at v2.6.24-rc2 2352 lines 63 kB view raw
1/* 2 * ipg.c: Device Driver for the IP1000 Gigabit Ethernet Adapter 3 * 4 * Copyright (C) 2003, 2007 IC Plus Corp 5 * 6 * Original Author: 7 * 8 * Craig Rich 9 * Sundance Technology, Inc. 10 * www.sundanceti.com 11 * craig_rich@sundanceti.com 12 * 13 * Current Maintainer: 14 * 15 * Sorbica Shieh. 16 * http://www.icplus.com.tw 17 * sorbica@icplus.com.tw 18 * 19 * Jesse Huang 20 * http://www.icplus.com.tw 21 * jesse@icplus.com.tw 22 */ 23#include <linux/crc32.h> 24#include <linux/ethtool.h> 25#include <linux/mii.h> 26#include <linux/mutex.h> 27 28#include <asm/div64.h> 29 30#define IPG_RX_RING_BYTES (sizeof(struct ipg_rx) * IPG_RFDLIST_LENGTH) 31#define IPG_TX_RING_BYTES (sizeof(struct ipg_tx) * IPG_TFDLIST_LENGTH) 32#define IPG_RESET_MASK \ 33 (IPG_AC_GLOBAL_RESET | IPG_AC_RX_RESET | IPG_AC_TX_RESET | \ 34 IPG_AC_DMA | IPG_AC_FIFO | IPG_AC_NETWORK | IPG_AC_HOST | \ 35 IPG_AC_AUTO_INIT) 36 37#define ipg_w32(val32,reg) iowrite32((val32), ioaddr + (reg)) 38#define ipg_w16(val16,reg) iowrite16((val16), ioaddr + (reg)) 39#define ipg_w8(val8,reg) iowrite8((val8), ioaddr + (reg)) 40 41#define ipg_r32(reg) ioread32(ioaddr + (reg)) 42#define ipg_r16(reg) ioread16(ioaddr + (reg)) 43#define ipg_r8(reg) ioread8(ioaddr + (reg)) 44 45#define JUMBO_FRAME_4k_ONLY 46enum { 47 netdev_io_size = 128 48}; 49 50#include "ipg.h" 51#define DRV_NAME "ipg" 52 53MODULE_AUTHOR("IC Plus Corp. 2003"); 54MODULE_DESCRIPTION("IC Plus IP1000 Gigabit Ethernet Adapter Linux Driver " 55 DrvVer); 56MODULE_LICENSE("GPL"); 57 58//variable record -- index by leading revision/length 59//Revision/Length(=N*4), Address1, Data1, Address2, Data2,...,AddressN,DataN 60static unsigned short DefaultPhyParam[] = { 61 // 11/12/03 IP1000A v1-3 rev=0x40 62 /*-------------------------------------------------------------------------- 63 (0x4000|(15*4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 22, 0x85bd, 24, 0xfff2, 64 27, 0x0c10, 28, 0x0c10, 29, 0x2c10, 31, 0x0003, 23, 0x92f6, 65 31, 0x0000, 23, 0x003d, 30, 0x00de, 20, 0x20e7, 9, 0x0700, 66 --------------------------------------------------------------------------*/ 67 // 12/17/03 IP1000A v1-4 rev=0x40 68 (0x4000 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31, 69 0x0000, 70 30, 0x005e, 9, 0x0700, 71 // 01/09/04 IP1000A v1-5 rev=0x41 72 (0x4100 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31, 73 0x0000, 74 30, 0x005e, 9, 0x0700, 75 0x0000 76}; 77 78static const char *ipg_brand_name[] = { 79 "IC PLUS IP1000 1000/100/10 based NIC", 80 "Sundance Technology ST2021 based NIC", 81 "Tamarack Microelectronics TC9020/9021 based NIC", 82 "Tamarack Microelectronics TC9020/9021 based NIC", 83 "D-Link NIC", 84 "D-Link NIC IP1000A" 85}; 86 87static struct pci_device_id ipg_pci_tbl[] __devinitdata = { 88 { PCI_VDEVICE(SUNDANCE, 0x1023), 0 }, 89 { PCI_VDEVICE(SUNDANCE, 0x2021), 1 }, 90 { PCI_VDEVICE(SUNDANCE, 0x1021), 2 }, 91 { PCI_VDEVICE(DLINK, 0x9021), 3 }, 92 { PCI_VDEVICE(DLINK, 0x4000), 4 }, 93 { PCI_VDEVICE(DLINK, 0x4020), 5 }, 94 { 0, } 95}; 96 97MODULE_DEVICE_TABLE(pci, ipg_pci_tbl); 98 99static inline void __iomem *ipg_ioaddr(struct net_device *dev) 100{ 101 struct ipg_nic_private *sp = netdev_priv(dev); 102 return sp->ioaddr; 103} 104 105#ifdef IPG_DEBUG 106static void ipg_dump_rfdlist(struct net_device *dev) 107{ 108 struct ipg_nic_private *sp = netdev_priv(dev); 109 void __iomem *ioaddr = sp->ioaddr; 110 unsigned int i; 111 u32 offset; 112 113 IPG_DEBUG_MSG("_dump_rfdlist\n"); 114 115 printk(KERN_INFO "rx_current = %2.2x\n", sp->rx_current); 116 printk(KERN_INFO "rx_dirty = %2.2x\n", sp->rx_dirty); 117 printk(KERN_INFO "RFDList start address = %16.16lx\n", 118 (unsigned long) sp->rxd_map); 119 printk(KERN_INFO "RFDListPtr register = %8.8x%8.8x\n", 120 ipg_r32(IPG_RFDLISTPTR1), ipg_r32(IPG_RFDLISTPTR0)); 121 122 for (i = 0; i < IPG_RFDLIST_LENGTH; i++) { 123 offset = (u32) &sp->rxd[i].next_desc - (u32) sp->rxd; 124 printk(KERN_INFO "%2.2x %4.4x RFDNextPtr = %16.16lx\n", i, 125 offset, (unsigned long) sp->rxd[i].next_desc); 126 offset = (u32) &sp->rxd[i].rfs - (u32) sp->rxd; 127 printk(KERN_INFO "%2.2x %4.4x RFS = %16.16lx\n", i, 128 offset, (unsigned long) sp->rxd[i].rfs); 129 offset = (u32) &sp->rxd[i].frag_info - (u32) sp->rxd; 130 printk(KERN_INFO "%2.2x %4.4x frag_info = %16.16lx\n", i, 131 offset, (unsigned long) sp->rxd[i].frag_info); 132 } 133} 134 135static void ipg_dump_tfdlist(struct net_device *dev) 136{ 137 struct ipg_nic_private *sp = netdev_priv(dev); 138 void __iomem *ioaddr = sp->ioaddr; 139 unsigned int i; 140 u32 offset; 141 142 IPG_DEBUG_MSG("_dump_tfdlist\n"); 143 144 printk(KERN_INFO "tx_current = %2.2x\n", sp->tx_current); 145 printk(KERN_INFO "tx_dirty = %2.2x\n", sp->tx_dirty); 146 printk(KERN_INFO "TFDList start address = %16.16lx\n", 147 (unsigned long) sp->txd_map); 148 printk(KERN_INFO "TFDListPtr register = %8.8x%8.8x\n", 149 ipg_r32(IPG_TFDLISTPTR1), ipg_r32(IPG_TFDLISTPTR0)); 150 151 for (i = 0; i < IPG_TFDLIST_LENGTH; i++) { 152 offset = (u32) &sp->txd[i].next_desc - (u32) sp->txd; 153 printk(KERN_INFO "%2.2x %4.4x TFDNextPtr = %16.16lx\n", i, 154 offset, (unsigned long) sp->txd[i].next_desc); 155 156 offset = (u32) &sp->txd[i].tfc - (u32) sp->txd; 157 printk(KERN_INFO "%2.2x %4.4x TFC = %16.16lx\n", i, 158 offset, (unsigned long) sp->txd[i].tfc); 159 offset = (u32) &sp->txd[i].frag_info - (u32) sp->txd; 160 printk(KERN_INFO "%2.2x %4.4x frag_info = %16.16lx\n", i, 161 offset, (unsigned long) sp->txd[i].frag_info); 162 } 163} 164#endif 165 166static void ipg_write_phy_ctl(void __iomem *ioaddr, u8 data) 167{ 168 ipg_w8(IPG_PC_RSVD_MASK & data, PHY_CTRL); 169 ndelay(IPG_PC_PHYCTRLWAIT_NS); 170} 171 172static void ipg_drive_phy_ctl_low_high(void __iomem *ioaddr, u8 data) 173{ 174 ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | data); 175 ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | data); 176} 177 178static void send_three_state(void __iomem *ioaddr, u8 phyctrlpolarity) 179{ 180 phyctrlpolarity |= (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR; 181 182 ipg_drive_phy_ctl_low_high(ioaddr, phyctrlpolarity); 183} 184 185static void send_end(void __iomem *ioaddr, u8 phyctrlpolarity) 186{ 187 ipg_w8((IPG_PC_MGMTCLK_LO | (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR | 188 phyctrlpolarity) & IPG_PC_RSVD_MASK, PHY_CTRL); 189} 190 191static u16 read_phy_bit(void __iomem * ioaddr, u8 phyctrlpolarity) 192{ 193 u16 bit_data; 194 195 ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | phyctrlpolarity); 196 197 bit_data = ((ipg_r8(PHY_CTRL) & IPG_PC_MGMTDATA) >> 1) & 1; 198 199 ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | phyctrlpolarity); 200 201 return bit_data; 202} 203 204/* 205 * Read a register from the Physical Layer device located 206 * on the IPG NIC, using the IPG PHYCTRL register. 207 */ 208static int mdio_read(struct net_device * dev, int phy_id, int phy_reg) 209{ 210 void __iomem *ioaddr = ipg_ioaddr(dev); 211 /* 212 * The GMII mangement frame structure for a read is as follows: 213 * 214 * |Preamble|st|op|phyad|regad|ta| data |idle| 215 * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z | 216 * 217 * <32 1s> = 32 consecutive logic 1 values 218 * A = bit of Physical Layer device address (MSB first) 219 * R = bit of register address (MSB first) 220 * z = High impedance state 221 * D = bit of read data (MSB first) 222 * 223 * Transmission order is 'Preamble' field first, bits transmitted 224 * left to right (first to last). 225 */ 226 struct { 227 u32 field; 228 unsigned int len; 229 } p[] = { 230 { GMII_PREAMBLE, 32 }, /* Preamble */ 231 { GMII_ST, 2 }, /* ST */ 232 { GMII_READ, 2 }, /* OP */ 233 { phy_id, 5 }, /* PHYAD */ 234 { phy_reg, 5 }, /* REGAD */ 235 { 0x0000, 2 }, /* TA */ 236 { 0x0000, 16 }, /* DATA */ 237 { 0x0000, 1 } /* IDLE */ 238 }; 239 unsigned int i, j; 240 u8 polarity, data; 241 242 polarity = ipg_r8(PHY_CTRL); 243 polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY); 244 245 /* Create the Preamble, ST, OP, PHYAD, and REGAD field. */ 246 for (j = 0; j < 5; j++) { 247 for (i = 0; i < p[j].len; i++) { 248 /* For each variable length field, the MSB must be 249 * transmitted first. Rotate through the field bits, 250 * starting with the MSB, and move each bit into the 251 * the 1st (2^1) bit position (this is the bit position 252 * corresponding to the MgmtData bit of the PhyCtrl 253 * register for the IPG). 254 * 255 * Example: ST = 01; 256 * 257 * First write a '0' to bit 1 of the PhyCtrl 258 * register, then write a '1' to bit 1 of the 259 * PhyCtrl register. 260 * 261 * To do this, right shift the MSB of ST by the value: 262 * [field length - 1 - #ST bits already written] 263 * then left shift this result by 1. 