at v2.6.24-rc2 4503 lines 111 kB view raw
1/* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75#include <asm/uaccess.h> 76#include <asm/system.h> 77#include <linux/bitops.h> 78#include <linux/capability.h> 79#include <linux/cpu.h> 80#include <linux/types.h> 81#include <linux/kernel.h> 82#include <linux/sched.h> 83#include <linux/mutex.h> 84#include <linux/string.h> 85#include <linux/mm.h> 86#include <linux/socket.h> 87#include <linux/sockios.h> 88#include <linux/errno.h> 89#include <linux/interrupt.h> 90#include <linux/if_ether.h> 91#include <linux/netdevice.h> 92#include <linux/etherdevice.h> 93#include <linux/notifier.h> 94#include <linux/skbuff.h> 95#include <net/net_namespace.h> 96#include <net/sock.h> 97#include <linux/rtnetlink.h> 98#include <linux/proc_fs.h> 99#include <linux/seq_file.h> 100#include <linux/stat.h> 101#include <linux/if_bridge.h> 102#include <linux/if_macvlan.h> 103#include <net/dst.h> 104#include <net/pkt_sched.h> 105#include <net/checksum.h> 106#include <linux/highmem.h> 107#include <linux/init.h> 108#include <linux/kmod.h> 109#include <linux/module.h> 110#include <linux/kallsyms.h> 111#include <linux/netpoll.h> 112#include <linux/rcupdate.h> 113#include <linux/delay.h> 114#include <net/wext.h> 115#include <net/iw_handler.h> 116#include <asm/current.h> 117#include <linux/audit.h> 118#include <linux/dmaengine.h> 119#include <linux/err.h> 120#include <linux/ctype.h> 121#include <linux/if_arp.h> 122 123#include "net-sysfs.h" 124 125/* 126 * The list of packet types we will receive (as opposed to discard) 127 * and the routines to invoke. 128 * 129 * Why 16. Because with 16 the only overlap we get on a hash of the 130 * low nibble of the protocol value is RARP/SNAP/X.25. 131 * 132 * NOTE: That is no longer true with the addition of VLAN tags. Not 133 * sure which should go first, but I bet it won't make much 134 * difference if we are running VLANs. The good news is that 135 * this protocol won't be in the list unless compiled in, so 136 * the average user (w/out VLANs) will not be adversely affected. 137 * --BLG 138 * 139 * 0800 IP 140 * 8100 802.1Q VLAN 141 * 0001 802.3 142 * 0002 AX.25 143 * 0004 802.2 144 * 8035 RARP 145 * 0005 SNAP 146 * 0805 X.25 147 * 0806 ARP 148 * 8137 IPX 149 * 0009 Localtalk 150 * 86DD IPv6 151 */ 152 153static DEFINE_SPINLOCK(ptype_lock); 154static struct list_head ptype_base[16] __read_mostly; /* 16 way hashed list */ 155static struct list_head ptype_all __read_mostly; /* Taps */ 156 157#ifdef CONFIG_NET_DMA 158struct net_dma { 159 struct dma_client client; 160 spinlock_t lock; 161 cpumask_t channel_mask; 162 struct dma_chan *channels[NR_CPUS]; 163}; 164 165static enum dma_state_client 166netdev_dma_event(struct dma_client *client, struct dma_chan *chan, 167 enum dma_state state); 168 169static struct net_dma net_dma = { 170 .client = { 171 .event_callback = netdev_dma_event, 172 }, 173}; 174#endif 175 176/* 177 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 178 * semaphore. 179 * 180 * Pure readers hold dev_base_lock for reading. 181 * 182 * Writers must hold the rtnl semaphore while they loop through the 183 * dev_base_head list, and hold dev_base_lock for writing when they do the 184 * actual updates. This allows pure readers to access the list even 185 * while a writer is preparing to update it. 186 * 187 * To put it another way, dev_base_lock is held for writing only to 188 * protect against pure readers; the rtnl semaphore provides the 189 * protection against other writers. 190 * 191 * See, for example usages, register_netdevice() and 192 * unregister_netdevice(), which must be called with the rtnl 193 * semaphore held. 194 */ 195DEFINE_RWLOCK(dev_base_lock); 196 197EXPORT_SYMBOL(dev_base_lock); 198 199#define NETDEV_HASHBITS 8 200#define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS) 201 202static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 203{ 204 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 205 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)]; 206} 207 208static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 209{ 210 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)]; 211} 212 213/* Device list insertion */ 214static int list_netdevice(struct net_device *dev) 215{ 216 struct net *net = dev->nd_net; 217 218 ASSERT_RTNL(); 219 220 write_lock_bh(&dev_base_lock); 221 list_add_tail(&dev->dev_list, &net->dev_base_head); 222 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name)); 223 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex)); 224 write_unlock_bh(&dev_base_lock); 225 return 0; 226} 227 228/* Device list removal */ 229static void unlist_netdevice(struct net_device *dev) 230{ 231 ASSERT_RTNL(); 232 233 /* Unlink dev from the device chain */ 234 write_lock_bh(&dev_base_lock); 235 list_del(&dev->dev_list); 236 hlist_del(&dev->name_hlist); 237 hlist_del(&dev->index_hlist); 238 write_unlock_bh(&dev_base_lock); 239} 240 241/* 242 * Our notifier list 243 */ 244 245static RAW_NOTIFIER_HEAD(netdev_chain); 246 247/* 248 * Device drivers call our routines to queue packets here. We empty the 249 * queue in the local softnet handler. 250 */ 251 252DEFINE_PER_CPU(struct softnet_data, softnet_data); 253 254#ifdef CONFIG_DEBUG_LOCK_ALLOC 255/* 256 * register_netdevice() inits dev->_xmit_lock and sets lockdep class 257 * according to dev->type 258 */ 259static const unsigned short netdev_lock_type[] = 260 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 261 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 262 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 263 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 264 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 265 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 266 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 267 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 268 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 269 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 270 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 271 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 272 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211, 273 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_VOID, 274 ARPHRD_NONE}; 275 276static const char *netdev_lock_name[] = 277 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 278 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 279 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 280 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 281 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 282 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 283 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 284 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 285 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 286 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 287 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 288 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 289 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211", 290 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_VOID", 291 "_xmit_NONE"}; 292 293static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 294 295static inline unsigned short netdev_lock_pos(unsigned short dev_type) 296{ 297 int i; 298 299 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 300 if (netdev_lock_type[i] == dev_type) 301 return i; 302 /* the last key is used by default */ 303 return ARRAY_SIZE(netdev_lock_type) - 1; 304} 305 306static inline void netdev_set_lockdep_class(spinlock_t *lock, 307 unsigned short dev_type) 308{ 309 int i; 310 311 i = netdev_lock_pos(dev_type); 312 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 313 netdev_lock_name[i]); 314} 315#else 316static inline void netdev_set_lockdep_class(spinlock_t *lock, 317 unsigned short dev_type) 318{ 319} 320#endif 321 322/******************************************************************************* 323 324 Protocol management and registration routines 325 326*******************************************************************************/ 327 328/* 329 * Add a protocol ID to the list. Now that the input handler is 330 * smarter we can dispense with all the messy stuff that used to be 331 * here. 332 * 333 * BEWARE!!! Protocol handlers, mangling input packets, 334 * MUST BE last in hash buckets and checking protocol handlers 335 * MUST start from promiscuous ptype_all chain in net_bh. 336 * It is true now, do not change it. 337 * Explanation follows: if protocol handler, mangling packet, will 338 * be the first on list, it is not able to sense, that packet 339 * is cloned and should be copied-on-write, so that it will 340 * change it and subsequent readers will get broken packet. 341 * --ANK (980803) 342 */ 343 344/** 345 * dev_add_pack - add packet handler 346 * @pt: packet type declaration 347 * 348 * Add a protocol handler to the networking stack. The passed &packet_type 349 * is linked into kernel lists and may not be freed until it has been 350 * removed from the kernel lists. 351 * 352 * This call does not sleep therefore it can not 353 * guarantee all CPU's that are in middle of receiving packets 354 * will see the new packet type (until the next received packet). 355 */ 356 357void dev_add_pack(struct packet_type *pt) 358{ 359 int hash; 360 361 spin_lock_bh(&ptype_lock); 362 if (pt->type == htons(ETH_P_ALL)) 363 list_add_rcu(&pt->list, &ptype_all); 364 else { 365 hash = ntohs(pt->type) & 15; 366 list_add_rcu(&pt->list, &ptype_base[hash]); 367 } 368 spin_unlock_bh(&ptype_lock); 369} 370 371/** 372 * __dev_remove_pack - remove packet handler 373 * @pt: packet type declaration 374 * 375 * Remove a protocol handler that was previously added to the kernel 376 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 377 * from the kernel lists and can be freed or reused once this function 378 * returns. 379 * 380 * The packet type might still be in use by receivers 381 * and must not be freed until after all the CPU's have gone 382 * through a quiescent state. 383 */ 384void __dev_remove_pack(struct packet_type *pt) 385{ 386 struct list_head *head; 387 struct packet_type *pt1; 388 389 spin_lock_bh(&ptype_lock); 390 391 if (pt->type == htons(ETH_P_ALL)) 392 head = &ptype_all; 393 else 394 head = &ptype_base[ntohs(pt->type) & 15]; 395 396 list_for_each_entry(pt1, head, list) { 397 if (pt == pt1) { 398 list_del_rcu(&pt->list); 399 goto out; 400 } 401 } 402 403 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt); 404out: 405 spin_unlock_bh(&ptype_lock); 406} 407/** 408 * dev_remove_pack - remove packet handler 409 * @pt: packet type declaration 410 * 411 * Remove a protocol handler that was previously added to the kernel 412 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 413 * from the kernel lists and can be freed or reused once this function 414 * returns. 415 * 416 * This call sleeps to guarantee that no CPU is looking at the packet 417 * type after return. 418 */ 419void dev_remove_pack(struct packet_type *pt) 420{ 421 __dev_remove_pack(pt); 422 423 synchronize_net(); 424} 425 426/****************************************************************************** 427 428 Device Boot-time Settings Routines 429 430*******************************************************************************/ 431 432/* Boot time configuration table */ 433static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 434 435/** 436 * netdev_boot_setup_add - add new setup entry 437 * @name: name of the device 438 * @map: configured settings for the device 439 * 440 * Adds new setup entry to the dev_boot_setup list. The function 441 * returns 0 on error and 1 on success. This is a generic routine to 442 * all netdevices. 443 */ 444static int netdev_boot_setup_add(char *name, struct ifmap *map) 445{ 446 struct netdev_boot_setup *s; 447 int i; 448 449 s = dev_boot_setup; 450 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 451 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 452 memset(s[i].name, 0, sizeof(s[i].name)); 453 strcpy(s[i].name, name); 454 memcpy(&s[i].map, map, sizeof(s[i].map)); 455 break; 456 } 457 } 458 459 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 460} 461 462/** 463 * netdev_boot_setup_check - check boot time settings 464 * @dev: the netdevice 465 * 466 * Check boot time settings for the device. 467 * The found settings are set for the device to be used 468 * later in the device probing. 469 * Returns 0 if no settings found, 1 if they are. 470 */ 471int netdev_boot_setup_check(struct net_device *dev) 472{ 473 struct netdev_boot_setup *s = dev_boot_setup; 474 int i; 475 476 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 477 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 478 !strncmp(dev->name, s[i].name, strlen(s[i].name))) { 479 dev->irq = s[i].map.irq; 480 dev->base_addr = s[i].map.base_addr; 481 dev->mem_start = s[i].map.mem_start; 482 dev->mem_end = s[i].map.mem_end; 483 return 1; 484 } 485 } 486 return 0; 487} 488 489 490/** 491 * netdev_boot_base - get address from boot time settings 492 * @prefix: prefix for network device 493 * @unit: id for network device 494 * 495 * Check boot time settings for the base address of device. 496 * The found settings are set for the device to be used 497 * later in the device probing. 498 * Returns 0 if no settings found. 499 */ 500unsigned long netdev_boot_base(const char *prefix, int unit) 501{ 502 const struct netdev_boot_setup *s = dev_boot_setup; 503 char name[IFNAMSIZ]; 504 int i; 505 506 sprintf(name, "%s%d", prefix, unit); 507 508 /* 509 * If device already registered then return base of 1 510 * to indicate not to probe for this interface 511 */ 512 if (__dev_get_by_name(&init_net, name)) 513 return 1; 514 515 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 516 if (!strcmp(name, s[i].name)) 517 return s[i].map.base_addr; 518 return 0; 519} 520 521/* 522 * Saves at boot time configured settings for any netdevice. 523 */ 524int __init netdev_boot_setup(char *str) 525{ 526 int ints[5]; 527 struct ifmap map; 528 529 str = get_options(str, ARRAY_SIZE(ints), ints); 530 if (!str || !*str) 531 return 0; 532 533 /* Save settings */ 534 memset(&map, 0, sizeof(map)); 535 if (ints[0] > 0) 536 map.irq = ints[1]; 537 if (ints[0] > 1) 538 map.base_addr = ints[2]; 539 if (ints[0] > 2) 540 map.mem_start = ints[3]; 541 if (ints[0] > 3) 542 map.mem_end = ints[4]; 543 544 /* Add new entry to the list */ 545 return netdev_boot_setup_add(str, &map); 546} 547 548__setup("netdev=", netdev_boot_setup); 549 550/******************************************************************************* 551 552 Device Interface Subroutines 553 554*******************************************************************************/ 555 556/** 557 * __dev_get_by_name - find a device by its name 558 * @net: the applicable net namespace 559 * @name: name to find 560 * 561 * Find an interface by name. Must be called under RTNL semaphore 562 * or @dev_base_lock. If the name is found a pointer to the device 563 * is returned. If the name is not found then %NULL is returned. The 564 * reference counters are not incremented so the caller must be 565 * careful with locks. 