at v2.6.24-rc2 2895 lines 85 kB view raw
1/******************************************************************************* 2 3 Intel PRO/100 Linux driver 4 Copyright(c) 1999 - 2006 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, write to the Free Software Foundation, Inc., 17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 18 19 The full GNU General Public License is included in this distribution in 20 the file called "COPYING". 21 22 Contact Information: 23 Linux NICS <linux.nics@intel.com> 24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 26 27*******************************************************************************/ 28 29/* 30 * e100.c: Intel(R) PRO/100 ethernet driver 31 * 32 * (Re)written 2003 by scott.feldman@intel.com. Based loosely on 33 * original e100 driver, but better described as a munging of 34 * e100, e1000, eepro100, tg3, 8139cp, and other drivers. 35 * 36 * References: 37 * Intel 8255x 10/100 Mbps Ethernet Controller Family, 38 * Open Source Software Developers Manual, 39 * http://sourceforge.net/projects/e1000 40 * 41 * 42 * Theory of Operation 43 * 44 * I. General 45 * 46 * The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet 47 * controller family, which includes the 82557, 82558, 82559, 82550, 48 * 82551, and 82562 devices. 82558 and greater controllers 49 * integrate the Intel 82555 PHY. The controllers are used in 50 * server and client network interface cards, as well as in 51 * LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx 52 * configurations. 8255x supports a 32-bit linear addressing 53 * mode and operates at 33Mhz PCI clock rate. 54 * 55 * II. Driver Operation 56 * 57 * Memory-mapped mode is used exclusively to access the device's 58 * shared-memory structure, the Control/Status Registers (CSR). All 59 * setup, configuration, and control of the device, including queuing 60 * of Tx, Rx, and configuration commands is through the CSR. 61 * cmd_lock serializes accesses to the CSR command register. cb_lock 62 * protects the shared Command Block List (CBL). 63 * 64 * 8255x is highly MII-compliant and all access to the PHY go 65 * through the Management Data Interface (MDI). Consequently, the 66 * driver leverages the mii.c library shared with other MII-compliant 67 * devices. 68 * 69 * Big- and Little-Endian byte order as well as 32- and 64-bit 70 * archs are supported. Weak-ordered memory and non-cache-coherent 71 * archs are supported. 72 * 73 * III. Transmit 74 * 75 * A Tx skb is mapped and hangs off of a TCB. TCBs are linked 76 * together in a fixed-size ring (CBL) thus forming the flexible mode 77 * memory structure. A TCB marked with the suspend-bit indicates 78 * the end of the ring. The last TCB processed suspends the 79 * controller, and the controller can be restarted by issue a CU 80 * resume command to continue from the suspend point, or a CU start 81 * command to start at a given position in the ring. 82 * 83 * Non-Tx commands (config, multicast setup, etc) are linked 84 * into the CBL ring along with Tx commands. The common structure 85 * used for both Tx and non-Tx commands is the Command Block (CB). 86 * 87 * cb_to_use is the next CB to use for queuing a command; cb_to_clean 88 * is the next CB to check for completion; cb_to_send is the first 89 * CB to start on in case of a previous failure to resume. CB clean 90 * up happens in interrupt context in response to a CU interrupt. 