at v2.6.24-rc2 2819 lines 68 kB view raw
1/* 2 * Generic PPP layer for Linux. 3 * 4 * Copyright 1999-2002 Paul Mackerras. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 * 11 * The generic PPP layer handles the PPP network interfaces, the 12 * /dev/ppp device, packet and VJ compression, and multilink. 13 * It talks to PPP `channels' via the interface defined in 14 * include/linux/ppp_channel.h. Channels provide the basic means for 15 * sending and receiving PPP frames on some kind of communications 16 * channel. 17 * 18 * Part of the code in this driver was inspired by the old async-only 19 * PPP driver, written by Michael Callahan and Al Longyear, and 20 * subsequently hacked by Paul Mackerras. 21 * 22 * ==FILEVERSION 20041108== 23 */ 24 25#include <linux/module.h> 26#include <linux/kernel.h> 27#include <linux/kmod.h> 28#include <linux/init.h> 29#include <linux/list.h> 30#include <linux/netdevice.h> 31#include <linux/poll.h> 32#include <linux/ppp_defs.h> 33#include <linux/filter.h> 34#include <linux/if_ppp.h> 35#include <linux/ppp_channel.h> 36#include <linux/ppp-comp.h> 37#include <linux/skbuff.h> 38#include <linux/rtnetlink.h> 39#include <linux/if_arp.h> 40#include <linux/ip.h> 41#include <linux/tcp.h> 42#include <linux/spinlock.h> 43#include <linux/rwsem.h> 44#include <linux/stddef.h> 45#include <linux/device.h> 46#include <linux/mutex.h> 47#include <net/slhc_vj.h> 48#include <asm/atomic.h> 49 50#define PPP_VERSION "2.4.2" 51 52/* 53 * Network protocols we support. 54 */ 55#define NP_IP 0 /* Internet Protocol V4 */ 56#define NP_IPV6 1 /* Internet Protocol V6 */ 57#define NP_IPX 2 /* IPX protocol */ 58#define NP_AT 3 /* Appletalk protocol */ 59#define NP_MPLS_UC 4 /* MPLS unicast */ 60#define NP_MPLS_MC 5 /* MPLS multicast */ 61#define NUM_NP 6 /* Number of NPs. */ 62 63#define MPHDRLEN 6 /* multilink protocol header length */ 64#define MPHDRLEN_SSN 4 /* ditto with short sequence numbers */ 65#define MIN_FRAG_SIZE 64 66 67/* 68 * An instance of /dev/ppp can be associated with either a ppp 69 * interface unit or a ppp channel. In both cases, file->private_data 70 * points to one of these. 71 */ 72struct ppp_file { 73 enum { 74 INTERFACE=1, CHANNEL 75 } kind; 76 struct sk_buff_head xq; /* pppd transmit queue */ 77 struct sk_buff_head rq; /* receive queue for pppd */ 78 wait_queue_head_t rwait; /* for poll on reading /dev/ppp */ 79 atomic_t refcnt; /* # refs (incl /dev/ppp attached) */ 80 int hdrlen; /* space to leave for headers */ 81 int index; /* interface unit / channel number */ 82 int dead; /* unit/channel has been shut down */ 83}; 84 85#define PF_TO_X(pf, X) container_of(pf, X, file) 86 87#define PF_TO_PPP(pf) PF_TO_X(pf, struct ppp) 88#define PF_TO_CHANNEL(pf) PF_TO_X(pf, struct channel) 89 90/* 91 * Data structure describing one ppp unit. 92 * A ppp unit corresponds to a ppp network interface device 93 * and represents a multilink bundle. 94 * It can have 0 or more ppp channels connected to it. 95 */ 96struct ppp { 97 struct ppp_file file; /* stuff for read/write/poll 0 */ 98 struct file *owner; /* file that owns this unit 48 */ 99 struct list_head channels; /* list of attached channels 4c */ 100 int n_channels; /* how many channels are attached 54 */ 101 spinlock_t rlock; /* lock for receive side 58 */ 102 spinlock_t wlock; /* lock for transmit side 5c */ 103 int mru; /* max receive unit 60 */ 104 unsigned int flags; /* control bits 64 */ 105 unsigned int xstate; /* transmit state bits 68 */ 106 unsigned int rstate; /* receive state bits 6c */ 107 int debug; /* debug flags 70 */ 108 struct slcompress *vj; /* state for VJ header compression */ 109 enum NPmode npmode[NUM_NP]; /* what to do with each net proto 78 */ 110 struct sk_buff *xmit_pending; /* a packet ready to go out 88 */ 111 struct compressor *xcomp; /* transmit packet compressor 8c */ 112 void *xc_state; /* its internal state 90 */ 113 struct compressor *rcomp; /* receive decompressor 94 */ 114 void *rc_state; /* its internal state 98 */ 115 unsigned long last_xmit; /* jiffies when last pkt sent 9c */ 116 unsigned long last_recv; /* jiffies when last pkt rcvd a0 */ 117 struct net_device *dev; /* network interface device a4 */ 118#ifdef CONFIG_PPP_MULTILINK 119 int nxchan; /* next channel to send something on */ 120 u32 nxseq; /* next sequence number to send */ 121 int mrru; /* MP: max reconst. receive unit */ 122 u32 nextseq; /* MP: seq no of next packet */ 123 u32 minseq; /* MP: min of most recent seqnos */ 124 struct sk_buff_head mrq; /* MP: receive reconstruction queue */ 125#endif /* CONFIG_PPP_MULTILINK */ 126 struct net_device_stats stats; /* statistics */ 127#ifdef CONFIG_PPP_FILTER 128 struct sock_filter *pass_filter; /* filter for packets to pass */ 129 struct sock_filter *active_filter;/* filter for pkts to reset idle */ 130 unsigned pass_len, active_len; 131#endif /* CONFIG_PPP_FILTER */ 132}; 133 134/* 135 * Bits in flags: SC_NO_TCP_CCID, SC_CCP_OPEN, SC_CCP_UP, SC_LOOP_TRAFFIC, 136 * SC_MULTILINK, SC_MP_SHORTSEQ, SC_MP_XSHORTSEQ, SC_COMP_TCP, SC_REJ_COMP_TCP, 137 * SC_MUST_COMP 138 * Bits in rstate: SC_DECOMP_RUN, SC_DC_ERROR, SC_DC_FERROR. 139 * Bits in xstate: SC_COMP_RUN 140 */ 141#define SC_FLAG_BITS (SC_NO_TCP_CCID|SC_CCP_OPEN|SC_CCP_UP|SC_LOOP_TRAFFIC \ 142 |SC_MULTILINK|SC_MP_SHORTSEQ|SC_MP_XSHORTSEQ \ 143 |SC_COMP_TCP|SC_REJ_COMP_TCP|SC_MUST_COMP) 144 145/* 146 * Private data structure for each channel. 147 * This includes the data structure used for multilink. 148 */ 149struct channel { 150 struct ppp_file file; /* stuff for read/write/poll */ 151 struct list_head list; /* link in all/new_channels list */ 152 struct ppp_channel *chan; /* public channel data structure */ 153 struct rw_semaphore chan_sem; /* protects `chan' during chan ioctl */ 154 spinlock_t downl; /* protects `chan', file.xq dequeue */ 155 struct ppp *ppp; /* ppp unit we're connected to */ 156 struct list_head clist; /* link in list of channels per unit */ 157 rwlock_t upl; /* protects `ppp' */ 158#ifdef CONFIG_PPP_MULTILINK 159 u8 avail; /* flag used in multilink stuff */ 160 u8 had_frag; /* >= 1 fragments have been sent */ 161 u32 lastseq; /* MP: last sequence # received */ 162#endif /* CONFIG_PPP_MULTILINK */ 163}; 164 165/* 166 * SMP locking issues: 167 * Both the ppp.rlock and ppp.wlock locks protect the ppp.channels 168 * list and the ppp.n_channels field, you need to take both locks 169 * before you modify them. 170 * The lock ordering is: channel.upl -> ppp.wlock -> ppp.rlock -> 171 * channel.downl. 172 */ 173 174/* 175 * A cardmap represents a mapping from unsigned integers to pointers, 176 * and provides a fast "find lowest unused number" operation. 177 * It uses a broad (32-way) tree with a bitmap at each level. 178 * It is designed to be space-efficient for small numbers of entries 179 * and time-efficient for large numbers of entries. 180 */ 181#define CARDMAP_ORDER 5 182#define CARDMAP_WIDTH (1U << CARDMAP_ORDER) 183#define CARDMAP_MASK (CARDMAP_WIDTH - 1) 184 185struct cardmap { 186 int shift; 187 unsigned long inuse; 188 struct cardmap *parent; 189 void *ptr[CARDMAP_WIDTH]; 190}; 191static void *cardmap_get(struct cardmap *map, unsigned int nr); 192static int cardmap_set(struct cardmap **map, unsigned int nr, void *ptr); 193static unsigned int cardmap_find_first_free(struct cardmap *map); 194static void cardmap_destroy(struct cardmap **map); 195 196/* 197 * all_ppp_mutex protects the all_ppp_units mapping. 198 * It also ensures that finding a ppp unit in the all_ppp_units map 199 * and updating its file.refcnt field is atomic. 200 */ 201static DEFINE_MUTEX(all_ppp_mutex); 202static struct cardmap *all_ppp_units; 203static atomic_t ppp_unit_count = ATOMIC_INIT(0); 204 205/* 206 * all_channels_lock protects all_channels and last_channel_index, 207 * and the atomicity of find a channel and updating its file.refcnt 208 * field. 209 */ 210static DEFINE_SPINLOCK(all_channels_lock); 211static LIST_HEAD(all_channels); 212static LIST_HEAD(new_channels); 213static int last_channel_index; 214static atomic_t channel_count = ATOMIC_INIT(0); 215 216/* Get the PPP protocol number from a skb */ 217#define PPP_PROTO(skb) (((skb)->data[0] << 8) + (skb)->data[1]) 218 219/* We limit the length of ppp->file.rq to this (arbitrary) value */ 220#define PPP_MAX_RQLEN 32 221 222/* 223 * Maximum number of multilink fragments queued up. 224 * This has to be large enough to cope with the maximum latency of 225 * the slowest channel relative to the others. Strictly it should 226 * depend on the number of channels and their characteristics. 