566 */ 567 568struct net_device *__dev_get_by_name(struct net *net, const char *name) 569{ 570 struct hlist_node *p; 571 572 hlist_for_each(p, dev_name_hash(net, name)) { 573 struct net_device *dev 574 = hlist_entry(p, struct net_device, name_hlist); 575 if (!strncmp(dev->name, name, IFNAMSIZ)) 576 return dev; 577 } 578 return NULL; 579} 580 581/** 582 * dev_get_by_name - find a device by its name 583 * @net: the applicable net namespace 584 * @name: name to find 585 * 586 * Find an interface by name. This can be called from any 587 * context and does its own locking. The returned handle has 588 * the usage count incremented and the caller must use dev_put() to 589 * release it when it is no longer needed. %NULL is returned if no 590 * matching device is found. 591 */ 592 593struct net_device *dev_get_by_name(struct net *net, const char *name) 594{ 595 struct net_device *dev; 596 597 read_lock(&dev_base_lock); 598 dev = __dev_get_by_name(net, name); 599 if (dev) 600 dev_hold(dev); 601 read_unlock(&dev_base_lock); 602 return dev; 603} 604 605/** 606 * __dev_get_by_index - find a device by its ifindex 607 * @net: the applicable net namespace 608 * @ifindex: index of device 609 * 610 * Search for an interface by index. Returns %NULL if the device 611 * is not found or a pointer to the device. The device has not 612 * had its reference counter increased so the caller must be careful 613 * about locking. The caller must hold either the RTNL semaphore 614 * or @dev_base_lock. 615 */ 616 617struct net_device *__dev_get_by_index(struct net *net, int ifindex) 618{ 619 struct hlist_node *p; 620 621 hlist_for_each(p, dev_index_hash(net, ifindex)) { 622 struct net_device *dev 623 = hlist_entry(p, struct net_device, index_hlist); 624 if (dev->ifindex == ifindex) 625 return dev; 626 } 627 return NULL; 628} 629 630 631/** 632 * dev_get_by_index - find a device by its ifindex 633 * @net: the applicable net namespace 634 * @ifindex: index of device 635 * 636 * Search for an interface by index. Returns NULL if the device 637 * is not found or a pointer to the device. The device returned has 638 * had a reference added and the pointer is safe until the user calls 639 * dev_put to indicate they have finished with it. 640 */ 641 642struct net_device *dev_get_by_index(struct net *net, int ifindex) 643{ 644 struct net_device *dev; 645 646 read_lock(&dev_base_lock); 647 dev = __dev_get_by_index(net, ifindex); 648 if (dev) 649 dev_hold(dev); 650 read_unlock(&dev_base_lock); 651 return dev; 652} 653 654/** 655 * dev_getbyhwaddr - find a device by its hardware address 656 * @net: the applicable net namespace 657 * @type: media type of device 658 * @ha: hardware address 659 * 660 * Search for an interface by MAC address. Returns NULL if the device 661 * is not found or a pointer to the device. The caller must hold the 662 * rtnl semaphore. The returned device has not had its ref count increased 663 * and the caller must therefore be careful about locking 664 * 665 * BUGS: 666 * If the API was consistent this would be __dev_get_by_hwaddr 667 */ 668 669struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha) 670{ 671 struct net_device *dev; 672 673 ASSERT_RTNL(); 674 675 for_each_netdev(&init_net, dev) 676 if (dev->type == type && 677 !memcmp(dev->dev_addr, ha, dev->addr_len)) 678 return dev; 679 680 return NULL; 681} 682 683EXPORT_SYMBOL(dev_getbyhwaddr); 684 685struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 686{ 687 struct net_device *dev; 688 689 ASSERT_RTNL(); 690 for_each_netdev(net, dev) 691 if (dev->type == type) 692 return dev; 693 694 return NULL; 695} 696 697EXPORT_SYMBOL(__dev_getfirstbyhwtype); 698 699struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 700{ 701 struct net_device *dev; 702 703 rtnl_lock(); 704 dev = __dev_getfirstbyhwtype(net, type); 705 if (dev) 706 dev_hold(dev); 707 rtnl_unlock(); 708 return dev; 709} 710 711EXPORT_SYMBOL(dev_getfirstbyhwtype); 712 713/** 714 * dev_get_by_flags - find any device with given flags 715 * @net: the applicable net namespace 716 * @if_flags: IFF_* values 717 * @mask: bitmask of bits in if_flags to check 718 * 719 * Search for any interface with the given flags. Returns NULL if a device 720 * is not found or a pointer to the device. The device returned has 721 * had a reference added and the pointer is safe until the user calls 722 * dev_put to indicate they have finished with it. 723 */ 724 725struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask) 726{ 727 struct net_device *dev, *ret; 728 729 ret = NULL; 730 read_lock(&dev_base_lock); 731 for_each_netdev(net, dev) { 732 if (((dev->flags ^ if_flags) & mask) == 0) { 733 dev_hold(dev); 734 ret = dev; 735 break; 736 } 737 } 738 read_unlock(&dev_base_lock); 739 return ret; 740} 741 742/** 743 * dev_valid_name - check if name is okay for network device 744 * @name: name string 745 * 746 * Network device names need to be valid file names to 747 * to allow sysfs to work. We also disallow any kind of 748 * whitespace. 749 */ 750int dev_valid_name(const char *name) 751{ 752 if (*name == '\0') 753 return 0; 754 if (strlen(name) >= IFNAMSIZ) 755 return 0; 756 if (!strcmp(name, ".") || !strcmp(name, "..")) 757 return 0; 758 759 while (*name) { 760 if (*name == '/' || isspace(*name)) 761 return 0; 762 name++; 763 } 764 return 1; 765} 766 767/** 768 * __dev_alloc_name - allocate a name for a device 769 * @net: network namespace to allocate the device name in 770 * @name: name format string 771 * @buf: scratch buffer and result name string 772 * 773 * Passed a format string - eg "lt%d" it will try and find a suitable 774 * id. It scans list of devices to build up a free map, then chooses 775 * the first empty slot. The caller must hold the dev_base or rtnl lock 776 * while allocating the name and adding the device in order to avoid 777 * duplicates. 778 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 779 * Returns the number of the unit assigned or a negative errno code. 780 */ 781 782static int __dev_alloc_name(struct net *net, const char *name, char *buf) 783{ 784 int i = 0; 785 const char *p; 786 const int max_netdevices = 8*PAGE_SIZE; 787 unsigned long *inuse; 788 struct net_device *d; 789 790 p = strnchr(name, IFNAMSIZ-1, '%'); 791 if (p) { 792 /* 793 * Verify the string as this thing may have come from 794 * the user. There must be either one "%d" and no other "%" 795 * characters. 796 */ 797 if (p[1] != 'd' || strchr(p + 2, '%')) 798 return -EINVAL; 799 800 /* Use one page as a bit array of possible slots */ 801 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 802 if (!inuse) 803 return -ENOMEM; 804 805 for_each_netdev(net, d) { 806 if (!sscanf(d->name, name, &i)) 807 continue; 808 if (i < 0 || i >= max_netdevices) 809 continue; 810 811 /* avoid cases where sscanf is not exact inverse of printf */ 812 snprintf(buf, IFNAMSIZ, name, i); 813 if (!strncmp(buf, d->name, IFNAMSIZ)) 814 set_bit(i, inuse); 815 } 816 817 i = find_first_zero_bit(inuse, max_netdevices); 818 free_page((unsigned long) inuse); 819 } 820 821 snprintf(buf, IFNAMSIZ, name, i); 822 if (!__dev_get_by_name(net, buf)) 823 return i; 824 825 /* It is possible to run out of possible slots 826 * when the name is long and there isn't enough space left 827 * for the digits, or if all bits are used. 828 */ 829 return -ENFILE; 830} 831 832/** 833 * dev_alloc_name - allocate a name for a device 834 * @dev: device 835 * @name: name format string 836 * 837 * Passed a format string - eg "lt%d" it will try and find a suitable 838 * id. It scans list of devices to build up a free map, then chooses 839 * the first empty slot. The caller must hold the dev_base or rtnl lock 840 * while allocating the name and adding the device in order to avoid 841 * duplicates. 842 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 843 * Returns the number of the unit assigned or a negative errno code. 844 */ 845 846int dev_alloc_name(struct net_device *dev, const char *name) 847{ 848 char buf[IFNAMSIZ]; 849 struct net *net; 850 int ret; 851 852 BUG_ON(!dev->nd_net); 853 net = dev->nd_net; 854 ret = __dev_alloc_name(net, name, buf); 855 if (ret >= 0) 856 strlcpy(dev->name, buf, IFNAMSIZ); 857 return ret; 858} 859 860 861/** 862 * dev_change_name - change name of a device 863 * @dev: device 864 * @newname: name (or format string) must be at least IFNAMSIZ 865 * 866 * Change name of a device, can pass format strings "eth%d". 867 * for wildcarding. 868 */ 869int dev_change_name(struct net_device *dev, char *newname) 870{ 871 char oldname[IFNAMSIZ]; 872 int err = 0; 873 int ret; 874 struct net *net; 875 876 ASSERT_RTNL(); 877 BUG_ON(!dev->nd_net); 878 879 net = dev->nd_net; 880 if (dev->flags & IFF_UP) 881 return -EBUSY; 882 883 if (!dev_valid_name(newname)) 884 return -EINVAL; 885 886 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) 887 return 0; 888 889 memcpy(oldname, dev->name, IFNAMSIZ); 890 891 if (strchr(newname, '%')) { 892 err = dev_alloc_name(dev, newname); 893 if (err < 0) 894 return err; 895 strcpy(newname, dev->name); 896 } 897 else if (__dev_get_by_name(net, newname)) 898 return -EEXIST; 899 else 900 strlcpy(dev->name, newname, IFNAMSIZ); 901 902rollback: 903 device_rename(&dev->dev, dev->name); 904 905 write_lock_bh(&dev_base_lock); 906 hlist_del(&dev->name_hlist); 907 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name)); 908 write_unlock_bh(&dev_base_lock); 909 910 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 911 ret = notifier_to_errno(ret); 912 913 if (ret) { 914 if (err) { 915 printk(KERN_ERR 916 "%s: name change rollback failed: %d.\n", 917 dev->name, ret); 918 } else { 919 err = ret; 920 memcpy(dev->name, oldname, IFNAMSIZ); 921 goto rollback; 922 } 923 } 924 925 return err; 926} 927 928/** 929 * netdev_features_change - device changes features 930 * @dev: device to cause notification 931 * 932 * Called to indicate a device has changed features. 933 */ 934void netdev_features_change(struct net_device *dev) 935{ 936 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 937} 938EXPORT_SYMBOL(netdev_features_change); 939 940/** 941 * netdev_state_change - device changes state 942 * @dev: device to cause notification 943 * 944 * Called to indicate a device has changed state. This function calls 945 * the notifier chains for netdev_chain and sends a NEWLINK message 946 * to the routing socket. 947 */ 948void netdev_state_change(struct net_device *dev) 949{ 950 if (dev->flags & IFF_UP) { 951 call_netdevice_notifiers(NETDEV_CHANGE, dev); 952 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 953 } 954} 955 956/** 957 * dev_load - load a network module 958 * @net: the applicable net namespace 959 * @name: name of interface 960 * 961 * If a network interface is not present and the process has suitable 962 * privileges this function loads the module. If module loading is not 963 * available in this kernel then it becomes a nop. 964 */ 965 966void dev_load(struct net *net, const char *name) 967{ 968 struct net_device *dev; 969 970 read_lock(&dev_base_lock); 971 dev = __dev_get_by_name(net, name); 972 read_unlock(&dev_base_lock); 973 974 if (!dev && capable(CAP_SYS_MODULE)) 975 request_module("%s", name); 976} 977 978/** 979 * dev_open - prepare an interface for use. 980 * @dev: device to open 981 * 982 * Takes a device from down to up state. The device's private open 983 * function is invoked and then the multicast lists are loaded. Finally 984 * the device is moved into the up state and a %NETDEV_UP message is 985 * sent to the netdev notifier chain. 986 * 987 * Calling this function on an active interface is a nop. On a failure 988 * a negative errno code is returned. 989 */ 990int dev_open(struct net_device *dev) 991{ 992 int ret = 0; 993 994 /* 995 * Is it already up? 996 */ 997 998 if (dev->flags & IFF_UP) 999 return 0; 1000 1001 /* 1002 * Is it even present? 1003 */ 1004 if (!netif_device_present(dev)) 1005 return -ENODEV; 1006 1007 /* 1008 * Call device private open method 1009 */ 1010 set_bit(__LINK_STATE_START, &dev->state); 1011 1012 if (dev->validate_addr) 1013 ret = dev->validate_addr(dev); 1014 1015 if (!ret && dev->open) 1016 ret = dev->open(dev); 1017 1018 /* 1019 * If it went open OK then: 1020 */ 1021 1022 if (ret) 1023 clear_bit(__LINK_STATE_START, &dev->state); 1024 else { 1025 /* 1026 * Set the flags. 1027 */ 1028 dev->flags |= IFF_UP; 1029 1030 /* 1031 * Initialize multicasting status 1032 */ 1033 dev_set_rx_mode(dev); 1034 1035 /* 1036 * Wakeup transmit queue engine 1037 */ 1038 dev_activate(dev); 1039 1040 /* 1041 * ... and announce new interface. 1042 */ 1043 call_netdevice_notifiers(NETDEV_UP, dev); 1044 } 1045 1046 return ret; 1047} 1048 1049/** 1050 * dev_close - shutdown an interface. 1051 * @dev: device to shutdown 1052 * 1053 * This function moves an active device into down state. A 1054 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1055 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1056 * chain. 1057 */ 1058int dev_close(struct net_device *dev) 1059{ 1060 might_sleep(); 1061 1062 if (!(dev->flags & IFF_UP)) 1063 return 0; 1064 1065 /* 1066 * Tell people we are going down, so that they can 1067 * prepare to death, when device is still operating. 1068 */ 1069 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1070 1071 dev_deactivate(dev); 1072 1073 clear_bit(__LINK_STATE_START, &dev->state); 1074 1075 /* Synchronize to scheduled poll. We cannot touch poll list, 1076 * it can be even on different cpu. So just clear netif_running(). 1077 * 1078 * dev->stop() will invoke napi_disable() on all of it's 1079 * napi_struct instances on this device. 1080 */ 1081 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1082 1083 /* 1084 * Call the device specific close. This cannot fail. 1085 * Only if device is UP 1086 * 1087 * We allow it to be called even after a DETACH hot-plug 1088 * event. 1089 */ 1090 if (dev->stop) 1091 dev->stop(dev); 1092 1093 /* 1094 * Device is now down. 1095 */ 1096 1097 dev->flags &= ~IFF_UP; 1098 1099 /* 1100 * Tell people we are down 1101 */ 1102 call_netdevice_notifiers(NETDEV_DOWN, dev); 1103 1104 return 0; 1105} 1106 1107 1108static int dev_boot_phase = 1; 1109 1110/* 1111 * Device change register/unregister. These are not inline or static 1112 * as we export them to the world. 1113 */ 1114 1115/** 1116 * register_netdevice_notifier - register a network notifier block 1117 * @nb: notifier 1118 * 1119 * Register a notifier to be called when network device events occur. 1120 * The notifier passed is linked into the kernel structures and must 1121 * not be reused until it has been unregistered. A negative errno code 1122 * is returned on a failure. 1123 * 1124 * When registered all registration and up events are replayed 1125 * to the new notifier to allow device to have a race free 1126 * view of the network device list. 1127 */ 1128 1129int register_netdevice_notifier(struct notifier_block *nb) 1130{ 1131 struct net_device *dev; 1132 struct net_device *last; 1133 struct net *net; 1134 int err; 1135 1136 rtnl_lock(); 1137 err = raw_notifier_chain_register(&netdev_chain, nb); 1138 if (err) 1139 goto unlock; 1140 if (dev_boot_phase) 1141 goto unlock; 1142 for_each_net(net) { 1143 for_each_netdev(net, dev) { 1144 err = nb->notifier_call(nb, NETDEV_REGISTER, dev); 1145 err = notifier_to_errno(err); 1146 if (err) 1147 goto rollback; 1148 1149 if (!