at v2.6.24-rc2 331 lines 9.6 kB view raw
1/* 2 * Copyright 1995, Russell King. 3 * Various bits and pieces copyrights include: 4 * Linus Torvalds (test_bit). 5 * Big endian support: Copyright 2001, Nicolas Pitre 6 * reworked by rmk. 7 * 8 * bit 0 is the LSB of an "unsigned long" quantity. 9 * 10 * Please note that the code in this file should never be included 11 * from user space. Many of these are not implemented in assembler 12 * since they would be too costly. Also, they require privileged 13 * instructions (which are not available from user mode) to ensure 14 * that they are atomic. 15 */ 16 17#ifndef __ASM_ARM_BITOPS_H 18#define __ASM_ARM_BITOPS_H 19 20#ifdef __KERNEL__ 21 22#ifndef _LINUX_BITOPS_H 23#error only <linux/bitops.h> can be included directly 24#endif 25 26#include <linux/compiler.h> 27#include <asm/system.h> 28 29#define smp_mb__before_clear_bit() mb() 30#define smp_mb__after_clear_bit() mb() 31 32/* 33 * These functions are the basis of our bit ops. 34 * 35 * First, the atomic bitops. These use native endian. 36 */ 37static inline void ____atomic_set_bit(unsigned int bit, volatile unsigned long *p) 38{ 39 unsigned long flags; 40 unsigned long mask = 1UL << (bit & 31); 41 42 p += bit >> 5; 43 44 raw_local_irq_save(flags); 45 *p |= mask; 46 raw_local_irq_restore(flags); 47} 48 49static inline void ____atomic_clear_bit(unsigned int bit, volatile unsigned long *p) 50{ 51 unsigned long flags; 52 unsigned long mask = 1UL << (bit & 31); 53 54 p += bit >> 5; 55 56 raw_local_irq_save(flags); 57 *p &= ~mask; 58 raw_local_irq_restore(flags); 59} 60 61static inline void ____atomic_change_bit(unsigned int bit, volatile unsigned long *p) 62{ 63 unsigned long flags; 64 unsigned long mask = 1UL << (bit & 31); 65 66 p += bit >> 5; 67 68 raw_local_irq_save(flags); 69 *p ^= mask; 70 raw_local_irq_restore(flags); 71} 72 73static inline int 74____atomic_test_and_set_bit(unsigned int bit, volatile unsigned long *p) 75{ 76 unsigned long flags; 77 unsigned int res; 78 unsigned long mask = 1UL << (bit & 31); 79 80 p += bit >> 5; 81 82 raw_local_irq_save(flags); 83 res = *p; 84 *p = res | mask; 85 raw_local_irq_restore(flags); 86 87 return res & mask; 88} 89 90static inline int 91____atomic_test_and_clear_bit(unsigned int bit, volatile unsigned long *p) 92{ 93 unsigned long flags; 94 unsigned int res; 95 unsigned long mask = 1UL << (bit & 31); 96 97 p += bit >> 5; 98 99 raw_local_irq_save(flags); 100 res = *p; 101 *p = res & ~mask; 102 raw_local_irq_restore(flags); 103 104 return res & mask; 105} 106 107static inline int 108____atomic_test_and_change_bit(unsigned int bit, volatile unsigned long *p) 109{ 110 unsigned long flags; 111 unsigned int res; 112 unsigned long mask = 1UL << (bit & 31); 113 114 p += bit >> 5; 115 116 raw_local_irq_save(flags); 117 res = *p; 118 *p = res ^ mask; 119 raw_local_irq_restore(flags); 120 121 return res & mask; 122} 123 124#include <asm-generic/bitops/non-atomic.h> 125 126/* 127 * A note about Endian-ness. 128 * ------------------------- 129 * 130 * When the ARM is put into big endian mode via CR15, the processor 131 * merely swaps the order of bytes within words, thus: 132 * 133 * ------------ physical data bus bits ----------- 134 * D31 ... D24 D23 ... D16 D15 ... D8 D7 ... D0 135 * little byte 3 byte 2 byte 1 byte 0 136 * big byte 0 byte 1 byte 2 byte 3 137 * 138 * This means that reading a 32-bit word at address 0 returns the same 139 * value irrespective of the endian mode bit. 140 * 141 * Peripheral devices should be connected with the data bus reversed in 142 * "Big Endian" mode. ARM Application Note 61 is applicable, and is 143 * available from http://www.arm.com/. 