227 */ 228#define PPP_MP_MAX_QLEN 128 229 230/* Multilink header bits. */ 231#define B 0x80 /* this fragment begins a packet */ 232#define E 0x40 /* this fragment ends a packet */ 233 234/* Compare multilink sequence numbers (assumed to be 32 bits wide) */ 235#define seq_before(a, b) ((s32)((a) - (b)) < 0) 236#define seq_after(a, b) ((s32)((a) - (b)) > 0) 237 238/* Prototypes. */ 239static int ppp_unattached_ioctl(struct ppp_file *pf, struct file *file, 240 unsigned int cmd, unsigned long arg); 241static void ppp_xmit_process(struct ppp *ppp); 242static void ppp_send_frame(struct ppp *ppp, struct sk_buff *skb); 243static void ppp_push(struct ppp *ppp); 244static void ppp_channel_push(struct channel *pch); 245static void ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb, 246 struct channel *pch); 247static void ppp_receive_error(struct ppp *ppp); 248static void ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb); 249static struct sk_buff *ppp_decompress_frame(struct ppp *ppp, 250 struct sk_buff *skb); 251#ifdef CONFIG_PPP_MULTILINK 252static void ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb, 253 struct channel *pch); 254static void ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb); 255static struct sk_buff *ppp_mp_reconstruct(struct ppp *ppp); 256static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb); 257#endif /* CONFIG_PPP_MULTILINK */ 258static int ppp_set_compress(struct ppp *ppp, unsigned long arg); 259static void ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound); 260static void ppp_ccp_closed(struct ppp *ppp); 261static struct compressor *find_compressor(int type); 262static void ppp_get_stats(struct ppp *ppp, struct ppp_stats *st); 263static struct ppp *ppp_create_interface(int unit, int *retp); 264static void init_ppp_file(struct ppp_file *pf, int kind); 265static void ppp_shutdown_interface(struct ppp *ppp); 266static void ppp_destroy_interface(struct ppp *ppp); 267static struct ppp *ppp_find_unit(int unit); 268static struct channel *ppp_find_channel(int unit); 269static int ppp_connect_channel(struct channel *pch, int unit); 270static int ppp_disconnect_channel(struct channel *pch); 271static void ppp_destroy_channel(struct channel *pch); 272 273static struct class *ppp_class; 274 275/* Translates a PPP protocol number to a NP index (NP == network protocol) */ 276static inline int proto_to_npindex(int proto) 277{ 278 switch (proto) { 279 case PPP_IP: 280 return NP_IP; 281 case PPP_IPV6: 282 return NP_IPV6; 283 case PPP_IPX: 284 return NP_IPX; 285 case PPP_AT: 286 return NP_AT; 287 case PPP_MPLS_UC: 288 return NP_MPLS_UC; 289 case PPP_MPLS_MC: 290 return NP_MPLS_MC; 291 } 292 return -EINVAL; 293} 294 295/* Translates an NP index into a PPP protocol number */ 296static const int npindex_to_proto[NUM_NP] = { 297 PPP_IP, 298 PPP_IPV6, 299 PPP_IPX, 300 PPP_AT, 301 PPP_MPLS_UC, 302 PPP_MPLS_MC, 303}; 304 305/* Translates an ethertype into an NP index */ 306static inline int ethertype_to_npindex(int ethertype) 307{ 308 switch (ethertype) { 309 case ETH_P_IP: 310 return NP_IP; 311 case ETH_P_IPV6: 312 return NP_IPV6; 313 case ETH_P_IPX: 314 return NP_IPX; 315 case ETH_P_PPPTALK: 316 case ETH_P_ATALK: 317 return NP_AT; 318 case ETH_P_MPLS_UC: 319 return NP_MPLS_UC; 320 case ETH_P_MPLS_MC: 321 return NP_MPLS_MC; 322 } 323 return -1; 324} 325 326/* Translates an NP index into an ethertype */ 327static const int npindex_to_ethertype[NUM_NP] = { 328 ETH_P_IP, 329 ETH_P_IPV6, 330 ETH_P_IPX, 331 ETH_P_PPPTALK, 332 ETH_P_MPLS_UC, 333 ETH_P_MPLS_MC, 334}; 335 336/* 337 * Locking shorthand. 338 */ 339#define ppp_xmit_lock(ppp) spin_lock_bh(&(ppp)->wlock) 340#define ppp_xmit_unlock(ppp) spin_unlock_bh(&(ppp)->wlock) 341#define ppp_recv_lock(ppp) spin_lock_bh(&(ppp)->rlock) 342#define ppp_recv_unlock(ppp) spin_unlock_bh(&(ppp)->rlock) 343#define ppp_lock(ppp) do { ppp_xmit_lock(ppp); \ 344 ppp_recv_lock(ppp); } while (0) 345#define ppp_unlock(ppp) do { ppp_recv_unlock(ppp); \ 346 ppp_xmit_unlock(ppp); } while (0) 347 348/* 349 * /dev/ppp device routines. 350 * The /dev/ppp device is used by pppd to control the ppp unit. 351 * It supports the read, write, ioctl and poll functions. 352 * Open instances of /dev/ppp can be in one of three states: 353 * unattached, attached to a ppp unit, or attached to a ppp channel. 354 */ 355static int ppp_open(struct inode *inode, struct file *file) 356{ 357 /* 358 * This could (should?) be enforced by the permissions on /dev/ppp. 359 */ 360 if (!capable(CAP_NET_ADMIN)) 361 return -EPERM; 362 return 0; 363} 364 365static int ppp_release(struct inode *inode, struct file *file) 366{ 367 struct ppp_file *pf = file->private_data; 368 struct ppp *ppp; 369 370 if (pf != 0) { 371 file->private_data = NULL; 372 if (pf->kind == INTERFACE) { 373 ppp = PF_TO_PPP(pf); 374 if (file == ppp->owner) 375 ppp_shutdown_interface(ppp); 376 } 377 if (atomic_dec_and_test(&pf->refcnt)) { 378 switch (pf->kind) { 379 case INTERFACE: 380 ppp_destroy_interface(PF_TO_PPP(pf)); 381 break; 382 case CHANNEL: 383 ppp_destroy_channel(PF_TO_CHANNEL(pf)); 384 break; 385 } 386 } 387 } 388 return 0; 389} 390 391static ssize_t ppp_read(struct file *file, char __user *buf, 392 size_t count, loff_t *ppos) 393{ 394 struct ppp_file *pf = file->private_data; 395 DECLARE_WAITQUEUE(wait, current); 396 ssize_t ret; 397 struct sk_buff *skb = NULL; 398 399 ret = count; 400 401 if (pf == 0) 402 return -ENXIO; 403 add_wait_queue(&pf->rwait, &wait); 404 for (;;) { 405 set_current_state(TASK_INTERRUPTIBLE); 406 skb = skb_dequeue(&pf->rq); 407 if (skb) 408 break; 409 ret = 0; 410 if (pf->dead) 411 break; 412 if (pf->kind == INTERFACE) { 413 /* 414 * Return 0 (EOF) on an interface that has no 415 * channels connected, unless it is looping 416 * network traffic (demand mode). 417 */ 418 struct ppp *ppp = PF_TO_PPP(pf); 419 if (ppp->n_channels == 0 420 && (ppp->flags & SC_LOOP_TRAFFIC) == 0) 421 break; 422 } 423 ret = -EAGAIN; 424 if (file->f_flags & O_NONBLOCK) 425 break; 426 ret = -ERESTARTSYS; 427 if (signal_pending(current)) 428 break; 429 schedule(); 430 } 431 set_current_state(TASK_RUNNING); 432 remove_wait_queue(&pf->rwait, &wait); 433 434 if (skb == 0) 435 goto out; 436 437 ret = -EOVERFLOW; 438 if (skb->len > count) 439 goto outf; 440 ret = -EFAULT; 441 if (copy_to_user(buf, skb->data, skb->len)) 442 goto outf; 443 ret = skb->len; 444 445 outf: 446 kfree_skb(skb); 447 out: 448 return ret; 449} 450 451static ssize_t ppp_write(struct file *file, const char __user *buf, 452 size_t count, loff_t *ppos) 453{ 454 struct ppp_file *pf = file->private_data; 455 struct sk_buff *skb; 456 ssize_t ret; 457 458 if (pf == 0) 459 return -ENXIO; 460 ret = -ENOMEM; 461 skb = alloc_skb(count + pf->hdrlen, GFP_KERNEL); 462 if (skb == 0) 463 goto out; 464 skb_reserve(skb, pf->hdrlen); 465 ret = -EFAULT; 466 if (copy_from_user(skb_put(skb, count), buf, count)) { 467 kfree_skb(skb); 468 goto out; 469 } 470 471 skb_queue_tail(&pf->xq, skb); 472 473 switch (pf->kind) { 474 case INTERFACE: 475 ppp_xmit_process(PF_TO_PPP(pf)); 476 break; 477 case CHANNEL: 478 ppp_channel_push(PF_TO_CHANNEL(pf)); 479 break; 480 } 481 482 ret = count; 483 484 out: 485 return ret; 486} 487 488/* No kernel lock - fine */ 489static unsigned int ppp_poll(struct file *file, poll_table *wait) 490{ 491 struct ppp_file *pf = file->private_data; 492 unsigned int mask; 493 494 if (pf == 0) 495 return 0; 496 poll_wait(file, &pf->rwait, wait); 497 mask = POLLOUT | POLLWRNORM; 498 if (skb_peek(&pf->rq) != 0) 499 mask |= POLLIN | POLLRDNORM; 500 if (pf->dead) 501 mask |= POLLHUP; 502 else if (pf->kind == INTERFACE) { 503 /* see comment in ppp_read */ 504 struct ppp *ppp = PF_TO_PPP(pf); 505 if (ppp->n_channels == 0 506 && (ppp->flags & SC_LOOP_TRAFFIC) == 0) 507 mask |= POLLIN | POLLRDNORM; 508 } 509 510 return mask; 511} 512 513#ifdef CONFIG_PPP_FILTER 514static int get_filter(void __user *arg, struct sock_filter **p) 515{ 516 struct sock_fprog uprog; 517 struct sock_filter *code = NULL; 518 int len, err; 519 520 if (copy_from_user(&uprog, arg, sizeof(uprog))) 521 return -EFAULT; 522 523 if (!uprog.len) { 524 *p = NULL; 525 return 0; 526 } 527 528 len = uprog.len * sizeof(struct sock_filter); 529 code = kmalloc(len, GFP_KERNEL); 530 if (code == NULL) 531 return -ENOMEM; 532 533 if (copy_from_user(code, uprog.filter, len)) { 534 kfree(code); 535 return -EFAULT; 536 } 537 538 err = sk_chk_filter(code, uprog.len); 539 if (err) { 540 kfree(code); 541 return err; 542 } 543 544 *p = code; 545 return uprog.len; 546} 547#endif /* CONFIG_PPP_FILTER */ 548 549static int ppp_ioctl(struct inode *inode, struct file *file, 550 unsigned int cmd, unsigned long arg) 551{ 552 struct ppp_file *pf = file->private_data; 553 struct ppp *ppp; 554 int err = -EFAULT, val, val2, i; 555 struct ppp_idle idle; 556 struct npioctl npi; 557 int unit, cflags; 558 struct slcompress *vj; 559 void __user *argp = (void __user *)arg; 560 int __user *p = argp; 561 562 if (pf == 0) 563 return ppp_unattached_ioctl(pf, file, cmd, arg); 564 565 if (cmd == PPPIOCDETACH) { 566 /* 567 * We have to be careful here... if the file descriptor 568 * has been dup'd, we could have another process in the 569 * middle of a poll using the same file *, so we had 570 * better not free the interface data structures - 571 * instead we fail the ioctl. Even in this case, we 572 * shut down the interface if we are the owner of it. 573 * Actually, we should get rid of PPPIOCDETACH, userland 574 * (i.e. pppd) could achieve the same effect by closing 575 * this fd and reopening /dev/ppp. 576 */ 577 err = -EINVAL; 578 if (pf->kind == INTERFACE) { 579 ppp = PF_TO_PPP(pf); 580 if (file == ppp->owner) 581 ppp_shutdown_interface(ppp); 582 } 583 if (atomic_read(&file->f_count) <= 2) { 584 ppp_release(inode, file); 585 err = 0; 586 } else 587 printk(KERN_DEBUG "PPPIOCDETACH file->f_count=%d\n", 588 atomic_read(&file->f_count)); 589 return err; 590 } 591 592 if (pf->kind == CHANNEL) { 593 struct channel *pch = PF_TO_CHANNEL(pf); 594 struct ppp_channel *chan; 595 596 switch (cmd) { 597 case PPPIOCCONNECT: 598 if (get_user(unit, p)) 599 break; 600 err = ppp_connect_channel(pch, unit); 601 break; 602 603 case PPPIOCDISCONN: 604 err = ppp_disconnect_channel(pch); 605 break; 606 607 default: 608 down_read(&pch->chan_sem); 609 chan = pch->chan; 610 err = -ENOTTY; 611 if (chan && chan->ops->ioctl) 612 err = chan->ops->ioctl(chan, cmd, arg); 613 up_read(&pch->chan_sem); 614 } 615 return err; 616 } 617 618 if (pf->kind != INTERFACE) { 619 /* can't happen */ 620 printk(KERN_ERR "PPP: not interface or channel??