(dev->flags & IFF_UP)) 1150 continue; 1151 1152 nb->notifier_call(nb, NETDEV_UP, dev); 1153 } 1154 } 1155 1156unlock: 1157 rtnl_unlock(); 1158 return err; 1159 1160rollback: 1161 last = dev; 1162 for_each_net(net) { 1163 for_each_netdev(net, dev) { 1164 if (dev == last) 1165 break; 1166 1167 if (dev->flags & IFF_UP) { 1168 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1169 nb->notifier_call(nb, NETDEV_DOWN, dev); 1170 } 1171 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1172 } 1173 } 1174 goto unlock; 1175} 1176 1177/** 1178 * unregister_netdevice_notifier - unregister a network notifier block 1179 * @nb: notifier 1180 * 1181 * Unregister a notifier previously registered by 1182 * register_netdevice_notifier(). The notifier is unlinked into the 1183 * kernel structures and may then be reused. A negative errno code 1184 * is returned on a failure. 1185 */ 1186 1187int unregister_netdevice_notifier(struct notifier_block *nb) 1188{ 1189 int err; 1190 1191 rtnl_lock(); 1192 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1193 rtnl_unlock(); 1194 return err; 1195} 1196 1197/** 1198 * call_netdevice_notifiers - call all network notifier blocks 1199 * @val: value passed unmodified to notifier function 1200 * @dev: net_device pointer passed unmodified to notifier function 1201 * 1202 * Call all network notifier blocks. Parameters and return value 1203 * are as for raw_notifier_call_chain(). 1204 */ 1205 1206int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1207{ 1208 return raw_notifier_call_chain(&netdev_chain, val, dev); 1209} 1210 1211/* When > 0 there are consumers of rx skb time stamps */ 1212static atomic_t netstamp_needed = ATOMIC_INIT(0); 1213 1214void net_enable_timestamp(void) 1215{ 1216 atomic_inc(&netstamp_needed); 1217} 1218 1219void net_disable_timestamp(void) 1220{ 1221 atomic_dec(&netstamp_needed); 1222} 1223 1224static inline void net_timestamp(struct sk_buff *skb) 1225{ 1226 if (atomic_read(&netstamp_needed)) 1227 __net_timestamp(skb); 1228 else 1229 skb->tstamp.tv64 = 0; 1230} 1231 1232/* 1233 * Support routine. Sends outgoing frames to any network 1234 * taps currently in use. 1235 */ 1236 1237static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1238{ 1239 struct packet_type *ptype; 1240 1241 net_timestamp(skb); 1242 1243 rcu_read_lock(); 1244 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1245 /* Never send packets back to the socket 1246 * they originated from - MvS (miquels@drinkel.ow.org) 1247 */ 1248 if ((ptype->dev == dev || !ptype->dev) && 1249 (ptype->af_packet_priv == NULL || 1250 (struct sock *)ptype->af_packet_priv != skb->sk)) { 1251 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC); 1252 if (!skb2) 1253 break; 1254 1255 /* skb->nh should be correctly 1256 set by sender, so that the second statement is 1257 just protection against buggy protocols. 1258 */ 1259 skb_reset_mac_header(skb2); 1260 1261 if (skb_network_header(skb2) < skb2->data || 1262 skb2->network_header > skb2->tail) { 1263 if (net_ratelimit()) 1264 printk(KERN_CRIT "protocol %04x is " 1265 "buggy, dev %s\n", 1266 skb2->protocol, dev->name); 1267 skb_reset_network_header(skb2); 1268 } 1269 1270 skb2->transport_header = skb2->network_header; 1271 skb2->pkt_type = PACKET_OUTGOING; 1272 ptype->func(skb2, skb->dev, ptype, skb->dev); 1273 } 1274 } 1275 rcu_read_unlock(); 1276} 1277 1278 1279void __netif_schedule(struct net_device *dev) 1280{ 1281 if (!test_and_set_bit(__LINK_STATE_SCHED, &dev->state)) { 1282 unsigned long flags; 1283 struct softnet_data *sd; 1284 1285 local_irq_save(flags); 1286 sd = &__get_cpu_var(softnet_data); 1287 dev->next_sched = sd->output_queue; 1288 sd->output_queue = dev; 1289 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1290 local_irq_restore(flags); 1291 } 1292} 1293EXPORT_SYMBOL(__netif_schedule); 1294 1295void dev_kfree_skb_irq(struct sk_buff *skb) 1296{ 1297 if (atomic_dec_and_test(&skb->users)) { 1298 struct softnet_data *sd; 1299 unsigned long flags; 1300 1301 local_irq_save(flags); 1302 sd = &__get_cpu_var(softnet_data); 1303 skb->next = sd->completion_queue; 1304 sd->completion_queue = skb; 1305 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1306 local_irq_restore(flags); 1307 } 1308} 1309EXPORT_SYMBOL(dev_kfree_skb_irq); 1310 1311void dev_kfree_skb_any(struct sk_buff *skb) 1312{ 1313 if (in_irq() || irqs_disabled()) 1314 dev_kfree_skb_irq(skb); 1315 else 1316 dev_kfree_skb(skb); 1317} 1318EXPORT_SYMBOL(dev_kfree_skb_any); 1319 1320 1321/** 1322 * netif_device_detach - mark device as removed 1323 * @dev: network device 1324 * 1325 * Mark device as removed from system and therefore no longer available. 1326 */ 1327void netif_device_detach(struct net_device *dev) 1328{ 1329 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1330 netif_running(dev)) { 1331 netif_stop_queue(dev); 1332 } 1333} 1334EXPORT_SYMBOL(netif_device_detach); 1335 1336/** 1337 * netif_device_attach - mark device as attached 1338 * @dev: network device 1339 * 1340 * Mark device as attached from system and restart if needed. 1341 */ 1342void netif_device_attach(struct net_device *dev) 1343{ 1344 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1345 netif_running(dev)) { 1346 netif_wake_queue(dev); 1347 __netdev_watchdog_up(dev); 1348 } 1349} 1350EXPORT_SYMBOL(netif_device_attach); 1351 1352 1353/* 1354 * Invalidate hardware checksum when packet is to be mangled, and 1355 * complete checksum manually on outgoing path. 1356 */ 1357int skb_checksum_help(struct sk_buff *skb) 1358{ 1359 __wsum csum; 1360 int ret = 0, offset; 1361 1362 if (skb->ip_summed == CHECKSUM_COMPLETE) 1363 goto out_set_summed; 1364 1365 if (unlikely(skb_shinfo(skb)->gso_size)) { 1366 /* Let GSO fix up the checksum. */ 1367 goto out_set_summed; 1368 } 1369 1370 offset = skb->csum_start - skb_headroom(skb); 1371 BUG_ON(offset >= skb_headlen(skb)); 1372 csum = skb_checksum(skb, offset, skb->len - offset, 0); 1373 1374 offset += skb->csum_offset; 1375 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 1376 1377 if (skb_cloned(skb) && 1378 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 1379 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1380 if (ret) 1381 goto out; 1382 } 1383 1384 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 1385out_set_summed: 1386 skb->ip_summed = CHECKSUM_NONE; 1387out: 1388 return ret; 1389} 1390 1391/** 1392 * skb_gso_segment - Perform segmentation on skb. 1393 * @skb: buffer to segment 1394 * @features: features for the output path (see dev->features) 1395 * 1396 * This function segments the given skb and returns a list of segments. 1397 * 1398 * It may return NULL if the skb requires no segmentation. This is 1399 * only possible when GSO is used for verifying header integrity. 1400 */ 1401struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features) 1402{ 1403 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 1404 struct packet_type *ptype; 1405 __be16 type = skb->protocol; 1406 int err; 1407 1408 BUG_ON(skb_shinfo(skb)->frag_list); 1409 1410 skb_reset_mac_header(skb); 1411 skb->mac_len = skb->network_header - skb->mac_header; 1412 __skb_pull(skb, skb->mac_len); 1413 1414 if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) { 1415 if (skb_header_cloned(skb) && 1416 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 1417 return ERR_PTR(err); 1418 } 1419 1420 rcu_read_lock(); 1421 list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type) & 15], list) { 1422 if (ptype->type == type && !ptype->dev && ptype->gso_segment) { 1423 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1424 err = ptype->gso_send_check(skb); 1425 segs = ERR_PTR(err); 1426 if (err || skb_gso_ok(skb, features)) 1427 break; 1428 __skb_push(skb, (skb->data - 1429 skb_network_header(skb))); 1430 } 1431 segs = ptype->gso_segment(skb, features); 1432 break; 1433 } 1434 } 1435 rcu_read_unlock(); 1436 1437 __skb_push(skb, skb->data - skb_mac_header(skb)); 1438 1439 return segs; 1440} 1441 1442EXPORT_SYMBOL(skb_gso_segment); 1443 1444/* Take action when hardware reception checksum errors are detected. */ 1445#ifdef CONFIG_BUG 1446void netdev_rx_csum_fault(struct net_device *dev) 1447{ 1448 if (net_ratelimit()) { 1449 printk(KERN_ERR "%s: hw csum failure.\n", 1450 dev ? dev->name : "<unknown>"); 1451 dump_stack(); 1452 } 1453} 1454EXPORT_SYMBOL(netdev_rx_csum_fault); 1455#endif 1456 1457/* Actually, we should eliminate this check as soon as we know, that: 1458 * 1. IOMMU is present and allows to map all the memory. 1459 * 2. No high memory really exists on this machine. 1460 */ 1461 1462static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 1463{ 1464#ifdef CONFIG_HIGHMEM 1465 int i; 1466 1467 if (dev->features & NETIF_F_HIGHDMA) 1468 return 0; 1469 1470 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1471 if (PageHighMem(skb_shinfo(skb)->frags[i].page)) 1472 return 1; 1473 1474#endif 1475 return 0; 1476} 1477 1478struct dev_gso_cb { 1479 void (*destructor)(struct sk_buff *skb); 1480}; 1481 1482#define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 1483 1484static void dev_gso_skb_destructor(struct sk_buff *skb) 1485{ 1486 struct dev_gso_cb *cb; 1487 1488 do { 1489 struct sk_buff *nskb = skb->next; 1490 1491 skb->next = nskb->next; 1492 nskb->next = NULL; 1493 kfree_skb(nskb); 1494 } while (skb->next); 1495 1496 cb = DEV_GSO_CB(skb); 1497 if (cb->destructor) 1498 cb->destructor(skb); 1499} 1500 1501/** 1502 * dev_gso_segment - Perform emulated hardware segmentation on skb. 1503 * @skb: buffer to segment 1504 * 1505 * This function segments the given skb and stores the list of segments 1506 * in skb->next. 1507 */ 1508static int dev_gso_segment(struct sk_buff *skb) 1509{ 1510 struct net_device *dev = skb->dev; 1511 struct sk_buff *segs; 1512 int features = dev->features & ~(illegal_highdma(dev, skb) ? 1513 NETIF_F_SG : 0); 1514 1515 segs = skb_gso_segment(skb, features); 1516 1517 /* Verifying header integrity only. */ 1518 if (!segs) 1519 return 0; 1520 1521 if (unlikely(IS_ERR(segs))) 1522 return PTR_ERR(segs); 1523 1524 skb->next = segs; 1525 DEV_GSO_CB(skb)->destructor = skb->destructor; 1526 skb->destructor = dev_gso_skb_destructor; 1527 1528 return 0; 1529} 1530 1531int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev) 1532{ 1533 if (likely(!skb->next)) { 1534 if (!list_empty(&ptype_all)) 1535 dev_queue_xmit_nit(skb, dev); 1536 1537 if (netif_needs_gso(dev, skb)) { 1538 if (unlikely(dev_gso_segment(skb))) 1539 goto out_kfree_skb; 1540 if (skb->next) 1541 goto gso; 1542 } 1543 1544 return dev->hard_start_xmit(skb, dev); 1545 } 1546 1547gso: 1548 do { 1549 struct sk_buff *nskb = skb->next; 1550 int rc; 1551 1552 skb->next = nskb->next; 1553 nskb->next = NULL; 1554 rc = dev->hard_start_xmit(nskb, dev); 1555 if (unlikely(rc)) { 1556 nskb->next = skb->next; 1557 skb->next = nskb; 1558 return rc; 1559 } 1560 if (unlikely((netif_queue_stopped(dev) || 1561 netif_subqueue_stopped(dev, skb)) && 1562 skb->next)) 1563 return NETDEV_TX_BUSY; 1564 } while (skb->next); 1565 1566 skb->destructor = DEV_GSO_CB(skb)->destructor; 1567 1568out_kfree_skb: 1569 kfree_skb(skb); 1570 return 0; 1571} 1572 1573/** 1574 * dev_queue_xmit - transmit a buffer 1575 * @skb: buffer to transmit 1576 * 1577 * Queue a buffer for transmission to a network device. The caller must 1578 * have set the device and priority and built the buffer before calling 1579 * this function. The function can be called from an interrupt. 1580 * 1581 * A negative errno code is returned on a failure. A success does not 1582 * guarantee the frame will be transmitted as it may be dropped due 1583 * to congestion or traffic shaping. 1584 * 1585 * ----------------------------------------------------------------------------------- 1586 * I notice this method can also return errors from the queue disciplines, 1587 * including NET_XMIT_DROP, which is a positive value. So, errors can also 1588 * be positive. 1589 * 1590 * Regardless of the return value, the skb is consumed, so it is currently 1591 * difficult to retry a send to this method. (You can bump the ref count 1592 * before sending to hold a reference for retry if you are careful.) 1593 * 1594 * When calling this method, interrupts MUST be enabled. This is because 1595 * the BH enable code must have IRQs enabled so that it will not deadlock. 1596 * --BLG 1597 */ 1598 1599int dev_queue_xmit(struct sk_buff *skb) 1600{ 1601 struct net_device *dev = skb->dev; 1602 struct Qdisc *q; 1603 int rc = -ENOMEM; 1604 1605 /* GSO will handle the following emulations directly. */ 1606 if (netif_needs_gso(dev, skb)) 1607 goto gso; 1608 1609 if (skb_shinfo(skb)->frag_list && 1610 !(dev->features & NETIF_F_FRAGLIST) && 1611 __skb_linearize(skb)) 1612 goto out_kfree_skb; 1613 1614 /* Fragmented skb is linearized if device does not support SG, 1615 * or if at least one of fragments is in highmem and device 1616 * does not support DMA from it. 1617 */ 1618 if (skb_shinfo(skb)->nr_frags && 1619 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) && 1620 __skb_linearize(skb)) 1621 goto out_kfree_skb; 1622 1623 /* If packet is not checksummed and device does not support 1624 * checksumming for this protocol, complete checksumming here. 1625 */ 1626 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1627 skb_set_transport_header(skb, skb->csum_start - 1628 skb_headroom(skb)); 1629 1630 if (!(dev->features & NETIF_F_GEN_CSUM) && 1631 !((dev->features & NETIF_F_IP_CSUM) && 1632 skb->protocol == htons(ETH_P_IP)) && 1633 !((dev->features & NETIF_F_IPV6_CSUM) && 1634 skb->protocol == htons(ETH_P_IPV6))) 1635 if (skb_checksum_help(skb)) 1636 goto out_kfree_skb; 1637 } 1638 1639gso: 1640 spin_lock_prefetch(&dev->queue_lock); 1641 1642 /* Disable soft irqs for various locks below. Also 1643 * stops preemption for RCU. 1644 */ 1645 rcu_read_lock_bh(); 1646 1647 /* Updates of qdisc are serialized by queue_lock. 1648 * The struct Qdisc which is pointed to by qdisc is now a 1649 * rcu structure - it may be accessed without acquiring 1650 * a lock (but the structure may be stale.) The freeing of the 1651 * qdisc will be deferred until it's known that there are no 1652 * more references to it. 1653 * 1654 * If the qdisc has an enqueue function, we still need to 1655 * hold the queue_lock before calling it, since queue_lock 1656 * also serializes access to the device queue. 1657 */ 1658 1659 q = rcu_dereference(dev->qdisc); 1660#ifdef CONFIG_NET_CLS_ACT 1661 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS); 1662#endif 1663 if (q->enqueue) { 1664 /* Grab device queue */ 1665 spin_lock(&dev->queue_lock); 1666 q = dev->qdisc; 1667 if (q->enqueue) { 1668 /* reset queue_mapping to zero */ 1669 skb_set_queue_mapping(skb, 0); 1670 rc = q->enqueue(skb, q); 1671 qdisc_run(dev); 1672 spin_unlock(&dev->queue_lock); 1673 1674 rc = rc == NET_XMIT_BYPASS ? NET_XMIT_SUCCESS : rc; 1675 goto out; 1676 } 1677 spin_unlock(&dev->queue_lock); 1678 } 1679 1680 /* The device has no queue. Common case for software devices: 1681 loopback, all the sorts of tunnels... 