notifier chain MUST detach us from master device. */
3557 BUG_TRAP(!dev->master);
3558
3559 /* Remove entries from kobject tree */
3560 netdev_unregister_kobject(dev);
3561
3562 synchronize_net();
3563
3564 dev_put(dev);
3565}
3566
3567/**
3568 * register_netdevice - register a network device
3569 * @dev: device to register
3570 *
3571 * Take a completed network device structure and add it to the kernel
3572 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3573 * chain. 0 is returned on success. A negative errno code is returned
3574 * on a failure to set up the device, or if the name is a duplicate.
3575 *
3576 * Callers must hold the rtnl semaphore. You may want
3577 * register_netdev() instead of this.
3578 *
3579 * BUGS:
3580 * The locking appears insufficient to guarantee two parallel registers
3581 * will not get the same name.
3582 */
3583
3584int register_netdevice(struct net_device *dev)
3585{
3586 struct hlist_head *head;
3587 struct hlist_node *p;
3588 int ret;
3589 struct net *net;
3590
3591 BUG_ON(dev_boot_phase);
3592 ASSERT_RTNL();
3593
3594 might_sleep();
3595
3596 /* When net_device's are persistent, this will be fatal. */
3597 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
3598 BUG_ON(!dev->nd_net);
3599 net = dev->nd_net;
3600
3601 spin_lock_init(&dev->queue_lock);
3602 spin_lock_init(&dev->_xmit_lock);
3603 netdev_set_lockdep_class(&dev->_xmit_lock, dev->type);
3604 dev->xmit_lock_owner = -1;
3605 spin_lock_init(&dev->ingress_lock);
3606
3607 dev->iflink = -1;
3608
3609 /* Init, if this function is available */
3610 if (dev->init) {
3611 ret = dev->init(dev);
3612 if (ret) {
3613 if (ret > 0)
3614 ret = -EIO;
3615 goto out;
3616 }
3617 }
3618
3619 if (!dev_valid_name(dev->name)) {
3620 ret = -EINVAL;
3621 goto err_uninit;
3622 }
3623
3624 dev->ifindex = dev_new_index(net);
3625 if (dev->iflink == -1)
3626 dev->iflink = dev->ifindex;
3627
3628 /* Check for existence of name */
3629 head = dev_name_hash(net, dev->name);
3630 hlist_for_each(p, head) {
3631 struct net_device *d
3632 = hlist_entry(p, struct net_device, name_hlist);
3633 if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
3634 ret = -EEXIST;
3635 goto err_uninit;
3636 }
3637 }
3638
3639 /* Fix illegal checksum combinations */
3640 if ((dev->features & NETIF_F_HW_CSUM) &&
3641 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3642 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
3643 dev->name);
3644 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
3645 }
3646
3647 if ((dev->features & NETIF_F_NO_CSUM) &&
3648 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3649 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
3650 dev->name);
3651 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
3652 }
3653
3654
3655 /* Fix illegal SG+CSUM combinations. */
3656 if ((dev->features & NETIF_F_SG) &&
3657 !(dev->features & NETIF_F_ALL_CSUM)) {
3658 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no checksum feature.\n",
3659 dev->name);
3660 dev->features &= ~NETIF_F_SG;
3661 }
3662
3663 /* TSO requires that SG is present as well. */
3664 if ((dev->features & NETIF_F_TSO) &&
3665 !(dev->features & NETIF_F_SG)) {
3666 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no SG feature.\n",
3667 dev->name);
3668 dev->features &= ~NETIF_F_TSO;
3669 }
3670 if (dev->features & NETIF_F_UFO) {
3671 if (!(dev->features & NETIF_F_HW_CSUM)) {
3672 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3673 "NETIF_F_HW_CSUM feature.\n",
3674 dev->name);
3675 dev->features &= ~NETIF_F_UFO;
3676 }
3677 if (!(dev->features & NETIF_F_SG)) {
3678 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3679 "NETIF_F_SG feature.\n",
3680 dev->name);
3681 dev->features &= ~NETIF_F_UFO;
3682 }
3683 }
3684
3685 ret = netdev_register_kobject(dev);
3686 if (ret)
3687 goto err_uninit;
3688 dev->reg_state = NETREG_REGISTERED;
3689
3690 /*
3691 * Default initial state at registry is that the
3692 * device is present.