\n"); 621 return -EINVAL; 622 } 623 624 ppp = PF_TO_PPP(pf); 625 switch (cmd) { 626 case PPPIOCSMRU: 627 if (get_user(val, p)) 628 break; 629 ppp->mru = val; 630 err = 0; 631 break; 632 633 case PPPIOCSFLAGS: 634 if (get_user(val, p)) 635 break; 636 ppp_lock(ppp); 637 cflags = ppp->flags & ~val; 638 ppp->flags = val & SC_FLAG_BITS; 639 ppp_unlock(ppp); 640 if (cflags & SC_CCP_OPEN) 641 ppp_ccp_closed(ppp); 642 err = 0; 643 break; 644 645 case PPPIOCGFLAGS: 646 val = ppp->flags | ppp->xstate | ppp->rstate; 647 if (put_user(val, p)) 648 break; 649 err = 0; 650 break; 651 652 case PPPIOCSCOMPRESS: 653 err = ppp_set_compress(ppp, arg); 654 break; 655 656 case PPPIOCGUNIT: 657 if (put_user(ppp->file.index, p)) 658 break; 659 err = 0; 660 break; 661 662 case PPPIOCSDEBUG: 663 if (get_user(val, p)) 664 break; 665 ppp->debug = val; 666 err = 0; 667 break; 668 669 case PPPIOCGDEBUG: 670 if (put_user(ppp->debug, p)) 671 break; 672 err = 0; 673 break; 674 675 case PPPIOCGIDLE: 676 idle.xmit_idle = (jiffies - ppp->last_xmit) / HZ; 677 idle.recv_idle = (jiffies - ppp->last_recv) / HZ; 678 if (copy_to_user(argp, &idle, sizeof(idle))) 679 break; 680 err = 0; 681 break; 682 683 case PPPIOCSMAXCID: 684 if (get_user(val, p)) 685 break; 686 val2 = 15; 687 if ((val >> 16) != 0) { 688 val2 = val >> 16; 689 val &= 0xffff; 690 } 691 vj = slhc_init(val2+1, val+1); 692 if (vj == 0) { 693 printk(KERN_ERR "PPP: no memory (VJ compressor)\n"); 694 err = -ENOMEM; 695 break; 696 } 697 ppp_lock(ppp); 698 if (ppp->vj != 0) 699 slhc_free(ppp->vj); 700 ppp->vj = vj; 701 ppp_unlock(ppp); 702 err = 0; 703 break; 704 705 case PPPIOCGNPMODE: 706 case PPPIOCSNPMODE: 707 if (copy_from_user(&npi, argp, sizeof(npi))) 708 break; 709 err = proto_to_npindex(npi.protocol); 710 if (err < 0) 711 break; 712 i = err; 713 if (cmd == PPPIOCGNPMODE) { 714 err = -EFAULT; 715 npi.mode = ppp->npmode[i]; 716 if (copy_to_user(argp, &npi, sizeof(npi))) 717 break; 718 } else { 719 ppp->npmode[i] = npi.mode; 720 /* we may be able to transmit more packets now (??) */ 721 netif_wake_queue(ppp->dev); 722 } 723 err = 0; 724 break; 725 726#ifdef CONFIG_PPP_FILTER 727 case PPPIOCSPASS: 728 { 729 struct sock_filter *code; 730 err = get_filter(argp, &code); 731 if (err >= 0) { 732 ppp_lock(ppp); 733 kfree(ppp->pass_filter); 734 ppp->pass_filter = code; 735 ppp->pass_len = err; 736 ppp_unlock(ppp); 737 err = 0; 738 } 739 break; 740 } 741 case PPPIOCSACTIVE: 742 { 743 struct sock_filter *code; 744 err = get_filter(argp, &code); 745 if (err >= 0) { 746 ppp_lock(ppp); 747 kfree(ppp->active_filter); 748 ppp->active_filter = code; 749 ppp->active_len = err; 750 ppp_unlock(ppp); 751 err = 0; 752 } 753 break; 754 } 755#endif /* CONFIG_PPP_FILTER */ 756 757#ifdef CONFIG_PPP_MULTILINK 758 case PPPIOCSMRRU: 759 if (get_user(val, p)) 760 break; 761 ppp_recv_lock(ppp); 762 ppp->mrru = val; 763 ppp_recv_unlock(ppp); 764 err = 0; 765 break; 766#endif /* CONFIG_PPP_MULTILINK */ 767 768 default: 769 err = -ENOTTY; 770 } 771 772 return err; 773} 774 775static int ppp_unattached_ioctl(struct ppp_file *pf, struct file *file, 776 unsigned int cmd, unsigned long arg) 777{ 778 int unit, err = -EFAULT; 779 struct ppp *ppp; 780 struct channel *chan; 781 int __user *p = (int __user *)arg; 782 783 switch (cmd) { 784 case PPPIOCNEWUNIT: 785 /* Create a new ppp unit */ 786 if (get_user(unit, p)) 787 break; 788 ppp = ppp_create_interface(unit, &err); 789 if (ppp == 0) 790 break; 791 file->private_data = &ppp->file; 792 ppp->owner = file; 793 err = -EFAULT; 794 if (put_user(ppp->file.index, p)) 795 break; 796 err = 0; 797 break; 798 799 case PPPIOCATTACH: 800 /* Attach to an existing ppp unit */ 801 if (get_user(unit, p)) 802 break; 803 mutex_lock(&all_ppp_mutex); 804 err = -ENXIO; 805 ppp = ppp_find_unit(unit); 806 if (ppp != 0) { 807 atomic_inc(&ppp->file.refcnt); 808 file->private_data = &ppp->file; 809 err = 0; 810 } 811 mutex_unlock(&all_ppp_mutex); 812 break; 813 814 case PPPIOCATTCHAN: 815 if (get_user(unit, p)) 816 break; 817 spin_lock_bh(&all_channels_lock); 818 err = -ENXIO; 819 chan = ppp_find_channel(unit); 820 if (chan != 0) { 821 atomic_inc(&chan->file.refcnt); 822 file->private_data = &chan->file; 823 err = 0; 824 } 825 spin_unlock_bh(&all_channels_lock); 826 break; 827 828 default: 829 err = -ENOTTY; 830 } 831 return err; 832} 833 834static const struct file_operations ppp_device_fops = { 835 .owner = THIS_MODULE, 836 .read = ppp_read, 837 .write = ppp_write, 838 .poll = ppp_poll, 839 .ioctl = ppp_ioctl, 840 .open = ppp_open, 841 .release = ppp_release 842}; 843 844#define PPP_MAJOR 108 845 846/* Called at boot time if ppp is compiled into the kernel, 847 or at module load time (from init_module) if compiled as a module. */ 848static int __init ppp_init(void) 849{ 850 int err; 851 852 printk(KERN_INFO "PPP generic driver version " PPP_VERSION "\n"); 853 err = register_chrdev(PPP_MAJOR, "ppp", &ppp_device_fops); 854 if (!err) { 855 ppp_class = class_create(THIS_MODULE, "ppp"); 856 if (IS_ERR(ppp_class)) { 857 err = PTR_ERR(ppp_class); 858 goto out_chrdev; 859 } 860 device_create(ppp_class, NULL, MKDEV(PPP_MAJOR, 0), "ppp"); 861 } 862 863out: 864 if (err) 865 printk(KERN_ERR "failed to register PPP device (%d)\n", err); 866 return err; 867 868out_chrdev: 869 unregister_chrdev(PPP_MAJOR, "ppp"); 870 goto out; 871} 872 873/* 874 * Network interface unit routines. 875 */ 876static int 877ppp_start_xmit(struct sk_buff *skb, struct net_device *dev) 878{ 879 struct ppp *ppp = (struct ppp *) dev->priv; 880 int npi, proto; 881 unsigned char *pp; 882 883 npi = ethertype_to_npindex(ntohs(skb->protocol)); 884 if (npi < 0) 885 goto outf; 886 887 /* Drop, accept or reject the packet */ 888 switch (ppp->npmode[npi]) { 889 case NPMODE_PASS: 890 break; 891 case NPMODE_QUEUE: 892 /* it would be nice to have a way to tell the network 893 system to queue this one up for later. */ 894 goto outf; 895 case NPMODE_DROP: 896 case NPMODE_ERROR: 897 goto outf; 898 } 899 900 /* Put the 2-byte PPP protocol number on the front, 901 making sure there is room for the address and control fields. */ 902 if (skb_cow_head(skb, PPP_HDRLEN)) 903 goto outf; 904 905 pp = skb_push(skb, 2); 906 proto = npindex_to_proto[npi]; 907 pp[0] = proto >> 8; 908 pp[1] = proto; 909 910 netif_stop_queue(dev); 911 skb_queue_tail(&ppp->file.xq, skb); 912 ppp_xmit_process(ppp); 913 return 0; 914 915 outf: 916 kfree_skb(skb); 917 ++ppp->stats.tx_dropped; 918 return 0; 919} 920 921static struct net_device_stats * 922ppp_net_stats(struct net_device *dev) 923{ 924 struct ppp *ppp = (struct ppp *) dev->priv; 925 926 return &ppp->stats; 927} 928 929static int 930ppp_net_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 931{ 932 struct ppp *ppp = dev->priv; 933 int err = -EFAULT; 934 void __user *addr = (void __user *) ifr->ifr_ifru.ifru_data; 935 struct ppp_stats stats; 936 struct ppp_comp_stats cstats; 937 char *vers; 938 939 switch (cmd) { 940 case SIOCGPPPSTATS: 941 ppp_get_stats(ppp, &stats); 942 if (copy_to_user(addr, &stats, sizeof(stats))) 943 break; 944 err = 0; 945 break; 946 947 case SIOCGPPPCSTATS: 948 memset(&cstats, 0, sizeof(cstats)); 949 if (ppp->xc_state != 0) 950 ppp->xcomp->comp_stat(ppp->xc_state, &cstats.c); 951 if (ppp->rc_state != 0) 952 ppp->rcomp->decomp_stat(ppp->rc_state, &cstats.d); 953 if (copy_to_user(addr, &cstats, sizeof(cstats))) 954 break; 955 err = 0; 956 break; 957 958 case SIOCGPPPVER: 959 vers = PPP_VERSION; 960 if (copy_to_user(addr, vers, strlen(vers) + 1)) 961 break; 962 err = 0; 963 break; 964 965 default: 966 err = -EINVAL; 967 } 968 969 return err; 970} 971 972static void ppp_setup(struct net_device *dev) 973{ 974 dev->hard_header_len = PPP_HDRLEN; 975 dev->mtu = PPP_MTU; 976 dev->addr_len = 0; 977 dev->tx_queue_len = 3; 978 dev->type = ARPHRD_PPP; 979 dev->flags = IFF_POINTOPOINT | IFF_NOARP | IFF_MULTICAST; 980} 981 982/* 983 * Transmit-side routines. 984 */ 985 986/* 987 * Called to do any work queued up on the transmit side 988 * that can now be done. 989 */ 990static void 991ppp_xmit_process(struct ppp *ppp) 992{ 993 struct sk_buff *skb; 994 995 ppp_xmit_lock(ppp); 996 if (ppp->dev != 0) { 997 ppp_push(ppp); 998 while (ppp->xmit_pending == 0 999 && (skb = skb_dequeue(&ppp->file.xq)) != 0) 1000 ppp_send_frame(ppp, skb); 1001 /* If there's no work left to do, tell the core net 1002 code that we can accept some more. */ 1003 if (ppp->xmit_pending == 0 && skb_peek(&ppp->file.xq) == 0) 1004 netif_wake_queue(ppp->dev); 1005 } 1006 ppp_xmit_unlock(ppp); 1007} 1008 1009static inline struct sk_buff * 1010pad_compress_skb(struct ppp *ppp, struct sk_buff *skb) 1011{ 1012 struct sk_buff *new_skb; 1013 int len; 1014 int new_skb_size = ppp->dev->mtu + 1015 ppp->xcomp->comp_extra + ppp->dev->hard_header_len; 1016 int compressor_skb_size = ppp->dev->mtu + 1017 ppp->xcomp->comp_extra + PPP_HDRLEN; 1018 new_skb = alloc_skb(new_skb_size, GFP_ATOMIC); 1019 if (!new_skb) { 1020 if (net_ratelimit()) 1021 printk(KERN_ERR "PPP: no memory (comp pkt)\n"); 1022 return NULL; 1023 } 1024 if (ppp->dev->hard_header_len > PPP_HDRLEN) 1025 skb_reserve(new_skb, 1026 ppp->dev->hard_header_len - PPP_HDRLEN); 1027 1028 /* compressor still expects A/C bytes in hdr */ 1029 len = ppp->xcomp->compress(ppp->xc_state, skb->data - 2, 1030 new_skb->data, skb->len + 2, 1031 compressor_skb_size); 1032 if (len > 0 && (ppp->flags & SC_CCP_UP)) { 1033 kfree_skb(skb); 1034 skb = new_skb; 1035 skb_put(skb, len); 1036 skb_pull(skb, 2); /* pull off A/C bytes */ 1037 } else if (len == 0) { 1038 /* didn't compress, or CCP not up yet */ 1039 kfree_skb(new_skb); 1040 new_skb = skb; 1041 } else { 1042 /* 1043 * (len < 0) 1044 * MPPE requires that we do not send unencrypted 1045 * frames. The compressor will return -1 if we 1046 * should drop the frame. We cannot simply test 1047 * the compress_proto because MPPE and MPPC share 1048 * the same number. 