1682 1683 Really, it is unlikely that netif_tx_lock protection is necessary 1684 here. (f.e. loopback and IP tunnels are clean ignoring statistics 1685 counters.) 1686 However, it is possible, that they rely on protection 1687 made by us here. 1688 1689 Check this and shot the lock. It is not prone from deadlocks. 1690 Either shot noqueue qdisc, it is even simpler 8) 1691 */ 1692 if (dev->flags & IFF_UP) { 1693 int cpu = smp_processor_id(); /* ok because BHs are off */ 1694 1695 if (dev->xmit_lock_owner != cpu) { 1696 1697 HARD_TX_LOCK(dev, cpu); 1698 1699 if (!netif_queue_stopped(dev) && 1700 !netif_subqueue_stopped(dev, skb)) { 1701 rc = 0; 1702 if (!dev_hard_start_xmit(skb, dev)) { 1703 HARD_TX_UNLOCK(dev); 1704 goto out; 1705 } 1706 } 1707 HARD_TX_UNLOCK(dev); 1708 if (net_ratelimit()) 1709 printk(KERN_CRIT "Virtual device %s asks to " 1710 "queue packet!\n", dev->name); 1711 } else { 1712 /* Recursion is detected! It is possible, 1713 * unfortunately */ 1714 if (net_ratelimit()) 1715 printk(KERN_CRIT "Dead loop on virtual device " 1716 "%s, fix it urgently!\n", dev->name); 1717 } 1718 } 1719 1720 rc = -ENETDOWN; 1721 rcu_read_unlock_bh(); 1722 1723out_kfree_skb: 1724 kfree_skb(skb); 1725 return rc; 1726out: 1727 rcu_read_unlock_bh(); 1728 return rc; 1729} 1730 1731 1732/*======================================================================= 1733 Receiver routines 1734 =======================================================================*/ 1735 1736int netdev_max_backlog __read_mostly = 1000; 1737int netdev_budget __read_mostly = 300; 1738int weight_p __read_mostly = 64; /* old backlog weight */ 1739 1740DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, }; 1741 1742 1743/** 1744 * netif_rx - post buffer to the network code 1745 * @skb: buffer to post 1746 * 1747 * This function receives a packet from a device driver and queues it for 1748 * the upper (protocol) levels to process. It always succeeds. The buffer 1749 * may be dropped during processing for congestion control or by the 1750 * protocol layers. 1751 * 1752 * return values: 1753 * NET_RX_SUCCESS (no congestion) 1754 * NET_RX_DROP (packet was dropped) 1755 * 1756 */ 1757 1758int netif_rx(struct sk_buff *skb) 1759{ 1760 struct softnet_data *queue; 1761 unsigned long flags; 1762 1763 /* if netpoll wants it, pretend we never saw it */ 1764 if (netpoll_rx(skb)) 1765 return NET_RX_DROP; 1766 1767 if (!skb->tstamp.tv64) 1768 net_timestamp(skb); 1769 1770 /* 1771 * The code is rearranged so that the path is the most 1772 * short when CPU is congested, but is still operating. 1773 */ 1774 local_irq_save(flags); 1775 queue = &__get_cpu_var(softnet_data); 1776 1777 __get_cpu_var(netdev_rx_stat).total++; 1778 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) { 1779 if (queue->input_pkt_queue.qlen) { 1780enqueue: 1781 dev_hold(skb->dev); 1782 __skb_queue_tail(&queue->input_pkt_queue, skb); 1783 local_irq_restore(flags); 1784 return NET_RX_SUCCESS; 1785 } 1786 1787 napi_schedule(&queue->backlog); 1788 goto enqueue; 1789 } 1790 1791 __get_cpu_var(netdev_rx_stat).dropped++; 1792 local_irq_restore(flags); 1793 1794 kfree_skb(skb); 1795 return NET_RX_DROP; 1796} 1797 1798int netif_rx_ni(struct sk_buff *skb) 1799{ 1800 int err; 1801 1802 preempt_disable(); 1803 err = netif_rx(skb); 1804 if (local_softirq_pending()) 1805 do_softirq(); 1806 preempt_enable(); 1807 1808 return err; 1809} 1810 1811EXPORT_SYMBOL(netif_rx_ni); 1812 1813static inline struct net_device *skb_bond(struct sk_buff *skb) 1814{ 1815 struct net_device *dev = skb->dev; 1816 1817 if (dev->master) { 1818 if (skb_bond_should_drop(skb)) { 1819 kfree_skb(skb); 1820 return NULL; 1821 } 1822 skb->dev = dev->master; 1823 } 1824 1825 return dev; 1826} 1827 1828 1829static void net_tx_action(struct softirq_action *h) 1830{ 1831 struct softnet_data *sd = &__get_cpu_var(softnet_data); 1832 1833 if (sd->completion_queue) { 1834 struct sk_buff *clist; 1835 1836 local_irq_disable(); 1837 clist = sd->completion_queue; 1838 sd->completion_queue = NULL; 1839 local_irq_enable(); 1840 1841 while (clist) { 1842 struct sk_buff *skb = clist; 1843 clist = clist->next; 1844 1845 BUG_TRAP(!atomic_read(&skb->users)); 1846 __kfree_skb(skb); 1847 } 1848 } 1849 1850 if (sd->output_queue) { 1851 struct net_device *head; 1852 1853 local_irq_disable(); 1854 head = sd->output_queue; 1855 sd->output_queue = NULL; 1856 local_irq_enable(); 1857 1858 while (head) { 1859 struct net_device *dev = head; 1860 head = head->next_sched; 1861 1862 smp_mb__before_clear_bit(); 1863 clear_bit(__LINK_STATE_SCHED, &dev->state); 1864 1865 if (spin_trylock(&dev->queue_lock)) { 1866 qdisc_run(dev); 1867 spin_unlock(&dev->queue_lock); 1868 } else { 1869 netif_schedule(dev); 1870 } 1871 } 1872 } 1873} 1874 1875static inline int deliver_skb(struct sk_buff *skb, 1876 struct packet_type *pt_prev, 1877 struct net_device *orig_dev) 1878{ 1879 atomic_inc(&skb->users); 1880 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1881} 1882 1883#if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE) 1884/* These hooks defined here for ATM */ 1885struct net_bridge; 1886struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br, 1887 unsigned char *addr); 1888void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly; 1889 1890/* 1891 * If bridge module is loaded call bridging hook. 1892 * returns NULL if packet was consumed. 1893 */ 1894struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p, 1895 struct sk_buff *skb) __read_mostly; 1896static inline struct sk_buff *handle_bridge(struct sk_buff *skb, 1897 struct packet_type **pt_prev, int *ret, 1898 struct net_device *orig_dev) 1899{ 1900 struct net_bridge_port *port; 1901 1902 if (skb->pkt_type == PACKET_LOOPBACK || 1903 (port = rcu_dereference(skb->dev->br_port)) == NULL) 1904 return skb; 1905 1906 if (*pt_prev) { 1907 *ret = deliver_skb(skb, *pt_prev, orig_dev); 1908 *pt_prev = NULL; 1909 } 1910 1911 return br_handle_frame_hook(port, skb); 1912} 1913#else 1914#define handle_bridge(skb, pt_prev, ret, orig_dev) (skb) 1915#endif 1916 1917#if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE) 1918struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly; 1919EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook); 1920 1921static inline struct sk_buff *handle_macvlan(struct sk_buff *skb, 1922 struct packet_type **pt_prev, 1923 int *ret, 1924 struct net_device *orig_dev) 1925{ 1926 if (skb->dev->macvlan_port == NULL) 1927 return skb; 1928 1929 if (*pt_prev) { 1930 *ret = deliver_skb(skb, *pt_prev, orig_dev); 1931 *pt_prev = NULL; 1932 } 1933 return macvlan_handle_frame_hook(skb); 1934} 1935#else 1936#define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb) 1937#endif 1938 1939#ifdef CONFIG_NET_CLS_ACT 1940/* TODO: Maybe we should just force sch_ingress to be compiled in 1941 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 1942 * a compare and 2 stores extra right now if we dont have it on 1943 * but have CONFIG_NET_CLS_ACT 1944 * NOTE: This doesnt stop any functionality; if you dont have 1945 * the ingress scheduler, you just cant add policies on ingress. 1946 * 1947 */ 1948static int ing_filter(struct sk_buff *skb) 1949{ 1950 struct Qdisc *q; 1951 struct net_device *dev = skb->dev; 1952 int result = TC_ACT_OK; 1953 u32 ttl = G_TC_RTTL(skb->tc_verd); 1954 1955 if (MAX_RED_LOOP < ttl++) { 1956 printk(KERN_WARNING 1957 "Redir loop detected Dropping packet (%d->%d)\n", 1958 skb->iif, dev->ifindex); 1959 return TC_ACT_SHOT; 1960 } 1961 1962 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 1963 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 1964 1965 spin_lock(&dev->ingress_lock); 1966 if ((q = dev->qdisc_ingress) != NULL) 1967 result = q->enqueue(skb, q); 1968 spin_unlock(&dev->ingress_lock); 1969 1970 return result; 1971} 1972 1973static inline struct sk_buff *handle_ing(struct sk_buff *skb, 1974 struct packet_type **pt_prev, 1975 int *ret, struct net_device *orig_dev) 1976{ 1977 if (!skb->dev->qdisc_ingress) 1978 goto out; 1979 1980 if (*pt_prev) { 1981 *ret = deliver_skb(skb, *pt_prev, orig_dev); 1982 *pt_prev = NULL; 1983 } else { 1984 /* Huh? Why does turning on AF_PACKET affect this? */ 1985 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd); 1986 } 1987 1988 switch (ing_filter(skb)) { 1989 case TC_ACT_SHOT: 1990 case TC_ACT_STOLEN: 1991 kfree_skb(skb); 1992 return NULL; 1993 } 1994 1995out: 1996 skb->tc_verd = 0; 1997 return skb; 1998} 1999#endif 2000 2001/** 2002 * netif_receive_skb - process receive buffer from network 2003 * @skb: buffer to process 2004 * 2005 * netif_receive_skb() is the main receive data processing function. 2006 * It always succeeds. The buffer may be dropped during processing 2007 * for congestion control or by the protocol layers. 2008 * 2009 * This function may only be called from softirq context and interrupts 2010 * should be enabled. 2011 * 2012 * Return values (usually ignored): 2013 * NET_RX_SUCCESS: no congestion 2014 * NET_RX_DROP: packet was dropped 2015 */ 2016int netif_receive_skb(struct sk_buff *skb) 2017{ 2018 struct packet_type *ptype, *pt_prev; 2019 struct net_device *orig_dev; 2020 int ret = NET_RX_DROP; 2021 __be16 type; 2022 2023 /* if we've gotten here through NAPI, check netpoll */ 2024 if (netpoll_receive_skb(skb)) 2025 return NET_RX_DROP; 2026 2027 if (!skb->tstamp.tv64) 2028 net_timestamp(skb); 2029 2030 if (!skb->iif) 2031 skb->iif = skb->dev->ifindex; 2032 2033 orig_dev = skb_bond(skb); 2034 2035 if (!orig_dev) 2036 return NET_RX_DROP; 2037 2038 __get_cpu_var(netdev_rx_stat).total++; 2039 2040 skb_reset_network_header(skb); 2041 skb_reset_transport_header(skb); 2042 skb->mac_len = skb->network_header - skb->mac_header; 2043 2044 pt_prev = NULL; 2045 2046 rcu_read_lock(); 2047 2048#ifdef CONFIG_NET_CLS_ACT 2049 if (skb->tc_verd & TC_NCLS) { 2050 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 2051 goto ncls; 2052 } 2053#endif 2054 2055 list_for_each_entry_rcu(ptype, &ptype_all, list) { 2056 if (!ptype->dev || ptype->dev == skb->dev) { 2057 if (pt_prev) 2058 ret = deliver_skb(skb, pt_prev, orig_dev); 2059 pt_prev = ptype; 2060 } 2061 } 2062 2063#ifdef CONFIG_NET_CLS_ACT 2064 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 2065 if (!skb) 2066 goto out; 2067ncls: 2068#endif 2069 2070 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev); 2071 if (!skb) 2072 goto out; 2073 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev); 2074 if (!skb) 2075 goto out; 2076 2077 type = skb->protocol; 2078 list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type)&15], list) { 2079 if (ptype->type == type && 2080 (!ptype->dev || ptype->dev == skb->dev)) { 2081 if (pt_prev) 2082 ret = deliver_skb(skb, pt_prev, orig_dev); 2083 pt_prev = ptype; 2084 } 2085 } 2086 2087 if (pt_prev) { 2088 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2089 } else { 2090 kfree_skb(skb); 2091 /* Jamal, now you will not able to escape explaining 2092 * me how you were going to use this. :-) 2093 */ 2094 ret = NET_RX_DROP; 2095 } 2096 2097out: 2098 rcu_read_unlock(); 2099 return ret; 2100} 2101 2102static int process_backlog(struct napi_struct *napi, int quota) 2103{ 2104 int work = 0; 2105 struct softnet_data *queue = &__get_cpu_var(softnet_data); 2106 unsigned long start_time = jiffies; 2107 2108 napi->weight = weight_p; 2109 do { 2110 struct sk_buff *skb; 2111 struct net_device *dev; 2112 2113 local_irq_disable(); 2114 skb = __skb_dequeue(&queue->input_pkt_queue); 2115 if (!skb) { 2116 __napi_complete(napi); 2117 local_irq_enable(); 2118 break; 2119 } 2120 2121 local_irq_enable(); 2122 2123 dev = skb->dev; 2124 2125 netif_receive_skb(skb); 2126 2127 dev_put(dev); 2128 } while (++work < quota && jiffies == start_time); 2129 2130 return work; 2131} 2132 2133/** 2134 * __napi_schedule - schedule for receive 2135 * @n: entry to schedule 2136 * 2137 * The entry's receive function will be scheduled to run 2138 */ 2139void fastcall __napi_schedule(struct napi_struct *n) 2140{ 2141 unsigned long flags; 2142 2143 local_irq_save(flags); 2144 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list); 2145 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2146 local_irq_restore(flags); 2147} 2148EXPORT_SYMBOL(__napi_schedule); 2149 2150 2151static void net_rx_action(struct softirq_action *h) 2152{ 2153 struct list_head *list = &__get_cpu_var(softnet_data).poll_list; 2154 unsigned long start_time = jiffies; 2155 int budget = netdev_budget; 2156 void *have; 2157 2158 local_irq_disable(); 2159 2160 while (!list_empty(list)) { 2161 struct napi_struct *n; 2162 int work, weight; 2163 2164 /* If softirq window is exhuasted then punt. 2165 * 2166 * Note that this is a slight policy change from the 2167 * previous NAPI code, which would allow up to 2 2168 * jiffies to pass before breaking out. The test 2169 * used to be "jiffies - start_time > 1". 2170 */ 2171 if (unlikely(budget <= 0 || jiffies != start_time)) 2172 goto softnet_break; 2173 2174 local_irq_enable(); 2175 2176 /* Even though interrupts have been re-enabled, this 2177 * access is safe because interrupts can only add new 2178 * entries to the tail of this list, and only ->poll() 2179 * calls can remove this head entry from the list. 2180 */ 2181 n = list_entry(list->next, struct napi_struct, poll_list); 2182 2183 have = netpoll_poll_lock(n); 2184 2185 weight = n->weight; 2186 2187 /* This NAPI_STATE_SCHED test is for avoiding a race 2188 * with netpoll's poll_napi(). Only the entity which 2189 * obtains the lock and sees NAPI_STATE_SCHED set will 2190 * actually make the ->poll() call. Therefore we avoid 2191 * accidently calling ->poll() when NAPI is not scheduled. 2192 */ 2193 work = 0; 2194 if (test_bit(NAPI_STATE_SCHED, &n->state)) 2195 work = n->poll(n, weight); 2196 2197 WARN_ON_ONCE(work > weight); 2198 2199 budget -= work; 2200 2201 local_irq_disable(); 2202 2203 /* Drivers must not modify the NAPI state if they 2204 * consume the entire weight. In such cases this code 2205 * still "owns" the NAPI instance and therefore can 2206 * move the instance around on the list at-will. 2207 */ 2208 if (unlikely(work == weight)) 2209 list_move_tail(&n->poll_list, list); 2210 2211 netpoll_poll_unlock(have); 2212 } 2213out: 2214 local_irq_enable(); 2215 2216#ifdef CONFIG_NET_DMA 2217 /* 2218 * There may not be any more sk_buffs coming right now, so push 2219 * any pending DMA copies to hardware 2220 */ 2221 if (!cpus_empty(net_dma.channel_mask)) { 2222 int chan_idx; 2223 for_each_cpu_mask(chan_idx, net_dma.channel_mask) { 2224 struct dma_chan *chan = net_dma.channels[chan_idx]; 2225 if (chan) 2226 dma_async_memcpy_issue_pending(chan); 2227 } 2228 } 2229#endif 2230 2231 return; 2232 2233softnet_break: 2234 __get_cpu_var(netdev_rx_stat).time_squeeze++; 2235 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2236 goto out; 2237} 2238 2239static gifconf_func_t * gifconf_list [NPROTO]; 2240 2241/** 2242 * register_gifconf - register a SIOCGIF handler 2243 * @family: Address family 2244 * @gifconf: Function handler 2245 * 2246 * Register protocol dependent address dumping routines. The handler 2247 * that is passed must not be freed or reused until it has been replaced 2248 * by another handler. 