3693 */
3694
3695 set_bit(__LINK_STATE_PRESENT, &dev->state);
3696
3697 dev_init_scheduler(dev);
3698 dev_hold(dev);
3699 list_netdevice(dev);
3700
3701 /* Notify protocols, that a new device appeared. */
3702 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
3703 ret = notifier_to_errno(ret);
3704 if (ret) {
3705 rollback_registered(dev);
3706 dev->reg_state = NETREG_UNREGISTERED;
3707 }
3708
3709out:
3710 return ret;
3711
3712err_uninit:
3713 if (dev->uninit)
3714 dev->uninit(dev);
3715 goto out;
3716}
3717
3718/**
3719 * register_netdev - register a network device
3720 * @dev: device to register
3721 *
3722 * Take a completed network device structure and add it to the kernel
3723 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3724 * chain. 0 is returned on success. A negative errno code is returned
3725 * on a failure to set up the device, or if the name is a duplicate.
3726 *
3727 * This is a wrapper around register_netdevice that takes the rtnl semaphore
3728 * and expands the device name if you passed a format string to
3729 * alloc_netdev.
3730 */
3731int register_netdev(struct net_device *dev)
3732{
3733 int err;
3734
3735 rtnl_lock();
3736
3737 /*
3738 * If the name is a format string the caller wants us to do a
3739 * name allocation.
3740 */
3741 if (strchr(dev->name, '%')) {
3742 err = dev_alloc_name(dev, dev->name);
3743 if (err < 0)
3744 goto out;
3745 }
3746
3747 err = register_netdevice(dev);
3748out:
3749 rtnl_unlock();
3750 return err;
3751}
3752EXPORT_SYMBOL(register_netdev);
3753
3754/*
3755 * netdev_wait_allrefs - wait until all references are gone.
3756 *
3757 * This is called when unregistering network devices.
3758 *
3759 * Any protocol or device that holds a reference should register
3760 * for netdevice notification, and cleanup and put back the
3761 * reference if they receive an UNREGISTER event.
3762 * We can get stuck here if buggy protocols don't correctly
3763 * call dev_put.
3764 */
3765static void netdev_wait_allrefs(struct net_device *dev)
3766{
3767 unsigned long rebroadcast_time, warning_time;
3768
3769 rebroadcast_time = warning_time = jiffies;
3770 while (atomic_read(&dev->refcnt) != 0) {
3771 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
3772 rtnl_lock();
3773
3774 /* Rebroadcast unregister notification */
3775 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
3776
3777 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
3778 &dev->state)) {
3779 /* We must not have linkwatch events
3780 * pending on unregister. If this
3781 * happens, we simply run the queue
3782 * unscheduled, resulting in a noop
3783 * for this device.
3784 */
3785 linkwatch_run_queue();
3786 }
3787
3788 __rtnl_unlock();
3789
3790 rebroadcast_time = jiffies;
3791 }
3792
3793 msleep(250);
3794
3795 if (time_after(jiffies, warning_time + 10 * HZ)) {
3796 printk(KERN_EMERG "unregister_netdevice: "
3797 "waiting for %s to become free. Usage "
3798 "count = %d\n",
3799 dev->name, atomic_read(&dev->refcnt));
3800 warning_time = jiffies;
3801 }
3802 }
3803}
3804
3805/* The sequence is:
3806 *
3807 * rtnl_lock();
3808 * ...
3809 * register_netdevice(x1);
3810 * register_netdevice(x2);
3811 * ...
3812 * unregister_netdevice(y1);
3813 * unregister_netdevice(y2);
3814 * ...
3815 * rtnl_unlock();
3816 * free_netdev(y1);
3817 * free_netdev(y2);
3818 *
3819 * We are invoked by rtnl_unlock() after it drops the semaphore.