1049 */ 1050 if (net_ratelimit()) 1051 printk(KERN_ERR "ppp: compressor dropped pkt\n"); 1052 kfree_skb(skb); 1053 kfree_skb(new_skb); 1054 new_skb = NULL; 1055 } 1056 return new_skb; 1057} 1058 1059/* 1060 * Compress and send a frame. 1061 * The caller should have locked the xmit path, 1062 * and xmit_pending should be 0. 1063 */ 1064static void 1065ppp_send_frame(struct ppp *ppp, struct sk_buff *skb) 1066{ 1067 int proto = PPP_PROTO(skb); 1068 struct sk_buff *new_skb; 1069 int len; 1070 unsigned char *cp; 1071 1072 if (proto < 0x8000) { 1073#ifdef CONFIG_PPP_FILTER 1074 /* check if we should pass this packet */ 1075 /* the filter instructions are constructed assuming 1076 a four-byte PPP header on each packet */ 1077 *skb_push(skb, 2) = 1; 1078 if (ppp->pass_filter 1079 && sk_run_filter(skb, ppp->pass_filter, 1080 ppp->pass_len) == 0) { 1081 if (ppp->debug & 1) 1082 printk(KERN_DEBUG "PPP: outbound frame not passed\n"); 1083 kfree_skb(skb); 1084 return; 1085 } 1086 /* if this packet passes the active filter, record the time */ 1087 if (!(ppp->active_filter 1088 && sk_run_filter(skb, ppp->active_filter, 1089 ppp->active_len) == 0)) 1090 ppp->last_xmit = jiffies; 1091 skb_pull(skb, 2); 1092#else 1093 /* for data packets, record the time */ 1094 ppp->last_xmit = jiffies; 1095#endif /* CONFIG_PPP_FILTER */ 1096 } 1097 1098 ++ppp->stats.tx_packets; 1099 ppp->stats.tx_bytes += skb->len - 2; 1100 1101 switch (proto) { 1102 case PPP_IP: 1103 if (ppp->vj == 0 || (ppp->flags & SC_COMP_TCP) == 0) 1104 break; 1105 /* try to do VJ TCP header compression */ 1106 new_skb = alloc_skb(skb->len + ppp->dev->hard_header_len - 2, 1107 GFP_ATOMIC); 1108 if (new_skb == 0) { 1109 printk(KERN_ERR "PPP: no memory (VJ comp pkt)\n"); 1110 goto drop; 1111 } 1112 skb_reserve(new_skb, ppp->dev->hard_header_len - 2); 1113 cp = skb->data + 2; 1114 len = slhc_compress(ppp->vj, cp, skb->len - 2, 1115 new_skb->data + 2, &cp, 1116 !(ppp->flags & SC_NO_TCP_CCID)); 1117 if (cp == skb->data + 2) { 1118 /* didn't compress */ 1119 kfree_skb(new_skb); 1120 } else { 1121 if (cp[0] & SL_TYPE_COMPRESSED_TCP) { 1122 proto = PPP_VJC_COMP; 1123 cp[0] &= ~SL_TYPE_COMPRESSED_TCP; 1124 } else { 1125 proto = PPP_VJC_UNCOMP; 1126 cp[0] = skb->data[2]; 1127 } 1128 kfree_skb(skb); 1129 skb = new_skb; 1130 cp = skb_put(skb, len + 2); 1131 cp[0] = 0; 1132 cp[1] = proto; 1133 } 1134 break; 1135 1136 case PPP_CCP: 1137 /* peek at outbound CCP frames */ 1138 ppp_ccp_peek(ppp, skb, 0); 1139 break; 1140 } 1141 1142 /* try to do packet compression */ 1143 if ((ppp->xstate & SC_COMP_RUN) && ppp->xc_state != 0 1144 && proto != PPP_LCP && proto != PPP_CCP) { 1145 if (!(ppp->flags & SC_CCP_UP) && (ppp->flags & SC_MUST_COMP)) { 1146 if (net_ratelimit()) 1147 printk(KERN_ERR "ppp: compression required but down - pkt dropped.\n"); 1148 goto drop; 1149 } 1150 skb = pad_compress_skb(ppp, skb); 1151 if (!skb) 1152 goto drop; 1153 } 1154 1155 /* 1156 * If we are waiting for traffic (demand dialling), 1157 * queue it up for pppd to receive. 1158 */ 1159 if (ppp->flags & SC_LOOP_TRAFFIC) { 1160 if (ppp->file.rq.qlen > PPP_MAX_RQLEN) 1161 goto drop; 1162 skb_queue_tail(&ppp->file.rq, skb); 1163 wake_up_interruptible(&ppp->file.rwait); 1164 return; 1165 } 1166 1167 ppp->xmit_pending = skb; 1168 ppp_push(ppp); 1169 return; 1170 1171 drop: 1172 if (skb) 1173 kfree_skb(skb); 1174 ++ppp->stats.tx_errors; 1175} 1176 1177/* 1178 * Try to send the frame in xmit_pending. 1179 * The caller should have the xmit path locked. 1180 */ 1181static void 1182ppp_push(struct ppp *ppp) 1183{ 1184 struct list_head *list; 1185 struct channel *pch; 1186 struct sk_buff *skb = ppp->xmit_pending; 1187 1188 if (skb == 0) 1189 return; 1190 1191 list = &ppp->channels; 1192 if (list_empty(list)) { 1193 /* nowhere to send the packet, just drop it */ 1194 ppp->xmit_pending = NULL; 1195 kfree_skb(skb); 1196 return; 1197 } 1198 1199 if ((ppp->flags & SC_MULTILINK) == 0) { 1200 /* not doing multilink: send it down the first channel */ 1201 list = list->next; 1202 pch = list_entry(list, struct channel, clist); 1203 1204 spin_lock_bh(&pch->downl); 1205 if (pch->chan) { 1206 if (pch->chan->ops->start_xmit(pch->chan, skb)) 1207 ppp->xmit_pending = NULL; 1208 } else { 1209 /* channel got unregistered */ 1210 kfree_skb(skb); 1211 ppp->xmit_pending = NULL; 1212 } 1213 spin_unlock_bh(&pch->downl); 1214 return; 1215 } 1216 1217#ifdef CONFIG_PPP_MULTILINK 1218 /* Multilink: fragment the packet over as many links 1219 as can take the packet at the moment. */ 1220 if (!ppp_mp_explode(ppp, skb)) 1221 return; 1222#endif /* CONFIG_PPP_MULTILINK */ 1223 1224 ppp->xmit_pending = NULL; 1225 kfree_skb(skb); 1226} 1227 1228#ifdef CONFIG_PPP_MULTILINK 1229/* 1230 * Divide a packet to be transmitted into fragments and 1231 * send them out the individual links. 1232 */ 1233static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb) 1234{ 1235 int len, fragsize; 1236 int i, bits, hdrlen, mtu; 1237 int flen; 1238 int navail, nfree; 1239 int nbigger; 1240 unsigned char *p, *q; 1241 struct list_head *list; 1242 struct channel *pch; 1243 struct sk_buff *frag; 1244 struct ppp_channel *chan; 1245 1246 nfree = 0; /* # channels which have no packet already queued */ 1247 navail = 0; /* total # of usable channels (not deregistered) */ 1248 hdrlen = (ppp->flags & SC_MP_XSHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN; 1249 i = 0; 1250 list_for_each_entry(pch, &ppp->channels, clist) { 1251 navail += pch->avail = (pch->chan != NULL); 1252 if (pch->avail) { 1253 if (skb_queue_empty(&pch->file.xq) || 1254 !pch->had_frag) { 1255 pch->avail = 2; 1256 ++nfree; 1257 } 1258 if (!pch->had_frag && i < ppp->nxchan) 1259 ppp->nxchan = i; 1260 } 1261 ++i; 1262 } 1263 1264 /* 1265 * Don't start sending this packet unless at least half of 1266 * the channels are free. This gives much better TCP 1267 * performance if we have a lot of channels. 1268 */ 1269 if (nfree == 0 || nfree < navail / 2) 1270 return 0; /* can't take now, leave it in xmit_pending */ 1271 1272 /* Do protocol field compression (XXX this should be optional) */ 1273 p = skb->data; 1274 len = skb->len; 1275 if (*p == 0) { 1276 ++p; 1277 --len; 1278 } 1279 1280 /* 1281 * Decide on fragment size. 1282 * We create a fragment for each free channel regardless of 1283 * how small they are (i.e. even 0 length) in order to minimize 1284 * the time that it will take to detect when a channel drops 1285 * a fragment. 1286 */ 1287 fragsize = len; 1288 if (nfree > 1) 1289 fragsize = DIV_ROUND_UP(fragsize, nfree); 1290 /* nbigger channels get fragsize bytes, the rest get fragsize-1, 1291 except if nbigger==0, then they all get fragsize. */ 1292 nbigger = len % nfree; 1293 1294 /* skip to the channel after the one we last used 1295 and start at that one */ 1296 list = &ppp->channels; 1297 for (i = 0; i < ppp->nxchan; ++i) { 1298 list = list->next; 1299 if (list == &ppp->channels) { 1300 i = 0; 1301 break; 1302 } 1303 } 1304 1305 /* create a fragment for each channel */ 1306 bits = B; 1307 while (nfree > 0 || len > 0) { 1308 list = list->next; 1309 if (list == &ppp->channels) { 1310 i = 0; 1311 continue; 1312 } 1313 pch = list_entry(list, struct channel, clist); 1314 ++i; 1315 if (!pch->avail) 1316 continue; 1317 1318 /* 1319 * Skip this channel if it has a fragment pending already and 1320 * we haven't given a fragment to all of the free channels. 1321 */ 1322 if (pch->avail == 1) { 1323 if (nfree > 0) 1324 continue; 1325 } else { 1326 --nfree; 1327 pch->avail = 1; 1328 } 1329 1330 /* check the channel's mtu and whether it is still attached. */ 1331 spin_lock_bh(&pch->downl); 1332 if (pch->chan == NULL) { 1333 /* can't use this channel, it's being deregistered */ 1334 spin_unlock_bh(&pch->downl); 1335 pch->avail = 0; 1336 if (--navail == 0) 1337 break; 1338 continue; 1339 } 1340 1341 /* 1342 * Create a fragment for this channel of 1343 * min(max(mtu+2-hdrlen, 4), fragsize, len) bytes. 1344 * If mtu+2-hdrlen < 4, that is a ridiculously small 1345 * MTU, so we use mtu = 2 + hdrlen. 1346 */ 1347 if (fragsize > len) 1348 fragsize = len; 1349 flen = fragsize; 1350 mtu = pch->chan->mtu + 2 - hdrlen; 1351 if (mtu < 4) 1352 mtu = 4; 1353 if (flen > mtu) 1354 flen = mtu; 1355 if (flen == len && nfree == 0) 1356 bits |= E; 1357 frag = alloc_skb(flen + hdrlen + (flen == 0), GFP_ATOMIC); 1358 if (frag == 0) 1359 goto noskb; 1360 q = skb_put(frag, flen + hdrlen); 1361 1362 /* make the MP header */ 1363 q[0] = PPP_MP >> 8; 1364 q[1] = PPP_MP; 1365 if (ppp->flags & SC_MP_XSHORTSEQ) { 1366 q[2] = bits + ((ppp->nxseq >> 8) & 0xf); 1367 q[3] = ppp->nxseq; 1368 } else { 1369 q[2] = bits; 1370 q[3] = ppp->nxseq >> 16; 1371 q[4] = ppp->nxseq >> 8; 1372 q[5] = ppp->nxseq; 1373 } 1374 1375 /* 1376 * Copy the data in. 1377 * Unfortunately there is a bug in older versions of 1378 * the Linux PPP multilink reconstruction code where it 1379 * drops 0-length fragments. Therefore we make sure the 1380 * fragment has at least one byte of data. Any bytes 1381 * we add in this situation will end up as padding on the 1382 * end of the reconstructed packet. 