2249 */ 2250int register_gifconf(unsigned int family, gifconf_func_t * gifconf) 2251{ 2252 if (family >= NPROTO) 2253 return -EINVAL; 2254 gifconf_list[family] = gifconf; 2255 return 0; 2256} 2257 2258 2259/* 2260 * Map an interface index to its name (SIOCGIFNAME) 2261 */ 2262 2263/* 2264 * We need this ioctl for efficient implementation of the 2265 * if_indextoname() function required by the IPv6 API. Without 2266 * it, we would have to search all the interfaces to find a 2267 * match. --pb 2268 */ 2269 2270static int dev_ifname(struct net *net, struct ifreq __user *arg) 2271{ 2272 struct net_device *dev; 2273 struct ifreq ifr; 2274 2275 /* 2276 * Fetch the caller's info block. 2277 */ 2278 2279 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 2280 return -EFAULT; 2281 2282 read_lock(&dev_base_lock); 2283 dev = __dev_get_by_index(net, ifr.ifr_ifindex); 2284 if (!dev) { 2285 read_unlock(&dev_base_lock); 2286 return -ENODEV; 2287 } 2288 2289 strcpy(ifr.ifr_name, dev->name); 2290 read_unlock(&dev_base_lock); 2291 2292 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 2293 return -EFAULT; 2294 return 0; 2295} 2296 2297/* 2298 * Perform a SIOCGIFCONF call. This structure will change 2299 * size eventually, and there is nothing I can do about it. 2300 * Thus we will need a 'compatibility mode'. 2301 */ 2302 2303static int dev_ifconf(struct net *net, char __user *arg) 2304{ 2305 struct ifconf ifc; 2306 struct net_device *dev; 2307 char __user *pos; 2308 int len; 2309 int total; 2310 int i; 2311 2312 /* 2313 * Fetch the caller's info block. 2314 */ 2315 2316 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 2317 return -EFAULT; 2318 2319 pos = ifc.ifc_buf; 2320 len = ifc.ifc_len; 2321 2322 /* 2323 * Loop over the interfaces, and write an info block for each. 2324 */ 2325 2326 total = 0; 2327 for_each_netdev(net, dev) { 2328 for (i = 0; i < NPROTO; i++) { 2329 if (gifconf_list[i]) { 2330 int done; 2331 if (!pos) 2332 done = gifconf_list[i](dev, NULL, 0); 2333 else 2334 done = gifconf_list[i](dev, pos + total, 2335 len - total); 2336 if (done < 0) 2337 return -EFAULT; 2338 total += done; 2339 } 2340 } 2341 } 2342 2343 /* 2344 * All done. Write the updated control block back to the caller. 2345 */ 2346 ifc.ifc_len = total; 2347 2348 /* 2349 * Both BSD and Solaris return 0 here, so we do too. 2350 */ 2351 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 2352} 2353 2354#ifdef CONFIG_PROC_FS 2355/* 2356 * This is invoked by the /proc filesystem handler to display a device 2357 * in detail. 2358 */ 2359void *dev_seq_start(struct seq_file *seq, loff_t *pos) 2360{ 2361 struct net *net = seq->private; 2362 loff_t off; 2363 struct net_device *dev; 2364 2365 read_lock(&dev_base_lock); 2366 if (!*pos) 2367 return SEQ_START_TOKEN; 2368 2369 off = 1; 2370 for_each_netdev(net, dev) 2371 if (off++ == *pos) 2372 return dev; 2373 2374 return NULL; 2375} 2376 2377void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2378{ 2379 struct net *net = seq->private; 2380 ++*pos; 2381 return v == SEQ_START_TOKEN ? 2382 first_net_device(net) : next_net_device((struct net_device *)v); 2383} 2384 2385void dev_seq_stop(struct seq_file *seq, void *v) 2386{ 2387 read_unlock(&dev_base_lock); 2388} 2389 2390static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 2391{ 2392 struct net_device_stats *stats = dev->get_stats(dev); 2393 2394 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu " 2395 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n", 2396 dev->name, stats->rx_bytes, stats->rx_packets, 2397 stats->rx_errors, 2398 stats->rx_dropped + stats->rx_missed_errors, 2399 stats->rx_fifo_errors, 2400 stats->rx_length_errors + stats->rx_over_errors + 2401 stats->rx_crc_errors + stats->rx_frame_errors, 2402 stats->rx_compressed, stats->multicast, 2403 stats->tx_bytes, stats->tx_packets, 2404 stats->tx_errors, stats->tx_dropped, 2405 stats->tx_fifo_errors, stats->collisions, 2406 stats->tx_carrier_errors + 2407 stats->tx_aborted_errors + 2408 stats->tx_window_errors + 2409 stats->tx_heartbeat_errors, 2410 stats->tx_compressed); 2411} 2412 2413/* 2414 * Called from the PROCfs module. This now uses the new arbitrary sized 2415 * /proc/net interface to create /proc/net/dev 2416 */ 2417static int dev_seq_show(struct seq_file *seq, void *v) 2418{ 2419 if (v == SEQ_START_TOKEN) 2420 seq_puts(seq, "Inter-| Receive " 2421 " | Transmit\n" 2422 " face |bytes packets errs drop fifo frame " 2423 "compressed multicast|bytes packets errs " 2424 "drop fifo colls carrier compressed\n"); 2425 else 2426 dev_seq_printf_stats(seq, v); 2427 return 0; 2428} 2429 2430static struct netif_rx_stats *softnet_get_online(loff_t *pos) 2431{ 2432 struct netif_rx_stats *rc = NULL; 2433 2434 while (*pos < NR_CPUS) 2435 if (cpu_online(*pos)) { 2436 rc = &per_cpu(netdev_rx_stat, *pos); 2437 break; 2438 } else 2439 ++*pos; 2440 return rc; 2441} 2442 2443static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 2444{ 2445 return softnet_get_online(pos); 2446} 2447 2448static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2449{ 2450 ++*pos; 2451 return softnet_get_online(pos); 2452} 2453 2454static void softnet_seq_stop(struct seq_file *seq, void *v) 2455{ 2456} 2457 2458static int softnet_seq_show(struct seq_file *seq, void *v) 2459{ 2460 struct netif_rx_stats *s = v; 2461 2462 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 2463 s->total, s->dropped, s->time_squeeze, 0, 2464 0, 0, 0, 0, /* was fastroute */ 2465 s->cpu_collision ); 2466 return 0; 2467} 2468 2469static const struct seq_operations dev_seq_ops = { 2470 .start = dev_seq_start, 2471 .next = dev_seq_next, 2472 .stop = dev_seq_stop, 2473 .show = dev_seq_show, 2474}; 2475 2476static int dev_seq_open(struct inode *inode, struct file *file) 2477{ 2478 struct seq_file *seq; 2479 int res; 2480 res = seq_open(file, &dev_seq_ops); 2481 if (!res) { 2482 seq = file->private_data; 2483 seq->private = get_proc_net(inode); 2484 if (!seq->private) { 2485 seq_release(inode, file); 2486 res = -ENXIO; 2487 } 2488 } 2489 return res; 2490} 2491 2492static int dev_seq_release(struct inode *inode, struct file *file) 2493{ 2494 struct seq_file *seq = file->private_data; 2495 struct net *net = seq->private; 2496 put_net(net); 2497 return seq_release(inode, file); 2498} 2499 2500static const struct file_operations dev_seq_fops = { 2501 .owner = THIS_MODULE, 2502 .open = dev_seq_open, 2503 .read = seq_read, 2504 .llseek = seq_lseek, 2505 .release = dev_seq_release, 2506}; 2507 2508static const struct seq_operations softnet_seq_ops = { 2509 .start = softnet_seq_start, 2510 .next = softnet_seq_next, 2511 .stop = softnet_seq_stop, 2512 .show = softnet_seq_show, 2513}; 2514 2515static int softnet_seq_open(struct inode *inode, struct file *file) 2516{ 2517 return seq_open(file, &softnet_seq_ops); 2518} 2519 2520static const struct file_operations softnet_seq_fops = { 2521 .owner = THIS_MODULE, 2522 .open = softnet_seq_open, 2523 .read = seq_read, 2524 .llseek = seq_lseek, 2525 .release = seq_release, 2526}; 2527 2528static void *ptype_get_idx(loff_t pos) 2529{ 2530 struct packet_type *pt = NULL; 2531 loff_t i = 0; 2532 int t; 2533 2534 list_for_each_entry_rcu(pt, &ptype_all, list) { 2535 if (i == pos) 2536 return pt; 2537 ++i; 2538 } 2539 2540 for (t = 0; t < 16; t++) { 2541 list_for_each_entry_rcu(pt, &ptype_base[t], list) { 2542 if (i == pos) 2543 return pt; 2544 ++i; 2545 } 2546 } 2547 return NULL; 2548} 2549 2550static void *ptype_seq_start(struct seq_file *seq, loff_t *pos) 2551{ 2552 rcu_read_lock(); 2553 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN; 2554} 2555 2556static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2557{ 2558 struct packet_type *pt; 2559 struct list_head *nxt; 2560 int hash; 2561 2562 ++*pos; 2563 if (v == SEQ_START_TOKEN) 2564 return ptype_get_idx(0); 2565 2566 pt = v; 2567 nxt = pt->list.next; 2568 if (pt->type == htons(ETH_P_ALL)) { 2569 if (nxt != &ptype_all) 2570 goto found; 2571 hash = 0; 2572 nxt = ptype_base[0].next; 2573 } else 2574 hash = ntohs(pt->type) & 15; 2575 2576 while (nxt == &ptype_base[hash]) { 2577 if (++hash >= 16) 2578 return NULL; 2579 nxt = ptype_base[hash].next; 2580 } 2581found: 2582 return list_entry(nxt, struct packet_type, list); 2583} 2584 2585static void ptype_seq_stop(struct seq_file *seq, void *v) 2586{ 2587 rcu_read_unlock(); 2588} 2589 2590static void ptype_seq_decode(struct seq_file *seq, void *sym) 2591{ 2592#ifdef CONFIG_KALLSYMS 2593 unsigned long offset = 0, symsize; 2594 const char *symname; 2595 char *modname; 2596 char namebuf[128]; 2597 2598 symname = kallsyms_lookup((unsigned long)sym, &symsize, &offset, 2599 &modname, namebuf); 2600 2601 if (symname) { 2602 char *delim = ":"; 2603 2604 if (!modname) 2605 modname = delim = ""; 2606 seq_printf(seq, "%s%s%s%s+0x%lx", delim, modname, delim, 2607 symname, offset); 2608 return; 2609 } 2610#endif 2611 2612 seq_printf(seq, "[%p]", sym); 2613} 2614 2615static int ptype_seq_show(struct seq_file *seq, void *v) 2616{ 2617 struct packet_type *pt = v; 2618 2619 if (v == SEQ_START_TOKEN) 2620 seq_puts(seq, "Type Device Function\n"); 2621 else { 2622 if (pt->type == htons(ETH_P_ALL)) 2623 seq_puts(seq, "ALL "); 2624 else 2625 seq_printf(seq, "%04x", ntohs(pt->type)); 2626 2627 seq_printf(seq, " %-8s ", 2628 pt->dev ? pt->dev->name : ""); 2629 ptype_seq_decode(seq, pt->func); 2630 seq_putc(seq, '\n'); 2631 } 2632 2633 return 0; 2634} 2635 2636static const struct seq_operations ptype_seq_ops = { 2637 .start = ptype_seq_start, 2638 .next = ptype_seq_next, 2639 .stop = ptype_seq_stop, 2640 .show = ptype_seq_show, 2641}; 2642 2643static int ptype_seq_open(struct inode *inode, struct file *file) 2644{ 2645 return seq_open(file, &ptype_seq_ops); 2646} 2647 2648static const struct file_operations ptype_seq_fops = { 2649 .owner = THIS_MODULE, 2650 .open = ptype_seq_open, 2651 .read = seq_read, 2652 .llseek = seq_lseek, 2653 .release = seq_release, 2654}; 2655 2656 2657static int __net_init dev_proc_net_init(struct net *net) 2658{ 2659 int rc = -ENOMEM; 2660 2661 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops)) 2662 goto out; 2663 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops)) 2664 goto out_dev; 2665 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops)) 2666 goto out_softnet; 2667 2668 if (wext_proc_init(net)) 2669 goto out_ptype; 2670 rc = 0; 2671out: 2672 return rc; 2673out_ptype: 2674 proc_net_remove(net, "ptype"); 2675out_softnet: 2676 proc_net_remove(net, "softnet_stat"); 2677out_dev: 2678 proc_net_remove(net, "dev"); 2679 goto out; 2680} 2681 2682static void __net_exit dev_proc_net_exit(struct net *net) 2683{ 2684 wext_proc_exit(net); 2685 2686 proc_net_remove(net, "ptype"); 2687 proc_net_remove(net, "softnet_stat"); 2688 proc_net_remove(net, "dev"); 2689} 2690 2691static struct pernet_operations dev_proc_ops = { 2692 .init = dev_proc_net_init, 2693 .exit = dev_proc_net_exit, 2694}; 2695 2696static int __init dev_proc_init(void) 2697{ 2698 return register_pernet_subsys(&dev_proc_ops); 2699} 2700#else 2701#define dev_proc_init() 0 2702#endif /* CONFIG_PROC_FS */ 2703 2704 2705/** 2706 * netdev_set_master - set up master/slave pair 2707 * @slave: slave device 2708 * @master: new master device 2709 * 2710 * Changes the master device of the slave. Pass %NULL to break the 2711 * bonding. The caller must hold the RTNL semaphore. On a failure 2712 * a negative errno code is returned. On success the reference counts 2713 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the 2714 * function returns zero. 2715 */ 2716int netdev_set_master(struct net_device *slave, struct net_device *master) 2717{ 2718 struct net_device *old = slave->master; 2719 2720 ASSERT_RTNL(); 2721 2722 if (master) { 2723 if (old) 2724 return -EBUSY; 2725 dev_hold(master); 2726 } 2727 2728 slave->master = master; 2729 2730 synchronize_net(); 2731 2732 if (old) 2733 dev_put(old); 2734 2735 if (master) 2736 slave->flags |= IFF_SLAVE; 2737 else 2738 slave->flags &= ~IFF_SLAVE; 2739 2740 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 2741 return 0; 2742} 2743 2744static void __dev_set_promiscuity(struct net_device *dev, int inc) 2745{ 2746 unsigned short old_flags = dev->flags; 2747 2748 ASSERT_RTNL(); 2749 2750 if ((dev->promiscuity += inc) == 0) 2751 dev->flags &= ~IFF_PROMISC; 2752 else 2753 dev->flags |= IFF_PROMISC; 2754 if (dev->flags != old_flags) { 2755 printk(KERN_INFO "device %s %s promiscuous mode\n", 2756 dev->name, (dev->flags & IFF_PROMISC) ? "entered" : 2757 "left"); 2758 audit_log(current->audit_context, GFP_ATOMIC, 2759 AUDIT_ANOM_PROMISCUOUS, 2760 "dev=%s prom=%d old_prom=%d auid=%u", 2761 dev->name, (dev->flags & IFF_PROMISC), 2762 (old_flags & IFF_PROMISC), 2763 audit_get_loginuid(current->audit_context)); 2764 2765 if (dev->change_rx_flags) 2766 dev->change_rx_flags(dev, IFF_PROMISC); 2767 } 2768} 2769 2770/** 2771 * dev_set_promiscuity - update promiscuity count on a device 2772 * @dev: device 2773 * @inc: modifier 2774 * 2775 * Add or remove promiscuity from a device. While the count in the device 2776 * remains above zero the interface remains promiscuous. Once it hits zero 2777 * the device reverts back to normal filtering operation. A negative inc 2778 * value is used to drop promiscuity on the device. 2779 */ 2780void dev_set_promiscuity(struct net_device *dev, int inc) 2781{ 2782 unsigned short old_flags = dev->flags; 2783 2784 __dev_set_promiscuity(dev, inc); 2785 if (dev->flags != old_flags) 2786 dev_set_rx_mode(dev); 2787} 2788 2789/** 2790 * dev_set_allmulti - update allmulti count on a device 2791 * @dev: device 2792 * @inc: modifier 2793 * 2794 * Add or remove reception of all multicast frames to a device. While the 2795 * count in the device remains above zero the interface remains listening 2796 * to all interfaces. Once it hits zero the device reverts back to normal 2797 * filtering operation. A negative @inc value is used to drop the counter 2798 * when releasing a resource needing all multicasts. 2799 */ 2800 2801void dev_set_allmulti(struct net_device *dev, int inc) 2802{ 2803 unsigned short old_flags = dev->flags; 2804 2805 ASSERT_RTNL(); 2806 2807 dev->flags |= IFF_ALLMULTI; 2808 if ((dev->allmulti += inc) == 0) 2809 dev->flags &= ~IFF_ALLMULTI; 2810 if (dev->flags ^ old_flags) { 2811 if (dev->change_rx_flags) 2812 dev->change_rx_flags(dev, IFF_ALLMULTI); 2813 dev_set_rx_mode(dev); 2814 } 2815} 2816 2817/* 2818 * Upload unicast and multicast address lists to device and 2819 * configure RX filtering. When the device doesn't support unicast 2820 * filtering it is put in promiscous mode while unicast addresses 2821 * are present. 2822 */ 2823void __dev_set_rx_mode(struct net_device *dev) 2824{ 2825 /* dev_open will call this function so the list will stay sane. */ 2826 if (!