264 */ 265 data = (p[j].field >> (p[j].len - 1 - i)) << 1; 266 data &= IPG_PC_MGMTDATA; 267 data |= polarity | IPG_PC_MGMTDIR; 268 269 ipg_drive_phy_ctl_low_high(ioaddr, data); 270 } 271 } 272 273 send_three_state(ioaddr, polarity); 274 275 read_phy_bit(ioaddr, polarity); 276 277 /* 278 * For a read cycle, the bits for the next two fields (TA and 279 * DATA) are driven by the PHY (the IPG reads these bits). 280 */ 281 for (i = 0; i < p[6].len; i++) { 282 p[6].field |= 283 (read_phy_bit(ioaddr, polarity) << (p[6].len - 1 - i)); 284 } 285 286 send_three_state(ioaddr, polarity); 287 send_three_state(ioaddr, polarity); 288 send_three_state(ioaddr, polarity); 289 send_end(ioaddr, polarity); 290 291 /* Return the value of the DATA field. */ 292 return p[6].field; 293} 294 295/* 296 * Write to a register from the Physical Layer device located 297 * on the IPG NIC, using the IPG PHYCTRL register. 298 */ 299static void mdio_write(struct net_device *dev, int phy_id, int phy_reg, int val) 300{ 301 void __iomem *ioaddr = ipg_ioaddr(dev); 302 /* 303 * The GMII mangement frame structure for a read is as follows: 304 * 305 * |Preamble|st|op|phyad|regad|ta| data |idle| 306 * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z | 307 * 308 * <32 1s> = 32 consecutive logic 1 values 309 * A = bit of Physical Layer device address (MSB first) 310 * R = bit of register address (MSB first) 311 * z = High impedance state 312 * D = bit of write data (MSB first) 313 * 314 * Transmission order is 'Preamble' field first, bits transmitted 315 * left to right (first to last). 316 */ 317 struct { 318 u32 field; 319 unsigned int len; 320 } p[] = { 321 { GMII_PREAMBLE, 32 }, /* Preamble */ 322 { GMII_ST, 2 }, /* ST */ 323 { GMII_WRITE, 2 }, /* OP */ 324 { phy_id, 5 }, /* PHYAD */ 325 { phy_reg, 5 }, /* REGAD */ 326 { 0x0002, 2 }, /* TA */ 327 { val & 0xffff, 16 }, /* DATA */ 328 { 0x0000, 1 } /* IDLE */ 329 }; 330 unsigned int i, j; 331 u8 polarity, data; 332 333 polarity = ipg_r8(PHY_CTRL); 334 polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY); 335 336 /* Create the Preamble, ST, OP, PHYAD, and REGAD field. */ 337 for (j = 0; j < 7; j++) { 338 for (i = 0; i < p[j].len; i++) { 339 /* For each variable length field, the MSB must be 340 * transmitted first. Rotate through the field bits, 341 * starting with the MSB, and move each bit into the 342 * the 1st (2^1) bit position (this is the bit position 343 * corresponding to the MgmtData bit of the PhyCtrl 344 * register for the IPG). 345 * 346 * Example: ST = 01; 347 * 348 * First write a '0' to bit 1 of the PhyCtrl 349 * register, then write a '1' to bit 1 of the 350 * PhyCtrl register. 351 * 352 * To do this, right shift the MSB of ST by the value: 353 * [field length - 1 - #ST bits already written] 354 * then left shift this result by 1. 355 */ 356 data = (p[j].field >> (p[j].len - 1 - i)) << 1; 357 data &= IPG_PC_MGMTDATA; 358 data |= polarity | IPG_PC_MGMTDIR; 359 360 ipg_drive_phy_ctl_low_high(ioaddr, data); 361 } 362 } 363 364 /* The last cycle is a tri-state, so read from the PHY. */ 365 for (j = 7; j < 8; j++) { 366 for (i = 0; i < p[j].len; i++) { 367 ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | polarity); 368 369 p[j].field |= ((ipg_r8(PHY_CTRL) & 370 IPG_PC_MGMTDATA) >> 1) << (p[j].len - 1 - i); 371 372 ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | polarity); 373 } 374 } 375} 376 377/* Set LED_Mode JES20040127EEPROM */ 378static void ipg_set_led_mode(struct net_device *dev) 379{ 380 struct ipg_nic_private *sp = netdev_priv(dev); 381 void __iomem *ioaddr = sp->ioaddr; 382 u32 mode; 383 384 mode = ipg_r32(ASIC_CTRL); 385 mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED); 386 387 if ((sp->LED_Mode & 0x03) > 1) 388 mode |= IPG_AC_LED_MODE_BIT_1; /* Write Asic Control Bit 29 */ 389 390 if ((sp->LED_Mode & 0x01) == 1) 391 mode |= IPG_AC_LED_MODE; /* Write Asic Control Bit 14 */ 392 393 if ((sp->LED_Mode & 0x08) == 8) 394 mode |= IPG_AC_LED_SPEED; /* Write Asic Control Bit 27 */ 395 396 ipg_w32(mode, ASIC_CTRL); 397} 398 399/* Set PHYSet JES20040127EEPROM */ 400static void ipg_set_phy_set(struct net_device *dev) 401{ 402 struct ipg_nic_private *sp = netdev_priv(dev); 403 void __iomem *ioaddr = sp->ioaddr; 404 int physet; 405 406 physet = ipg_r8(PHY_SET); 407 physet &= ~(IPG_PS_MEM_LENB9B | IPG_PS_MEM_LEN9 | IPG_PS_NON_COMPDET); 408 physet |= ((sp->LED_Mode & 0x70) >> 4); 409 ipg_w8(physet, PHY_SET); 410} 411 412static int ipg_reset(struct net_device *dev, u32 resetflags) 413{ 414 /* Assert functional resets via the IPG AsicCtrl 415 * register as specified by the 'resetflags' input 416 * parameter. 417 */ 418 void __iomem *ioaddr = ipg_ioaddr(dev); //JES20040127EEPROM: 419 unsigned int timeout_count = 0; 420 421 IPG_DEBUG_MSG("_reset\n"); 422 423 ipg_w32(ipg_r32(ASIC_CTRL) | resetflags, ASIC_CTRL); 424 425 /* Delay added to account for problem with 10Mbps reset. */ 426 mdelay(IPG_AC_RESETWAIT); 427 428 while (IPG_AC_RESET_BUSY & ipg_r32(ASIC_CTRL)) { 429 mdelay(IPG_AC_RESETWAIT); 430 if (++timeout_count > IPG_AC_RESET_TIMEOUT) 431 return -ETIME; 432 } 433 /* Set LED Mode in Asic Control JES20040127EEPROM */ 434 ipg_set_led_mode(dev); 435 436 /* Set PHYSet Register Value JES20040127EEPROM */ 437 ipg_set_phy_set(dev); 438 return 0; 439} 440 441/* Find the GMII PHY address. */ 442static int ipg_find_phyaddr(struct net_device *dev) 443{ 444 unsigned int phyaddr, i; 445 446 for (i = 0; i < 32; i++) { 447 u32 status; 448 449 /* Search for the correct PHY address among 32 possible. */ 450 phyaddr = (IPG_NIC_PHY_ADDRESS + i) % 32; 451 452 /* 10/22/03 Grace change verify from GMII_PHY_STATUS to 453 GMII_PHY_ID1 454 */ 455 456 status = mdio_read(dev, phyaddr, MII_BMSR); 457 458 if ((status != 0xFFFF) && (status != 0)) 459 return phyaddr; 460 } 461 462 return 0x1f; 463} 464 465/* 466 * Configure IPG based on result of IEEE 802.3 PHY 467 * auto-negotiation. 468 */ 469static int ipg_config_autoneg(struct net_device *dev) 470{ 471 struct ipg_nic_private *sp = netdev_priv(dev); 472 void __iomem *ioaddr = sp->ioaddr; 473 unsigned int txflowcontrol; 474 unsigned int rxflowcontrol; 475 unsigned int fullduplex; 476 unsigned int gig; 477 u32 mac_ctrl_val; 478 u32 asicctrl; 479 u8 phyctrl; 480 481 IPG_DEBUG_MSG("_config_autoneg\n"); 482 483 asicctrl = ipg_r32(ASIC_CTRL); 484 phyctrl = ipg_r8(PHY_CTRL); 485 mac_ctrl_val = ipg_r32(MAC_CTRL); 486 487 /* Set flags for use in resolving auto-negotation, assuming 488 * non-1000Mbps, half duplex, no flow control. 489 */ 490 fullduplex = 0; 491 txflowcontrol = 0; 492 rxflowcontrol = 0; 493 gig = 0; 494 495 /* To accomodate a problem in 10Mbps operation, 496 * set a global flag if PHY running in 10Mbps mode. 497 */ 498 sp->tenmbpsmode = 0; 499 500 printk(KERN_INFO "%s: Link speed = ", dev->name); 501 502 /* Determine actual speed of operation. */ 503 switch (phyctrl & IPG_PC_LINK_SPEED) { 504 case IPG_PC_LINK_SPEED_10MBPS: 505 printk("10Mbps.\n"); 506 printk(KERN_INFO "%s: 10Mbps operational mode enabled.\n", 507 dev->name); 508 sp->tenmbpsmode = 1; 509 break; 510 case IPG_PC_LINK_SPEED_100MBPS: 511 printk("100Mbps.\n"); 512 break; 513 case IPG_PC_LINK_SPEED_1000MBPS: 514 printk("1000Mbps.\n"); 515 gig = 1; 516 break; 517 default: 518 printk("undefined!\n"); 519 return 0; 520 } 521 522 if (phyctrl & IPG_PC_DUPLEX_STATUS) { 523 fullduplex = 1; 524 txflowcontrol = 1; 525 rxflowcontrol = 1; 526 } 527 528 /* Configure full duplex, and flow control. */ 529 if (fullduplex == 1) { 530 /* Configure IPG for full duplex operation. */ 531 printk(KERN_INFO "%s: setting full duplex, ", dev->name); 532 533 mac_ctrl_val |= IPG_MC_DUPLEX_SELECT_FD; 534 535 if (txflowcontrol == 1) { 536 printk("TX flow control"); 537 mac_ctrl_val |= IPG_MC_TX_FLOW_CONTROL_ENABLE; 538 } else { 539 printk("no TX flow control"); 540 mac_ctrl_val &= ~IPG_MC_TX_FLOW_CONTROL_ENABLE; 541 } 542 543 if (rxflowcontrol == 1) { 544 printk(", RX flow control."); 545 mac_ctrl_val |= IPG_MC_RX_FLOW_CONTROL_ENABLE; 546 } else { 547 printk(", no RX flow control."); 548 mac_ctrl_val &= ~IPG_MC_RX_FLOW_CONTROL_ENABLE; 549 } 550 551 printk("\n"); 552 } else { 553 /* Configure IPG for half duplex operation. */ 554 printk(KERN_INFO "%s: setting half duplex, " 555 "no TX flow control, no RX flow control.