91 * cbs_avail keeps track of number of free CB resources available. 92 * 93 * Hardware padding of short packets to minimum packet size is 94 * enabled. 82557 pads with 7Eh, while the later controllers pad 95 * with 00h. 96 * 97 * IV. Recieve 98 * 99 * The Receive Frame Area (RFA) comprises a ring of Receive Frame 100 * Descriptors (RFD) + data buffer, thus forming the simplified mode 101 * memory structure. Rx skbs are allocated to contain both the RFD 102 * and the data buffer, but the RFD is pulled off before the skb is 103 * indicated. The data buffer is aligned such that encapsulated 104 * protocol headers are u32-aligned. Since the RFD is part of the 105 * mapped shared memory, and completion status is contained within 106 * the RFD, the RFD must be dma_sync'ed to maintain a consistent 107 * view from software and hardware. 108 * 109 * Under typical operation, the receive unit (RU) is start once, 110 * and the controller happily fills RFDs as frames arrive. If 111 * replacement RFDs cannot be allocated, or the RU goes non-active, 112 * the RU must be restarted. Frame arrival generates an interrupt, 113 * and Rx indication and re-allocation happen in the same context, 114 * therefore no locking is required. A software-generated interrupt 115 * is generated from the watchdog to recover from a failed allocation 116 * senario where all Rx resources have been indicated and none re- 117 * placed. 118 * 119 * V. Miscellaneous 120 * 121 * VLAN offloading of tagging, stripping and filtering is not 122 * supported, but driver will accommodate the extra 4-byte VLAN tag 123 * for processing by upper layers. Tx/Rx Checksum offloading is not 124 * supported. Tx Scatter/Gather is not supported. Jumbo Frames is 125 * not supported (hardware limitation). 126 * 127 * MagicPacket(tm) WoL support is enabled/disabled via ethtool. 128 * 129 * Thanks to JC (jchapman@katalix.com) for helping with 130 * testing/troubleshooting the development driver. 131 * 132 * TODO: 133 * o several entry points race with dev->close 134 * o check for tx-no-resources/stop Q races with tx clean/wake Q 135 * 136 * FIXES: 137 * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com> 138 * - Stratus87247: protect MDI control register manipulations 139 */ 140 141#include <linux/module.h> 142#include <linux/moduleparam.h> 143#include <linux/kernel.h> 144#include <linux/types.h> 145#include <linux/slab.h> 146#include <linux/delay.h> 147#include <linux/init.h> 148#include <linux/pci.h> 149#include <linux/dma-mapping.h> 150#include <linux/netdevice.h> 151#include <linux/etherdevice.h> 152#include <linux/mii.h> 153#include <linux/if_vlan.h> 154#include <linux/skbuff.h> 155#include <linux/ethtool.h> 156#include <linux/string.h> 157#include <asm/unaligned.h> 158 159 160#define DRV_NAME "e100" 161#define DRV_EXT "-NAPI" 162#define DRV_VERSION "3.5.23-k4"DRV_EXT 163#define DRV_DESCRIPTION "Intel(R) PRO/100 Network Driver" 164#define DRV_COPYRIGHT "Copyright(c) 1999-2006 Intel Corporation" 165#define PFX DRV_NAME ": " 166 167#define E100_WATCHDOG_PERIOD (2 * HZ) 168#define E100_NAPI_WEIGHT 16 169 170MODULE_DESCRIPTION(DRV_DESCRIPTION); 171MODULE_AUTHOR(DRV_COPYRIGHT); 172MODULE_LICENSE("GPL"); 