3820 * This allows us to deal with problems:
3821 * 1) We can delete sysfs objects which invoke hotplug
3822 * without deadlocking with linkwatch via keventd.
3823 * 2) Since we run with the RTNL semaphore not held, we can sleep
3824 * safely in order to wait for the netdev refcnt to drop to zero.
3825 */
3826static DEFINE_MUTEX(net_todo_run_mutex);
3827void netdev_run_todo(void)
3828{
3829 struct list_head list;
3830
3831 /* Need to guard against multiple cpu's getting out of order. */
3832 mutex_lock(&net_todo_run_mutex);
3833
3834 /* Not safe to do outside the semaphore. We must not return
3835 * until all unregister events invoked by the local processor
3836 * have been completed (either by this todo run, or one on
3837 * another cpu).
3838 */
3839 if (list_empty(&net_todo_list))
3840 goto out;
3841
3842 /* Snapshot list, allow later requests */
3843 spin_lock(&net_todo_list_lock);
3844 list_replace_init(&net_todo_list, &list);
3845 spin_unlock(&net_todo_list_lock);
3846
3847 while (!list_empty(&list)) {
3848 struct net_device *dev
3849 = list_entry(list.next, struct net_device, todo_list);
3850 list_del(&dev->todo_list);
3851
3852 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
3853 printk(KERN_ERR "network todo '%s' but state %d\n",
3854 dev->name, dev->reg_state);
3855 dump_stack();
3856 continue;
3857 }
3858
3859 dev->reg_state = NETREG_UNREGISTERED;
3860
3861 netdev_wait_allrefs(dev);
3862
3863 /* paranoia */
3864 BUG_ON(atomic_read(&dev->refcnt));
3865 BUG_TRAP(!dev->ip_ptr);
3866 BUG_TRAP(!dev->ip6_ptr);
3867 BUG_TRAP(!dev->dn_ptr);
3868
3869 if (dev->destructor)
3870 dev->destructor(dev);
3871
3872 /* Free network device */
3873 kobject_put(&dev->dev.kobj);
3874 }
3875
3876out:
3877 mutex_unlock(&net_todo_run_mutex);
3878}
3879
3880static struct net_device_stats *internal_stats(struct net_device *dev)
3881{
3882 return &dev->stats;
3883}
3884
3885/**
3886 * alloc_netdev_mq - allocate network device
3887 * @sizeof_priv: size of private data to allocate space for
3888 * @name: device name format string
3889 * @setup: callback to initialize device
3890 * @queue_count: the number of subqueues to allocate
3891 *
3892 * Allocates a struct net_device with private data area for driver use
3893 * and performs basic initialization. Also allocates subquue structs
3894 * for each queue on the device at the end of the netdevice.
3895 */
3896struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
3897 void (*setup)(struct net_device *), unsigned int queue_count)
3898{
3899 void *p;
3900 struct net_device *dev;
3901 int alloc_size;
3902
3903 BUG_ON(strlen(name) >= sizeof(dev->name));
3904
3905 /* ensure 32-byte alignment of both the device and private area */
3906 alloc_size = (sizeof(*dev) + NETDEV_ALIGN_CONST +
3907 (sizeof(struct net_device_subqueue) * (queue_count - 1))) &
3908 ~NETDEV_ALIGN_CONST;
3909 alloc_size += sizeof_priv + NETDEV_ALIGN_CONST;
3910
3911 p = kzalloc(alloc_size, GFP_KERNEL);
3912 if (!p) {
3913 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
3914 return NULL;
3915 }
3916
3917 dev = (struct net_device *)
3918 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
3919 dev->padded = (char *)dev - (char *)p;
3920 dev->nd_net = &init_net;
3921
3922 if (sizeof_priv) {
3923 dev->priv = ((char *)dev +
3924 ((sizeof(struct net_device) +
3925 (sizeof(struct net_device_subqueue) *
3926 (queue_count - 1)) + NETDEV_ALIGN_CONST)
3927 & ~NETDEV_ALIGN_CONST));
3928 }
3929
3930 dev->egress_subqueue_count = queue_count;
3931
3932 dev->get_stats = internal_stats;
3933 netpoll_netdev_init(dev);
3934 setup(dev);
3935 strcpy(dev->name, name);
3936 return dev;
3937}
3938EXPORT_SYMBOL(alloc_netdev_mq);
3939
3940/**
3941 * free_netdev - free network device
3942 * @dev: device
3943 *
3944 * This function does the last stage of destroying an allocated device
3945 * interface. The reference to the device object is released.