(dev->flags&IFF_UP)) 2827 return; 2828 2829 if (!netif_device_present(dev)) 2830 return; 2831 2832 if (dev->set_rx_mode) 2833 dev->set_rx_mode(dev); 2834 else { 2835 /* Unicast addresses changes may only happen under the rtnl, 2836 * therefore calling __dev_set_promiscuity here is safe. 2837 */ 2838 if (dev->uc_count > 0 && !dev->uc_promisc) { 2839 __dev_set_promiscuity(dev, 1); 2840 dev->uc_promisc = 1; 2841 } else if (dev->uc_count == 0 && dev->uc_promisc) { 2842 __dev_set_promiscuity(dev, -1); 2843 dev->uc_promisc = 0; 2844 } 2845 2846 if (dev->set_multicast_list) 2847 dev->set_multicast_list(dev); 2848 } 2849} 2850 2851void dev_set_rx_mode(struct net_device *dev) 2852{ 2853 netif_tx_lock_bh(dev); 2854 __dev_set_rx_mode(dev); 2855 netif_tx_unlock_bh(dev); 2856} 2857 2858int __dev_addr_delete(struct dev_addr_list **list, int *count, 2859 void *addr, int alen, int glbl) 2860{ 2861 struct dev_addr_list *da; 2862 2863 for (; (da = *list) != NULL; list = &da->next) { 2864 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 && 2865 alen == da->da_addrlen) { 2866 if (glbl) { 2867 int old_glbl = da->da_gusers; 2868 da->da_gusers = 0; 2869 if (old_glbl == 0) 2870 break; 2871 } 2872 if (--da->da_users) 2873 return 0; 2874 2875 *list = da->next; 2876 kfree(da); 2877 (*count)--; 2878 return 0; 2879 } 2880 } 2881 return -ENOENT; 2882} 2883 2884int __dev_addr_add(struct dev_addr_list **list, int *count, 2885 void *addr, int alen, int glbl) 2886{ 2887 struct dev_addr_list *da; 2888 2889 for (da = *list; da != NULL; da = da->next) { 2890 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 && 2891 da->da_addrlen == alen) { 2892 if (glbl) { 2893 int old_glbl = da->da_gusers; 2894 da->da_gusers = 1; 2895 if (old_glbl) 2896 return 0; 2897 } 2898 da->da_users++; 2899 return 0; 2900 } 2901 } 2902 2903 da = kmalloc(sizeof(*da), GFP_ATOMIC); 2904 if (da == NULL) 2905 return -ENOMEM; 2906 memcpy(da->da_addr, addr, alen); 2907 da->da_addrlen = alen; 2908 da->da_users = 1; 2909 da->da_gusers = glbl ? 1 : 0; 2910 da->next = *list; 2911 *list = da; 2912 (*count)++; 2913 return 0; 2914} 2915 2916/** 2917 * dev_unicast_delete - Release secondary unicast address. 2918 * @dev: device 2919 * @addr: address to delete 2920 * @alen: length of @addr 2921 * 2922 * Release reference to a secondary unicast address and remove it 2923 * from the device if the reference count drops to zero. 2924 * 2925 * The caller must hold the rtnl_mutex. 2926 */ 2927int dev_unicast_delete(struct net_device *dev, void *addr, int alen) 2928{ 2929 int err; 2930 2931 ASSERT_RTNL(); 2932 2933 netif_tx_lock_bh(dev); 2934 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0); 2935 if (!err) 2936 __dev_set_rx_mode(dev); 2937 netif_tx_unlock_bh(dev); 2938 return err; 2939} 2940EXPORT_SYMBOL(dev_unicast_delete); 2941 2942/** 2943 * dev_unicast_add - add a secondary unicast address 2944 * @dev: device 2945 * @addr: address to delete 2946 * @alen: length of @addr 2947 * 2948 * Add a secondary unicast address to the device or increase 2949 * the reference count if it already exists. 2950 * 2951 * The caller must hold the rtnl_mutex. 2952 */ 2953int dev_unicast_add(struct net_device *dev, void *addr, int alen) 2954{ 2955 int err; 2956 2957 ASSERT_RTNL(); 2958 2959 netif_tx_lock_bh(dev); 2960 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0); 2961 if (!err) 2962 __dev_set_rx_mode(dev); 2963 netif_tx_unlock_bh(dev); 2964 return err; 2965} 2966EXPORT_SYMBOL(dev_unicast_add); 2967 2968static void __dev_addr_discard(struct dev_addr_list **list) 2969{ 2970 struct dev_addr_list *tmp; 2971 2972 while (*list != NULL) { 2973 tmp = *list; 2974 *list = tmp->next; 2975 if (tmp->da_users > tmp->da_gusers) 2976 printk("__dev_addr_discard: address leakage! " 2977 "da_users=%d\n", tmp->da_users); 2978 kfree(tmp); 2979 } 2980} 2981 2982static void dev_addr_discard(struct net_device *dev) 2983{ 2984 netif_tx_lock_bh(dev); 2985 2986 __dev_addr_discard(&dev->uc_list); 2987 dev->uc_count = 0; 2988 2989 __dev_addr_discard(&dev->mc_list); 2990 dev->mc_count = 0; 2991 2992 netif_tx_unlock_bh(dev); 2993} 2994 2995unsigned dev_get_flags(const struct net_device *dev) 2996{ 2997 unsigned flags; 2998 2999 flags = (dev->flags & ~(IFF_PROMISC | 3000 IFF_ALLMULTI | 3001 IFF_RUNNING | 3002 IFF_LOWER_UP | 3003 IFF_DORMANT)) | 3004 (dev->gflags & (IFF_PROMISC | 3005 IFF_ALLMULTI)); 3006 3007 if (netif_running(dev)) { 3008 if (netif_oper_up(dev)) 3009 flags |= IFF_RUNNING; 3010 if (netif_carrier_ok(dev)) 3011 flags |= IFF_LOWER_UP; 3012 if (netif_dormant(dev)) 3013 flags |= IFF_DORMANT; 3014 } 3015 3016 return flags; 3017} 3018 3019int dev_change_flags(struct net_device *dev, unsigned flags) 3020{ 3021 int ret, changes; 3022 int old_flags = dev->flags; 3023 3024 ASSERT_RTNL(); 3025 3026 /* 3027 * Set the flags on our device. 3028 */ 3029 3030 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 3031 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 3032 IFF_AUTOMEDIA)) | 3033 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 3034 IFF_ALLMULTI)); 3035 3036 /* 3037 * Load in the correct multicast list now the flags have changed. 3038 */ 3039 3040 if (dev->change_rx_flags && (dev->flags ^ flags) & IFF_MULTICAST) 3041 dev->change_rx_flags(dev, IFF_MULTICAST); 3042 3043 dev_set_rx_mode(dev); 3044 3045 /* 3046 * Have we downed the interface. We handle IFF_UP ourselves 3047 * according to user attempts to set it, rather than blindly 3048 * setting it. 3049 */ 3050 3051 ret = 0; 3052 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 3053 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev); 3054 3055 if (!ret) 3056 dev_set_rx_mode(dev); 3057 } 3058 3059 if (dev->flags & IFF_UP && 3060 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI | 3061 IFF_VOLATILE))) 3062 call_netdevice_notifiers(NETDEV_CHANGE, dev); 3063 3064 if ((flags ^ dev->gflags) & IFF_PROMISC) { 3065 int inc = (flags & IFF_PROMISC) ? +1 : -1; 3066 dev->gflags ^= IFF_PROMISC; 3067 dev_set_promiscuity(dev, inc); 3068 } 3069 3070 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 3071 is important. Some (broken) drivers set IFF_PROMISC, when 3072 IFF_ALLMULTI is requested not asking us and not reporting. 3073 */ 3074 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 3075 int inc = (flags & IFF_ALLMULTI) ? +1 : -1; 3076 dev->gflags ^= IFF_ALLMULTI; 3077 dev_set_allmulti(dev, inc); 3078 } 3079 3080 /* Exclude state transition flags, already notified */ 3081 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING); 3082 if (changes) 3083 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 3084 3085 return ret; 3086} 3087 3088int dev_set_mtu(struct net_device *dev, int new_mtu) 3089{ 3090 int err; 3091 3092 if (new_mtu == dev->mtu) 3093 return 0; 3094 3095 /* MTU must be positive. */ 3096 if (new_mtu < 0) 3097 return -EINVAL; 3098 3099 if (!netif_device_present(dev)) 3100 return -ENODEV; 3101 3102 err = 0; 3103 if (dev->change_mtu) 3104 err = dev->change_mtu(dev, new_mtu); 3105 else 3106 dev->mtu = new_mtu; 3107 if (!err && dev->flags & IFF_UP) 3108 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 3109 return err; 3110} 3111 3112int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 3113{ 3114 int err; 3115 3116 if (!dev->set_mac_address) 3117 return -EOPNOTSUPP; 3118 if (sa->sa_family != dev->type) 3119 return -EINVAL; 3120 if (!netif_device_present(dev)) 3121 return -ENODEV; 3122 err = dev->set_mac_address(dev, sa); 3123 if (!err) 3124 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 3125 return err; 3126} 3127 3128/* 3129 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock) 3130 */ 3131static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd) 3132{ 3133 int err; 3134 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 3135 3136 if (!dev) 3137 return -ENODEV; 3138 3139 switch (cmd) { 3140 case SIOCGIFFLAGS: /* Get interface flags */ 3141 ifr->ifr_flags = dev_get_flags(dev); 3142 return 0; 3143 3144 case SIOCGIFMETRIC: /* Get the metric on the interface 3145 (currently unused) */ 3146 ifr->ifr_metric = 0; 3147 return 0; 3148 3149 case SIOCGIFMTU: /* Get the MTU of a device */ 3150 ifr->ifr_mtu = dev->mtu; 3151 return 0; 3152 3153 case SIOCGIFHWADDR: 3154 if (!dev->addr_len) 3155 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 3156 else 3157 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 3158 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 3159 ifr->ifr_hwaddr.sa_family = dev->type; 3160 return 0; 3161 3162 case SIOCGIFSLAVE: 3163 err = -EINVAL; 3164 break; 3165 3166 case SIOCGIFMAP: 3167 ifr->ifr_map.mem_start = dev->mem_start; 3168 ifr->ifr_map.mem_end = dev->mem_end; 3169 ifr->ifr_map.base_addr = dev->base_addr; 3170 ifr->ifr_map.irq = dev->irq; 3171 ifr->ifr_map.dma = dev->dma; 3172 ifr->ifr_map.port = dev->if_port; 3173 return 0; 3174 3175 case SIOCGIFINDEX: 3176 ifr->ifr_ifindex = dev->ifindex; 3177 return 0; 3178 3179 case SIOCGIFTXQLEN: 3180 ifr->ifr_qlen = dev->tx_queue_len; 3181 return 0; 3182 3183 default: 3184 /* dev_ioctl() should ensure this case 3185 * is never reached 3186 */ 3187 WARN_ON(1); 3188 err = -EINVAL; 3189 break; 3190 3191 } 3192 return err; 3193} 3194 3195/* 3196 * Perform the SIOCxIFxxx calls, inside rtnl_lock() 3197 */ 3198static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd) 3199{ 3200 int err; 3201 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 3202 3203 if (!dev) 3204 return -ENODEV; 3205 3206 switch (cmd) { 3207 case SIOCSIFFLAGS: /* Set interface flags */ 3208 return dev_change_flags(dev, ifr->ifr_flags); 3209 3210 case SIOCSIFMETRIC: /* Set the metric on the interface 3211 (currently unused) */ 3212 return -EOPNOTSUPP; 3213 3214 case SIOCSIFMTU: /* Set the MTU of a device */ 3215 return dev_set_mtu(dev, ifr->ifr_mtu); 3216 3217 case SIOCSIFHWADDR: 3218 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 3219 3220 case SIOCSIFHWBROADCAST: 3221 if (ifr->ifr_hwaddr.sa_family != dev->type) 3222 return -EINVAL; 3223 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 3224 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 3225 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 3226 return 0; 3227 3228 case SIOCSIFMAP: 3229 if (dev->set_config) { 3230 if (!netif_device_present(dev)) 3231 return -ENODEV; 3232 return dev->set_config(dev, &ifr->ifr_map); 3233 } 3234 return -EOPNOTSUPP; 3235 3236 case SIOCADDMULTI: 3237 if (!dev->set_multicast_list || 3238 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 3239 return -EINVAL; 3240 if (!netif_device_present(dev)) 3241 return -ENODEV; 3242 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data, 3243 dev->addr_len, 1); 3244 3245 case SIOCDELMULTI: 3246 if (!dev->set_multicast_list || 3247 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 3248 return -EINVAL; 3249 if (!netif_device_present(dev)) 3250 return -ENODEV; 3251 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data, 3252 dev->addr_len, 1); 3253 3254 case SIOCSIFTXQLEN: 3255 if (ifr->ifr_qlen < 0) 3256 return -EINVAL; 3257 dev->tx_queue_len = ifr->ifr_qlen; 3258 return 0; 3259 3260 case SIOCSIFNAME: 3261 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 3262 return dev_change_name(dev, ifr->ifr_newname); 3263 3264 /* 3265 * Unknown or private ioctl 3266 */ 3267 3268 default: 3269 if ((cmd >= SIOCDEVPRIVATE && 3270 cmd <= SIOCDEVPRIVATE + 15) || 3271 cmd == SIOCBONDENSLAVE || 3272 cmd == SIOCBONDRELEASE || 3273 cmd == SIOCBONDSETHWADDR || 3274 cmd == SIOCBONDSLAVEINFOQUERY || 3275 cmd == SIOCBONDINFOQUERY || 3276 cmd == SIOCBONDCHANGEACTIVE || 3277 cmd == SIOCGMIIPHY || 3278 cmd == SIOCGMIIREG || 3279 cmd == SIOCSMIIREG || 3280 cmd == SIOCBRADDIF || 3281 cmd == SIOCBRDELIF || 3282 cmd == SIOCWANDEV) { 3283 err = -EOPNOTSUPP; 3284 if (dev->do_ioctl) { 3285 if (netif_device_present(dev)) 3286 err = dev->do_ioctl(dev, ifr, 3287 cmd); 3288 else 3289 err = -ENODEV; 3290 } 3291 } else 3292 err = -EINVAL; 3293 3294 } 3295 return err; 3296} 3297 3298/* 3299 * This function handles all "interface"-type I/O control requests. The actual 3300 * 'doing' part of this is dev_ifsioc above. 3301 */ 3302 3303/** 3304 * dev_ioctl - network device ioctl 3305 * @net: the applicable net namespace 3306 * @cmd: command to issue 3307 * @arg: pointer to a struct ifreq in user space 3308 * 3309 * Issue ioctl functions to devices. This is normally called by the 3310 * user space syscall interfaces but can sometimes be useful for 3311 * other purposes. The return value is the return from the syscall if 3312 * positive or a negative errno code on error. 3313 */ 3314 3315int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg) 3316{ 3317 struct ifreq ifr; 3318 int ret; 3319 char *colon; 3320 3321 /* One special case: SIOCGIFCONF takes ifconf argument 3322 and requires shared lock, because it sleeps writing 3323 to user space. 3324 */ 3325 3326 if (cmd == SIOCGIFCONF) { 3327 rtnl_lock(); 3328 ret = dev_ifconf(net, (char __user *) arg); 3329 rtnl_unlock(); 3330 return ret; 3331 } 3332 if (cmd == SIOCGIFNAME) 3333 return dev_ifname(net, (struct ifreq __user *)arg); 3334 3335 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 3336 return -EFAULT; 3337 3338 ifr.ifr_name[IFNAMSIZ-1] = 0; 3339 3340 colon = strchr(ifr.ifr_name, ':'); 3341 if (colon) 3342 *colon = 0; 3343 3344 /* 3345 * See which interface the caller is talking about. 3346 */ 3347 3348 switch (cmd) { 3349 /* 3350 * These ioctl calls: 3351 * - can be done by all. 3352 * - atomic and do not require locking. 3353 * - return a value 3354 */ 3355 case SIOCGIFFLAGS: 3356 case SIOCGIFMETRIC: 3357 case SIOCGIFMTU: 3358 case SIOCGIFHWADDR: 3359 case SIOCGIFSLAVE: 3360 case SIOCGIFMAP: 3361 case SIOCGIFINDEX: 3362 case SIOCGIFTXQLEN: 3363 dev_load(net, ifr.ifr_name); 3364 read_lock(&dev_base_lock); 3365 ret = dev_ifsioc_locked(net, &ifr, cmd); 3366 read_unlock(&dev_base_lock); 3367 if (!ret) { 3368 if (colon) 3369 *colon = ':'; 3370 if (copy_to_user(arg, &ifr, 3371 sizeof(struct ifreq))) 3372 ret = -EFAULT; 3373 } 3374 return ret; 3375 3376 case SIOCETHTOOL: 3377 dev_load(net, ifr.ifr_name); 3378 rtnl_lock(); 3379 ret = dev_ethtool(net, &ifr); 3380 rtnl_unlock(); 3381 if (!ret) { 3382 if (colon) 3383 *colon = ':'; 3384 if (copy_to_user(arg, &ifr, 3385 sizeof(struct ifreq))) 3386 ret = -EFAULT; 3387 } 3388 return ret; 3389 3390 /* 3391 * These ioctl calls: 3392 * - require superuser power. 3393 * - require strict serialization. 3394 * - return a value 3395 */ 3396 case SIOCGMIIPHY: 3397 case SIOCGMIIREG: 3398 case SIOCSIFNAME: 3399 if (!capable(CAP_NET_ADMIN)) 3400 return -EPERM; 3401 dev_load(net, ifr.ifr_name); 3402 rtnl_lock(); 3403 ret = dev_ifsioc(net, &ifr, cmd); 3404 rtnl_unlock(); 3405 if (!ret) { 3406 if (colon) 3407 *colon = ':'; 3408 if (copy_to_user(arg, &ifr, 3409 sizeof(struct ifreq))) 3410 ret = -EFAULT; 3411 } 3412 return ret; 3413 3414 /* 3415 * These ioctl calls: 3416 * - require superuser power. 3417 * - require strict serialization. 