144 * 145 * The following assumes that the data bus connectivity for big endian 146 * mode has been followed. 147 * 148 * Note that bit 0 is defined to be 32-bit word bit 0, not byte 0 bit 0. 149 */ 150 151/* 152 * Little endian assembly bitops. nr = 0 -> byte 0 bit 0. 153 */ 154extern void _set_bit_le(int nr, volatile unsigned long * p); 155extern void _clear_bit_le(int nr, volatile unsigned long * p); 156extern void _change_bit_le(int nr, volatile unsigned long * p); 157extern int _test_and_set_bit_le(int nr, volatile unsigned long * p); 158extern int _test_and_clear_bit_le(int nr, volatile unsigned long * p); 159extern int _test_and_change_bit_le(int nr, volatile unsigned long * p); 160extern int _find_first_zero_bit_le(const void * p, unsigned size); 161extern int _find_next_zero_bit_le(const void * p, int size, int offset); 162extern int _find_first_bit_le(const unsigned long *p, unsigned size); 163extern int _find_next_bit_le(const unsigned long *p, int size, int offset); 164 165/* 166 * Big endian assembly bitops. nr = 0 -> byte 3 bit 0. 167 */ 168extern void _set_bit_be(int nr, volatile unsigned long * p); 169extern void _clear_bit_be(int nr, volatile unsigned long * p); 170extern void _change_bit_be(int nr, volatile unsigned long * p); 171extern int _test_and_set_bit_be(int nr, volatile unsigned long * p); 172extern int _test_and_clear_bit_be(int nr, volatile unsigned long * p); 173extern int _test_and_change_bit_be(int nr, volatile unsigned long * p); 174extern int _find_first_zero_bit_be(const void * p, unsigned size); 175extern int _find_next_zero_bit_be(const void * p, int size, int offset); 176extern int _find_first_bit_be(const unsigned long *p, unsigned size); 177extern int _find_next_bit_be(const unsigned long *p, int size, int offset); 178 179#ifndef CONFIG_SMP 180/* 181 * The __* form of bitops are non-atomic and may be reordered. 182 */ 183#define ATOMIC_BITOP_LE(name,nr,p) \ 184 (__builtin_constant_p(nr) ? \ 185 ____atomic_##name(nr, p) : \ 186 _##name##_le(nr,p)) 187 188#define ATOMIC_BITOP_BE(name,nr,p) \ 189 (__builtin_constant_p(nr) ? \ 190 ____atomic_##name(nr, p) : \ 191 _##name##_be(nr,p)) 192#else 193#define ATOMIC_BITOP_LE(name,nr,p) _##name##_le(nr,p) 194#define ATOMIC_BITOP_BE(name,nr,p) _##name##_be(nr,p) 195#endif 196 197#define NONATOMIC_BITOP(name,nr,p) \ 198 (____nonatomic_##name(nr, p)) 199 200#ifndef __ARMEB__ 201/* 202 * These are the little endian, atomic definitions. 203 */ 204#define set_bit(nr,p) ATOMIC_BITOP_LE(set_bit,nr,p) 205#define clear_bit(nr,p) ATOMIC_BITOP_LE(clear_bit,nr,p) 206#define change_bit(nr,p) ATOMIC_BITOP_LE(change_bit,nr,p) 207#define test_and_set_bit(nr,p) ATOMIC_BITOP_LE(test_and_set_bit,nr,p) 208#define test_and_clear_bit(nr,p) ATOMIC_BITOP_LE(test_and_clear_bit,nr,p) 209#define test_and_change_bit(nr,p) ATOMIC_BITOP_LE(test_and_change_bit,nr,p) 210#define find_first_zero_bit(p,sz) _find_first_zero_bit_le(p,sz) 211#define find_next_zero_bit(p,sz,off) _find_next_zero_bit_le(p,sz,off) 212#define find_first_bit(p,sz) _find_first_bit_le(p,sz) 213#define find_next_bit(p,sz,off) _find_next_bit_le(p,sz,off) 214 215#define WORD_BITOFF_TO_LE(x) ((x)) 216 217#else 218 219/* 220 * These are the big endian, atomic definitions. 