173MODULE_VERSION(DRV_VERSION); 174 175static int debug = 3; 176static int eeprom_bad_csum_allow = 0; 177static int use_io = 0; 178module_param(debug, int, 0); 179module_param(eeprom_bad_csum_allow, int, 0); 180module_param(use_io, int, 0); 181MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 182MODULE_PARM_DESC(eeprom_bad_csum_allow, "Allow bad eeprom checksums"); 183MODULE_PARM_DESC(use_io, "Force use of i/o access mode"); 184#define DPRINTK(nlevel, klevel, fmt, args...) \ 185 (void)((NETIF_MSG_##nlevel & nic->msg_enable) && \ 186 printk(KERN_##klevel PFX "%s: %s: " fmt, nic->netdev->name, \ 187 __FUNCTION__ , ## args)) 188 189#define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\ 190 PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \ 191 PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich } 192static struct pci_device_id e100_id_table[] = { 193 INTEL_8255X_ETHERNET_DEVICE(0x1029, 0), 194 INTEL_8255X_ETHERNET_DEVICE(0x1030, 0), 195 INTEL_8255X_ETHERNET_DEVICE(0x1031, 3), 196 INTEL_8255X_ETHERNET_DEVICE(0x1032, 3), 197 INTEL_8255X_ETHERNET_DEVICE(0x1033, 3), 198 INTEL_8255X_ETHERNET_DEVICE(0x1034, 3), 199 INTEL_8255X_ETHERNET_DEVICE(0x1038, 3), 200 INTEL_8255X_ETHERNET_DEVICE(0x1039, 4), 201 INTEL_8255X_ETHERNET_DEVICE(0x103A, 4), 202 INTEL_8255X_ETHERNET_DEVICE(0x103B, 4), 203 INTEL_8255X_ETHERNET_DEVICE(0x103C, 4), 204 INTEL_8255X_ETHERNET_DEVICE(0x103D, 4), 205 INTEL_8255X_ETHERNET_DEVICE(0x103E, 4), 206 INTEL_8255X_ETHERNET_DEVICE(0x1050, 5), 207 INTEL_8255X_ETHERNET_DEVICE(0x1051, 5), 208 INTEL_8255X_ETHERNET_DEVICE(0x1052, 5), 209 INTEL_8255X_ETHERNET_DEVICE(0x1053, 5), 210 INTEL_8255X_ETHERNET_DEVICE(0x1054, 5), 211 INTEL_8255X_ETHERNET_DEVICE(0x1055, 5), 212 INTEL_8255X_ETHERNET_DEVICE(0x1056, 5), 213 INTEL_8255X_ETHERNET_DEVICE(0x1057, 5), 214 INTEL_8255X_ETHERNET_DEVICE(0x1059, 0), 215 INTEL_8255X_ETHERNET_DEVICE(0x1064, 6), 216 INTEL_8255X_ETHERNET_DEVICE(0x1065, 6), 217 INTEL_8255X_ETHERNET_DEVICE(0x1066, 6), 218 INTEL_8255X_ETHERNET_DEVICE(0x1067, 6), 219 INTEL_8255X_ETHERNET_DEVICE(0x1068, 6), 220 INTEL_8255X_ETHERNET_DEVICE(0x1069, 6), 221 INTEL_8255X_ETHERNET_DEVICE(0x106A, 6), 222 INTEL_8255X_ETHERNET_DEVICE(0x106B, 6), 223 INTEL_8255X_ETHERNET_DEVICE(0x1091, 7), 224 INTEL_8255X_ETHERNET_DEVICE(0x1092, 7), 225 INTEL_8255X_ETHERNET_DEVICE(0x1093, 7), 226 INTEL_8255X_ETHERNET_DEVICE(0x1094, 7), 227 INTEL_8255X_ETHERNET_DEVICE(0x1095, 7), 228 INTEL_8255X_ETHERNET_DEVICE(0x1209, 0), 229 INTEL_8255X_ETHERNET_DEVICE(0x1229, 0), 230 INTEL_8255X_ETHERNET_DEVICE(0x2449, 2), 231 INTEL_8255X_ETHERNET_DEVICE(0x2459, 2), 232 INTEL_8255X_ETHERNET_DEVICE(0x245D, 2), 233 INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7), 234 { 0, } 235}; 236MODULE_DEVICE_TABLE(pci, e100_id_table); 237 238enum mac { 239 mac_82557_D100_A = 0, 240 mac_82557_D100_B = 1, 241 mac_82557_D100_C = 2, 242 mac_82558_D101_A4 = 4, 243 mac_82558_D101_B0 = 5, 244 mac_82559_D101M = 8, 245 mac_82559_D101S = 9, 246 mac_82550_D102 = 12, 247 mac_82550_D102_C = 13, 248 mac_82551_E = 14, 249 mac_82551_F = 15, 250 mac_82551_10 = 16, 251 mac_unknown = 0xFF, 252}; 253 254enum phy { 255 phy_100a = 0x000003E0, 256 phy_100c = 0x035002A8, 257 phy_82555_tx = 0x015002A8, 258 phy_nsc_tx = 0x5C002000, 259 phy_82562_et = 0x033002A8, 260 phy_82562_em = 0x032002A8, 