3418 * - do not return a value 3419 */ 3420 case SIOCSIFFLAGS: 3421 case SIOCSIFMETRIC: 3422 case SIOCSIFMTU: 3423 case SIOCSIFMAP: 3424 case SIOCSIFHWADDR: 3425 case SIOCSIFSLAVE: 3426 case SIOCADDMULTI: 3427 case SIOCDELMULTI: 3428 case SIOCSIFHWBROADCAST: 3429 case SIOCSIFTXQLEN: 3430 case SIOCSMIIREG: 3431 case SIOCBONDENSLAVE: 3432 case SIOCBONDRELEASE: 3433 case SIOCBONDSETHWADDR: 3434 case SIOCBONDCHANGEACTIVE: 3435 case SIOCBRADDIF: 3436 case SIOCBRDELIF: 3437 if (!capable(CAP_NET_ADMIN)) 3438 return -EPERM; 3439 /* fall through */ 3440 case SIOCBONDSLAVEINFOQUERY: 3441 case SIOCBONDINFOQUERY: 3442 dev_load(net, ifr.ifr_name); 3443 rtnl_lock(); 3444 ret = dev_ifsioc(net, &ifr, cmd); 3445 rtnl_unlock(); 3446 return ret; 3447 3448 case SIOCGIFMEM: 3449 /* Get the per device memory space. We can add this but 3450 * currently do not support it */ 3451 case SIOCSIFMEM: 3452 /* Set the per device memory buffer space. 3453 * Not applicable in our case */ 3454 case SIOCSIFLINK: 3455 return -EINVAL; 3456 3457 /* 3458 * Unknown or private ioctl. 3459 */ 3460 default: 3461 if (cmd == SIOCWANDEV || 3462 (cmd >= SIOCDEVPRIVATE && 3463 cmd <= SIOCDEVPRIVATE + 15)) { 3464 dev_load(net, ifr.ifr_name); 3465 rtnl_lock(); 3466 ret = dev_ifsioc(net, &ifr, cmd); 3467 rtnl_unlock(); 3468 if (!ret && copy_to_user(arg, &ifr, 3469 sizeof(struct ifreq))) 3470 ret = -EFAULT; 3471 return ret; 3472 } 3473 /* Take care of Wireless Extensions */ 3474 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) 3475 return wext_handle_ioctl(net, &ifr, cmd, arg); 3476 return -EINVAL; 3477 } 3478} 3479 3480 3481/** 3482 * dev_new_index - allocate an ifindex 3483 * @net: the applicable net namespace 3484 * 3485 * Returns a suitable unique value for a new device interface 3486 * number. The caller must hold the rtnl semaphore or the 3487 * dev_base_lock to be sure it remains unique. 3488 */ 3489static int dev_new_index(struct net *net) 3490{ 3491 static int ifindex; 3492 for (;;) { 3493 if (++ifindex <= 0) 3494 ifindex = 1; 3495 if (!__dev_get_by_index(net, ifindex)) 3496 return ifindex; 3497 } 3498} 3499 3500/* Delayed registration/unregisteration */ 3501static DEFINE_SPINLOCK(net_todo_list_lock); 3502static struct list_head net_todo_list = LIST_HEAD_INIT(net_todo_list); 3503 3504static void net_set_todo(struct net_device *dev) 3505{ 3506 spin_lock(&net_todo_list_lock); 3507 list_add_tail(&dev->todo_list, &net_todo_list); 3508 spin_unlock(&net_todo_list_lock); 3509} 3510 3511static void rollback_registered(struct net_device *dev) 3512{ 3513 BUG_ON(dev_boot_phase); 3514 ASSERT_RTNL(); 3515 3516 /* Some devices call without registering for initialization unwind. */ 3517 if (dev->reg_state == NETREG_UNINITIALIZED) { 3518 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never " 3519 "was registered\n", dev->name, dev); 3520 3521 WARN_ON(1); 3522 return; 3523 } 3524 3525 BUG_ON(dev->reg_state != NETREG_REGISTERED); 3526 3527 /* If device is running, close it first. */ 3528 dev_close(dev); 3529 3530 /* And unlink it from device chain. */ 3531 unlist_netdevice(dev); 3532 3533 dev->reg_state = NETREG_UNREGISTERING; 3534 3535 synchronize_net(); 3536 3537 /* Shutdown queueing discipline. */ 3538 dev_shutdown(dev); 3539 3540 3541 /* Notify protocols, that we are about to destroy 3542 this device. They should clean all the things. 3543 */ 3544 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 3545 3546 /* 3547 * Flush the unicast and multicast chains 3548 */ 3549 dev_addr_discard(dev); 3550 3551 if (dev->uninit) 3552 dev->uninit(dev); 3553 3554 /* Notifier chain MUST detach us from master device. */ 3555 BUG_TRAP(!dev->master); 3556 3557 /* Remove entries from kobject tree */ 3558 netdev_unregister_kobject(dev); 3559 3560 synchronize_net(); 3561 3562 dev_put(dev); 3563} 3564 3565/** 3566 * register_netdevice - register a network device 3567 * @dev: device to register 3568 * 3569 * Take a completed network device structure and add it to the kernel 3570 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 3571 * chain. 0 is returned on success. A negative errno code is returned 3572 * on a failure to set up the device, or if the name is a duplicate. 3573 * 3574 * Callers must hold the rtnl semaphore. You may want 3575 * register_netdev() instead of this. 3576 * 3577 * BUGS: 3578 * The locking appears insufficient to guarantee two parallel registers 3579 * will not get the same name. 3580 */ 3581 3582int register_netdevice(struct net_device *dev) 3583{ 3584 struct hlist_head *head; 3585 struct hlist_node *p; 3586 int ret; 3587 struct net *net; 3588 3589 BUG_ON(dev_boot_phase); 3590 ASSERT_RTNL(); 3591 3592 might_sleep(); 3593 3594 /* When net_device's are persistent, this will be fatal. */ 3595 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 3596 BUG_ON(!dev->nd_net); 3597 net = dev->nd_net; 3598 3599 spin_lock_init(&dev->queue_lock); 3600 spin_lock_init(&dev->_xmit_lock); 3601 netdev_set_lockdep_class(&dev->_xmit_lock, dev->type); 3602 dev->xmit_lock_owner = -1; 3603 spin_lock_init(&dev->ingress_lock); 3604 3605 dev->iflink = -1; 3606 3607 /* Init, if this function is available */ 3608 if (dev->init) { 3609 ret = dev->init(dev); 3610 if (ret) { 3611 if (ret > 0) 3612 ret = -EIO; 3613 goto out; 3614 } 3615 } 3616 3617 if (!dev_valid_name(dev->name)) { 3618 ret = -EINVAL; 3619 goto err_uninit; 3620 } 3621 3622 dev->ifindex = dev_new_index(net); 3623 if (dev->iflink == -1) 3624 dev->iflink = dev->ifindex; 3625 3626 /* Check for existence of name */ 3627 head = dev_name_hash(net, dev->name); 3628 hlist_for_each(p, head) { 3629 struct net_device *d 3630 = hlist_entry(p, struct net_device, name_hlist); 3631 if (!strncmp(d->name, dev->name, IFNAMSIZ)) { 3632 ret = -EEXIST; 3633 goto err_uninit; 3634 } 3635 } 3636 3637 /* Fix illegal checksum combinations */ 3638 if ((dev->features & NETIF_F_HW_CSUM) && 3639 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 3640 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n", 3641 dev->name); 3642 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 3643 } 3644 3645 if ((dev->features & NETIF_F_NO_CSUM) && 3646 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 3647 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n", 3648 dev->name); 3649 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM); 3650 } 3651 3652 3653 /* Fix illegal SG+CSUM combinations. */ 3654 if ((dev->features & NETIF_F_SG) && 3655 !(dev->features & NETIF_F_ALL_CSUM)) { 3656 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no checksum feature.\n", 3657 dev->name); 3658 dev->features &= ~NETIF_F_SG; 3659 } 3660 3661 /* TSO requires that SG is present as well. */ 3662 if ((dev->features & NETIF_F_TSO) && 3663 !(dev->features & NETIF_F_SG)) { 3664 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no SG feature.\n", 3665 dev->name); 3666 dev->features &= ~NETIF_F_TSO; 3667 } 3668 if (dev->features & NETIF_F_UFO) { 3669 if (!(dev->features & NETIF_F_HW_CSUM)) { 3670 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no " 3671 "NETIF_F_HW_CSUM feature.\n", 3672 dev->name); 3673 dev->features &= ~NETIF_F_UFO; 3674 } 3675 if (!(dev->features & NETIF_F_SG)) { 3676 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no " 3677 "NETIF_F_SG feature.\n", 3678 dev->name); 3679 dev->features &= ~NETIF_F_UFO; 3680 } 3681 } 3682 3683 ret = netdev_register_kobject(dev); 3684 if (ret) 3685 goto err_uninit; 3686 dev->reg_state = NETREG_REGISTERED; 3687 3688 /* 3689 * Default initial state at registry is that the 3690 * device is present. 3691 */ 3692 3693 set_bit(__LINK_STATE_PRESENT, &dev->state); 3694 3695 dev_init_scheduler(dev); 3696 dev_hold(dev); 3697 list_netdevice(dev); 3698 3699 /* Notify protocols, that a new device appeared. */ 3700 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 3701 ret = notifier_to_errno(ret); 3702 if (ret) { 3703 rollback_registered(dev); 3704 dev->reg_state = NETREG_UNREGISTERED; 3705 } 3706 3707out: 3708 return ret; 3709 3710err_uninit: 3711 if (dev->uninit) 3712 dev->uninit(dev); 3713 goto out; 3714} 3715 3716/** 3717 * register_netdev - register a network device 3718 * @dev: device to register 3719 * 3720 * Take a completed network device structure and add it to the kernel 3721 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 3722 * chain. 0 is returned on success. A negative errno code is returned 3723 * on a failure to set up the device, or if the name is a duplicate. 3724 * 3725 * This is a wrapper around register_netdevice that takes the rtnl semaphore 3726 * and expands the device name if you passed a format string to 3727 * alloc_netdev. 3728 */ 3729int register_netdev(struct net_device *dev) 3730{ 3731 int err; 3732 3733 rtnl_lock(); 3734 3735 /* 3736 * If the name is a format string the caller wants us to do a 3737 * name allocation. 3738 */ 3739 if (strchr(dev->name, '%')) { 3740 err = dev_alloc_name(dev, dev->name); 3741 if (err < 0) 3742 goto out; 3743 } 3744 3745 err = register_netdevice(dev); 3746out: 3747 rtnl_unlock(); 3748 return err; 3749} 3750EXPORT_SYMBOL(register_netdev); 3751 3752/* 3753 * netdev_wait_allrefs - wait until all references are gone. 3754 * 3755 * This is called when unregistering network devices. 3756 * 3757 * Any protocol or device that holds a reference should register 3758 * for netdevice notification, and cleanup and put back the 3759 * reference if they receive an UNREGISTER event. 3760 * We can get stuck here if buggy protocols don't correctly 3761 * call dev_put. 3762 */ 3763static void netdev_wait_allrefs(struct net_device *dev) 3764{ 3765 unsigned long rebroadcast_time, warning_time; 3766 3767 rebroadcast_time = warning_time = jiffies; 3768 while (atomic_read(&dev->refcnt) != 0) { 3769 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 3770 rtnl_lock(); 3771 3772 /* Rebroadcast unregister notification */ 3773 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 3774 3775 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 3776 &dev->state)) { 3777 /* We must not have linkwatch events 3778 * pending on unregister. If this 3779 * happens, we simply run the queue 3780 * unscheduled, resulting in a noop 3781 * for this device. 3782 */ 3783 linkwatch_run_queue(); 3784 } 3785 3786 __rtnl_unlock(); 3787 3788 rebroadcast_time = jiffies; 3789 } 3790 3791 msleep(250); 3792 3793 if (time_after(jiffies, warning_time + 10 * HZ)) { 3794 printk(KERN_EMERG "unregister_netdevice: " 3795 "waiting for %s to become free. Usage " 3796 "count = %d\n", 3797 dev->name, atomic_read(&dev->refcnt)); 3798 warning_time = jiffies; 3799 } 3800 } 3801} 3802 3803/* The sequence is: 3804 * 3805 * rtnl_lock(); 3806 * ... 3807 * register_netdevice(x1); 3808 * register_netdevice(x2); 3809 * ... 3810 * unregister_netdevice(y1); 3811 * unregister_netdevice(y2); 3812 * ... 3813 * rtnl_unlock(); 3814 * free_netdev(y1); 3815 * free_netdev(y2); 3816 * 3817 * We are invoked by rtnl_unlock() after it drops the semaphore. 3818 * This allows us to deal with problems: 3819 * 1) We can delete sysfs objects which invoke hotplug 3820 * without deadlocking with linkwatch via keventd. 3821 * 2) Since we run with the RTNL semaphore not held, we can sleep 3822 * safely in order to wait for the netdev refcnt to drop to zero. 3823 */ 3824static DEFINE_MUTEX(net_todo_run_mutex); 3825void netdev_run_todo(void) 3826{ 3827 struct list_head list; 3828 3829 /* Need to guard against multiple cpu's getting out of order. */ 3830 mutex_lock(&net_todo_run_mutex); 3831 3832 /* Not safe to do outside the semaphore. We must not return 3833 * until all unregister events invoked by the local processor 3834 * have been completed (either by this todo run, or one on 3835 * another cpu). 3836 */ 3837 if (list_empty(&net_todo_list)) 3838 goto out; 3839 3840 /* Snapshot list, allow later requests */ 3841 spin_lock(&net_todo_list_lock); 3842 list_replace_init(&net_todo_list, &list); 3843 spin_unlock(&net_todo_list_lock); 3844 3845 while (!list_empty(&list)) { 3846 struct net_device *dev 3847 = list_entry(list.next, struct net_device, todo_list); 3848 list_del(&dev->todo_list); 3849 3850 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 3851 printk(KERN_ERR "network todo '%s' but state %d\n", 3852 dev->name, dev->reg_state); 3853 dump_stack(); 3854 continue; 3855 } 3856 3857 dev->reg_state = NETREG_UNREGISTERED; 3858 3859 netdev_wait_allrefs(dev); 3860 3861 /* paranoia */ 3862 BUG_ON(atomic_read(&dev->refcnt)); 3863 BUG_TRAP(!dev->ip_ptr); 3864 BUG_TRAP(!dev->ip6_ptr); 3865 BUG_TRAP(!dev->dn_ptr); 3866 3867 if (dev->destructor) 3868 dev->destructor(dev); 3869 3870 /* Free network device */ 3871 kobject_put(&dev->dev.kobj); 3872 } 3873 3874out: 3875 mutex_unlock(&net_todo_run_mutex); 3876} 3877 3878static struct net_device_stats *internal_stats(struct net_device *dev) 3879{ 3880 return &dev->stats; 3881} 3882 3883/** 3884 * alloc_netdev_mq - allocate network device 3885 * @sizeof_priv: size of private data to allocate space for 3886 * @name: device name format string 3887 * @setup: callback to initialize device 3888 * @queue_count: the number of subqueues to allocate 3889 * 3890 * Allocates a struct net_device with private data area for driver use 3891 * and performs basic initialization. Also allocates subquue structs 3892 * for each queue on the device at the end of the netdevice. 3893 */ 3894struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name, 3895 void (*setup)(struct net_device *), unsigned int queue_count) 3896{ 3897 void *p; 3898 struct net_device *dev; 3899 int alloc_size; 3900 3901 BUG_ON(strlen(name) >= sizeof(dev->name)); 3902 3903 /* ensure 32-byte alignment of both the device and private area */ 3904 alloc_size = (sizeof(*dev) + NETDEV_ALIGN_CONST + 3905 (sizeof(struct net_device_subqueue) * (queue_count - 1))) & 3906 ~NETDEV_ALIGN_CONST; 3907 alloc_size += sizeof_priv + NETDEV_ALIGN_CONST; 3908 3909 p = kzalloc(alloc_size, GFP_KERNEL); 3910 if (!p) { 3911 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n"); 3912 return NULL; 3913 } 3914 3915 dev = (struct net_device *) 3916 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST); 3917 dev->padded = (char *)dev - (char *)p; 3918 dev->nd_net = &init_net; 3919 3920 if (sizeof_priv) { 3921 dev->priv = ((char *)dev + 3922 ((sizeof(struct net_device) + 3923 (sizeof(struct net_device_subqueue) * 3924 (queue_count - 1)) + NETDEV_ALIGN_CONST) 3925 & ~NETDEV_ALIGN_CONST)); 3926 } 3927 3928 dev->egress_subqueue_count = queue_count; 3929 3930 dev->get_stats = internal_stats; 3931 netpoll_netdev_init(dev); 3932 setup(dev); 3933 strcpy(dev->name, name); 3934 return dev; 3935} 3936EXPORT_SYMBOL(alloc_netdev_mq); 3937 3938/** 3939 * free_netdev - free network device 3940 * @dev: device 3941 * 3942 * This function does the last stage of destroying an allocated device 3943 * interface. The reference to the device object is released. 3944 * If this is the last reference then it will be freed. 