3946 * If this is the last reference then it will be freed.
3947 */
3948void free_netdev(struct net_device *dev)
3949{
3950 /* Compatibility with error handling in drivers */
3951 if (dev->reg_state == NETREG_UNINITIALIZED) {
3952 kfree((char *)dev - dev->padded);
3953 return;
3954 }
3955
3956 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
3957 dev->reg_state = NETREG_RELEASED;
3958
3959 /* will free via device release */
3960 put_device(&dev->dev);
3961}
3962
3963/* Synchronize with packet receive processing. */
3964void synchronize_net(void)
3965{
3966 might_sleep();
3967 synchronize_rcu();
3968}
3969
3970/**
3971 * unregister_netdevice - remove device from the kernel
3972 * @dev: device
3973 *
3974 * This function shuts down a device interface and removes it
3975 * from the kernel tables. On success 0 is returned, on a failure
3976 * a negative errno code is returned.
3977 *
3978 * Callers must hold the rtnl semaphore. You may want
3979 * unregister_netdev() instead of this.
3980 */
3981
3982void unregister_netdevice(struct net_device *dev)
3983{
3984 rollback_registered(dev);
3985 /* Finish processing unregister after unlock */
3986 net_set_todo(dev);
3987}
3988
3989/**
3990 * unregister_netdev - remove device from the kernel
3991 * @dev: device
3992 *
3993 * This function shuts down a device interface and removes it
3994 * from the kernel tables. On success 0 is returned, on a failure
3995 * a negative errno code is returned.
3996 *
3997 * This is just a wrapper for unregister_netdevice that takes
3998 * the rtnl semaphore. In general you want to use this and not
3999 * unregister_netdevice.
4000 */
4001void unregister_netdev(struct net_device *dev)
4002{
4003 rtnl_lock();
4004 unregister_netdevice(dev);
4005 rtnl_unlock();
4006}
4007
4008EXPORT_SYMBOL(unregister_netdev);
4009
4010/**
4011 * dev_change_net_namespace - move device to different nethost namespace
4012 * @dev: device
4013 * @net: network namespace
4014 * @pat: If not NULL name pattern to try if the current device name
4015 * is already taken in the destination network namespace.
4016 *
4017 * This function shuts down a device interface and moves it
4018 * to a new network namespace. On success 0 is returned, on
4019 * a failure a netagive errno code is returned.
4020 *
4021 * Callers must hold the rtnl semaphore.
4022 */
4023
4024int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
4025{
4026 char buf[IFNAMSIZ];
4027 const char *destname;
4028 int err;
4029
4030 ASSERT_RTNL();
4031
4032 /* Don't allow namespace local devices to be moved. */
4033 err = -EINVAL;
4034 if (dev->features & NETIF_F_NETNS_LOCAL)
4035 goto out;
4036
4037 /* Ensure the device has been registrered */
4038 err = -EINVAL;
4039 if (dev->reg_state != NETREG_REGISTERED)
4040 goto out;
4041
4042 /* Get out if there is nothing todo */
4043 err = 0;
4044 if (dev->nd_net == net)
4045 goto out;
4046
4047 /* Pick the destination device name, and ensure
4048 * we can use it in the destination network namespace.