\n", dev->name); 556 557 mac_ctrl_val &= ~IPG_MC_DUPLEX_SELECT_FD & 558 ~IPG_MC_TX_FLOW_CONTROL_ENABLE & 559 ~IPG_MC_RX_FLOW_CONTROL_ENABLE; 560 } 561 ipg_w32(mac_ctrl_val, MAC_CTRL); 562 return 0; 563} 564 565/* Determine and configure multicast operation and set 566 * receive mode for IPG. 567 */ 568static void ipg_nic_set_multicast_list(struct net_device *dev) 569{ 570 void __iomem *ioaddr = ipg_ioaddr(dev); 571 struct dev_mc_list *mc_list_ptr; 572 unsigned int hashindex; 573 u32 hashtable[2]; 574 u8 receivemode; 575 576 IPG_DEBUG_MSG("_nic_set_multicast_list\n"); 577 578 receivemode = IPG_RM_RECEIVEUNICAST | IPG_RM_RECEIVEBROADCAST; 579 580 if (dev->flags & IFF_PROMISC) { 581 /* NIC to be configured in promiscuous mode. */ 582 receivemode = IPG_RM_RECEIVEALLFRAMES; 583 } else if ((dev->flags & IFF_ALLMULTI) || 584 (dev->flags & IFF_MULTICAST & 585 (dev->mc_count > IPG_MULTICAST_HASHTABLE_SIZE))) { 586 /* NIC to be configured to receive all multicast 587 * frames. */ 588 receivemode |= IPG_RM_RECEIVEMULTICAST; 589 } else if (dev->flags & IFF_MULTICAST & (dev->mc_count > 0)) { 590 /* NIC to be configured to receive selected 591 * multicast addresses. */ 592 receivemode |= IPG_RM_RECEIVEMULTICASTHASH; 593 } 594 595 /* Calculate the bits to set for the 64 bit, IPG HASHTABLE. 596 * The IPG applies a cyclic-redundancy-check (the same CRC 597 * used to calculate the frame data FCS) to the destination 598 * address all incoming multicast frames whose destination 599 * address has the multicast bit set. The least significant 600 * 6 bits of the CRC result are used as an addressing index 601 * into the hash table. If the value of the bit addressed by 602 * this index is a 1, the frame is passed to the host system. 603 */ 604 605 /* Clear hashtable. */ 606 hashtable[0] = 0x00000000; 607 hashtable[1] = 0x00000000; 608 609 /* Cycle through all multicast addresses to filter. */ 610 for (mc_list_ptr = dev->mc_list; 611 mc_list_ptr != NULL; mc_list_ptr = mc_list_ptr->next) { 612 /* Calculate CRC result for each multicast address. */ 613 hashindex = crc32_le(0xffffffff, mc_list_ptr->dmi_addr, 614 ETH_ALEN); 615 616 /* Use only the least significant 6 bits. */ 617 hashindex = hashindex & 0x3F; 618 619 /* Within "hashtable", set bit number "hashindex" 620 * to a logic 1. 621 */ 622 set_bit(hashindex, (void *)hashtable); 623 } 624 625 /* Write the value of the hashtable, to the 4, 16 bit 626 * HASHTABLE IPG registers. 627 */ 628 ipg_w32(hashtable[0], HASHTABLE_0); 629 ipg_w32(hashtable[1], HASHTABLE_1); 630 631 ipg_w8(IPG_RM_RSVD_MASK & receivemode, RECEIVE_MODE); 632 633 IPG_DEBUG_MSG("ReceiveMode = %x\n", ipg_r8(RECEIVE_MODE)); 634} 635 636static int ipg_io_config(struct net_device *dev) 637{ 638 void __iomem *ioaddr = ipg_ioaddr(dev); 639 u32 origmacctrl; 640 u32 restoremacctrl; 641 642 IPG_DEBUG_MSG("_io_config\n"); 643 644 origmacctrl = ipg_r32(MAC_CTRL); 645 646 restoremacctrl = origmacctrl | IPG_MC_STATISTICS_ENABLE; 647 648 /* Based on compilation option, determine if FCS is to be 649 * stripped on receive frames by IPG. 650 */ 651 if (!IPG_STRIP_FCS_ON_RX) 652 restoremacctrl |= IPG_MC_RCV_FCS; 653 654 /* Determine if transmitter and/or receiver are 655 * enabled so we may restore MACCTRL correctly. 656 */ 657 if (origmacctrl & IPG_MC_TX_ENABLED) 658 restoremacctrl |= IPG_MC_TX_ENABLE; 659 660 if (origmacctrl & IPG_MC_RX_ENABLED) 661 restoremacctrl |= IPG_MC_RX_ENABLE; 662 663 /* Transmitter and receiver must be disabled before setting 664 * IFSSelect. 665 */ 666 ipg_w32((origmacctrl & (IPG_MC_RX_DISABLE | IPG_MC_TX_DISABLE)) & 667 IPG_MC_RSVD_MASK, MAC_CTRL); 668 669 /* Now that transmitter and receiver are disabled, write 670 * to IFSSelect. 671 */ 672 ipg_w32((origmacctrl & IPG_MC_IFS_96BIT) & IPG_MC_RSVD_MASK, MAC_CTRL); 673 674 /* Set RECEIVEMODE register. */ 675 ipg_nic_set_multicast_list(dev); 676 677 ipg_w16(IPG_MAX_RXFRAME_SIZE, MAX_FRAME_SIZE); 678 679 ipg_w8(IPG_RXDMAPOLLPERIOD_VALUE, RX_DMA_POLL_PERIOD); 680 ipg_w8(IPG_RXDMAURGENTTHRESH_VALUE, RX_DMA_URGENT_THRESH); 681 ipg_w8(IPG_RXDMABURSTTHRESH_VALUE, RX_DMA_BURST_THRESH); 682 ipg_w8(IPG_TXDMAPOLLPERIOD_VALUE, TX_DMA_POLL_PERIOD); 683 ipg_w8(IPG_TXDMAURGENTTHRESH_VALUE, TX_DMA_URGENT_THRESH); 684 ipg_w8(IPG_TXDMABURSTTHRESH_VALUE, TX_DMA_BURST_THRESH); 685 ipg_w16((IPG_IE_HOST_ERROR | IPG_IE_TX_DMA_COMPLETE | 686 IPG_IE_TX_COMPLETE | IPG_IE_INT_REQUESTED | 687 IPG_IE_UPDATE_STATS | IPG_IE_LINK_EVENT | 688 IPG_IE_RX_DMA_COMPLETE | IPG_IE_RX_DMA_PRIORITY), INT_ENABLE); 689 ipg_w16(IPG_FLOWONTHRESH_VALUE, FLOW_ON_THRESH); 690 ipg_w16(IPG_FLOWOFFTHRESH_VALUE, FLOW_OFF_THRESH); 691 692 /* IPG multi-frag frame bug workaround. 693 * Per silicon revision B3 eratta. 694 */ 695 ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0200, DEBUG_CTRL); 696 697 /* IPG TX poll now bug workaround. 698 * Per silicon revision B3 eratta. 699 */ 700 ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0010, DEBUG_CTRL); 701 702 /* IPG RX poll now bug workaround. 703 * Per silicon revision B3 eratta. 704 */ 705 ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0020, DEBUG_CTRL); 706 707 /* Now restore MACCTRL to original setting. */ 708 ipg_w32(IPG_MC_RSVD_MASK & restoremacctrl, MAC_CTRL); 709 710 /* Disable unused RMON statistics. */ 711 ipg_w32(IPG_RZ_ALL, RMON_STATISTICS_MASK); 712 713 /* Disable unused MIB statistics. */ 714 ipg_w32(IPG_SM_MACCONTROLFRAMESXMTD | IPG_SM_MACCONTROLFRAMESRCVD | 715 IPG_SM_BCSTOCTETXMTOK_BCSTFRAMESXMTDOK | IPG_SM_TXJUMBOFRAMES | 716 IPG_SM_MCSTOCTETXMTOK_MCSTFRAMESXMTDOK | IPG_SM_RXJUMBOFRAMES | 717 IPG_SM_BCSTOCTETRCVDOK_BCSTFRAMESRCVDOK | 718 IPG_SM_UDPCHECKSUMERRORS | IPG_SM_TCPCHECKSUMERRORS | 719 IPG_SM_IPCHECKSUMERRORS, STATISTICS_MASK); 720 721 return 0; 722} 723 724/* 725 * Create a receive buffer within system memory and update 726 * NIC private structure appropriately. 727 */ 728static int ipg_get_rxbuff(struct net_device *dev, int entry) 729{ 730 struct ipg_nic_private *sp = netdev_priv(dev); 731 struct ipg_rx *rxfd = sp->rxd + entry; 732 struct sk_buff *skb; 733 u64 rxfragsize; 734 735 IPG_DEBUG_MSG("_get_rxbuff\n"); 736 737 skb = netdev_alloc_skb(dev, IPG_RXSUPPORT_SIZE + NET_IP_ALIGN); 738 if (!skb) { 739 sp->RxBuff[entry] = NULL; 740 return -ENOMEM; 741 } 742 743 /* Adjust the data start location within the buffer to 744 * align IP address field to a 16 byte boundary. 745 */ 746 skb_reserve(skb, NET_IP_ALIGN); 747 748 /* Associate the receive buffer with the IPG NIC. */ 749 skb->dev = dev; 750 751 /* Save the address of the sk_buff structure. */ 752 sp->RxBuff[entry] = skb; 753 754 rxfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data, 755 sp->rx_buf_sz, PCI_DMA_FROMDEVICE)); 756 757 /* Set the RFD fragment length. */ 758 rxfragsize = IPG_RXFRAG_SIZE; 759 rxfd->frag_info |= cpu_to_le64((rxfragsize << 48) & IPG_RFI_FRAGLEN); 760 761 return 0; 762} 763 764static int init_rfdlist(struct net_device *dev) 765{ 766 struct ipg_nic_private *sp = netdev_priv(dev); 767 void __iomem *ioaddr = sp->ioaddr; 768 unsigned int i; 769 770 IPG_DEBUG_MSG("_init_rfdlist\n"); 771 772 for (i = 0; i < IPG_RFDLIST_LENGTH; i++) { 773 struct ipg_rx *rxfd = sp->rxd + i; 774 775 if (sp->RxBuff[i]) { 776 pci_unmap_single(sp->pdev, 777 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN, 778 sp->rx_buf_sz, PCI_DMA_FROMDEVICE); 779 IPG_DEV_KFREE_SKB(sp->RxBuff[i]); 780 sp->RxBuff[i] = NULL; 781 } 782 783 /* Clear out the RFS field. */ 784 rxfd->rfs = 0x0000000000000000; 785 786 if (ipg_get_rxbuff(dev, i) < 0) { 787 /* 788 * A receive buffer was not ready, break the 789 * RFD list here. 790 */ 791 IPG_DEBUG_MSG("Cannot allocate Rx buffer.\n"); 792 793 /* Just in case we cannot allocate a single RFD. 794 * Should not occur. 795 */ 796 if (i == 0) { 797 printk(KERN_ERR "%s: No memory available" 798 " for RFD list.\n", dev->name); 799 return -ENOMEM; 800 } 801 } 802 803 rxfd->next_desc = cpu_to_le64(sp->rxd_map + 804 sizeof(struct ipg_rx)*(i + 1)); 805 } 806 sp->rxd[i - 1].next_desc = cpu_to_le64(sp->rxd_map); 807 808 sp->rx_current = 0; 809 sp->rx_dirty = 0; 810 811 /* Write the location of the RFDList to the IPG. */ 812 ipg_w32((u32) sp->rxd_map, RFD_LIST_PTR_0); 813 ipg_w32(0x00000000, RFD_LIST_PTR_1); 814 815 return 0; 816} 817 818static void init_tfdlist(struct net_device *dev) 819{ 820 struct ipg_nic_private *sp = netdev_priv(dev); 821 void __iomem *ioaddr = sp->ioaddr; 822 unsigned int i; 823 824 IPG_DEBUG_MSG("_init_tfdlist\n"); 825 826 for (i = 0; i < IPG_TFDLIST_LENGTH; i++) { 827 struct ipg_tx *txfd = sp->txd + i; 828 829 txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE); 830 831 if (sp->TxBuff[i]) { 832 IPG_DEV_KFREE_SKB(sp->TxBuff[i]); 833 sp->TxBuff[i] = NULL; 834 } 835 836 txfd->next_desc = cpu_to_le64(sp->txd_map + 837 sizeof(struct ipg_tx)*(i + 1)); 838 } 839 sp->txd[i - 1].next_desc = cpu_to_le64(sp->txd_map); 840 841 sp->tx_current = 0; 842 sp->tx_dirty = 0; 843 844 /* Write the location of the TFDList to the IPG. */ 845 IPG_DDEBUG_MSG("Starting TFDListPtr = %8.8x\n", 846 (u32) sp->txd_map); 847 ipg_w32((u32) sp->txd_map, TFD_LIST_PTR_0); 848 ipg_w32(0x00000000, TFD_LIST_PTR_1); 849 850 sp->ResetCurrentTFD = 1; 851} 852 853/* 854 * Free all transmit buffers which have already been transfered 855 * via DMA to the IPG. 856 */ 857static void ipg_nic_txfree(struct net_device *dev) 858{ 859 struct ipg_nic_private *sp = netdev_priv(dev); 860 void __iomem *ioaddr = sp->ioaddr; 861 unsigned int curr; 862 u64 txd_map; 863 unsigned int released, pending; 864 865 txd_map = (u64)sp->txd_map; 866 curr = ipg_r32(TFD_LIST_PTR_0) - 867 do_div(txd_map, sizeof(struct ipg_tx)) - 1; 868 869 IPG_DEBUG_MSG("_nic_txfree\n"); 870 871 pending = sp->tx_current - sp->tx_dirty; 872 873 for (released = 0; released < pending; released++) { 874 unsigned int dirty = sp->tx_dirty % IPG_TFDLIST_LENGTH; 875 struct sk_buff *skb = sp->TxBuff[dirty]; 876 struct ipg_tx *txfd = sp->txd + dirty; 877 878 IPG_DEBUG_MSG("TFC = %16.16lx\n", (unsigned long) txfd->tfc); 879 880 /* Look at each TFD's TFC field beginning 881 * at the last freed TFD up to the current TFD. 882 * If the TFDDone bit is set, free the associated 883 * buffer. 