1383 */ 1384 if (flen == 0) 1385 *skb_put(frag, 1) = 0; 1386 else 1387 memcpy(q + hdrlen, p, flen); 1388 1389 /* try to send it down the channel */ 1390 chan = pch->chan; 1391 if (!skb_queue_empty(&pch->file.xq) || 1392 !chan->ops->start_xmit(chan, frag)) 1393 skb_queue_tail(&pch->file.xq, frag); 1394 pch->had_frag = 1; 1395 p += flen; 1396 len -= flen; 1397 ++ppp->nxseq; 1398 bits = 0; 1399 spin_unlock_bh(&pch->downl); 1400 1401 if (--nbigger == 0 && fragsize > 0) 1402 --fragsize; 1403 } 1404 ppp->nxchan = i; 1405 1406 return 1; 1407 1408 noskb: 1409 spin_unlock_bh(&pch->downl); 1410 if (ppp->debug & 1) 1411 printk(KERN_ERR "PPP: no memory (fragment)\n"); 1412 ++ppp->stats.tx_errors; 1413 ++ppp->nxseq; 1414 return 1; /* abandon the frame */ 1415} 1416#endif /* CONFIG_PPP_MULTILINK */ 1417 1418/* 1419 * Try to send data out on a channel. 1420 */ 1421static void 1422ppp_channel_push(struct channel *pch) 1423{ 1424 struct sk_buff *skb; 1425 struct ppp *ppp; 1426 1427 spin_lock_bh(&pch->downl); 1428 if (pch->chan != 0) { 1429 while (!skb_queue_empty(&pch->file.xq)) { 1430 skb = skb_dequeue(&pch->file.xq); 1431 if (!pch->chan->ops->start_xmit(pch->chan, skb)) { 1432 /* put the packet back and try again later */ 1433 skb_queue_head(&pch->file.xq, skb); 1434 break; 1435 } 1436 } 1437 } else { 1438 /* channel got deregistered */ 1439 skb_queue_purge(&pch->file.xq); 1440 } 1441 spin_unlock_bh(&pch->downl); 1442 /* see if there is anything from the attached unit to be sent */ 1443 if (skb_queue_empty(&pch->file.xq)) { 1444 read_lock_bh(&pch->upl); 1445 ppp = pch->ppp; 1446 if (ppp != 0) 1447 ppp_xmit_process(ppp); 1448 read_unlock_bh(&pch->upl); 1449 } 1450} 1451 1452/* 1453 * Receive-side routines. 1454 */ 1455 1456/* misuse a few fields of the skb for MP reconstruction */ 1457#define sequence priority 1458#define BEbits cb[0] 1459 1460static inline void 1461ppp_do_recv(struct ppp *ppp, struct sk_buff *skb, struct channel *pch) 1462{ 1463 ppp_recv_lock(ppp); 1464 /* ppp->dev == 0 means interface is closing down */ 1465 if (ppp->dev != 0) 1466 ppp_receive_frame(ppp, skb, pch); 1467 else 1468 kfree_skb(skb); 1469 ppp_recv_unlock(ppp); 1470} 1471 1472void 1473ppp_input(struct ppp_channel *chan, struct sk_buff *skb) 1474{ 1475 struct channel *pch = chan->ppp; 1476 int proto; 1477 1478 if (pch == 0 || skb->len == 0) { 1479 kfree_skb(skb); 1480 return; 1481 } 1482 1483 proto = PPP_PROTO(skb); 1484 read_lock_bh(&pch->upl); 1485 if (pch->ppp == 0 || proto >= 0xc000 || proto == PPP_CCPFRAG) { 1486 /* put it on the channel queue */ 1487 skb_queue_tail(&pch->file.rq, skb); 1488 /* drop old frames if queue too long */ 1489 while (pch->file.rq.qlen > PPP_MAX_RQLEN 1490 && (skb = skb_dequeue(&pch->file.rq)) != 0) 1491 kfree_skb(skb); 1492 wake_up_interruptible(&pch->file.rwait); 1493 } else { 1494 ppp_do_recv(pch->ppp, skb, pch); 1495 } 1496 read_unlock_bh(&pch->upl); 1497} 1498 1499/* Put a 0-length skb in the receive queue as an error indication */ 1500void 1501ppp_input_error(struct ppp_channel *chan, int code) 1502{ 1503 struct channel *pch = chan->ppp; 1504 struct sk_buff *skb; 1505 1506 if (pch == 0) 1507 return; 1508 1509 read_lock_bh(&pch->upl); 1510 if (pch->ppp != 0) { 1511 skb = alloc_skb(0, GFP_ATOMIC); 1512 if (skb != 0) { 1513 skb->len = 0; /* probably unnecessary */ 1514 skb->cb[0] = code; 1515 ppp_do_recv(pch->ppp, skb, pch); 1516 } 1517 } 1518 read_unlock_bh(&pch->upl); 1519} 1520 1521/* 1522 * We come in here to process a received frame. 1523 * The receive side of the ppp unit is locked. 1524 */ 1525static void 1526ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch) 1527{ 1528 if (pskb_may_pull(skb, 2)) { 1529#ifdef CONFIG_PPP_MULTILINK 1530 /* XXX do channel-level decompression here */ 1531 if (PPP_PROTO(skb) == PPP_MP) 1532 ppp_receive_mp_frame(ppp, skb, pch); 1533 else 1534#endif /* CONFIG_PPP_MULTILINK */ 1535 ppp_receive_nonmp_frame(ppp, skb); 1536 return; 1537 } 1538 1539 if (skb->len > 0) 1540 /* note: a 0-length skb is used as an error indication */ 1541 ++ppp->stats.rx_length_errors; 1542 1543 kfree_skb(skb); 1544 ppp_receive_error(ppp); 1545} 1546 1547static void 1548ppp_receive_error(struct ppp *ppp) 1549{ 1550 ++ppp->stats.rx_errors; 1551 if (ppp->vj != 0) 1552 slhc_toss(ppp->vj); 1553} 1554 1555static void 1556ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb) 1557{ 1558 struct sk_buff *ns; 1559 int proto, len, npi; 1560 1561 /* 1562 * Decompress the frame, if compressed. 1563 * Note that some decompressors need to see uncompressed frames 1564 * that come in as well as compressed frames. 1565 */ 1566 if (ppp->rc_state != 0 && (ppp->rstate & SC_DECOMP_RUN) 1567 && (ppp->rstate & (SC_DC_FERROR | SC_DC_ERROR)) == 0) 1568 skb = ppp_decompress_frame(ppp, skb); 1569 1570 if (ppp->flags & SC_MUST_COMP && ppp->rstate & SC_DC_FERROR) 1571 goto err; 1572 1573 proto = PPP_PROTO(skb); 1574 switch (proto) { 1575 case PPP_VJC_COMP: 1576 /* decompress VJ compressed packets */ 1577 if (ppp->vj == 0 || (ppp->flags & SC_REJ_COMP_TCP)) 1578 goto err; 1579 1580 if (skb_tailroom(skb) < 124 || skb_cloned(skb)) { 1581 /* copy to a new sk_buff with more tailroom */ 1582 ns = dev_alloc_skb(skb->len + 128); 1583 if (ns == 0) { 1584 printk(KERN_ERR"PPP: no memory (VJ decomp)\n"); 1585 goto err; 1586 } 1587 skb_reserve(ns, 2); 1588 skb_copy_bits(skb, 0, skb_put(ns, skb->len), skb->len); 1589 kfree_skb(skb); 1590 skb = ns; 1591 } 1592 else 1593 skb->ip_summed = CHECKSUM_NONE; 1594 1595 len = slhc_uncompress(ppp->vj, skb->data + 2, skb->len - 2); 1596 if (len <= 0) { 1597 printk(KERN_DEBUG "PPP: VJ decompression error\n"); 1598 goto err; 1599 } 1600 len += 2; 1601 if (len > skb->len) 1602 skb_put(skb, len - skb->len); 1603 else if (len < skb->len) 1604 skb_trim(skb, len); 1605 proto = PPP_IP; 1606 break; 1607 1608 case PPP_VJC_UNCOMP: 1609 if (ppp->vj == 0 || (ppp->flags & SC_REJ_COMP_TCP)) 1610 goto err; 1611 1612 /* Until we fix the decompressor need to make sure 1613 * data portion is linear. 1614 */ 1615 if (!pskb_may_pull(skb, skb->len)) 1616 goto err; 1617 1618 if (slhc_remember(ppp->vj, skb->data + 2, skb->len - 2) <= 0) { 1619 printk(KERN_ERR "PPP: VJ uncompressed error\n"); 1620 goto err; 1621 } 1622 proto = PPP_IP; 1623 break; 1624 1625 case PPP_CCP: 1626 ppp_ccp_peek(ppp, skb, 1); 1627 break; 1628 } 1629 1630 ++ppp->stats.rx_packets; 1631 ppp->stats.rx_bytes += skb->len - 2; 1632 1633 npi = proto_to_npindex(proto); 1634 if (npi < 0) { 1635 /* control or unknown frame - pass it to pppd */ 1636 skb_queue_tail(&ppp->file.rq, skb); 1637 /* limit queue length by dropping old frames */ 1638 while (ppp->file.rq.qlen > PPP_MAX_RQLEN 1639 && (skb = skb_dequeue(&ppp->file.rq)) != 0) 1640 kfree_skb(skb); 1641 /* wake up any process polling or blocking on read */ 1642 wake_up_interruptible(&ppp->file.rwait); 1643 1644 } else { 1645 /* network protocol frame - give it to the kernel */ 1646 1647#ifdef CONFIG_PPP_FILTER 1648 /* check if the packet passes the pass and active filters */ 1649 /* the filter instructions are constructed assuming 1650 a four-byte PPP header on each packet */ 1651 if (ppp->pass_filter || ppp->active_filter) { 1652 if (skb_cloned(skb) && 1653 pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) 1654 goto err; 1655 1656 *skb_push(skb, 2) = 0; 1657 if (ppp->pass_filter 1658 && sk_run_filter(skb, ppp->pass_filter, 1659 ppp->pass_len) == 0) { 1660 if (ppp->debug & 1) 1661 printk(KERN_DEBUG "PPP: inbound frame " 1662 "not passed\n"); 1663 kfree_skb(skb); 1664 return; 1665 } 1666 if (!(ppp->active_filter 1667 && sk_run_filter(skb, ppp->active_filter, 1668 ppp->active_len) == 0)) 1669 ppp->last_recv = jiffies; 1670 __skb_pull(skb, 2); 1671 } else 1672#endif /* CONFIG_PPP_FILTER */ 1673 ppp->last_recv = jiffies; 1674 1675 if ((ppp->dev->flags & IFF_UP) == 0 1676 || ppp->npmode[npi] != NPMODE_PASS) { 1677 kfree_skb(skb); 1678 } else { 1679 /* chop off protocol */ 1680 skb_pull_rcsum(skb, 2); 1681 skb->dev = ppp->dev; 1682 skb->protocol = htons(npindex_to_ethertype[npi]); 1683 skb_reset_mac_header(skb); 1684 netif_rx(skb); 1685 ppp->dev->last_rx = jiffies; 1686 } 1687 } 1688 return; 1689 1690 err: 1691 kfree_skb(skb); 1692 ppp_receive_error(ppp); 1693} 1694 1695static struct sk_buff * 1696ppp_decompress_frame(struct ppp *ppp, struct sk_buff *skb) 1697{ 1698 int proto = PPP_PROTO(skb); 1699 struct sk_buff *ns; 1700 int len; 1701 1702 /* Until we fix all the decompressor's need to make sure 1703 * data portion is linear. 1704 */ 1705 if (!pskb_may_pull(skb, skb->len)) 1706 goto err; 1707 1708 if (proto == PPP_COMP) { 1709 int obuff_size; 1710 1711 switch(ppp->rcomp->compress_proto) { 1712 case CI_MPPE: 1713 obuff_size = ppp->mru + PPP_HDRLEN + 1; 1714 break; 1715 default: 1716 obuff_size = ppp->mru + PPP_HDRLEN; 1717 break; 1718 } 1719 1720 ns = dev_alloc_skb(obuff_size); 1721 if (ns == 0) { 1722 printk(KERN_ERR "ppp_decompress_frame: no memory\n"); 1723 goto err; 1724 } 1725 /* the decompressor still expects the A/C bytes in the hdr */ 1726 len = ppp->rcomp->decompress(ppp->rc_state, skb->data - 2, 1727 skb->len + 2, ns->data, obuff_size); 1728 if (len < 0) { 1729 /* Pass the compressed frame to pppd as an 1730 error indication. */ 1731 if (len == DECOMP_FATALERROR) 1732 ppp->rstate |= SC_DC_FERROR; 1733 kfree_skb(ns); 1734 goto err; 1735 } 1736 1737 kfree_skb(skb); 1738 skb = ns; 1739 skb_put(skb, len); 1740 skb_pull(skb, 2); /* pull off the A/C bytes */ 1741 1742 } else { 1743 /* Uncompressed frame - pass to decompressor so it 1744 can update its dictionary if necessary. */ 1745 if (ppp->rcomp->incomp) 1746 ppp->rcomp->incomp(ppp->rc_state, skb->data - 2, 1747 skb->len + 2); 1748 } 1749 1750 return skb; 1751 1752 err: 1753 ppp->rstate |= SC_DC_ERROR; 1754 ppp_receive_error(ppp); 1755 return skb; 1756} 1757 1758#ifdef CONFIG_PPP_MULTILINK 1759/* 1760 * Receive a multilink frame. 