261 phy_82562_ek = 0x031002A8, 262 phy_82562_eh = 0x017002A8, 263 phy_unknown = 0xFFFFFFFF, 264}; 265 266/* CSR (Control/Status Registers) */ 267struct csr { 268 struct { 269 u8 status; 270 u8 stat_ack; 271 u8 cmd_lo; 272 u8 cmd_hi; 273 u32 gen_ptr; 274 } scb; 275 u32 port; 276 u16 flash_ctrl; 277 u8 eeprom_ctrl_lo; 278 u8 eeprom_ctrl_hi; 279 u32 mdi_ctrl; 280 u32 rx_dma_count; 281}; 282 283enum scb_status { 284 rus_ready = 0x10, 285 rus_mask = 0x3C, 286}; 287 288enum ru_state { 289 RU_SUSPENDED = 0, 290 RU_RUNNING = 1, 291 RU_UNINITIALIZED = -1, 292}; 293 294enum scb_stat_ack { 295 stat_ack_not_ours = 0x00, 296 stat_ack_sw_gen = 0x04, 297 stat_ack_rnr = 0x10, 298 stat_ack_cu_idle = 0x20, 299 stat_ack_frame_rx = 0x40, 300 stat_ack_cu_cmd_done = 0x80, 301 stat_ack_not_present = 0xFF, 302 stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx), 303 stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done), 304}; 305 306enum scb_cmd_hi { 307 irq_mask_none = 0x00, 308 irq_mask_all = 0x01, 309 irq_sw_gen = 0x02, 310}; 311 312enum scb_cmd_lo { 313 cuc_nop = 0x00, 314 ruc_start = 0x01, 315 ruc_load_base = 0x06, 316 cuc_start = 0x10, 317 cuc_resume = 0x20, 318 cuc_dump_addr = 0x40, 319 cuc_dump_stats = 0x50, 320 cuc_load_base = 0x60, 321 cuc_dump_reset = 0x70, 322}; 323 324enum cuc_dump { 325 cuc_dump_complete = 0x0000A005, 326 cuc_dump_reset_complete = 0x0000A007, 327}; 328 329enum port { 330 software_reset = 0x0000, 331 selftest = 0x0001, 332 selective_reset = 0x0002, 333}; 334 335enum eeprom_ctrl_lo { 336 eesk = 0x01, 337 eecs = 0x02, 338 eedi = 0x04, 339 eedo = 0x08, 340}; 341 342enum mdi_ctrl { 343 mdi_write = 0x04000000, 344 mdi_read = 0x08000000, 345 mdi_ready = 0x10000000, 346}; 347 348enum eeprom_op { 349 op_write = 0x05, 350 op_read = 0x06, 351 op_ewds = 0x10, 352 op_ewen = 0x13, 353}; 354 355enum eeprom_offsets { 356 eeprom_cnfg_mdix = 0x03, 357 eeprom_id = 0x0A, 358 eeprom_config_asf = 0x0D, 359 eeprom_smbus_addr = 0x90, 360}; 361 362enum eeprom_cnfg_mdix { 363 eeprom_mdix_enabled = 0x0080, 364}; 365 366enum eeprom_id { 367 eeprom_id_wol = 0x0020, 368}; 369 370enum eeprom_config_asf { 371 eeprom_asf = 0x8000, 372 eeprom_gcl = 0x4000, 373}; 374 375enum cb_status { 376 cb_complete = 0x8000, 377 cb_ok = 0x2000, 378}; 379 380enum cb_command { 381 cb_nop = 0x0000, 382 cb_iaaddr = 0x0001, 383 cb_config = 0x0002, 384 cb_multi = 0x0003, 385 cb_tx = 0x0004, 386 cb_ucode = 0x0005, 387 cb_dump = 0x0006, 388 cb_tx_sf = 0x0008, 389 cb_cid = 0x1f00, 390 cb_i = 0x2000, 391 cb_s = 0x4000, 392 cb_el = 0x8000, 393}; 394 395struct rfd { 396 u16 status; 397 u16 command; 398 u32 link; 399 u32 rbd; 400 u16 actual_size; 401 u16 size; 402}; 403 404struct rx { 405 struct rx *next, *prev; 406 struct sk_buff *skb; 407 dma_addr_t dma_addr; 408}; 409 410#if defined(__BIG_ENDIAN_BITFIELD) 411#define X(a,b) b,a 412#else 413#define X(a,b) a,b 414#endif 415struct config { 416/*0*/ u8 X(byte_count:6, pad0:2); 417/*1*/ u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1); 418/*2*/ u8 adaptive_ifs; 419/*3*/ u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1), 420 term_write_cache_line:1), pad3:4); 421/*4*/ u8 X(rx_dma_max_count:7, pad4:1); 422/*5*/ u8 X(tx_dma_max_count:7, dma_max_count_enable:1); 423/*6*/ u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1), 424 tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1), 425 rx_discard_overruns:1), rx_save_bad_frames:1); 426/*7*/ u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2), 427 pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1), 428 tx_dynamic_tbd:1); 429/*8*/ u8 X(X(mii_mode:1, pad8:6), csma_disabled:1); 430/*9*/ u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1), 431 link_status_wake:1), arp_wake:1), mcmatch_wake:1); 432/*10*/ u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2), 433 loopback:2); 434/*11*/ u8 X(linear_priority:3, pad11:5); 435/*12*/ u8 X(X(linear_priority_mode:1, pad12:3), ifs:4); 436/*13*/ u8 ip_addr_lo; 437/*14*/ u8 ip_addr_hi; 438/*15*/ u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1), 439 wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1), 440 pad15_2:1), crs_or_cdt:1); 441/*16*/ u8 fc_delay_lo; 442/*17*/ u8 fc_delay_hi; 443/*18*/ u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1), 444 rx_long_ok:1), fc_priority_threshold:3), pad18:1); 445/*19*/ u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1), 446 fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1), 447 full_duplex_force:1), full_duplex_pin:1); 448/*20*/ u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1); 449/*21*/ u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4); 450/*22*/ u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6); 451 u8 pad_d102[9]; 452}; 453 454#define E100_MAX_MULTICAST_ADDRS 64 455struct multi { 456 u16 count; 457 u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/]; 458}; 459 460/* Important: keep total struct u32-aligned */ 461#define UCODE_SIZE 134 462struct cb { 463 u16 status; 464 u16 command; 465 u32 link; 466 union { 467 u8 iaaddr[ETH_ALEN]; 468 u32 ucode[UCODE_SIZE]; 469 struct config config; 470 struct multi multi; 471 struct { 472 u32 tbd_array; 473 u16 tcb_byte_count; 474 u8 threshold; 475 u8 tbd_count; 476 struct { 477 u32 buf_addr; 478 u16 size; 479 u16 eol; 480 } tbd; 481 } tcb; 482 u32 dump_buffer_addr; 483 } u; 484 struct cb *next, *prev; 485 dma_addr_t dma_addr; 486 struct sk_buff *skb; 487}; 488 489enum loopback { 490 lb_none = 0, lb_mac = 1, lb_phy = 3, 491}; 492 493struct stats { 494 u32 tx_good_frames, tx_max_collisions, tx_late_collisions, 495 tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions, 496 tx_multiple_collisions, tx_total_collisions; 497 u32 rx_good_frames, rx_crc_errors, rx_alignment_errors, 498 rx_resource_errors, rx_overrun_errors, rx_cdt_errors, 499 rx_short_frame_errors; 500 u32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported; 501 u16 xmt_tco_frames, rcv_tco_frames; 502 u32 complete; 503}; 504 505struct mem { 506 struct { 507 u32 signature; 508 u32 result; 509 } selftest; 510 struct stats stats; 511 u8 dump_buf[596]; 512}; 513 514struct param_range { 515 u32 min; 516 u32 max; 517 u32 count; 518}; 519 520struct params { 521 struct param_range rfds; 522 struct param_range cbs; 523}; 524 525struct nic { 526 /* Begin: frequently used values: keep adjacent for cache effect */ 527 u32 msg_enable ____cacheline_aligned; 528 struct net_device *netdev; 529 struct pci_dev *pdev; 530 531 struct rx *rxs ____cacheline_aligned; 532 struct rx *rx_to_use; 533 struct rx *rx_to_clean; 534 struct rfd blank_rfd; 535 enum ru_state ru_running; 536 537 