884 */ 885 if (dirty == curr) 886 break; 887 888 /* Setup TFDDONE for compatible issue. */ 889 txfd->tfc |= cpu_to_le64(IPG_TFC_TFDDONE); 890 891 /* Free the transmit buffer. */ 892 if (skb) { 893 pci_unmap_single(sp->pdev, 894 le64_to_cpu(txfd->frag_info) & ~IPG_TFI_FRAGLEN, 895 skb->len, PCI_DMA_TODEVICE); 896 897 IPG_DEV_KFREE_SKB(skb); 898 899 sp->TxBuff[dirty] = NULL; 900 } 901 } 902 903 sp->tx_dirty += released; 904 905 if (netif_queue_stopped(dev) && 906 (sp->tx_current != (sp->tx_dirty + IPG_TFDLIST_LENGTH))) { 907 netif_wake_queue(dev); 908 } 909} 910 911static void ipg_tx_timeout(struct net_device *dev) 912{ 913 struct ipg_nic_private *sp = netdev_priv(dev); 914 void __iomem *ioaddr = sp->ioaddr; 915 916 ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA | IPG_AC_NETWORK | 917 IPG_AC_FIFO); 918 919 spin_lock_irq(&sp->lock); 920 921 /* Re-configure after DMA reset. */ 922 if (ipg_io_config(dev) < 0) { 923 printk(KERN_INFO "%s: Error during re-configuration.\n", 924 dev->name); 925 } 926 927 init_tfdlist(dev); 928 929 spin_unlock_irq(&sp->lock); 930 931 ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) & IPG_MC_RSVD_MASK, 932 MAC_CTRL); 933} 934 935/* 936 * For TxComplete interrupts, free all transmit 937 * buffers which have already been transfered via DMA 938 * to the IPG. 939 */ 940static void ipg_nic_txcleanup(struct net_device *dev) 941{ 942 struct ipg_nic_private *sp = netdev_priv(dev); 943 void __iomem *ioaddr = sp->ioaddr; 944 unsigned int i; 945 946 IPG_DEBUG_MSG("_nic_txcleanup\n"); 947 948 for (i = 0; i < IPG_TFDLIST_LENGTH; i++) { 949 /* Reading the TXSTATUS register clears the 950 * TX_COMPLETE interrupt. 951 */ 952 u32 txstatusdword = ipg_r32(TX_STATUS); 953 954 IPG_DEBUG_MSG("TxStatus = %8.8x\n", txstatusdword); 955 956 /* Check for Transmit errors. Error bits only valid if 957 * TX_COMPLETE bit in the TXSTATUS register is a 1. 958 */ 959 if (!(txstatusdword & IPG_TS_TX_COMPLETE)) 960 break; 961 962 /* If in 10Mbps mode, indicate transmit is ready. */ 963 if (sp->tenmbpsmode) { 964 netif_wake_queue(dev); 965 } 966 967 /* Transmit error, increment stat counters. */ 968 if (txstatusdword & IPG_TS_TX_ERROR) { 969 IPG_DEBUG_MSG("Transmit error.\n"); 970 sp->stats.tx_errors++; 971 } 972 973 /* Late collision, re-enable transmitter. */ 974 if (txstatusdword & IPG_TS_LATE_COLLISION) { 975 IPG_DEBUG_MSG("Late collision on transmit.\n"); 976 ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) & 977 IPG_MC_RSVD_MASK, MAC_CTRL); 978 } 979 980 /* Maximum collisions, re-enable transmitter. */ 981 if (txstatusdword & IPG_TS_TX_MAX_COLL) { 982 IPG_DEBUG_MSG("Maximum collisions on transmit.\n"); 983 ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) & 984 IPG_MC_RSVD_MASK, MAC_CTRL); 985 } 986 987 /* Transmit underrun, reset and re-enable 988 * transmitter. 989 */ 990 if (txstatusdword & IPG_TS_TX_UNDERRUN) { 991 IPG_DEBUG_MSG("Transmitter underrun.\n"); 992 sp->stats.tx_fifo_errors++; 993 ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA | 994 IPG_AC_NETWORK | IPG_AC_FIFO); 995 996 /* Re-configure after DMA reset. */ 997 if (ipg_io_config(dev) < 0) { 998 printk(KERN_INFO 999 "%s: Error during re-configuration.\n", 1000 dev->name); 1001 } 1002 init_tfdlist(dev); 1003 1004 ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) & 1005 IPG_MC_RSVD_MASK, MAC_CTRL); 1006 } 1007 } 1008 1009 ipg_nic_txfree(dev); 1010} 1011 1012/* Provides statistical information about the IPG NIC. */ 1013static struct net_device_stats *ipg_nic_get_stats(struct net_device *dev) 1014{ 1015 struct ipg_nic_private *sp = netdev_priv(dev); 1016 void __iomem *ioaddr = sp->ioaddr; 1017 u16 temp1; 1018 u16 temp2; 1019 1020 IPG_DEBUG_MSG("_nic_get_stats\n"); 1021 1022 /* Check to see if the NIC has been initialized via nic_open, 1023 * before trying to read statistic registers. 1024 */ 1025 if (!test_bit(__LINK_STATE_START, &dev->state)) 1026 return &sp->stats; 1027 1028 sp->stats.rx_packets += ipg_r32(IPG_FRAMESRCVDOK); 1029 sp->stats.tx_packets += ipg_r32(IPG_FRAMESXMTDOK); 1030 sp->stats.rx_bytes += ipg_r32(IPG_OCTETRCVOK); 1031 sp->stats.tx_bytes += ipg_r32(IPG_OCTETXMTOK); 1032 temp1 = ipg_r16(IPG_FRAMESLOSTRXERRORS); 1033 sp->stats.rx_errors += temp1; 1034 sp->stats.rx_missed_errors += temp1; 1035 temp1 = ipg_r32(IPG_SINGLECOLFRAMES) + ipg_r32(IPG_MULTICOLFRAMES) + 1036 ipg_r32(IPG_LATECOLLISIONS); 1037 temp2 = ipg_r16(IPG_CARRIERSENSEERRORS); 1038 sp->stats.collisions += temp1; 1039 sp->stats.tx_dropped += ipg_r16(IPG_FRAMESABORTXSCOLLS); 1040 sp->stats.tx_errors += ipg_r16(IPG_FRAMESWEXDEFERRAL) + 1041 ipg_r32(IPG_FRAMESWDEFERREDXMT) + temp1 + temp2; 1042 sp->stats.multicast += ipg_r32(IPG_MCSTOCTETRCVDOK); 1043 1044 /* detailed tx_errors */ 1045 sp->stats.tx_carrier_errors += temp2; 1046 1047 /* detailed rx_errors */ 1048 sp->stats.rx_length_errors += ipg_r16(IPG_INRANGELENGTHERRORS) + 1049 ipg_r16(IPG_FRAMETOOLONGERRRORS); 1050 sp->stats.rx_crc_errors += ipg_r16(IPG_FRAMECHECKSEQERRORS); 1051 1052 /* Unutilized IPG statistic registers. */ 1053 ipg_r32(IPG_MCSTFRAMESRCVDOK); 1054 1055 return &sp->stats; 1056} 1057 1058/* Restore used receive buffers. */ 1059static int ipg_nic_rxrestore(struct net_device *dev) 1060{ 1061 struct ipg_nic_private *sp = netdev_priv(dev); 1062 const unsigned int curr = sp->rx_current; 1063 unsigned int dirty = sp->rx_dirty; 1064 1065 IPG_DEBUG_MSG("_nic_rxrestore\n"); 1066 1067 for (dirty = sp->rx_dirty; curr - dirty > 0; dirty++) { 1068 unsigned int entry = dirty % IPG_RFDLIST_LENGTH; 1069 1070 /* rx_copybreak may poke hole here and there. */ 1071 if (sp->RxBuff[entry]) 1072 continue; 1073 1074 /* Generate a new receive buffer to replace the 1075 * current buffer (which will be released by the 1076 * Linux system). 1077 */ 1078 if (ipg_get_rxbuff(dev, entry) < 0) { 1079 IPG_DEBUG_MSG("Cannot allocate new Rx buffer.\n"); 1080 1081 break; 1082 } 1083 1084 /* Reset the RFS field. */ 1085 sp->rxd[entry].rfs = 0x0000000000000000; 1086 } 1087 sp->rx_dirty = dirty; 1088 1089 return 0; 1090} 1091 1092#ifdef JUMBO_FRAME 1093 1094/* use jumboindex and jumbosize to control jumbo frame status 1095 initial status is jumboindex=-1 and jumbosize=0 1096 1. jumboindex = -1 and jumbosize=0 : previous jumbo frame has been done. 1097 2. jumboindex != -1 and jumbosize != 0 : jumbo frame is not over size and receiving 1098 3. jumboindex = -1 and jumbosize != 0 : jumbo frame is over size, already dump 1099 previous receiving and need to continue dumping the current one 1100*/ 1101enum { 1102 NormalPacket, 1103 ErrorPacket 1104}; 1105 1106enum { 1107 Frame_NoStart_NoEnd = 0, 1108 Frame_WithStart = 1, 1109 Frame_WithEnd = 10, 1110 Frame_WithStart_WithEnd = 11 1111}; 1112 1113inline void ipg_nic_rx_free_skb(struct net_device *dev) 1114{ 1115 struct ipg_nic_private *sp = netdev_priv(dev); 1116 unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH; 1117 1118 if (sp->RxBuff[entry]) { 1119 struct ipg_rx *rxfd = sp->rxd + entry; 1120 1121 pci_unmap_single(sp->pdev, 1122 le64_to_cpu(rxfd->frag_info & ~IPG_RFI_FRAGLEN), 1123 sp->rx_buf_sz, PCI_DMA_FROMDEVICE); 1124 IPG_DEV_KFREE_SKB(sp->RxBuff[entry]); 1125 sp->RxBuff[entry] = NULL; 1126 } 1127} 1128 1129inline int ipg_nic_rx_check_frame_type(struct net_device *dev) 1130{ 1131 struct ipg_nic_private *sp = netdev_priv(dev); 1132 struct ipg_rx *rxfd = sp->rxd + (sp->rx_current % IPG_RFDLIST_LENGTH); 1133 int type = Frame_NoStart_NoEnd; 1134 1135 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART) 1136 type += Frame_WithStart; 1137 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND) 1138 type += Frame_WithEnd; 1139 return type; 1140} 1141 1142inline int ipg_nic_rx_check_error(struct net_device *dev) 1143{ 1144 struct ipg_nic_private *sp = netdev_priv(dev); 1145 unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH; 1146 struct ipg_rx *rxfd = sp->rxd + entry; 1147 1148 if (IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) & 1149 (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME | 1150 IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR | 1151 IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR))) { 1152 IPG_DEBUG_MSG("Rx error, RFS = %16.16lx\n", 1153 (unsigned long) rxfd->rfs); 1154 1155 /* Increment general receive error statistic. */ 1156 sp->stats.rx_errors++; 1157 1158 /* Increment detailed receive error statistics. */ 1159 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) { 1160 IPG_DEBUG_MSG("RX FIFO overrun occured.