1761 * We put it on the reconstruction queue and then pull off 1762 * as many completed frames as we can. 1763 */ 1764static void 1765ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch) 1766{ 1767 u32 mask, seq; 1768 struct channel *ch; 1769 int mphdrlen = (ppp->flags & SC_MP_SHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN; 1770 1771 if (!pskb_may_pull(skb, mphdrlen + 1) || ppp->mrru == 0) 1772 goto err; /* no good, throw it away */ 1773 1774 /* Decode sequence number and begin/end bits */ 1775 if (ppp->flags & SC_MP_SHORTSEQ) { 1776 seq = ((skb->data[2] & 0x0f) << 8) | skb->data[3]; 1777 mask = 0xfff; 1778 } else { 1779 seq = (skb->data[3] << 16) | (skb->data[4] << 8)| skb->data[5]; 1780 mask = 0xffffff; 1781 } 1782 skb->BEbits = skb->data[2]; 1783 skb_pull(skb, mphdrlen); /* pull off PPP and MP headers */ 1784 1785 /* 1786 * Do protocol ID decompression on the first fragment of each packet. 1787 */ 1788 if ((skb->BEbits & B) && (skb->data[0] & 1)) 1789 *skb_push(skb, 1) = 0; 1790 1791 /* 1792 * Expand sequence number to 32 bits, making it as close 1793 * as possible to ppp->minseq. 1794 */ 1795 seq |= ppp->minseq & ~mask; 1796 if ((int)(ppp->minseq - seq) > (int)(mask >> 1)) 1797 seq += mask + 1; 1798 else if ((int)(seq - ppp->minseq) > (int)(mask >> 1)) 1799 seq -= mask + 1; /* should never happen */ 1800 skb->sequence = seq; 1801 pch->lastseq = seq; 1802 1803 /* 1804 * If this packet comes before the next one we were expecting, 1805 * drop it. 1806 */ 1807 if (seq_before(seq, ppp->nextseq)) { 1808 kfree_skb(skb); 1809 ++ppp->stats.rx_dropped; 1810 ppp_receive_error(ppp); 1811 return; 1812 } 1813 1814 /* 1815 * Reevaluate minseq, the minimum over all channels of the 1816 * last sequence number received on each channel. Because of 1817 * the increasing sequence number rule, we know that any fragment 1818 * before `minseq' which hasn't arrived is never going to arrive. 1819 * The list of channels can't change because we have the receive 1820 * side of the ppp unit locked. 1821 */ 1822 list_for_each_entry(ch, &ppp->channels, clist) { 1823 if (seq_before(ch->lastseq, seq)) 1824 seq = ch->lastseq; 1825 } 1826 if (seq_before(ppp->minseq, seq)) 1827 ppp->minseq = seq; 1828 1829 /* Put the fragment on the reconstruction queue */ 1830 ppp_mp_insert(ppp, skb); 1831 1832 /* If the queue is getting long, don't wait any longer for packets 1833 before the start of the queue. */ 1834 if (skb_queue_len(&ppp->mrq) >= PPP_MP_MAX_QLEN 1835 && seq_before(ppp->minseq, ppp->mrq.next->sequence)) 1836 ppp->minseq = ppp->mrq.next->sequence; 1837 1838 /* Pull completed packets off the queue and receive them. */ 1839 while ((skb = ppp_mp_reconstruct(ppp)) != 0) 1840 ppp_receive_nonmp_frame(ppp, skb); 1841 1842 return; 1843 1844 err: 1845 kfree_skb(skb); 1846 ppp_receive_error(ppp); 1847} 1848 1849/* 1850 * Insert a fragment on the MP reconstruction queue. 1851 * The queue is ordered by increasing sequence number. 1852 */ 1853static void 1854ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb) 1855{ 1856 struct sk_buff *p; 1857 struct sk_buff_head *list = &ppp->mrq; 1858 u32 seq = skb->sequence; 1859 1860 /* N.B. we don't need to lock the list lock because we have the 1861 ppp unit receive-side lock. */ 1862 for (p = list->next; p != (struct sk_buff *)list; p = p->next) 1863 if (seq_before(seq, p->sequence)) 1864 break; 1865 __skb_insert(skb, p->prev, p, list); 1866} 1867 1868/* 1869 * Reconstruct a packet from the MP fragment queue. 1870 * We go through increasing sequence numbers until we find a 1871 * complete packet, or we get to the sequence number for a fragment 1872 * which hasn't arrived but might still do so. 1873 */ 1874struct sk_buff * 1875ppp_mp_reconstruct(struct ppp *ppp) 1876{ 1877 u32 seq = ppp->nextseq; 1878 u32 minseq = ppp->minseq; 1879 struct sk_buff_head *list = &ppp->mrq; 1880 struct sk_buff *p, *next; 1881 struct sk_buff *head, *tail; 1882 struct sk_buff *skb = NULL; 1883 int lost = 0, len = 0; 1884 1885 if (ppp->mrru == 0) /* do nothing until mrru is set */ 1886 return NULL; 1887 head = list->next; 1888 tail = NULL; 1889 for (p = head; p != (struct sk_buff *) list; p = next) { 1890 next = p->next; 1891 if (seq_before(p->sequence, seq)) { 1892 /* this can't happen, anyway ignore the skb */ 1893 printk(KERN_ERR "ppp_mp_reconstruct bad seq %u < %u\n", 1894 p->sequence, seq); 1895 head = next; 1896 continue; 1897 } 1898 if (p->sequence != seq) { 1899 /* Fragment `seq' is missing. If it is after 1900 minseq, it might arrive later, so stop here. */ 1901 if (seq_after(seq, minseq)) 1902 break; 1903 /* Fragment `seq' is lost, keep going. */ 1904 lost = 1; 1905 seq = seq_before(minseq, p->sequence)? 1906 minseq + 1: p->sequence; 1907 next = p; 1908 continue; 1909 } 1910 1911 /* 1912 * At this point we know that all the fragments from 1913 * ppp->nextseq to seq are either present or lost. 1914 * Also, there are no complete packets in the queue 1915 * that have no missing fragments and end before this 1916 * fragment. 1917 */ 1918 1919 /* B bit set indicates this fragment starts a packet */ 1920 if (p->BEbits & B) { 1921 head = p; 1922 lost = 0; 1923 len = 0; 1924 } 1925 1926 len += p->len; 1927 1928 /* Got a complete packet yet? */ 1929 if (lost == 0 && (p->BEbits & E) && (head->BEbits & B)) { 1930 if (len > ppp->mrru + 2) { 1931 ++ppp->stats.rx_length_errors; 1932 printk(KERN_DEBUG "PPP: reconstructed packet" 1933 " is too long (%d)\n", len); 1934 } else if (p == head) { 1935 /* fragment is complete packet - reuse skb */ 1936 tail = p; 1937 skb = skb_get(p); 1938 break; 1939 } else if ((skb = dev_alloc_skb(len)) == NULL) { 1940 ++ppp->stats.rx_missed_errors; 1941 printk(KERN_DEBUG "PPP: no memory for " 1942 "reconstructed packet"); 1943 } else { 1944 tail = p; 1945 break; 1946 } 1947 ppp->nextseq = seq + 1; 1948 } 1949 1950 /* 1951 * If this is the ending fragment of a packet, 1952 * and we haven't found a complete valid packet yet, 1953 * we can discard up to and including this fragment. 1954 */ 1955 if (p->BEbits & E) 1956 head = next; 1957 1958 ++seq; 1959 } 1960 1961 /* If we have a complete packet, copy it all into one skb. */ 1962 if (tail != NULL) { 1963 /* If we have discarded any fragments, 1964 signal a receive error. */ 1965 if (head->sequence != ppp->nextseq) { 1966 if (ppp->debug & 1) 1967 printk(KERN_DEBUG " missed pkts %u..%u\n", 1968 ppp->nextseq, head->sequence-1); 1969 ++ppp->stats.rx_dropped; 1970 ppp_receive_error(ppp); 1971 } 1972 1973 if (head != tail) 1974 /* copy to a single skb */ 1975 for (p = head; p != tail->next; p = p->next) 1976 skb_copy_bits(p, 0, skb_put(skb, p->len), p->len); 1977 ppp->nextseq = tail->sequence + 1; 1978 head = tail->next; 1979 } 1980 1981 /* Discard all the skbuffs that we have copied the data out of 1982 or that we can't use. */ 1983 while ((p = list->next) != head) { 1984 __skb_unlink(p, list); 1985 kfree_skb(p); 1986 } 1987 1988 return skb; 1989} 1990#endif /* CONFIG_PPP_MULTILINK */ 1991 1992/* 1993 * Channel interface. 1994 */ 1995 1996/* 1997 * Create a new, unattached ppp channel. 1998 */ 1999int 2000ppp_register_channel(struct ppp_channel *chan) 2001{ 2002 struct channel *pch; 2003 2004 pch = kzalloc(sizeof(struct channel), GFP_KERNEL); 2005 if (pch == 0) 2006 return -ENOMEM; 2007 pch->ppp = NULL; 2008 pch->chan = chan; 2009 chan->ppp = pch; 2010 init_ppp_file(&pch->file, CHANNEL); 2011 pch->file.hdrlen = chan->hdrlen; 2012#ifdef CONFIG_PPP_MULTILINK 2013 pch->lastseq = -1; 2014#endif /* CONFIG_PPP_MULTILINK */ 2015 init_rwsem(&pch->chan_sem); 2016 spin_lock_init(&pch->downl); 2017 rwlock_init(&pch->upl); 2018 spin_lock_bh(&all_channels_lock); 2019 pch->file.index = ++last_channel_index; 2020 list_add(&pch->list, &new_channels); 2021 atomic_inc(&channel_count); 2022 spin_unlock_bh(&all_channels_lock); 2023 return 0; 2024} 2025 2026/* 2027 * Return the index of a channel. 2028 */ 2029int ppp_channel_index(struct ppp_channel *chan) 2030{ 2031 struct channel *pch = chan->ppp; 2032 2033 if (pch != 0) 2034 return pch->file.index; 2035 return -1; 2036} 2037 2038/* 2039 * Return the PPP unit number to which a channel is connected. 2040 */ 2041int ppp_unit_number(struct ppp_channel *chan) 2042{ 2043 struct channel *pch = chan->ppp; 2044 int unit = -1; 2045 2046 if (pch != 0) { 2047 read_lock_bh(&pch->upl); 2048 if (pch->ppp != 0) 2049 unit = pch->ppp->file.index; 2050 read_unlock_bh(&pch->upl); 2051 } 2052 return unit; 2053} 2054 2055/* 2056 * Disconnect a channel from the generic layer. 2057 * This must be called in process context. 2058 */ 2059void 2060ppp_unregister_channel(struct ppp_channel *chan) 2061{ 2062 struct channel *pch = chan->ppp; 2063 2064 if (pch == 0) 2065 return; /* should never happen */ 2066 chan->ppp = NULL; 2067 2068 /* 2069 * This ensures that we have returned from any calls into the 2070 * the channel's start_xmit or ioctl routine before we proceed. 