221 */ 222#define set_bit(nr,p) ATOMIC_BITOP_BE(set_bit,nr,p) 223#define clear_bit(nr,p) ATOMIC_BITOP_BE(clear_bit,nr,p) 224#define change_bit(nr,p) ATOMIC_BITOP_BE(change_bit,nr,p) 225#define test_and_set_bit(nr,p) ATOMIC_BITOP_BE(test_and_set_bit,nr,p) 226#define test_and_clear_bit(nr,p) ATOMIC_BITOP_BE(test_and_clear_bit,nr,p) 227#define test_and_change_bit(nr,p) ATOMIC_BITOP_BE(test_and_change_bit,nr,p) 228#define find_first_zero_bit(p,sz) _find_first_zero_bit_be(p,sz) 229#define find_next_zero_bit(p,sz,off) _find_next_zero_bit_be(p,sz,off) 230#define find_first_bit(p,sz) _find_first_bit_be(p,sz) 231#define find_next_bit(p,sz,off) _find_next_bit_be(p,sz,off) 232 233#define WORD_BITOFF_TO_LE(x) ((x) ^ 0x18) 234 235#endif 236 237#if __LINUX_ARM_ARCH__ < 5 238 239#include <asm-generic/bitops/ffz.h> 240#include <asm-generic/bitops/__ffs.h> 241#include <asm-generic/bitops/fls.h> 242#include <asm-generic/bitops/ffs.h> 243 244#else 245 246static inline int constant_fls(int x) 247{ 248 int r = 32; 249 250 if (!x) 251 return 0; 252 if (!(x & 0xffff0000u)) { 253 x <<= 16; 254 r -= 16; 255 } 256 if (!(x & 0xff000000u)) { 257 x <<= 8; 258 r -= 8; 259 } 260 if (!(x & 0xf0000000u)) { 261 x <<= 4; 262 r -= 4; 263 } 264 if (!(x & 0xc0000000u)) { 265 x <<= 2; 266 r -= 2; 267 } 268 if (!(x & 0x80000000u)) { 269 x <<= 1; 270 r -= 1; 271 } 272 return r; 273} 274 275/* 276 * On ARMv5 and above those functions can be implemented around 277 * the clz instruction for much better code efficiency. 278 */ 279 280#define fls(x) \ 281 ( __builtin_constant_p(x) ? constant_fls(x) : \ 282 ({ int __r; asm("clz\t%0, %1" : "=r"(__r) : "r"(x) : "cc"); 32-__r; }) ) 283#define ffs(x) ({ unsigned long __t = (x); fls(__t & -__t); }) 284#define __ffs(x) (ffs(x) - 1) 285#define ffz(x) __ffs( ~(x) ) 286 287#endif 288 289#include <asm-generic/bitops/fls64.h> 290 291#include <asm-generic/bitops/sched.h> 292#include <asm-generic/bitops/hweight.h> 293#include <asm-generic/bitops/lock.h> 294 295/* 296 * Ext2 is defined to use little-endian byte ordering. 297 * These do not need to be atomic. 298 */ 299#define ext2_set_bit(nr,p) \ 300 __test_and_set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p)) 301#define ext2_set_bit_atomic(lock,nr,p) \ 302 test_and_set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p)) 303#define ext2_clear_bit(nr,p) \ 304 __test_and_clear_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p)) 305#define ext2_clear_bit_atomic(lock,nr,p) \ 306 test_and_clear_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p)) 307#define ext2_test_bit(nr,p) \ 308 test_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p)) 309#define ext2_find_first_zero_bit(p,sz) \ 310 _find_first_zero_bit_le(p,sz) 311#define ext2_find_next_zero_bit(p,sz,off) \ 312 _find_next_zero_bit_le(p,sz,off) 313 314/* 315 * Minix is defined to use little-endian byte ordering. 316 * These do not need to be atomic. 317 */ 318#define minix_set_bit(nr,p) \ 319 __set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p)) 320#define minix_test_bit(nr,p) \ 321 test_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p)) 322#define minix_test_and_set_bit(nr,p) \ 323 __test_and_set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p)) 324#define minix_test_and_clear_bit(nr,p) \ 325 __test_and_clear_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p)) 326#define minix_find_first_zero_bit(p,sz) \ 327 _find_first_zero_bit_le(p,sz) 328 329#endif /* __KERNEL__ */ 330 331#endif /* _ARM_BITOPS_H */