\n"); 1161 1162 sp->stats.rx_fifo_errors++; 1163 } 1164 1165 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) { 1166 IPG_DEBUG_MSG("RX runt occured.\n"); 1167 sp->stats.rx_length_errors++; 1168 } 1169 1170 /* Do nothing for IPG_RFS_RXOVERSIZEDFRAME, 1171 * error count handled by a IPG statistic register. 1172 */ 1173 1174 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) { 1175 IPG_DEBUG_MSG("RX alignment error occured.\n"); 1176 sp->stats.rx_frame_errors++; 1177 } 1178 1179 /* Do nothing for IPG_RFS_RXFCSERROR, error count 1180 * handled by a IPG statistic register. 1181 */ 1182 1183 /* Free the memory associated with the RX 1184 * buffer since it is erroneous and we will 1185 * not pass it to higher layer processes. 1186 */ 1187 if (sp->RxBuff[entry]) { 1188 pci_unmap_single(sp->pdev, 1189 le64_to_cpu(rxfd->frag_info & ~IPG_RFI_FRAGLEN), 1190 sp->rx_buf_sz, PCI_DMA_FROMDEVICE); 1191 1192 IPG_DEV_KFREE_SKB(sp->RxBuff[entry]); 1193 sp->RxBuff[entry] = NULL; 1194 } 1195 return ErrorPacket; 1196 } 1197 return NormalPacket; 1198} 1199 1200static void ipg_nic_rx_with_start_and_end(struct net_device *dev, 1201 struct ipg_nic_private *sp, 1202 struct ipg_rx *rxfd, unsigned entry) 1203{ 1204 struct SJumbo *jumbo = &sp->Jumbo; 1205 struct sk_buff *skb; 1206 int framelen; 1207 1208 if (jumbo->FoundStart) { 1209 IPG_DEV_KFREE_SKB(jumbo->skb); 1210 jumbo->FoundStart = 0; 1211 jumbo->CurrentSize = 0; 1212 jumbo->skb = NULL; 1213 } 1214 1215 // 1: found error, 0 no error 1216 if (ipg_nic_rx_check_error(dev) != NormalPacket) 1217 return; 1218 1219 skb = sp->RxBuff[entry]; 1220 if (!skb) 1221 return; 1222 1223 // accept this frame and send to upper layer 1224 framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN; 1225 if (framelen > IPG_RXFRAG_SIZE) 1226 framelen = IPG_RXFRAG_SIZE; 1227 1228 skb_put(skb, framelen); 1229 skb->protocol = eth_type_trans(skb, dev); 1230 skb->ip_summed = CHECKSUM_NONE; 1231 netif_rx(skb); 1232 dev->last_rx = jiffies; 1233 sp->RxBuff[entry] = NULL; 1234} 1235 1236static void ipg_nic_rx_with_start(struct net_device *dev, 1237 struct ipg_nic_private *sp, 1238 struct ipg_rx *rxfd, unsigned entry) 1239{ 1240 struct SJumbo *jumbo = &sp->Jumbo; 1241 struct pci_dev *pdev = sp->pdev; 1242 struct sk_buff *skb; 1243 1244 // 1: found error, 0 no error 1245 if (ipg_nic_rx_check_error(dev) != NormalPacket) 1246 return; 1247 1248 // accept this frame and send to upper layer 1249 skb = sp->RxBuff[entry]; 1250 if (!skb) 1251 return; 1252 1253 if (jumbo->FoundStart) 1254 IPG_DEV_KFREE_SKB(jumbo->skb); 1255 1256 pci_unmap_single(pdev, le64_to_cpu(rxfd->frag_info & ~IPG_RFI_FRAGLEN), 1257 sp->rx_buf_sz, PCI_DMA_FROMDEVICE); 1258 1259 skb_put(skb, IPG_RXFRAG_SIZE); 1260 1261 jumbo->FoundStart = 1; 1262 jumbo->CurrentSize = IPG_RXFRAG_SIZE; 1263 jumbo->skb = skb; 1264 1265 sp->RxBuff[entry] = NULL; 1266 dev->last_rx = jiffies; 1267} 1268 1269static void ipg_nic_rx_with_end(struct net_device *dev, 1270 struct ipg_nic_private *sp, 1271 struct ipg_rx *rxfd, unsigned entry) 1272{ 1273 struct SJumbo *jumbo = &sp->Jumbo; 1274 1275 //1: found error, 0 no error 1276 if (ipg_nic_rx_check_error(dev) == NormalPacket) { 1277 struct sk_buff *skb = sp->RxBuff[entry]; 1278 1279 if (!skb) 1280 return; 1281 1282 if (jumbo->FoundStart) { 1283 int framelen, endframelen; 1284 1285 framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN; 1286 1287 endframeLen = framelen - jumbo->CurrentSize; 1288 /* 1289 if (framelen > IPG_RXFRAG_SIZE) 1290 framelen=IPG_RXFRAG_SIZE; 1291 */ 1292 if (framelen > IPG_RXSUPPORT_SIZE) 1293 IPG_DEV_KFREE_SKB(jumbo->skb); 1294 else { 1295 memcpy(skb_put(jumbo->skb, endframeLen), 1296 skb->data, endframeLen); 1297 1298 jumbo->skb->protocol = 1299 eth_type_trans(jumbo->skb, dev); 1300 1301 jumbo->skb->ip_summed = CHECKSUM_NONE; 1302 netif_rx(jumbo->skb); 1303 } 1304 } 1305 1306 dev->last_rx = jiffies; 1307 jumbo->FoundStart = 0; 1308 jumbo->CurrentSize = 0; 1309 jumbo->skb = NULL; 1310 1311 ipg_nic_rx_free_skb(dev); 1312 } else { 1313 IPG_DEV_KFREE_SKB(jumbo->skb); 1314 jumbo->FoundStart = 0; 1315 jumbo->CurrentSize = 0; 1316 jumbo->skb = NULL; 1317 } 1318} 1319 1320static void ipg_nic_rx_no_start_no_end(struct net_device *dev, 1321 struct ipg_nic_private *sp, 1322 struct ipg_rx *rxfd, unsigned entry) 1323{ 1324 struct SJumbo *jumbo = &sp->Jumbo; 1325 1326 //1: found error, 0 no error 1327 if (ipg_nic_rx_check_error(dev) == NormalPacket) { 1328 struct sk_buff *skb = sp->RxBuff[entry]; 1329 1330 if (skb) { 1331 if (jumbo->FoundStart) { 1332 jumbo->CurrentSize += IPG_RXFRAG_SIZE; 1333 if (jumbo->CurrentSize <= IPG_RXSUPPORT_SIZE) { 1334 memcpy(skb_put(jumbo->skb, 1335 IPG_RXFRAG_SIZE), 1336 skb->data, IPG_RXFRAG_SIZE); 1337 } 1338 } 1339 dev->last_rx = jiffies; 1340 ipg_nic_rx_free_skb(dev); 1341 } 1342 } else { 1343 IPG_DEV_KFREE_SKB(jumbo->skb); 1344 jumbo->FoundStart = 0; 1345 jumbo->CurrentSize = 0; 1346 jumbo->skb = NULL; 1347 } 1348} 1349 1350static int ipg_nic_rx(struct net_device *dev) 1351{ 1352 struct ipg_nic_private *sp = netdev_priv(dev); 1353 unsigned int curr = sp->rx_current; 1354 void __iomem *ioaddr = sp->ioaddr; 1355 unsigned int i; 1356 1357 IPG_DEBUG_MSG("_nic_rx\n"); 1358 1359 for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) { 1360 unsigned int entry = curr % IPG_RFDLIST_LENGTH; 1361 struct ipg_rx *rxfd = sp->rxd + entry; 1362 1363 if (!(rxfd->rfs & le64_to_cpu(IPG_RFS_RFDDONE))) 1364 break; 1365 1366 switch (ipg_nic_rx_check_frame_type(dev)) { 1367 case Frame_WithStart_WithEnd: 1368 ipg_nic_rx_with_start_and_end(dev, tp, rxfd, entry); 1369 break; 1370 case Frame_WithStart: 1371 ipg_nic_rx_with_start(dev, tp, rxfd, entry); 1372 break; 1373 case Frame_WithEnd: 1374 ipg_nic_rx_with_end(dev, tp, rxfd, entry); 1375 break; 1376 case Frame_NoStart_NoEnd: 1377 ipg_nic_rx_no_start_no_end(dev, tp, rxfd, entry); 1378 break; 1379 } 1380 } 1381 1382 sp->rx_current = curr; 1383 1384 if (i == IPG_MAXRFDPROCESS_COUNT) { 1385 /* There are more RFDs to process, however the 1386 * allocated amount of RFD processing time has 1387 * expired. Assert Interrupt Requested to make 1388 * sure we come back to process the remaining RFDs. 1389 */ 1390 ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL); 1391 } 1392 1393 ipg_nic_rxrestore(dev); 1394 1395 return 0; 1396} 1397 1398#else 1399static int ipg_nic_rx(struct net_device *dev) 1400{ 1401 /* Transfer received Ethernet frames to higher network layers. */ 1402 struct ipg_nic_private *sp = netdev_priv(dev); 1403 unsigned int curr = sp->rx_current; 1404 void __iomem *ioaddr = sp->ioaddr; 1405 struct ipg_rx *rxfd; 1406 unsigned int i; 1407 1408 IPG_DEBUG_MSG("_nic_rx\n"); 1409 1410#define __RFS_MASK \ 1411 cpu_to_le64(IPG_RFS_RFDDONE | IPG_RFS_FRAMESTART | IPG_RFS_FRAMEEND) 1412 1413 for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) { 1414 unsigned int entry = curr % IPG_RFDLIST_LENGTH; 1415 struct sk_buff *skb = sp->RxBuff[entry]; 1416 unsigned int framelen; 1417 1418 rxfd = sp->rxd + entry; 1419 1420 if (((rxfd->rfs & __RFS_MASK) != __RFS_MASK) || !skb) 1421 break; 1422 1423 /* Get received frame length. */ 1424 framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN; 1425 1426 /* Check for jumbo frame arrival with too small 1427 * RXFRAG_SIZE. 1428 */ 1429 if (framelen > IPG_RXFRAG_SIZE) { 1430 IPG_DEBUG_MSG 1431 ("RFS FrameLen > allocated fragment size.\n"); 1432 1433 framelen = IPG_RXFRAG_SIZE; 1434 } 1435 1436 if ((IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) & 1437 (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME | 1438 IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR | 1439 IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR)))) { 1440 1441 IPG_DEBUG_MSG("Rx error, RFS = %16.16lx\n", 1442 (unsigned long int) rxfd->rfs); 1443 1444 /* Increment general receive error statistic. */ 1445 sp->stats.rx_errors++; 1446 1447 /* Increment detailed receive error statistics. */ 1448 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) { 1449 IPG_DEBUG_MSG("RX FIFO overrun occured.