2071 */ 2072 down_write(&pch->chan_sem); 2073 spin_lock_bh(&pch->downl); 2074 pch->chan = NULL; 2075 spin_unlock_bh(&pch->downl); 2076 up_write(&pch->chan_sem); 2077 ppp_disconnect_channel(pch); 2078 spin_lock_bh(&all_channels_lock); 2079 list_del(&pch->list); 2080 spin_unlock_bh(&all_channels_lock); 2081 pch->file.dead = 1; 2082 wake_up_interruptible(&pch->file.rwait); 2083 if (atomic_dec_and_test(&pch->file.refcnt)) 2084 ppp_destroy_channel(pch); 2085} 2086 2087/* 2088 * Callback from a channel when it can accept more to transmit. 2089 * This should be called at BH/softirq level, not interrupt level. 2090 */ 2091void 2092ppp_output_wakeup(struct ppp_channel *chan) 2093{ 2094 struct channel *pch = chan->ppp; 2095 2096 if (pch == 0) 2097 return; 2098 ppp_channel_push(pch); 2099} 2100 2101/* 2102 * Compression control. 2103 */ 2104 2105/* Process the PPPIOCSCOMPRESS ioctl. */ 2106static int 2107ppp_set_compress(struct ppp *ppp, unsigned long arg) 2108{ 2109 int err; 2110 struct compressor *cp, *ocomp; 2111 struct ppp_option_data data; 2112 void *state, *ostate; 2113 unsigned char ccp_option[CCP_MAX_OPTION_LENGTH]; 2114 2115 err = -EFAULT; 2116 if (copy_from_user(&data, (void __user *) arg, sizeof(data)) 2117 || (data.length <= CCP_MAX_OPTION_LENGTH 2118 && copy_from_user(ccp_option, (void __user *) data.ptr, data.length))) 2119 goto out; 2120 err = -EINVAL; 2121 if (data.length > CCP_MAX_OPTION_LENGTH 2122 || ccp_option[1] < 2 || ccp_option[1] > data.length) 2123 goto out; 2124 2125 cp = find_compressor(ccp_option[0]); 2126#ifdef CONFIG_KMOD 2127 if (cp == 0) { 2128 request_module("ppp-compress-%d", ccp_option[0]); 2129 cp = find_compressor(ccp_option[0]); 2130 } 2131#endif /* CONFIG_KMOD */ 2132 if (cp == 0) 2133 goto out; 2134 2135 err = -ENOBUFS; 2136 if (data.transmit) { 2137 state = cp->comp_alloc(ccp_option, data.length); 2138 if (state != 0) { 2139 ppp_xmit_lock(ppp); 2140 ppp->xstate &= ~SC_COMP_RUN; 2141 ocomp = ppp->xcomp; 2142 ostate = ppp->xc_state; 2143 ppp->xcomp = cp; 2144 ppp->xc_state = state; 2145 ppp_xmit_unlock(ppp); 2146 if (ostate != 0) { 2147 ocomp->comp_free(ostate); 2148 module_put(ocomp->owner); 2149 } 2150 err = 0; 2151 } else 2152 module_put(cp->owner); 2153 2154 } else { 2155 state = cp->decomp_alloc(ccp_option, data.length); 2156 if (state != 0) { 2157 ppp_recv_lock(ppp); 2158 ppp->rstate &= ~SC_DECOMP_RUN; 2159 ocomp = ppp->rcomp; 2160 ostate = ppp->rc_state; 2161 ppp->rcomp = cp; 2162 ppp->rc_state = state; 2163 ppp_recv_unlock(ppp); 2164 if (ostate != 0) { 2165 ocomp->decomp_free(ostate); 2166 module_put(ocomp->owner); 2167 } 2168 err = 0; 2169 } else 2170 module_put(cp->owner); 2171 } 2172 2173 out: 2174 return err; 2175} 2176 2177/* 2178 * Look at a CCP packet and update our state accordingly. 2179 * We assume the caller has the xmit or recv path locked. 2180 */ 2181static void 2182ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound) 2183{ 2184 unsigned char *dp; 2185 int len; 2186 2187 if (!pskb_may_pull(skb, CCP_HDRLEN + 2)) 2188 return; /* no header */ 2189 dp = skb->data + 2; 2190 2191 switch (CCP_CODE(dp)) { 2192 case CCP_CONFREQ: 2193 2194 /* A ConfReq starts negotiation of compression 2195 * in one direction of transmission, 2196 * and hence brings it down...but which way? 2197 * 2198 * Remember: 2199 * A ConfReq indicates what the sender would like to receive 2200 */ 2201 if(inbound) 2202 /* He is proposing what I should send */ 2203 ppp->xstate &= ~SC_COMP_RUN; 2204 else 2205 /* I am proposing to what he should send */ 2206 ppp->rstate &= ~SC_DECOMP_RUN; 2207 2208 break; 2209 2210 case CCP_TERMREQ: 2211 case CCP_TERMACK: 2212 /* 2213 * CCP is going down, both directions of transmission 2214 */ 2215 ppp->rstate &= ~SC_DECOMP_RUN; 2216 ppp->xstate &= ~SC_COMP_RUN; 2217 break; 2218 2219 case CCP_CONFACK: 2220 if ((ppp->flags & (SC_CCP_OPEN | SC_CCP_UP)) != SC_CCP_OPEN) 2221 break; 2222 len = CCP_LENGTH(dp); 2223 if (!pskb_may_pull(skb, len + 2)) 2224 return; /* too short */ 2225 dp += CCP_HDRLEN; 2226 len -= CCP_HDRLEN; 2227 if (len < CCP_OPT_MINLEN || len < CCP_OPT_LENGTH(dp)) 2228 break; 2229 if (inbound) { 2230 /* we will start receiving compressed packets */ 2231 if (ppp->rc_state == 0) 2232 break; 2233 if (ppp->rcomp->decomp_init(ppp->rc_state, dp, len, 2234 ppp->file.index, 0, ppp->mru, ppp->debug)) { 2235 ppp->rstate |= SC_DECOMP_RUN; 2236 ppp->rstate &= ~(SC_DC_ERROR | SC_DC_FERROR); 2237 } 2238 } else { 2239 /* we will soon start sending compressed packets */ 2240 if (ppp->xc_state == 0) 2241 break; 2242 if (ppp->xcomp->comp_init(ppp->xc_state, dp, len, 2243 ppp->file.index, 0, ppp->debug)) 2244 ppp->xstate |= SC_COMP_RUN; 2245 } 2246 break; 2247 2248 case CCP_RESETACK: 2249 /* reset the [de]compressor */ 2250 if ((ppp->flags & SC_CCP_UP) == 0) 2251 break; 2252 if (inbound) { 2253 if (ppp->rc_state && (ppp->rstate & SC_DECOMP_RUN)) { 2254 ppp->rcomp->decomp_reset(ppp->rc_state); 2255 ppp->rstate &= ~SC_DC_ERROR; 2256 } 2257 } else { 2258 if (ppp->xc_state && (ppp->xstate & SC_COMP_RUN)) 2259 ppp->xcomp->comp_reset(ppp->xc_state); 2260 } 2261 break; 2262 } 2263} 2264 2265/* Free up compression resources. */ 2266static void 2267ppp_ccp_closed(struct ppp *ppp) 2268{ 2269 void *xstate, *rstate; 2270 struct compressor *xcomp, *rcomp; 2271 2272 ppp_lock(ppp); 2273 ppp->flags &= ~(SC_CCP_OPEN | SC_CCP_UP); 2274 ppp->xstate = 0; 2275 xcomp = ppp->xcomp; 2276 xstate = ppp->xc_state; 2277 ppp->xc_state = NULL; 2278 ppp->rstate = 0; 2279 rcomp = ppp->rcomp; 2280 rstate = ppp->rc_state; 2281 ppp->rc_state = NULL; 2282 ppp_unlock(ppp); 2283 2284 if (xstate) { 2285 xcomp->comp_free(xstate); 2286 module_put(xcomp->owner); 2287 } 2288 if (rstate) { 2289 rcomp->decomp_free(rstate); 2290 module_put(rcomp->owner); 2291 } 2292} 2293 2294/* List of compressors. */ 2295static LIST_HEAD(compressor_list); 2296static DEFINE_SPINLOCK(compressor_list_lock); 2297 2298struct compressor_entry { 2299 struct list_head list; 2300 struct compressor *comp; 2301}; 2302 2303static struct compressor_entry * 2304find_comp_entry(int proto) 2305{ 2306 struct compressor_entry *ce; 2307 2308 list_for_each_entry(ce, &compressor_list, list) { 2309 if (ce->comp->compress_proto == proto) 2310 return ce; 2311 } 2312 return NULL; 2313} 2314 2315/* Register a compressor */ 2316int 2317ppp_register_compressor(struct compressor *cp) 2318{ 2319 struct compressor_entry *ce; 2320 int ret; 2321 spin_lock(&compressor_list_lock); 2322 ret = -EEXIST; 2323 if (find_comp_entry(cp->compress_proto) != 0) 2324 goto out; 2325 ret = -ENOMEM; 2326 ce = kmalloc(sizeof(struct compressor_entry), GFP_ATOMIC); 2327 if (ce == 0) 2328 goto out; 2329 ret = 0; 2330 ce->comp = cp; 2331 list_add(&ce->list, &compressor_list); 2332 out: 2333 spin_unlock(&compressor_list_lock); 2334 return ret; 2335} 2336 2337/* Unregister a compressor */ 2338void 2339ppp_unregister_compressor(struct compressor *cp) 2340{ 2341 struct compressor_entry *ce; 2342 2343 spin_lock(&compressor_list_lock); 2344 ce = find_comp_entry(cp->compress_proto); 2345 if (ce != 0 && ce->comp == cp) { 2346 list_del(&ce->list); 2347 kfree(ce); 2348 } 2349 spin_unlock(&compressor_list_lock); 2350} 2351 2352/* Find a compressor. */ 2353static struct compressor * 2354find_compressor(int type) 2355{ 2356 struct compressor_entry *ce; 2357 struct compressor *cp = NULL; 2358 2359 spin_lock(&compressor_list_lock); 2360 ce = find_comp_entry(type); 2361 if (ce != 0) { 2362 cp = ce->comp; 2363 if (!try_module_get(cp->owner)) 2364 cp = NULL; 2365 } 2366 spin_unlock(&compressor_list_lock); 2367 return cp; 2368} 2369 2370/* 2371 * Miscelleneous stuff. 2372 */ 2373 2374static void 2375ppp_get_stats(struct ppp *ppp, struct ppp_stats *st) 2376{ 2377 struct slcompress *vj = ppp->vj; 2378 2379 memset(st, 0, sizeof(*st)); 2380 st->p.ppp_ipackets = ppp->stats.rx_packets; 2381 st->p.ppp_ierrors = ppp->stats.rx_errors; 2382 st->p.ppp_ibytes = ppp->stats.rx_bytes; 2383 st->p.ppp_opackets = ppp->stats.tx_packets; 2384 st->p.ppp_oerrors = ppp->stats.tx_errors; 2385 st->p.ppp_obytes = ppp->stats.tx_bytes; 2386 if (vj == 0) 2387 return; 2388 st->vj.vjs_packets = vj->sls_o_compressed + vj->sls_o_uncompressed; 2389 st->vj.vjs_compressed = vj->sls_o_compressed; 2390 st->vj.vjs_searches = vj->sls_o_searches; 2391 st->vj.vjs_misses = vj->sls_o_misses; 2392 st->vj.vjs_errorin = vj->sls_i_error; 2393 st->vj.vjs_tossed = vj->sls_i_tossed; 2394 st->vj.vjs_uncompressedin = vj->sls_i_uncompressed; 2395 st->vj.vjs_compressedin = vj->sls_i_compressed; 2396} 2397 2398/* 2399 * Stuff for handling the lists of ppp units and channels 2400 * and for initialization. 2401 */ 2402 2403/* 2404 * Create a new ppp interface unit. Fails if it can't allocate memory 2405 * or if there is already a unit with the requested number. 2406 * unit == -1 means allocate a new number. 