spinlock_t cb_lock ____cacheline_aligned; 538 spinlock_t cmd_lock; 539 struct csr __iomem *csr; 540 enum scb_cmd_lo cuc_cmd; 541 unsigned int cbs_avail; 542 struct napi_struct napi; 543 struct cb *cbs; 544 struct cb *cb_to_use; 545 struct cb *cb_to_send; 546 struct cb *cb_to_clean; 547 u16 tx_command; 548 /* End: frequently used values: keep adjacent for cache effect */ 549 550 enum { 551 ich = (1 << 0), 552 promiscuous = (1 << 1), 553 multicast_all = (1 << 2), 554 wol_magic = (1 << 3), 555 ich_10h_workaround = (1 << 4), 556 } flags ____cacheline_aligned; 557 558 enum mac mac; 559 enum phy phy; 560 struct params params; 561 struct timer_list watchdog; 562 struct timer_list blink_timer; 563 struct mii_if_info mii; 564 struct work_struct tx_timeout_task; 565 enum loopback loopback; 566 567 struct mem *mem; 568 dma_addr_t dma_addr; 569 570 dma_addr_t cbs_dma_addr; 571 u8 adaptive_ifs; 572 u8 tx_threshold; 573 u32 tx_frames; 574 u32 tx_collisions; 575 u32 tx_deferred; 576 u32 tx_single_collisions; 577 u32 tx_multiple_collisions; 578 u32 tx_fc_pause; 579 u32 tx_tco_frames; 580 581 u32 rx_fc_pause; 582 u32 rx_fc_unsupported; 583 u32 rx_tco_frames; 584 u32 rx_over_length_errors; 585 586 u16 leds; 587 u16 eeprom_wc; 588 u16 eeprom[256]; 589 spinlock_t mdio_lock; 590}; 591 592static inline void e100_write_flush(struct nic *nic) 593{ 594 /* Flush previous PCI writes through intermediate bridges 595 * by doing a benign read */ 596 (void)ioread8(&nic->csr->scb.status); 597} 598 599static void e100_enable_irq(struct nic *nic) 600{ 601 unsigned long flags; 602 603 spin_lock_irqsave(&nic->cmd_lock, flags); 604 iowrite8(irq_mask_none, &nic->csr->scb.cmd_hi); 605 e100_write_flush(nic); 606 spin_unlock_irqrestore(&nic->cmd_lock, flags); 607} 608 609static void e100_disable_irq(struct nic *nic) 610{ 611 unsigned long flags; 612 613 spin_lock_irqsave(&nic->cmd_lock, flags); 614 iowrite8(irq_mask_all, &nic->csr->scb.cmd_hi); 615 e100_write_flush(nic); 616 spin_unlock_irqrestore(&nic->cmd_lock, flags); 617} 618 619static void e100_hw_reset(struct nic *nic) 620{ 621 /* Put CU and RU into idle with a selective reset to get 622 * device off of PCI bus */ 623 iowrite32(selective_reset, &nic->csr->port); 624 e100_write_flush(nic); udelay(20); 625 626 /* Now fully reset device */ 627 iowrite32(software_reset, &nic->csr->port); 628 e100_write_flush(nic); udelay(20); 629 630 /* Mask off our interrupt line - it's unmasked after reset */ 631 e100_disable_irq(nic); 632} 633 634static int e100_self_test(struct nic *nic) 635{ 636 u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest); 637 638 /* Passing the self-test is a pretty good indication 639 * that the device can DMA to/from host memory */ 640 641 nic->mem->selftest.signature = 0; 642 nic->mem->selftest.result = 0xFFFFFFFF; 643 644 iowrite32(selftest | dma_addr, &nic->csr->port); 645 e100_write_flush(nic); 646 /* Wait 10 msec for self-test to complete */ 647 msleep(10); 648 649 /* Interrupts are enabled after self-test */ 650 e100_disable_irq(nic); 651 652 /* Check results of self-test */ 653 if(nic->mem->selftest.result != 0) { 654 DPRINTK(HW, ERR, "Self-test failed: result=0x%08X\n", 655 nic->mem->selftest.result); 656 return -ETIMEDOUT; 657 } 658 if(nic->mem->selftest.signature == 0) { 659 DPRINTK(HW, ERR, "Self-test