\n"); 1450 sp->stats.rx_fifo_errors++; 1451 } 1452 1453 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) { 1454 IPG_DEBUG_MSG("RX runt occured.\n"); 1455 sp->stats.rx_length_errors++; 1456 } 1457 1458 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXOVERSIZEDFRAME) ; 1459 /* Do nothing, error count handled by a IPG 1460 * statistic register. 1461 */ 1462 1463 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) { 1464 IPG_DEBUG_MSG("RX alignment error occured.\n"); 1465 sp->stats.rx_frame_errors++; 1466 } 1467 1468 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFCSERROR) ; 1469 /* Do nothing, error count handled by a IPG 1470 * statistic register. 1471 */ 1472 1473 /* Free the memory associated with the RX 1474 * buffer since it is erroneous and we will 1475 * not pass it to higher layer processes. 1476 */ 1477 if (skb) { 1478 __le64 info = rxfd->frag_info; 1479 1480 pci_unmap_single(sp->pdev, 1481 le64_to_cpu(info) & ~IPG_RFI_FRAGLEN, 1482 sp->rx_buf_sz, PCI_DMA_FROMDEVICE); 1483 1484 IPG_DEV_KFREE_SKB(skb); 1485 } 1486 } else { 1487 1488 /* Adjust the new buffer length to accomodate the size 1489 * of the received frame. 1490 */ 1491 skb_put(skb, framelen); 1492 1493 /* Set the buffer's protocol field to Ethernet. */ 1494 skb->protocol = eth_type_trans(skb, dev); 1495 1496 /* If the frame contains an IP/TCP/UDP frame, 1497 * determine if upper layer must check IP/TCP/UDP 1498 * checksums. 1499 * 1500 * NOTE: DO NOT RELY ON THE TCP/UDP CHECKSUM 1501 * VERIFICATION FOR SILICON REVISIONS B3 1502 * AND EARLIER! 1503 * 1504 if ((le64_to_cpu(rxfd->rfs & 1505 (IPG_RFS_TCPDETECTED | IPG_RFS_UDPDETECTED | 1506 IPG_RFS_IPDETECTED))) && 1507 !(le64_to_cpu(rxfd->rfs & 1508 (IPG_RFS_TCPERROR | IPG_RFS_UDPERROR | 1509 IPG_RFS_IPERROR)))) { 1510 * Indicate IP checksums were performed 1511 * by the IPG. 1512 * 1513 skb->ip_summed = CHECKSUM_UNNECESSARY; 1514 } else 1515 */ 1516 { 1517 /* The IPG encountered an error with (or 1518 * there were no) IP/TCP/UDP checksums. 1519 * This may or may not indicate an invalid 1520 * IP/TCP/UDP frame was received. Let the 1521 * upper layer decide. 1522 */ 1523 skb->ip_summed = CHECKSUM_NONE; 1524 } 1525 1526 /* Hand off frame for higher layer processing. 1527 * The function netif_rx() releases the sk_buff 1528 * when processing completes. 1529 */ 1530 netif_rx(skb); 1531 1532 /* Record frame receive time (jiffies = Linux 1533 * kernel current time stamp). 1534 */ 1535 dev->last_rx = jiffies; 1536 } 1537 1538 /* Assure RX buffer is not reused by IPG. */ 1539 sp->RxBuff[entry] = NULL; 1540 } 1541 1542 /* 1543 * If there are more RFDs to proces and the allocated amount of RFD 1544 * processing time has expired, assert Interrupt Requested to make 1545 * sure we come back to process the remaining RFDs. 1546 */ 1547 if (i == IPG_MAXRFDPROCESS_COUNT) 1548 ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL); 1549 1550#ifdef IPG_DEBUG 1551 /* Check if the RFD list contained no receive frame data. */ 1552 if (!i) 1553 sp->EmptyRFDListCount++; 1554#endif 1555 while ((le64_to_cpu(rxfd->rfs) & IPG_RFS_RFDDONE) && 1556 !((le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART) && 1557 (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND))) { 1558 unsigned int entry = curr++ % IPG_RFDLIST_LENGTH; 1559 1560 rxfd = sp->rxd + entry; 1561 1562 IPG_DEBUG_MSG("Frame requires multiple RFDs.\n"); 1563 1564 /* An unexpected event, additional code needed to handle 1565 * properly. So for the time being, just disregard the 1566 * frame. 1567 */ 1568 1569 /* Free the memory associated with the RX 1570 * buffer since it is erroneous and we will 1571 * not pass it to higher layer processes. 1572 */ 1573 if (sp->RxBuff[entry]) { 1574 pci_unmap_single(sp->pdev, 1575 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN, 1576 sp->rx_buf_sz, PCI_DMA_FROMDEVICE); 1577 IPG_DEV_KFREE_SKB(sp->RxBuff[entry]); 1578 } 1579 1580 /* Assure RX buffer is not reused by IPG. */ 1581 sp->RxBuff[entry] = NULL; 1582 } 1583 1584 sp->rx_current = curr; 1585 1586 /* Check to see if there are a minimum number of used 1587 * RFDs before restoring any (should improve performance.) 1588 */ 1589 if ((curr - sp->rx_dirty) >= IPG_MINUSEDRFDSTOFREE) 1590 ipg_nic_rxrestore(dev); 1591 1592 return 0; 1593} 1594#endif 1595 1596static void ipg_reset_after_host_error(struct work_struct *work) 1597{ 1598 struct ipg_nic_private *sp = 1599 container_of(work, struct ipg_nic_private, task.work); 1600 struct net_device *dev = sp->dev; 1601 1602 IPG_DDEBUG_MSG("DMACtrl = %8.8x\n", ioread32(sp->ioaddr + IPG_DMACTRL)); 1603 1604 /* 1605 * Acknowledge HostError interrupt by resetting 1606 * IPG DMA and HOST. 1607 */ 1608 ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA); 1609 1610 init_rfdlist(dev); 1611 init_tfdlist(dev); 1612 1613 if (ipg_io_config(dev) < 0) { 1614 printk(KERN_INFO "%s: Cannot recover from PCI error.\n", 1615 dev->name); 1616 schedule_delayed_work(&sp->task, HZ); 1617 } 1618} 1619 1620static irqreturn_t ipg_interrupt_handler(int irq, void *dev_inst) 1621{ 1622 struct net_device *dev = dev_inst; 1623 struct ipg_nic_private *sp = netdev_priv(dev); 1624 void __iomem *ioaddr = sp->ioaddr; 1625 unsigned int handled = 0; 1626 u16 status; 1627 1628 IPG_DEBUG_MSG("_interrupt_handler\n"); 1629 1630#ifdef JUMBO_FRAME 1631 ipg_nic_rxrestore(dev); 1632#endif 1633 /* Get interrupt source information, and acknowledge 1634 * some (i.e. TxDMAComplete, RxDMAComplete, RxEarly, 1635 * IntRequested, MacControlFrame, LinkEvent) interrupts 1636 * if issued. Also, all IPG interrupts are disabled by 1637 * reading IntStatusAck. 1638 */ 1639 status = ipg_r16(INT_STATUS_ACK); 1640 1641 IPG_DEBUG_MSG("IntStatusAck = %4.4x\n", status); 1642 1643 /* Shared IRQ of remove event. */ 1644 if (!(status & IPG_IS_RSVD_MASK)) 1645 goto out_enable; 1646 1647 handled = 1; 1648 1649 if (unlikely(!netif_running(dev))) 1650 goto out; 1651 1652 spin_lock(&sp->lock); 1653 1654 /* If RFDListEnd interrupt, restore all used RFDs. */ 1655 if (status & IPG_IS_RFD_LIST_END) { 1656 IPG_DEBUG_MSG("RFDListEnd Interrupt.\n"); 1657 1658 /* The RFD list end indicates an RFD was encountered 1659 * with a 0 NextPtr, or with an RFDDone bit set to 1 1660 * (indicating the RFD is not read for use by the 1661 * IPG.) Try to restore all RFDs. 1662 */ 1663 ipg_nic_rxrestore(dev); 1664 1665#ifdef IPG_DEBUG 1666 /* Increment the RFDlistendCount counter. */ 1667 sp->RFDlistendCount++; 1668#endif 1669 } 1670 1671 /* If RFDListEnd, RxDMAPriority, RxDMAComplete, or 1672 * IntRequested interrupt, process received frames. */ 1673 if ((status & IPG_IS_RX_DMA_PRIORITY) || 1674 (status & IPG_IS_RFD_LIST_END) || 1675 (status & IPG_IS_RX_DMA_COMPLETE) || 1676 (status & IPG_IS_INT_REQUESTED)) { 1677#ifdef IPG_DEBUG 1678 /* Increment the RFD list checked counter if interrupted 1679 * only to check the RFD list. */ 1680 if (status & (~(IPG_IS_RX_DMA_PRIORITY | IPG_IS_RFD_LIST_END | 1681 IPG_IS_RX_DMA_COMPLETE | IPG_IS_INT_REQUESTED) & 1682 (IPG_IS_HOST_ERROR | IPG_IS_TX_DMA_COMPLETE | 1683 IPG_IS_LINK_EVENT | IPG_IS_TX_COMPLETE | 1684 IPG_IS_UPDATE_STATS))) 1685 sp->RFDListCheckedCount++; 1686#endif 1687 1688 ipg_nic_rx(dev); 1689 } 1690 1691 /* If TxDMAComplete interrupt, free used TFDs. */ 1692 if (status & IPG_IS_TX_DMA_COMPLETE) 1693 ipg_nic_txfree(dev); 1694 1695 /* TxComplete interrupts indicate one of numerous actions. 1696 * Determine what action to take based on TXSTATUS register. 1697 */ 1698 if (status & IPG_IS_TX_COMPLETE) 1699 ipg_nic_txcleanup(dev); 1700 1701 /* If UpdateStats interrupt, update Linux Ethernet statistics */ 1702 if (status & IPG_IS_UPDATE_STATS) 1703 ipg_nic_get_stats(dev); 1704 1705 /* If HostError interrupt, reset IPG. */ 1706 if (status & IPG_IS_HOST_ERROR) { 1707 IPG_DDEBUG_MSG("HostError Interrupt\n"); 1708 1709 schedule_delayed_work(&sp->task, 0); 1710 } 1711 1712 /* If LinkEvent interrupt, resolve autonegotiation. */ 1713 if (status & IPG_IS_LINK_EVENT) { 1714 if (ipg_config_autoneg(dev) < 0) 1715 printk(KERN_INFO "%s: Auto-negotiation error.\n", 1716 dev->name); 1717 } 1718 1719 /* If MACCtrlFrame interrupt, do nothing. */ 1720 if (status & IPG_IS_MAC_CTRL_FRAME) 1721 IPG_DEBUG_MSG("MACCtrlFrame interrupt.\n"); 1722 1723 /* If RxComplete interrupt, do nothing. */ 1724 if (status & IPG_IS_RX_COMPLETE) 1725 IPG_DEBUG_MSG("RxComplete interrupt.\n"); 1726 1727 /* If RxEarly interrupt, do nothing. */ 1728 if (status & IPG_IS_RX_EARLY) 1729 IPG_DEBUG_MSG("RxEarly interrupt.