2407 */ 2408static struct ppp * 2409ppp_create_interface(int unit, int *retp) 2410{ 2411 struct ppp *ppp; 2412 struct net_device *dev = NULL; 2413 int ret = -ENOMEM; 2414 int i; 2415 2416 ppp = kzalloc(sizeof(struct ppp), GFP_KERNEL); 2417 if (!ppp) 2418 goto out; 2419 dev = alloc_netdev(0, "", ppp_setup); 2420 if (!dev) 2421 goto out1; 2422 2423 ppp->mru = PPP_MRU; 2424 init_ppp_file(&ppp->file, INTERFACE); 2425 ppp->file.hdrlen = PPP_HDRLEN - 2; /* don't count proto bytes */ 2426 for (i = 0; i < NUM_NP; ++i) 2427 ppp->npmode[i] = NPMODE_PASS; 2428 INIT_LIST_HEAD(&ppp->channels); 2429 spin_lock_init(&ppp->rlock); 2430 spin_lock_init(&ppp->wlock); 2431#ifdef CONFIG_PPP_MULTILINK 2432 ppp->minseq = -1; 2433 skb_queue_head_init(&ppp->mrq); 2434#endif /* CONFIG_PPP_MULTILINK */ 2435 ppp->dev = dev; 2436 dev->priv = ppp; 2437 2438 dev->hard_start_xmit = ppp_start_xmit; 2439 dev->get_stats = ppp_net_stats; 2440 dev->do_ioctl = ppp_net_ioctl; 2441 2442 ret = -EEXIST; 2443 mutex_lock(&all_ppp_mutex); 2444 if (unit < 0) 2445 unit = cardmap_find_first_free(all_ppp_units); 2446 else if (cardmap_get(all_ppp_units, unit) != NULL) 2447 goto out2; /* unit already exists */ 2448 2449 /* Initialize the new ppp unit */ 2450 ppp->file.index = unit; 2451 sprintf(dev->name, "ppp%d", unit); 2452 2453 ret = register_netdev(dev); 2454 if (ret != 0) { 2455 printk(KERN_ERR "PPP: couldn't register device %s (%d)\n", 2456 dev->name, ret); 2457 goto out2; 2458 } 2459 2460 atomic_inc(&ppp_unit_count); 2461 ret = cardmap_set(&all_ppp_units, unit, ppp); 2462 if (ret != 0) 2463 goto out3; 2464 2465 mutex_unlock(&all_ppp_mutex); 2466 *retp = 0; 2467 return ppp; 2468 2469out3: 2470 atomic_dec(&ppp_unit_count); 2471out2: 2472 mutex_unlock(&all_ppp_mutex); 2473 free_netdev(dev); 2474out1: 2475 kfree(ppp); 2476out: 2477 *retp = ret; 2478 return NULL; 2479} 2480 2481/* 2482 * Initialize a ppp_file structure. 2483 */ 2484static void 2485init_ppp_file(struct ppp_file *pf, int kind) 2486{ 2487 pf->kind = kind; 2488 skb_queue_head_init(&pf->xq); 2489 skb_queue_head_init(&pf->rq); 2490 atomic_set(&pf->refcnt, 1); 2491 init_waitqueue_head(&pf->rwait); 2492} 2493 2494/* 2495 * Take down a ppp interface unit - called when the owning file 2496 * (the one that created the unit) is closed or detached. 2497 */ 2498static void ppp_shutdown_interface(struct ppp *ppp) 2499{ 2500 struct net_device *dev; 2501 2502 mutex_lock(&all_ppp_mutex); 2503 ppp_lock(ppp); 2504 dev = ppp->dev; 2505 ppp->dev = NULL; 2506 ppp_unlock(ppp); 2507 /* This will call dev_close() for us. */ 2508 if (dev) { 2509 unregister_netdev(dev); 2510 free_netdev(dev); 2511 } 2512 cardmap_set(&all_ppp_units, ppp->file.index, NULL); 2513 ppp->file.dead = 1; 2514 ppp->owner = NULL; 2515 wake_up_interruptible(&ppp->file.rwait); 2516 mutex_unlock(&all_ppp_mutex); 2517} 2518 2519/* 2520 * Free the memory used by a ppp unit. This is only called once 2521 * there are no channels connected to the unit and no file structs 2522 * that reference the unit. 2523 */ 2524static void ppp_destroy_interface(struct ppp *ppp) 2525{ 2526 atomic_dec(&ppp_unit_count); 2527 2528 if (!ppp->file.dead || ppp->n_channels) { 2529 /* "can't happen" */ 2530 printk(KERN_ERR "ppp: destroying ppp struct %p but dead=%d " 2531 "n_channels=%d !\n", ppp, ppp->file.dead, 2532 ppp->n_channels); 2533 return; 2534 } 2535 2536 ppp_ccp_closed(ppp); 2537 if (ppp->vj) { 2538 slhc_free(ppp->vj); 2539 ppp->vj = NULL; 2540 } 2541 skb_queue_purge(&ppp->file.xq); 2542 skb_queue_purge(&ppp->file.rq); 2543#ifdef CONFIG_PPP_MULTILINK 2544 skb_queue_purge(&ppp->mrq); 2545#endif /* CONFIG_PPP_MULTILINK */ 2546#ifdef CONFIG_PPP_FILTER 2547 kfree(ppp->pass_filter); 2548 ppp->pass_filter = NULL; 2549 kfree(ppp->active_filter); 2550 ppp->active_filter = NULL; 2551#endif /* CONFIG_PPP_FILTER */ 2552 2553 if (ppp->xmit_pending) 2554 kfree_skb(ppp->xmit_pending); 2555 2556 kfree(ppp); 2557} 2558 2559/* 2560 * Locate an existing ppp unit. 2561 * The caller should have locked the all_ppp_mutex. 2562 */ 2563static struct ppp * 2564ppp_find_unit(int unit) 2565{ 2566 return cardmap_get(all_ppp_units, unit); 2567} 2568 2569/* 2570 * Locate an existing ppp channel. 2571 * The caller should have locked the all_channels_lock. 2572 * First we look in the new_channels list, then in the 2573 * all_channels list. If found in the new_channels list, 2574 * we move it to the all_channels list. This is for speed 2575 * when we have a lot of channels in use. 2576 */ 2577static struct channel * 2578ppp_find_channel(int unit) 2579{ 2580 struct channel *pch; 2581 2582 list_for_each_entry(pch, &new_channels, list) { 2583 if (pch->file.index == unit) { 2584 list_move(&pch->list, &all_channels); 2585 return pch; 2586 } 2587 } 2588 list_for_each_entry(pch, &all_channels, list) { 2589 if (pch->file.index == unit) 2590 return pch; 2591 } 2592 return NULL; 2593} 2594 2595/* 2596 * Connect a PPP channel to a PPP interface unit. 2597 */ 2598static int 2599ppp_connect_channel(struct channel *pch, int unit) 2600{ 2601 struct ppp *ppp; 2602 int ret = -ENXIO; 2603 int hdrlen; 2604 2605 mutex_lock(&all_ppp_mutex); 2606 ppp = ppp_find_unit(unit); 2607 if (ppp == 0) 2608 goto out; 2609 write_lock_bh(&pch->upl); 2610 ret = -EINVAL; 2611 if (pch->ppp != 0) 2612 goto outl; 2613 2614 ppp_lock(ppp); 2615 if (pch->file.hdrlen > ppp->file.hdrlen) 2616 ppp->file.hdrlen = pch->file.hdrlen; 2617 hdrlen = pch->file.hdrlen + 2; /* for protocol bytes */ 2618 if (ppp->dev && hdrlen > ppp->dev->hard_header_len) 2619 ppp->dev->hard_header_len = hdrlen; 2620 list_add_tail(&pch->clist, &ppp->channels); 2621 ++ppp->n_channels; 2622 pch->ppp = ppp; 2623 atomic_inc(&ppp->file.refcnt); 2624 ppp_unlock(ppp); 2625 ret = 0; 2626 2627 outl: 2628 write_unlock_bh(&pch->upl); 2629 out: 2630 mutex_unlock(&all_ppp_mutex); 2631 return ret; 2632} 2633 2634/* 2635 * Disconnect a channel from its ppp unit. 2636 */ 2637static int 2638ppp_disconnect_channel(struct channel *pch) 2639{ 2640 struct ppp *ppp; 2641 int err = -EINVAL; 2642 2643 write_lock_bh(&pch->upl); 2644 ppp = pch->ppp; 2645 pch->ppp = NULL; 2646 write_unlock_bh(&pch->upl); 2647 if (ppp != 0) { 2648 /* remove it from the ppp unit's list */ 2649 ppp_lock(ppp); 2650 list_del(&pch->clist); 2651 if (--ppp->n_channels == 0) 2652 wake_up_interruptible(&ppp->file.rwait); 2653 ppp_unlock(ppp); 2654 if (atomic_dec_and_test(&ppp->file.refcnt)) 2655 ppp_destroy_interface(ppp); 2656 err = 0; 2657 } 2658 return err; 2659} 2660 2661/* 2662 * Free up the resources used by a ppp channel. 2663 */ 2664static void ppp_destroy_channel(struct channel *pch) 2665{ 2666 atomic_dec(&channel_count); 2667 2668 if (!pch->file.dead) { 2669 /* "can't happen" */ 2670 printk(KERN_ERR "ppp: destroying undead channel %p !\n", 2671 pch); 2672 return; 2673 } 2674 skb_queue_purge(&pch->file.xq); 2675 skb_queue_purge(&pch->file.rq); 2676 kfree(pch); 2677} 2678 2679static void __exit ppp_cleanup(void) 2680{ 2681 /* should never happen */ 2682 if (atomic_read(&ppp_unit_count) || atomic_read(&channel_count)) 2683 printk(KERN_ERR "PPP: removing module but units remain!\n"); 2684 cardmap_destroy(&all_ppp_units); 2685 unregister_chrdev(PPP_MAJOR, "ppp"); 2686 device_destroy(ppp_class, MKDEV(PPP_MAJOR, 0)); 2687 class_destroy(ppp_class); 2688} 2689 2690/* 2691 * Cardmap implementation. 2692 */ 2693static void *cardmap_get(struct cardmap *map, unsigned int nr) 2694{ 2695 struct cardmap *p; 2696 int i; 2697 2698 for (p = map; p != NULL; ) { 2699 if ((i = nr >> p->shift) >= CARDMAP_WIDTH) 2700 return NULL; 2701 if (p->shift == 0) 2702 return p->ptr[i]; 2703 nr &= ~(CARDMAP_MASK << p->shift); 2704 p = p->ptr[i]; 2705 } 2706 return NULL; 2707} 2708 2709static int cardmap_set(struct cardmap **pmap, unsigned int nr, void *ptr) 2710{ 2711 struct cardmap *p; 2712 int i; 2713 2714 p = *pmap; 2715 if (p == NULL || (nr >> p->shift) >= CARDMAP_WIDTH) { 2716 do { 2717 /* need a new top level */ 2718 struct cardmap *np = kzalloc(sizeof(*np), GFP_KERNEL); 2719 if (!np) 2720 goto enomem; 2721 np->ptr[0] = p; 2722 if (p != NULL) { 2723 np->shift = p->shift + CARDMAP_ORDER; 2724 p->parent = np; 2725 } else 2726 np->shift = 0; 2727 p = np; 2728 } while ((nr >> p->shift) >= CARDMAP_WIDTH); 2729 *pmap = p; 2730 } 2731 while (p->shift > 0) { 2732 i = (nr >> p->shift) & CARDMAP_MASK; 2733 if (p->ptr[i] == NULL) { 2734 struct cardmap *np = kzalloc(sizeof(*np), GFP_KERNEL); 2735 if (!np) 2736 goto enomem; 2737 np->shift = p->shift - CARDMAP_ORDER; 2738 np->parent = p; 2739 p->ptr[i] = np; 2740 } 2741 if (ptr == NULL) 2742 clear_bit(i, &p->inuse); 2743 p = p->ptr[i]; 2744 } 2745 i = nr & CARDMAP_MASK; 2746 p->ptr[i] = ptr; 2747 if (ptr != NULL) 2748 set_bit(i, &p->inuse); 2749 else 2750 clear_bit(i, &p->inuse); 2751 return 0; 2752 enomem: 2753 return -ENOMEM; 2754} 2755 2756static unsigned int cardmap_find_first_free(struct cardmap *map) 2757{ 2758 struct cardmap *p; 2759 unsigned int nr = 0; 2760 int i; 2761 2762 if ((p = map) == NULL) 2763 return 0; 2764 for (;;) { 2765 i = find_first_zero_bit(&p->inuse, CARDMAP_WIDTH); 2766 if (i >= CARDMAP_WIDTH) { 2767 if (p->parent == NULL) 2768 return CARDMAP_WIDTH << p->shift; 2769 p = p->parent; 2770 i = (nr >> p->shift) & CARDMAP_MASK; 2771 set_bit(i, &p->inuse); 2772 continue; 2773 } 2774 nr = (nr & (~CARDMAP_MASK << p->shift)) | (i << p->shift); 2775 if (p->shift == 0 || p->ptr[i] == NULL) 2776 return nr; 2777 p = p->ptr[i]; 2778 } 2779} 2780 2781static void cardmap_destroy(struct cardmap **pmap) 2782{ 2783 struct cardmap *p, *np; 2784 int i; 2785 2786 for (p = *pmap; p != NULL; p = np) { 2787 if (p->shift != 0) { 2788 for (i = 0; i < CARDMAP_WIDTH; ++i) 2789 if (p->ptr[i] != NULL) 2790 break; 2791 if (i < CARDMAP_WIDTH) { 2792 np = p->ptr[i]; 2793 p->ptr[i] = NULL; 2794 continue; 2795 } 2796 } 2797 np = p->parent; 2798 kfree(p); 2799 } 2800 *pmap = NULL; 2801} 2802 2803/* Module/initialization stuff */ 2804 2805module_init(ppp_init); 2806module_exit(ppp_cleanup); 2807 2808EXPORT_SYMBOL(ppp_register_channel); 2809EXPORT_SYMBOL(ppp_unregister_channel); 2810EXPORT_SYMBOL(ppp_channel_index); 2811EXPORT_SYMBOL(ppp_unit_number); 2812EXPORT_SYMBOL(ppp_input); 2813EXPORT_SYMBOL(ppp_input_error); 2814EXPORT_SYMBOL(ppp_output_wakeup); 2815EXPORT_SYMBOL(ppp_register_compressor); 2816EXPORT_SYMBOL(ppp_unregister_compressor); 2817MODULE_LICENSE("GPL"); 2818MODULE_ALIAS_CHARDEV_MAJOR(PPP_MAJOR); 2819MODULE_ALIAS("/dev/ppp");