4049 */
4050 err = -EEXIST;
4051 destname = dev->name;
4052 if (__dev_get_by_name(net, destname)) {
4053 /* We get here if we can't use the current device name */
4054 if (!pat)
4055 goto out;
4056 if (!dev_valid_name(pat))
4057 goto out;
4058 if (strchr(pat, '%')) {
4059 if (__dev_alloc_name(net, pat, buf) < 0)
4060 goto out;
4061 destname = buf;
4062 } else
4063 destname = pat;
4064 if (__dev_get_by_name(net, destname))
4065 goto out;
4066 }
4067
4068 /*
4069 * And now a mini version of register_netdevice unregister_netdevice.
4070 */
4071
4072 /* If device is running close it first. */
4073 dev_close(dev);
4074
4075 /* And unlink it from device chain */
4076 err = -ENODEV;
4077 unlist_netdevice(dev);
4078
4079 synchronize_net();
4080
4081 /* Shutdown queueing discipline. */
4082 dev_shutdown(dev);
4083
4084 /* Notify protocols, that we are about to destroy
4085 this device. They should clean all the things.
4086 */
4087 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4088
4089 /*
4090 * Flush the unicast and multicast chains
4091 */
4092 dev_addr_discard(dev);
4093
4094 /* Actually switch the network namespace */
4095 dev->nd_net = net;
4096
4097 /* Assign the new device name */
4098 if (destname != dev->name)
4099 strcpy(dev->name, destname);
4100
4101 /* If there is an ifindex conflict assign a new one */
4102 if (__dev_get_by_index(net, dev->ifindex)) {
4103 int iflink = (dev->iflink == dev->ifindex);
4104 dev->ifindex = dev_new_index(net);
4105 if (iflink)
4106 dev->iflink = dev->ifindex;
4107 }
4108
4109 /* Fixup kobjects */
4110 err = device_rename(&dev->dev, dev->name);
4111 WARN_ON(err);
4112
4113 /* Add the device back in the hashes */
4114 list_netdevice(dev);
4115
4116 /* Notify protocols, that a new device appeared. */
4117 call_netdevice_notifiers(NETDEV_REGISTER, dev);
4118
4119 synchronize_net();
4120 err = 0;
4121out:
4122 return err;
4123}
4124
4125static int dev_cpu_callback(struct notifier_block *nfb,
4126 unsigned long action,
4127 void *ocpu)
4128{
4129 struct sk_buff **list_skb;
4130 struct net_device **list_net;
4131 struct sk_buff *skb;
4132 unsigned int cpu, oldcpu = (unsigned long)ocpu;
4133 struct softnet_data *sd, *oldsd;
4134
4135 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
4136 return NOTIFY_OK;
4137
4138 local_irq_disable();
4139 cpu = smp_processor_id();
4140 sd = &per_cpu(softnet_data, cpu);
4141 oldsd = &per_cpu(softnet_data, oldcpu);
4142
4143 /* Find end of our completion_queue. */
4144 list_skb = &sd->completion_queue;
4145 while (*list_skb)
4146 list_skb = &(*list_skb)->next;
4147 /* Append completion queue from offline CPU. */
4148 *list_skb = oldsd->completion_queue;
4149 oldsd->completion_queue = NULL;
4150
4151 /* Find end of our output_queue. */
4152 list_net = &sd->output_queue;
4153 while (*list_net)
4154 list_net = &(*list_net)->next_sched;
4155 /* Append output queue from offline CPU. */
4156 *list_net = oldsd->output_queue;
4157 oldsd->output_queue = NULL;
4158
4159 raise_softirq_irqoff(NET_TX_SOFTIRQ);
4160 local_irq_enable();
4161
4162 /* Process offline CPU's input_pkt_queue */
4163 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
4164 netif_rx(skb);
4165
4166 return NOTIFY_OK;
4167}
4168
4169#ifdef CONFIG_NET_DMA
4170/**
4171 * net_dma_rebalance - try to maintain one DMA channel per CPU
4172 * @net_dma: DMA client and associated data (lock, channels, channel_mask)
4173 *
4174 * This is called when the number of channels allocated to the net_dma client
4175 * changes. The net_dma client tries to have one DMA channel per CPU.