\n"); 1730 1731out_enable: 1732 /* Re-enable IPG interrupts. */ 1733 ipg_w16(IPG_IE_TX_DMA_COMPLETE | IPG_IE_RX_DMA_COMPLETE | 1734 IPG_IE_HOST_ERROR | IPG_IE_INT_REQUESTED | IPG_IE_TX_COMPLETE | 1735 IPG_IE_LINK_EVENT | IPG_IE_UPDATE_STATS, INT_ENABLE); 1736 1737 spin_unlock(&sp->lock); 1738out: 1739 return IRQ_RETVAL(handled); 1740} 1741 1742static void ipg_rx_clear(struct ipg_nic_private *sp) 1743{ 1744 unsigned int i; 1745 1746 for (i = 0; i < IPG_RFDLIST_LENGTH; i++) { 1747 if (sp->RxBuff[i]) { 1748 struct ipg_rx *rxfd = sp->rxd + i; 1749 1750 IPG_DEV_KFREE_SKB(sp->RxBuff[i]); 1751 sp->RxBuff[i] = NULL; 1752 pci_unmap_single(sp->pdev, 1753 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN, 1754 sp->rx_buf_sz, PCI_DMA_FROMDEVICE); 1755 } 1756 } 1757} 1758 1759static void ipg_tx_clear(struct ipg_nic_private *sp) 1760{ 1761 unsigned int i; 1762 1763 for (i = 0; i < IPG_TFDLIST_LENGTH; i++) { 1764 if (sp->TxBuff[i]) { 1765 struct ipg_tx *txfd = sp->txd + i; 1766 1767 pci_unmap_single(sp->pdev, 1768 le64_to_cpu(txfd->frag_info) & ~IPG_TFI_FRAGLEN, 1769 sp->TxBuff[i]->len, PCI_DMA_TODEVICE); 1770 1771 IPG_DEV_KFREE_SKB(sp->TxBuff[i]); 1772 1773 sp->TxBuff[i] = NULL; 1774 } 1775 } 1776} 1777 1778static int ipg_nic_open(struct net_device *dev) 1779{ 1780 struct ipg_nic_private *sp = netdev_priv(dev); 1781 void __iomem *ioaddr = sp->ioaddr; 1782 struct pci_dev *pdev = sp->pdev; 1783 int rc; 1784 1785 IPG_DEBUG_MSG("_nic_open\n"); 1786 1787 sp->rx_buf_sz = IPG_RXSUPPORT_SIZE; 1788 1789 /* Check for interrupt line conflicts, and request interrupt 1790 * line for IPG. 1791 * 1792 * IMPORTANT: Disable IPG interrupts prior to registering 1793 * IRQ. 1794 */ 1795 ipg_w16(0x0000, INT_ENABLE); 1796 1797 /* Register the interrupt line to be used by the IPG within 1798 * the Linux system. 1799 */ 1800 rc = request_irq(pdev->irq, &ipg_interrupt_handler, IRQF_SHARED, 1801 dev->name, dev); 1802 if (rc < 0) { 1803 printk(KERN_INFO "%s: Error when requesting interrupt.\n", 1804 dev->name); 1805 goto out; 1806 } 1807 1808 dev->irq = pdev->irq; 1809 1810 rc = -ENOMEM; 1811 1812 sp->rxd = dma_alloc_coherent(&pdev->dev, IPG_RX_RING_BYTES, 1813 &sp->rxd_map, GFP_KERNEL); 1814 if (!sp->rxd) 1815 goto err_free_irq_0; 1816 1817 sp->txd = dma_alloc_coherent(&pdev->dev, IPG_TX_RING_BYTES, 1818 &sp->txd_map, GFP_KERNEL); 1819 if (!sp->txd) 1820 goto err_free_rx_1; 1821 1822 rc = init_rfdlist(dev); 1823 if (rc < 0) { 1824 printk(KERN_INFO "%s: Error during configuration.\n", 1825 dev->name); 1826 goto err_free_tx_2; 1827 } 1828 1829 init_tfdlist(dev); 1830 1831 rc = ipg_io_config(dev); 1832 if (rc < 0) { 1833 printk(KERN_INFO "%s: Error during configuration.\n", 1834 dev->name); 1835 goto err_release_tfdlist_3; 1836 } 1837 1838 /* Resolve autonegotiation. */ 1839 if (ipg_config_autoneg(dev) < 0) 1840 printk(KERN_INFO "%s: Auto-negotiation error.\n", dev->name); 1841 1842#ifdef JUMBO_FRAME 1843 /* initialize JUMBO Frame control variable */ 1844 sp->Jumbo.FoundStart = 0; 1845 sp->Jumbo.CurrentSize = 0; 1846 sp->Jumbo.skb = 0; 1847 dev->mtu = IPG_TXFRAG_SIZE; 1848#endif 1849 1850 /* Enable transmit and receive operation of the IPG. */ 1851 ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_RX_ENABLE | IPG_MC_TX_ENABLE) & 1852 IPG_MC_RSVD_MASK, MAC_CTRL); 1853 1854 netif_start_queue(dev); 1855out: 1856 return rc; 1857 1858err_release_tfdlist_3: 1859 ipg_tx_clear(sp); 1860 ipg_rx_clear(sp); 1861err_free_tx_2: 1862 dma_free_coherent(&pdev->dev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map); 1863err_free_rx_1: 1864 dma_free_coherent(&pdev->dev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map); 1865err_free_irq_0: 1866 free_irq(pdev->irq, dev); 1867 goto out; 1868} 1869 1870static int ipg_nic_stop(struct net_device *dev) 1871{ 1872 struct ipg_nic_private *sp = netdev_priv(dev); 1873 void __iomem *ioaddr = sp->ioaddr; 1874 struct pci_dev *pdev = sp->pdev; 1875 1876 IPG_DEBUG_MSG("_nic_stop\n"); 1877 1878 netif_stop_queue(dev); 1879 1880 IPG_DDEBUG_MSG("RFDlistendCount = %i\n", sp->RFDlistendCount); 1881 IPG_DDEBUG_MSG("RFDListCheckedCount = %i\n", sp->rxdCheckedCount); 1882 IPG_DDEBUG_MSG("EmptyRFDListCount = %i\n", sp->EmptyRFDListCount); 1883 IPG_DUMPTFDLIST(dev); 1884 1885 do { 1886 (void) ipg_r16(INT_STATUS_ACK); 1887 1888 ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA); 1889 1890 synchronize_irq(pdev->irq); 1891 } while (ipg_r16(INT_ENABLE) & IPG_IE_RSVD_MASK); 1892 1893 ipg_rx_clear(sp); 1894 1895 ipg_tx_clear(sp); 1896 1897 pci_free_consistent(pdev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map); 1898 pci_free_consistent(pdev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map); 1899 1900 free_irq(pdev->irq, dev); 1901 1902 return 0; 1903} 1904 1905static int ipg_nic_hard_start_xmit(struct sk_buff *skb, struct net_device *dev) 1906{ 1907 struct ipg_nic_private *sp = netdev_priv(dev); 1908 void __iomem *ioaddr = sp->ioaddr; 1909 unsigned int entry = sp->tx_current % IPG_TFDLIST_LENGTH; 1910 unsigned long flags; 1911 struct ipg_tx *txfd; 1912 1913 IPG_DDEBUG_MSG("_nic_hard_start_xmit\n"); 1914 1915 /* If in 10Mbps mode, stop the transmit queue so 1916 * no more transmit frames are accepted. 1917 */ 1918 if (sp->tenmbpsmode) 1919 netif_stop_queue(dev); 1920 1921 if (sp->ResetCurrentTFD) { 1922 sp->ResetCurrentTFD = 0; 1923 entry = 0; 1924 } 1925 1926 txfd = sp->txd + entry; 1927 1928 sp->TxBuff[entry] = skb; 1929 1930 /* Clear all TFC fields, except TFDDONE. */ 1931 txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE); 1932 1933 /* Specify the TFC field within the TFD. */ 1934 txfd->tfc |= cpu_to_le64(IPG_TFC_WORDALIGNDISABLED | 1935 (IPG_TFC_FRAMEID & cpu_to_le64(sp->tx_current)) | 1936 (IPG_TFC_FRAGCOUNT & (1 << 24))); 1937 1938 /* Request TxComplete interrupts at an interval defined 1939 * by the constant IPG_FRAMESBETWEENTXCOMPLETES. 1940 * Request TxComplete interrupt for every frame 1941 * if in 10Mbps mode to accomodate problem with 10Mbps 1942 * processing. 1943 */ 1944 if (sp->tenmbpsmode) 1945 txfd->tfc |= cpu_to_le64(IPG_TFC_TXINDICATE); 1946 else if (!((sp->tx_current - sp->tx_dirty + 1) > 1947 IPG_FRAMESBETWEENTXDMACOMPLETES)) { 1948 txfd->tfc |= cpu_to_le64(IPG_TFC_TXDMAINDICATE); 1949 } 1950 /* Based on compilation option, determine if FCS is to be 1951 * appended to transmit frame by IPG. 1952 */ 1953 if (!(IPG_APPEND_FCS_ON_TX)) 1954 txfd->tfc |= cpu_to_le64(IPG_TFC_FCSAPPENDDISABLE); 1955 1956 /* Based on compilation option, determine if IP, TCP and/or 1957 * UDP checksums are to be added to transmit frame by IPG. 1958 */ 1959 if (IPG_ADD_IPCHECKSUM_ON_TX) 1960 txfd->tfc |= cpu_to_le64(IPG_TFC_IPCHECKSUMENABLE); 1961 1962 if (IPG_ADD_TCPCHECKSUM_ON_TX) 1963 txfd->tfc |= cpu_to_le64(IPG_TFC_TCPCHECKSUMENABLE); 1964 1965 if (IPG_ADD_UDPCHECKSUM_ON_TX) 1966 txfd->tfc |= cpu_to_le64(IPG_TFC_UDPCHECKSUMENABLE); 1967 1968 /* Based on compilation option, determine if VLAN tag info is to be 1969 * inserted into transmit frame by IPG. 1970 */ 1971 if (IPG_INSERT_MANUAL_VLAN_TAG) { 1972 txfd->tfc |= cpu_to_le64(IPG_TFC_VLANTAGINSERT | 1973 ((u64) IPG_MANUAL_VLAN_VID << 32) | 1974 ((u64) IPG_MANUAL_VLAN_CFI << 44) | 1975 ((u64) IPG_MANUAL_VLAN_USERPRIORITY << 45)); 1976 } 1977 1978 /* The fragment start location within system memory is defined 1979 * by the sk_buff structure's data field. The physical address 1980 * of this location within the system's virtual memory space 1981 * is determined using the IPG_HOST2BUS_MAP function. 1982 */ 1983 txfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data, 1984 skb->len, PCI_DMA_TODEVICE)); 1985 1986 /* The length of the fragment within system memory is defined by 1987 * the sk_buff structure's len field. 1988 */ 1989 txfd->frag_info |= cpu_to_le64(IPG_TFI_FRAGLEN & 1990 ((u64) (skb->len & 0xffff) << 48)); 1991 1992 /* Clear the TFDDone bit last to indicate the TFD is ready 1993 * for transfer to the IPG. 1994 */ 1995 txfd->tfc &= cpu_to_le64(~IPG_TFC_TFDDONE); 1996 1997 spin_lock_irqsave(&sp->lock, flags); 1998 1999 sp->tx_current++; 2000 2001 mmiowb(); 2002 2003 ipg_w32(IPG_DC_TX_DMA_POLL_NOW, DMA_CTRL); 2004 2005 if (sp->tx_current == (sp->tx_dirty + IPG_TFDLIST_LENGTH)) 2006 netif_wake_queue(dev); 2007 2008 spin_unlock_irqrestore(&sp->lock, flags); 2009 2010 return NETDEV_TX_OK; 2011} 2012 2013static void ipg_set_phy_default_param(unsigned char rev, 2014 struct net_device *dev, int phy_address) 2015{ 2016 unsigned short length; 2017 unsigned char revision; 2018 unsigned short *phy_param; 2019 unsigned short address, value; 2020 2021 phy_param = &DefaultPhyParam[0]; 2022 length = *phy_param & 0x00FF; 2023 revision = (unsigned char)((*phy_param) >> 8); 2024 phy_param++; 2025 while (length != 0) { 2026 if (rev == revision) { 2027 while (length > 1) { 2028 address = *phy_param; 2029 value = *(phy_param + 1); 2030 phy_param += 2; 2031 mdio_write(dev, phy_address, address, value); 2032 length -= 4; 2033 } 2034 break; 2035 } else { 2036 phy_param += length / 2; 2037 length = *phy_param & 0x00FF; 2038 revision = (unsigned char)((*phy_param) >> 8); 2039 phy_param++; 2040 } 2041 } 2042} 2043 2044/* JES20040127EEPROM */ 2045static int read_eeprom(struct net_device *dev, int eep_addr) 2046{ 2047 void __iomem *ioaddr = ipg_ioaddr(dev); 2048 unsigned int i; 2049 int ret = 0; 2050 u16 value; 2051 2052 value = IPG_EC_EEPROM_READOPCODE | (eep_addr & 0xff); 2053 ipg_w16(value, EEPROM_CTRL); 2054 2055 for (i = 0; i < 1000; i++) { 2056 u16 data; 2057 2058 mdelay(10); 2059 data = ipg_r16(EEPROM_CTRL); 2060 if (!