3945 */ 3946void free_netdev(struct net_device *dev) 3947{ 3948 /* Compatibility with error handling in drivers */ 3949 if (dev->reg_state == NETREG_UNINITIALIZED) { 3950 kfree((char *)dev - dev->padded); 3951 return; 3952 } 3953 3954 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 3955 dev->reg_state = NETREG_RELEASED; 3956 3957 /* will free via device release */ 3958 put_device(&dev->dev); 3959} 3960 3961/* Synchronize with packet receive processing. */ 3962void synchronize_net(void) 3963{ 3964 might_sleep(); 3965 synchronize_rcu(); 3966} 3967 3968/** 3969 * unregister_netdevice - remove device from the kernel 3970 * @dev: device 3971 * 3972 * This function shuts down a device interface and removes it 3973 * from the kernel tables. On success 0 is returned, on a failure 3974 * a negative errno code is returned. 3975 * 3976 * Callers must hold the rtnl semaphore. You may want 3977 * unregister_netdev() instead of this. 3978 */ 3979 3980void unregister_netdevice(struct net_device *dev) 3981{ 3982 rollback_registered(dev); 3983 /* Finish processing unregister after unlock */ 3984 net_set_todo(dev); 3985} 3986 3987/** 3988 * unregister_netdev - remove device from the kernel 3989 * @dev: device 3990 * 3991 * This function shuts down a device interface and removes it 3992 * from the kernel tables. On success 0 is returned, on a failure 3993 * a negative errno code is returned. 3994 * 3995 * This is just a wrapper for unregister_netdevice that takes 3996 * the rtnl semaphore. In general you want to use this and not 3997 * unregister_netdevice. 3998 */ 3999void unregister_netdev(struct net_device *dev) 4000{ 4001 rtnl_lock(); 4002 unregister_netdevice(dev); 4003 rtnl_unlock(); 4004} 4005 4006EXPORT_SYMBOL(unregister_netdev); 4007 4008/** 4009 * dev_change_net_namespace - move device to different nethost namespace 4010 * @dev: device 4011 * @net: network namespace 4012 * @pat: If not NULL name pattern to try if the current device name 4013 * is already taken in the destination network namespace. 4014 * 4015 * This function shuts down a device interface and moves it 4016 * to a new network namespace. On success 0 is returned, on 4017 * a failure a netagive errno code is returned. 4018 * 4019 * Callers must hold the rtnl semaphore. 4020 */ 4021 4022int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 4023{ 4024 char buf[IFNAMSIZ]; 4025 const char *destname; 4026 int err; 4027 4028 ASSERT_RTNL(); 4029 4030 /* Don't allow namespace local devices to be moved. */ 4031 err = -EINVAL; 4032 if (dev->features & NETIF_F_NETNS_LOCAL) 4033 goto out; 4034 4035 /* Ensure the device has been registrered */ 4036 err = -EINVAL; 4037 if (dev->reg_state != NETREG_REGISTERED) 4038 goto out; 4039 4040 /* Get out if there is nothing todo */ 4041 err = 0; 4042 if (dev->nd_net == net) 4043 goto out; 4044 4045 /* Pick the destination device name, and ensure 4046 * we can use it in the destination network namespace. 4047 */ 4048 err = -EEXIST; 4049 destname = dev->name; 4050 if (__dev_get_by_name(net, destname)) { 4051 /* We get here if we can't use the current device name */ 4052 if (!pat) 4053 goto out; 4054 if (!dev_valid_name(pat)) 4055 goto out; 4056 if (strchr(pat, '%')) { 4057 if (__dev_alloc_name(net, pat, buf) < 0) 4058 goto out; 4059 destname = buf; 4060 } else 4061 destname = pat; 4062 if (__dev_get_by_name(net, destname)) 4063 goto out; 4064 } 4065 4066 /* 4067 * And now a mini version of register_netdevice unregister_netdevice. 4068 */ 4069 4070 /* If device is running close it first. */ 4071 dev_close(dev); 4072 4073 /* And unlink it from device chain */ 4074 err = -ENODEV; 4075 unlist_netdevice(dev); 4076 4077 synchronize_net(); 4078 4079 /* Shutdown queueing discipline. */ 4080 dev_shutdown(dev); 4081 4082 /* Notify protocols, that we are about to destroy 4083 this device. They should clean all the things. 4084 */ 4085 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 4086 4087 /* 4088 * Flush the unicast and multicast chains 4089 */ 4090 dev_addr_discard(dev); 4091 4092 /* Actually switch the network namespace */ 4093 dev->nd_net = net; 4094 4095 /* Assign the new device name */ 4096 if (destname != dev->name) 4097 strcpy(dev->name, destname); 4098 4099 /* If there is an ifindex conflict assign a new one */ 4100 if (__dev_get_by_index(net, dev->ifindex)) { 4101 int iflink = (dev->iflink == dev->ifindex); 4102 dev->ifindex = dev_new_index(net); 4103 if (iflink) 4104 dev->iflink = dev->ifindex; 4105 } 4106 4107 /* Fixup kobjects */ 4108 err = device_rename(&dev->dev, dev->name); 4109 WARN_ON(err); 4110 4111 /* Add the device back in the hashes */ 4112 list_netdevice(dev); 4113 4114 /* Notify protocols, that a new device appeared. */ 4115 call_netdevice_notifiers(NETDEV_REGISTER, dev); 4116 4117 synchronize_net(); 4118 err = 0; 4119out: 4120 return err; 4121} 4122 4123static int dev_cpu_callback(struct notifier_block *nfb, 4124 unsigned long action, 4125 void *ocpu) 4126{ 4127 struct sk_buff **list_skb; 4128 struct net_device **list_net; 4129 struct sk_buff *skb; 4130 unsigned int cpu, oldcpu = (unsigned long)ocpu; 4131 struct softnet_data *sd, *oldsd; 4132 4133 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 4134 return NOTIFY_OK; 4135 4136 local_irq_disable(); 4137 cpu = smp_processor_id(); 4138 sd = &per_cpu(softnet_data, cpu); 4139 oldsd = &per_cpu(softnet_data, oldcpu); 4140 4141 /* Find end of our completion_queue. */ 4142 list_skb = &sd->completion_queue; 4143 while (*list_skb) 4144 list_skb = &(*list_skb)->next; 4145 /* Append completion queue from offline CPU. */ 4146 *list_skb = oldsd->completion_queue; 4147 oldsd->completion_queue = NULL; 4148 4149 /* Find end of our output_queue. */ 4150 list_net = &sd->output_queue; 4151 while (*list_net) 4152 list_net = &(*list_net)->next_sched; 4153 /* Append output queue from offline CPU. */ 4154 *list_net = oldsd->output_queue; 4155 oldsd->output_queue = NULL; 4156 4157 raise_softirq_irqoff(NET_TX_SOFTIRQ); 4158 local_irq_enable(); 4159 4160 /* Process offline CPU's input_pkt_queue */ 4161 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) 4162 netif_rx(skb); 4163 4164 return NOTIFY_OK; 4165} 4166 4167#ifdef CONFIG_NET_DMA 4168/** 4169 * net_dma_rebalance - try to maintain one DMA channel per CPU 4170 * @net_dma: DMA client and associated data (lock, channels, channel_mask) 4171 * 4172 * This is called when the number of channels allocated to the net_dma client 4173 * changes. The net_dma client tries to have one DMA channel per CPU. 4174 */ 4175 4176static void net_dma_rebalance(struct net_dma *net_dma) 4177{ 4178 unsigned int cpu, i, n, chan_idx; 4179 struct dma_chan *chan; 4180 4181 if (cpus_empty(net_dma->channel_mask)) { 4182 for_each_online_cpu(cpu) 4183 rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL); 4184 return; 4185 } 4186 4187 i = 0; 4188 cpu = first_cpu(cpu_online_map); 4189 4190 for_each_cpu_mask(chan_idx, net_dma->channel_mask) { 4191 chan = net_dma->channels[chan_idx]; 4192 4193 n = ((num_online_cpus() / cpus_weight(net_dma->channel_mask)) 4194 + (i < (num_online_cpus() % 4195 cpus_weight(net_dma->channel_mask)) ? 1 : 0)); 4196 4197 while(n) { 4198 per_cpu(softnet_data, cpu).net_dma = chan; 4199 cpu = next_cpu(cpu, cpu_online_map); 4200 n--; 4201 } 4202 i++; 4203 } 4204} 4205 4206/** 4207 * netdev_dma_event - event callback for the net_dma_client 4208 * @client: should always be net_dma_client 4209 * @chan: DMA channel for the event 4210 * @state: DMA state to be handled 4211 */ 4212static enum dma_state_client 4213netdev_dma_event(struct dma_client *client, struct dma_chan *chan, 4214 enum dma_state state) 4215{ 4216 int i, found = 0, pos = -1; 4217 struct net_dma *net_dma = 4218 container_of(client, struct net_dma, client); 4219 enum dma_state_client ack = DMA_DUP; /* default: take no action */ 4220 4221 spin_lock(&net_dma->lock); 4222 switch (state) { 4223 case DMA_RESOURCE_AVAILABLE: 4224 for (i = 0; i < NR_CPUS; i++) 4225 if (net_dma->channels[i] == chan) { 4226 found = 1; 4227 break; 4228 } else if (net_dma->channels[i] == NULL && pos < 0) 4229 pos = i; 4230 4231 if (!found && pos >= 0) { 4232 ack = DMA_ACK; 4233 net_dma->channels[pos] = chan; 4234 cpu_set(pos, net_dma->channel_mask); 4235 net_dma_rebalance(net_dma); 4236 } 4237 break; 4238 case DMA_RESOURCE_REMOVED: 4239 for (i = 0; i < NR_CPUS; i++) 4240 if (net_dma->channels[i] == chan) { 4241 found = 1; 4242 pos = i; 4243 break; 4244 } 4245 4246 if (found) { 4247 ack = DMA_ACK; 4248 cpu_clear(pos, net_dma->channel_mask); 4249 net_dma->channels[i] = NULL; 4250 net_dma_rebalance(net_dma); 4251 } 4252 break; 4253 default: 4254 break; 4255 } 4256 spin_unlock(&net_dma->lock); 4257 4258 return ack; 4259} 4260 4261/** 4262 * netdev_dma_regiser - register the networking subsystem as a DMA client 4263 */ 4264static int __init netdev_dma_register(void) 4265{ 4266 spin_lock_init(&net_dma.lock); 4267 dma_cap_set(DMA_MEMCPY, net_dma.client.cap_mask); 4268 dma_async_client_register(&net_dma.client); 4269 dma_async_client_chan_request(&net_dma.client); 4270 return 0; 4271} 4272 4273#else 4274static int __init netdev_dma_register(void) { return -ENODEV; } 4275#endif /* CONFIG_NET_DMA */ 4276 4277/** 4278 * netdev_compute_feature - compute conjunction of two feature sets 4279 * @all: first feature set 4280 * @one: second feature set 4281 * 4282 * Computes a new feature set after adding a device with feature set 4283 * @one to the master device with current feature set @all. Returns 4284 * the new feature set. 4285 */ 4286int netdev_compute_features(unsigned long all, unsigned long one) 4287{ 4288 /* if device needs checksumming, downgrade to hw checksumming */ 4289 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM)) 4290 all ^= NETIF_F_NO_CSUM | NETIF_F_HW_CSUM; 4291 4292 /* if device can't do all checksum, downgrade to ipv4/ipv6 */ 4293 if (all & NETIF_F_HW_CSUM && !(one & NETIF_F_HW_CSUM)) 4294 all ^= NETIF_F_HW_CSUM 4295 | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; 4296 4297 if (one & NETIF_F_GSO) 4298 one |= NETIF_F_GSO_SOFTWARE; 4299 one |= NETIF_F_GSO; 4300 4301 /* If even one device supports robust GSO, enable it for all. */ 4302 if (one & NETIF_F_GSO_ROBUST) 4303 all |= NETIF_F_GSO_ROBUST; 4304 4305 all &= one | NETIF_F_LLTX; 4306 4307 if (!(all & NETIF_F_ALL_CSUM)) 4308 all &= ~NETIF_F_SG; 4309 if (!(all & NETIF_F_SG)) 4310 all &= ~NETIF_F_GSO_MASK; 4311 4312 return all; 4313} 4314EXPORT_SYMBOL(netdev_compute_features); 4315 4316static struct hlist_head *netdev_create_hash(void) 4317{ 4318 int i; 4319 struct hlist_head *hash; 4320 4321 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 4322 if (hash != NULL) 4323 for (i = 0; i < NETDEV_HASHENTRIES; i++) 4324 INIT_HLIST_HEAD(&hash[i]); 4325 4326 return hash; 4327} 4328 4329/* Initialize per network namespace state */ 4330static int __net_init netdev_init(struct net *net) 4331{ 4332 INIT_LIST_HEAD(&net->dev_base_head); 4333 rwlock_init(&dev_base_lock); 4334 4335 net->dev_name_head = netdev_create_hash(); 4336 if (net->dev_name_head == NULL) 4337 goto err_name; 4338 4339 net->dev_index_head = netdev_create_hash(); 4340 if (net->dev_index_head == NULL) 4341 goto err_idx; 4342 4343 return 0; 4344 4345err_idx: 4346 kfree(net->dev_name_head); 4347err_name: 4348 return -ENOMEM; 4349} 4350 4351static void __net_exit netdev_exit(struct net *net) 4352{ 4353 kfree(net->dev_name_head); 4354 kfree(net->dev_index_head); 4355} 4356 4357static struct pernet_operations netdev_net_ops = { 4358 .init = netdev_init, 4359 .exit = netdev_exit, 4360}; 4361 4362static void __net_exit default_device_exit(struct net *net) 4363{ 4364 struct net_device *dev, *next; 4365 /* 4366 * Push all migratable of the network devices back to the 4367 * initial network namespace 4368 */ 4369 rtnl_lock(); 4370 for_each_netdev_safe(net, dev, next) { 4371 int err; 4372 4373 /* Ignore unmoveable devices (i.e. loopback) */ 4374 if (dev->features & NETIF_F_NETNS_LOCAL) 4375 continue; 4376 4377 /* Push remaing network devices to init_net */ 4378 err = dev_change_net_namespace(dev, &init_net, "dev%d"); 4379 if (err) { 4380 printk(KERN_WARNING "%s: failed to move %s to init_net: %d\n", 4381 __func__, dev->name, err); 4382 unregister_netdevice(dev); 4383 } 4384 } 4385 rtnl_unlock(); 4386} 4387 4388static struct pernet_operations default_device_ops = { 4389 .exit = default_device_exit, 4390}; 4391 4392/* 4393 * Initialize the DEV module. At boot time this walks the device list and 4394 * unhooks any devices that fail to initialise (normally hardware not 4395 * present) and leaves us with a valid list of present and active devices. 4396 * 4397 */ 4398 4399/* 4400 * This is called single threaded during boot, so no need 4401 * to take the rtnl semaphore. 4402 */ 4403static int __init net_dev_init(void) 4404{ 4405 int i, rc = -ENOMEM; 4406 4407 BUG_ON(!dev_boot_phase); 4408 4409 if (dev_proc_init()) 4410 goto out; 4411 4412 if (netdev_kobject_init()) 4413 goto out; 4414 4415 INIT_LIST_HEAD(&ptype_all); 4416 for (i = 0; i < 16; i++) 4417 INIT_LIST_HEAD(&ptype_base[i]); 4418 4419 if (register_pernet_subsys(&netdev_net_ops)) 4420 goto out; 4421 4422 if (register_pernet_device(&default_device_ops)) 4423 goto out; 4424 4425 /* 4426 * Initialise the packet receive queues. 4427 */ 4428 4429 for_each_possible_cpu(i) { 4430 struct softnet_data *queue; 4431 4432 queue = &per_cpu(softnet_data, i); 4433 skb_queue_head_init(&queue->input_pkt_queue); 4434 queue->completion_queue = NULL; 4435 INIT_LIST_HEAD(&queue->poll_list); 4436 4437 queue->backlog.poll = process_backlog; 4438 queue->backlog.weight = weight_p; 4439 } 4440 4441 netdev_dma_register(); 4442 4443 dev_boot_phase = 0; 4444 4445 open_softirq(NET_TX_SOFTIRQ, net_tx_action, NULL); 4446 open_softirq(NET_RX_SOFTIRQ, net_rx_action, NULL); 4447 4448 hotcpu_notifier(dev_cpu_callback, 0); 4449 dst_init(); 4450 dev_mcast_init(); 4451 rc = 0; 4452out: 4453 return rc; 4454} 4455 4456subsys_initcall(net_dev_init); 4457 4458EXPORT_SYMBOL(__dev_get_by_index); 4459EXPORT_SYMBOL(__dev_get_by_name); 4460EXPORT_SYMBOL(__dev_remove_pack); 4461EXPORT_SYMBOL(dev_valid_name); 4462EXPORT_SYMBOL(dev_add_pack); 4463EXPORT_SYMBOL(dev_alloc_name); 4464EXPORT_SYMBOL(dev_close); 4465EXPORT_SYMBOL(dev_get_by_flags); 4466EXPORT_SYMBOL(dev_get_by_index); 4467EXPORT_SYMBOL(dev_get_by_name); 4468EXPORT_SYMBOL(dev_open); 4469EXPORT_SYMBOL(dev_queue_xmit); 4470EXPORT_SYMBOL(dev_remove_pack); 4471EXPORT_SYMBOL(dev_set_allmulti); 4472EXPORT_SYMBOL(dev_set_promiscuity); 4473EXPORT_SYMBOL(dev_change_flags); 4474EXPORT_SYMBOL(dev_set_mtu); 4475EXPORT_SYMBOL(dev_set_mac_address); 4476EXPORT_SYMBOL(free_netdev); 4477EXPORT_SYMBOL(netdev_boot_setup_check); 4478EXPORT_SYMBOL(netdev_set_master); 4479EXPORT_SYMBOL(netdev_state_change); 4480EXPORT_SYMBOL(netif_receive_skb); 4481EXPORT_SYMBOL(netif_rx); 4482EXPORT_SYMBOL(register_gifconf); 4483EXPORT_SYMBOL(register_netdevice); 4484EXPORT_SYMBOL(register_netdevice_notifier); 4485EXPORT_SYMBOL(skb_checksum_help); 4486EXPORT_SYMBOL(synchronize_net); 4487EXPORT_SYMBOL(unregister_netdevice); 4488EXPORT_SYMBOL(unregister_netdevice_notifier); 4489EXPORT_SYMBOL(net_enable_timestamp); 4490EXPORT_SYMBOL(net_disable_timestamp); 4491EXPORT_SYMBOL(dev_get_flags); 4492 4493#if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE) 4494EXPORT_SYMBOL(br_handle_frame_hook); 4495EXPORT_SYMBOL(br_fdb_get_hook); 4496EXPORT_SYMBOL(br_fdb_put_hook); 4497#endif 4498 4499#ifdef CONFIG_KMOD 4500EXPORT_SYMBOL(dev_load); 4501#endif 4502 4503EXPORT_PER_CPU_SYMBOL(softnet_data);