4176 */
4177
4178static void net_dma_rebalance(struct net_dma *net_dma)
4179{
4180 unsigned int cpu, i, n, chan_idx;
4181 struct dma_chan *chan;
4182
4183 if (cpus_empty(net_dma->channel_mask)) {
4184 for_each_online_cpu(cpu)
4185 rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL);
4186 return;
4187 }
4188
4189 i = 0;
4190 cpu = first_cpu(cpu_online_map);
4191
4192 for_each_cpu_mask(chan_idx, net_dma->channel_mask) {
4193 chan = net_dma->channels[chan_idx];
4194
4195 n = ((num_online_cpus() / cpus_weight(net_dma->channel_mask))
4196 + (i < (num_online_cpus() %
4197 cpus_weight(net_dma->channel_mask)) ? 1 : 0));
4198
4199 while(n) {
4200 per_cpu(softnet_data, cpu).net_dma = chan;
4201 cpu = next_cpu(cpu, cpu_online_map);
4202 n--;
4203 }
4204 i++;
4205 }
4206}
4207
4208/**
4209 * netdev_dma_event - event callback for the net_dma_client
4210 * @client: should always be net_dma_client
4211 * @chan: DMA channel for the event
4212 * @state: DMA state to be handled
4213 */
4214static enum dma_state_client
4215netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
4216 enum dma_state state)
4217{
4218 int i, found = 0, pos = -1;
4219 struct net_dma *net_dma =
4220 container_of(client, struct net_dma, client);
4221 enum dma_state_client ack = DMA_DUP; /* default: take no action */
4222
4223 spin_lock(&net_dma->lock);
4224 switch (state) {
4225 case DMA_RESOURCE_AVAILABLE:
4226 for (i = 0; i < NR_CPUS; i++)
4227 if (net_dma->channels[i] == chan) {
4228 found = 1;
4229 break;
4230 } else if (net_dma->channels[i] == NULL && pos < 0)
4231 pos = i;
4232
4233 if (!found && pos >= 0) {
4234 ack = DMA_ACK;
4235 net_dma->channels[pos] = chan;
4236 cpu_set(pos, net_dma->channel_mask);
4237 net_dma_rebalance(net_dma);
4238 }
4239 break;
4240 case DMA_RESOURCE_REMOVED:
4241 for (i = 0; i < NR_CPUS; i++)
4242 if (net_dma->channels[i] == chan) {
4243 found = 1;
4244 pos = i;
4245 break;
4246 }
4247
4248 if (found) {
4249 ack = DMA_ACK;
4250 cpu_clear(pos, net_dma->channel_mask);
4251 net_dma->channels[i] = NULL;
4252 net_dma_rebalance(net_dma);
4253 }
4254 break;
4255 default:
4256 break;
4257 }
4258 spin_unlock(&net_dma->lock);
4259
4260 return ack;
4261}
4262
4263/**
4264 * netdev_dma_regiser - register the networking subsystem as a DMA client
4265 */
4266static int __init netdev_dma_register(void)
4267{
4268 spin_lock_init(&net_dma.lock);
4269 dma_cap_set(DMA_MEMCPY, net_dma.client.cap_mask);
4270 dma_async_client_register(&net_dma.client);
4271 dma_async_client_chan_request(&net_dma.client);
4272 return 0;
4273}
4274
4275#else
4276static int __init netdev_dma_register(void) { return -ENODEV; }
4277#endif /* CONFIG_NET_DMA */
4278
4279/**
4280 * netdev_compute_feature - compute conjunction of two feature sets
4281 * @all: first feature set
4282 * @one: second feature set
4283 *
4284 * Computes a new feature set after adding a device with feature set
4285 * @one to the master device with current feature set @all. Returns
4286 * the new feature set.