(data & IPG_EC_EEPROM_BUSY)) { 2061 ret = ipg_r16(EEPROM_DATA); 2062 break; 2063 } 2064 } 2065 return ret; 2066} 2067 2068static void ipg_init_mii(struct net_device *dev) 2069{ 2070 struct ipg_nic_private *sp = netdev_priv(dev); 2071 struct mii_if_info *mii_if = &sp->mii_if; 2072 int phyaddr; 2073 2074 mii_if->dev = dev; 2075 mii_if->mdio_read = mdio_read; 2076 mii_if->mdio_write = mdio_write; 2077 mii_if->phy_id_mask = 0x1f; 2078 mii_if->reg_num_mask = 0x1f; 2079 2080 mii_if->phy_id = phyaddr = ipg_find_phyaddr(dev); 2081 2082 if (phyaddr != 0x1f) { 2083 u16 mii_phyctrl, mii_1000cr; 2084 u8 revisionid = 0; 2085 2086 mii_1000cr = mdio_read(dev, phyaddr, MII_CTRL1000); 2087 mii_1000cr |= ADVERTISE_1000FULL | ADVERTISE_1000HALF | 2088 GMII_PHY_1000BASETCONTROL_PreferMaster; 2089 mdio_write(dev, phyaddr, MII_CTRL1000, mii_1000cr); 2090 2091 mii_phyctrl = mdio_read(dev, phyaddr, MII_BMCR); 2092 2093 /* Set default phyparam */ 2094 pci_read_config_byte(sp->pdev, PCI_REVISION_ID, &revisionid); 2095 ipg_set_phy_default_param(revisionid, dev, phyaddr); 2096 2097 /* Reset PHY */ 2098 mii_phyctrl |= BMCR_RESET | BMCR_ANRESTART; 2099 mdio_write(dev, phyaddr, MII_BMCR, mii_phyctrl); 2100 2101 } 2102} 2103 2104static int ipg_hw_init(struct net_device *dev) 2105{ 2106 struct ipg_nic_private *sp = netdev_priv(dev); 2107 void __iomem *ioaddr = sp->ioaddr; 2108 unsigned int i; 2109 int rc; 2110 2111 /* Read/Write and Reset EEPROM Value Jesse20040128EEPROM_VALUE */ 2112 /* Read LED Mode Configuration from EEPROM */ 2113 sp->LED_Mode = read_eeprom(dev, 6); 2114 2115 /* Reset all functions within the IPG. Do not assert 2116 * RST_OUT as not compatible with some PHYs. 2117 */ 2118 rc = ipg_reset(dev, IPG_RESET_MASK); 2119 if (rc < 0) 2120 goto out; 2121 2122 ipg_init_mii(dev); 2123 2124 /* Read MAC Address from EEPROM */ 2125 for (i = 0; i < 3; i++) 2126 sp->station_addr[i] = read_eeprom(dev, 16 + i); 2127 2128 for (i = 0; i < 3; i++) 2129 ipg_w16(sp->station_addr[i], STATION_ADDRESS_0 + 2*i); 2130 2131 /* Set station address in ethernet_device structure. */ 2132 dev->dev_addr[0] = ipg_r16(STATION_ADDRESS_0) & 0x00ff; 2133 dev->dev_addr[1] = (ipg_r16(STATION_ADDRESS_0) & 0xff00) >> 8; 2134 dev->dev_addr[2] = ipg_r16(STATION_ADDRESS_1) & 0x00ff; 2135 dev->dev_addr[3] = (ipg_r16(STATION_ADDRESS_1) & 0xff00) >> 8; 2136 dev->dev_addr[4] = ipg_r16(STATION_ADDRESS_2) & 0x00ff; 2137 dev->dev_addr[5] = (ipg_r16(STATION_ADDRESS_2) & 0xff00) >> 8; 2138out: 2139 return rc; 2140} 2141 2142static int ipg_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 2143{ 2144 struct ipg_nic_private *sp = netdev_priv(dev); 2145 int rc; 2146 2147 mutex_lock(&sp->mii_mutex); 2148 rc = generic_mii_ioctl(&sp->mii_if, if_mii(ifr), cmd, NULL); 2149 mutex_unlock(&sp->mii_mutex); 2150 2151 return rc; 2152} 2153 2154static int ipg_nic_change_mtu(struct net_device *dev, int new_mtu) 2155{ 2156 /* Function to accomodate changes to Maximum Transfer Unit 2157 * (or MTU) of IPG NIC. Cannot use default function since 2158 * the default will not allow for MTU > 1500 bytes. 2159 */ 2160 2161 IPG_DEBUG_MSG("_nic_change_mtu\n"); 2162 2163 /* Check that the new MTU value is between 68 (14 byte header, 46 2164 * byte payload, 4 byte FCS) and IPG_MAX_RXFRAME_SIZE, which 2165 * corresponds to the MAXFRAMESIZE register in the IPG. 2166 */ 2167 if ((new_mtu < 68) || (new_mtu > IPG_MAX_RXFRAME_SIZE)) 2168 return -EINVAL; 2169 2170 dev->mtu = new_mtu; 2171 2172 return 0; 2173} 2174 2175static int ipg_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 2176{ 2177 struct ipg_nic_private *sp = netdev_priv(dev); 2178 int rc; 2179 2180 mutex_lock(&sp->mii_mutex); 2181 rc = mii_ethtool_gset(&sp->mii_if, cmd); 2182 mutex_unlock(&sp->mii_mutex); 2183 2184 return rc; 2185} 2186 2187static int ipg_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 2188{ 2189 struct ipg_nic_private *sp = netdev_priv(dev); 2190 int rc; 2191 2192 mutex_lock(&sp->mii_mutex); 2193 rc = mii_ethtool_sset(&sp->mii_if, cmd); 2194 mutex_unlock(&sp->mii_mutex); 2195 2196 return rc; 2197} 2198 2199static int ipg_nway_reset(struct net_device *dev) 2200{ 2201 struct ipg_nic_private *sp = netdev_priv(dev); 2202 int rc; 2203 2204 mutex_lock(&sp->mii_mutex); 2205 rc = mii_nway_restart(&sp->mii_if); 2206 mutex_unlock(&sp->mii_mutex); 2207 2208 return rc; 2209} 2210 2211static struct ethtool_ops ipg_ethtool_ops = { 2212 .get_settings = ipg_get_settings, 2213 .set_settings = ipg_set_settings, 2214 .nway_reset = ipg_nway_reset, 2215}; 2216 2217static void ipg_remove(struct pci_dev *pdev) 2218{ 2219 struct net_device *dev = pci_get_drvdata(pdev); 2220 struct ipg_nic_private *sp = netdev_priv(dev); 2221 2222 IPG_DEBUG_MSG("_remove\n"); 2223 2224 /* Un-register Ethernet device. */ 2225 unregister_netdev(dev); 2226 2227 pci_iounmap(pdev, sp->ioaddr); 2228 2229 pci_release_regions(pdev); 2230 2231 free_netdev(dev); 2232 pci_disable_device(pdev); 2233 pci_set_drvdata(pdev, NULL); 2234} 2235 2236static int __devinit ipg_probe(struct pci_dev *pdev, 2237 const struct pci_device_id *id) 2238{ 2239 unsigned int i = id->driver_data; 2240 struct ipg_nic_private *sp; 2241 struct net_device *dev; 2242 void __iomem *ioaddr; 2243 int rc; 2244 2245 rc = pci_enable_device(pdev); 2246 if (rc < 0) 2247 goto out; 2248 2249 printk(KERN_INFO "%s: %s\n", pci_name(pdev), ipg_brand_name[i]); 2250 2251 pci_set_master(pdev); 2252 2253 rc = pci_set_dma_mask(pdev, DMA_40BIT_MASK); 2254 if (rc < 0) { 2255 rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK); 2256 if (rc < 0) { 2257 printk(KERN_ERR "%s: DMA config failed.\n", 2258 pci_name(pdev)); 2259 goto err_disable_0; 2260 } 2261 } 2262 2263 /* 2264 * Initialize net device. 2265 */ 2266 dev = alloc_etherdev(sizeof(struct ipg_nic_private)); 2267 if (!dev) { 2268 printk(KERN_ERR "%s: alloc_etherdev failed\n", pci_name(pdev)); 2269 rc = -ENOMEM; 2270 goto err_disable_0; 2271 } 2272 2273 sp = netdev_priv(dev); 2274 spin_lock_init(&sp->lock); 2275 mutex_init(&sp->mii_mutex); 2276 2277 /* Declare IPG NIC functions for Ethernet device methods. 2278 */ 2279 dev->open = &ipg_nic_open; 2280 dev->stop = &ipg_nic_stop; 2281 dev->hard_start_xmit = &ipg_nic_hard_start_xmit; 2282 dev->get_stats = &ipg_nic_get_stats; 2283 dev->set_multicast_list = &ipg_nic_set_multicast_list; 2284 dev->do_ioctl = ipg_ioctl; 2285 dev->tx_timeout = ipg_tx_timeout; 2286 dev->change_mtu = &ipg_nic_change_mtu; 2287 2288 SET_NETDEV_DEV(dev, &pdev->dev); 2289 SET_ETHTOOL_OPS(dev, &ipg_ethtool_ops); 2290 2291 rc = pci_request_regions(pdev, DRV_NAME); 2292 if (rc) 2293 goto err_free_dev_1; 2294 2295 ioaddr = pci_iomap(pdev, 1, pci_resource_len(pdev, 1)); 2296 if (!ioaddr) { 2297 printk(KERN_ERR "%s cannot map MMIO\n", pci_name(pdev)); 2298 rc = -EIO; 2299 goto err_release_regions_2; 2300 } 2301 2302 /* Save the pointer to the PCI device information. */ 2303 sp->ioaddr = ioaddr; 2304 sp->pdev = pdev; 2305 sp->dev = dev; 2306 2307 INIT_DELAYED_WORK(&sp->task, ipg_reset_after_host_error); 2308 2309 pci_set_drvdata(pdev, dev); 2310 2311 rc = ipg_hw_init(dev); 2312 if (rc < 0) 2313 goto err_unmap_3; 2314 2315 rc = register_netdev(dev); 2316 if (rc < 0) 2317 goto err_unmap_3; 2318 2319 printk(KERN_INFO "Ethernet device registered as: %s\n", dev->name); 2320out: 2321 return rc; 2322 2323err_unmap_3: 2324 pci_iounmap(pdev, ioaddr); 2325err_release_regions_2: 2326 pci_release_regions(pdev); 2327err_free_dev_1: 2328 free_netdev(dev); 2329err_disable_0: 2330 pci_disable_device(pdev); 2331 goto out; 2332} 2333 2334static struct pci_driver ipg_pci_driver = { 2335 .name = IPG_DRIVER_NAME, 2336 .id_table = ipg_pci_tbl, 2337 .probe = ipg_probe, 2338 .remove = __devexit_p(ipg_remove), 2339}; 2340 2341static int __init ipg_init_module(void) 2342{ 2343 return pci_register_driver(&ipg_pci_driver); 2344} 2345 2346static void __exit ipg_exit_module(void) 2347{ 2348 pci_unregister_driver(&ipg_pci_driver); 2349} 2350 2351module_init(ipg_init_module); 2352module_exit(ipg_exit_module);