4287 */
4288int netdev_compute_features(unsigned long all, unsigned long one)
4289{
4290 /* if device needs checksumming, downgrade to hw checksumming */
4291 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
4292 all ^= NETIF_F_NO_CSUM | NETIF_F_HW_CSUM;
4293
4294 /* if device can't do all checksum, downgrade to ipv4/ipv6 */
4295 if (all & NETIF_F_HW_CSUM && !(one & NETIF_F_HW_CSUM))
4296 all ^= NETIF_F_HW_CSUM
4297 | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
4298
4299 if (one & NETIF_F_GSO)
4300 one |= NETIF_F_GSO_SOFTWARE;
4301 one |= NETIF_F_GSO;
4302
4303 /* If even one device supports robust GSO, enable it for all. */
4304 if (one & NETIF_F_GSO_ROBUST)
4305 all |= NETIF_F_GSO_ROBUST;
4306
4307 all &= one | NETIF_F_LLTX;
4308
4309 if (!(all & NETIF_F_ALL_CSUM))
4310 all &= ~NETIF_F_SG;
4311 if (!(all & NETIF_F_SG))
4312 all &= ~NETIF_F_GSO_MASK;
4313
4314 return all;
4315}
4316EXPORT_SYMBOL(netdev_compute_features);
4317
4318static struct hlist_head *netdev_create_hash(void)
4319{
4320 int i;
4321 struct hlist_head *hash;
4322
4323 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
4324 if (hash != NULL)
4325 for (i = 0; i < NETDEV_HASHENTRIES; i++)
4326 INIT_HLIST_HEAD(&hash[i]);
4327
4328 return hash;
4329}
4330
4331/* Initialize per network namespace state */
4332static int __net_init netdev_init(struct net *net)
4333{
4334 INIT_LIST_HEAD(&net->dev_base_head);
4335
4336 net->dev_name_head = netdev_create_hash();
4337 if (net->dev_name_head == NULL)
4338 goto err_name;
4339
4340 net->dev_index_head = netdev_create_hash();
4341 if (net->dev_index_head == NULL)
4342 goto err_idx;
4343
4344 return 0;
4345
4346err_idx:
4347 kfree(net->dev_name_head);
4348err_name:
4349 return -ENOMEM;
4350}
4351
4352static void __net_exit netdev_exit(struct net *net)
4353{
4354 kfree(net->dev_name_head);
4355 kfree(net->dev_index_head);
4356}
4357
4358static struct pernet_operations __net_initdata netdev_net_ops = {
4359 .init = netdev_init,
4360 .exit = netdev_exit,
4361};
4362
4363static void __net_exit default_device_exit(struct net *net)
4364{
4365 struct net_device *dev, *next;
4366 /*
4367 * Push all migratable of the network devices back to the
4368 * initial network namespace
4369 */
4370 rtnl_lock();
4371 for_each_netdev_safe(net, dev, next) {
4372 int err;
4373
4374 /* Ignore unmoveable devices (i.e. loopback) */
4375 if (dev->features & NETIF_F_NETNS_LOCAL)
4376 continue;
4377
4378 /* Push remaing network devices to init_net */
4379 err = dev_change_net_namespace(dev, &init_net, "dev%d");
4380 if (err) {
4381 printk(KERN_WARNING "%s: failed to move %s to init_net: %d\n",
4382 __func__, dev->name, err);
4383 unregister_netdevice(dev);
4384 }
4385 }
4386 rtnl_unlock();
4387}
4388
4389static struct pernet_operations __net_initdata default_device_ops = {
4390 .exit = default_device_exit,
4391};
4392
4393/*
4394 * Initialize the DEV module. At boot time this walks the device list and
4395 * unhooks any devices that fail to initialise (normally hardware not
4396 * present) and leaves us with a valid list of present and active devices.
4397 *
4398 */
4399
4400/*
4401 * This is called single threaded during boot, so no need
4402 * to take the rtnl semaphore.
4403 */
4404static int __init net_dev_init(void)
4405{
4406 int i, rc = -ENOMEM;
4407
4408 BUG_ON(!dev_boot_phase);
4409
4410 if (dev_proc_init())
4411 goto out;
4412
4413 if (netdev_kobject_init())
4414 goto out;
4415
4416 INIT_LIST_HEAD(&ptype_all);
4417 for (i = 0; i < 16; i++)
4418 INIT_LIST_HEAD(&ptype_base[i]);
4419
4420 if (register_pernet_subsys(&netdev_net_ops))
4421 goto out;
4422
4423 if (register_pernet_device(&default_device_ops))
4424 goto out;
4425
4426 /*
4427 * Initialise the packet receive queues.
4428 */
4429
4430 for_each_possible_cpu(i) {
4431 struct softnet_data *queue;
4432
4433 queue = &per_cpu(softnet_data, i);
4434 skb_queue_head_init(&queue->input_pkt_queue);
4435 queue->completion_queue = NULL;
4436 INIT_LIST_HEAD(&queue->poll_list);
4437
4438 queue->backlog.poll = process_backlog;
4439 queue->backlog.weight = weight_p;
4440 }
4441
4442 netdev_dma_register();
4443
4444 dev_boot_phase = 0;
4445
4446 open_softirq(NET_TX_SOFTIRQ, net_tx_action, NULL);
4447 open_softirq(NET_RX_SOFTIRQ, net_rx_action, NULL);
4448
4449 hotcpu_notifier(dev_cpu_callback, 0);
4450 dst_init();
4451 dev_mcast_init();
4452 rc = 0;
4453out:
4454 return rc;
4455}
4456
4457subsys_initcall(net_dev_init);
4458
4459EXPORT_SYMBOL(__dev_get_by_index);
4460EXPORT_SYMBOL(__dev_get_by_name);
4461EXPORT_SYMBOL(__dev_remove_pack);
4462EXPORT_SYMBOL(dev_valid_name);
4463EXPORT_SYMBOL(dev_add_pack);
4464EXPORT_SYMBOL(dev_alloc_name);
4465EXPORT_SYMBOL(dev_close);
4466EXPORT_SYMBOL(dev_get_by_flags);
4467EXPORT_SYMBOL(dev_get_by_index);
4468EXPORT_SYMBOL(dev_get_by_name);
4469EXPORT_SYMBOL(dev_open);
4470EXPORT_SYMBOL(dev_queue_xmit);
4471EXPORT_SYMBOL(dev_remove_pack);
4472EXPORT_SYMBOL(dev_set_allmulti);
4473EXPORT_SYMBOL(dev_set_promiscuity);
4474EXPORT_SYMBOL(dev_change_flags);
4475EXPORT_SYMBOL(dev_set_mtu);
4476EXPORT_SYMBOL(dev_set_mac_address);
4477EXPORT_SYMBOL(free_netdev);
4478EXPORT_SYMBOL(netdev_boot_setup_check);
4479EXPORT_SYMBOL(netdev_set_master);
4480EXPORT_SYMBOL(netdev_state_change);
4481EXPORT_SYMBOL(netif_receive_skb);
4482EXPORT_SYMBOL(netif_rx);
4483EXPORT_SYMBOL(register_gifconf);
4484EXPORT_SYMBOL(register_netdevice);
4485EXPORT_SYMBOL(register_netdevice_notifier);
4486EXPORT_SYMBOL(skb_checksum_help);
4487EXPORT_SYMBOL(synchronize_net);
4488EXPORT_SYMBOL(unregister_netdevice);
4489EXPORT_SYMBOL(unregister_netdevice_notifier);
4490EXPORT_SYMBOL(net_enable_timestamp);
4491EXPORT_SYMBOL(net_disable_timestamp);
4492EXPORT_SYMBOL(dev_get_flags);
4493
4494#if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
4495EXPORT_SYMBOL(br_handle_frame_hook);
4496EXPORT_SYMBOL(br_fdb_get_hook);
4497EXPORT_SYMBOL(br_fdb_put_hook);
4498#endif
4499
4500#ifdef CONFIG_KMOD
4501EXPORT_SYMBOL(dev_load);
4502#endif
4503
4504EXPORT_PER_CPU_SYMBOL(softnet_data);