failed: timed out\n"); 660 return -ETIMEDOUT; 661 } 662 663 return 0; 664} 665 666static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, u16 data) 667{ 668 u32 cmd_addr_data[3]; 669 u8 ctrl; 670 int i, j; 671 672 /* Three cmds: write/erase enable, write data, write/erase disable */ 673 cmd_addr_data[0] = op_ewen << (addr_len - 2); 674 cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) | 675 cpu_to_le16(data); 676 cmd_addr_data[2] = op_ewds << (addr_len - 2); 677 678 /* Bit-bang cmds to write word to eeprom */ 679 for(j = 0; j < 3; j++) { 680 681 /* Chip select */ 682 iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo); 683 e100_write_flush(nic); udelay(4); 684 685 for(i = 31; i >= 0; i--) { 686 ctrl = (cmd_addr_data[j] & (1 << i)) ? 687 eecs | eedi : eecs; 688 iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo); 689 e100_write_flush(nic); udelay(4); 690 691 iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo); 692 e100_write_flush(nic); udelay(4); 693 } 694 /* Wait 10 msec for cmd to complete */ 695 msleep(10); 696 697 /* Chip deselect */ 698 iowrite8(0, &nic->csr->eeprom_ctrl_lo); 699 e100_write_flush(nic); udelay(4); 700 } 701}; 702 703/* General technique stolen from the eepro100 driver - very clever */ 704static u16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr) 705{ 706 u32 cmd_addr_data; 707 u16 data = 0; 708 u8 ctrl; 709 int i; 710 711 cmd_addr_data = ((op_read << *addr_len) | addr) << 16; 712 713 /* Chip select */ 714 iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo); 715 e100_write_flush(nic); udelay(4); 716 717 /* Bit-bang to read word from eeprom */ 718 for(i = 31; i >= 0; i--) { 719 ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs; 720 iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo); 721 e100_write_flush(nic); udelay(4); 722 723 iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo); 724 e100_write_flush(nic); udelay(4); 725 726 /* Eeprom drives a dummy zero to EEDO after receiving 727 * complete address. Use this to adjust addr_len. */ 728 ctrl = ioread8(&nic->csr->eeprom_ctrl_lo); 729 if(!(ctrl & eedo) && i > 16) { 730 *addr_len -= (i - 16); 731 i = 17; 732 } 733 734 data = (data << 1) | (ctrl & eedo ? 1 : 0); 735 } 736 737 /* Chip deselect */ 738 iowrite8(0, &nic->csr->eeprom_ctrl_lo); 739 e100_write_flush(nic); udelay(4); 740 741 return le16_to_cpu(data); 742}; 743 744/* Load entire EEPROM image into driver cache and validate checksum */ 745static int e100_eeprom_load(struct nic *nic) 746{ 747 u16 addr, addr_len = 8, checksum = 0; 748 749 /* Try reading with an 8-bit addr len to discover actual addr len */ 750 e100_eeprom_read(nic, &addr_len, 0); 751 nic->eeprom_wc = 1 << addr_len; 752 753 for(addr = 0; addr < nic->eeprom_wc; addr++) { 754 nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr); 755 if(addr < nic->eeprom_wc - 1) 756 checksum += cpu_to_le16(nic->eeprom[addr]); 757 } 758 759 /* The checksum, stored in the last word, is calculated such that 760 * the sum of words should be 0xBABA */ 761 checksum = le16_to_cpu(0xBABA - checksum); 762 if(checksum != nic->eeprom[nic->eeprom_wc - 1]) { 763 DPRINTK(PROBE, ERR, "EEPROM corrupted\n"); 764 if (!eeprom_bad_csum_allow) 765 return -EAGAIN; 766 } 767 768 return 0; 769} 770 771/* Save (portion of) driver EEPROM cache to device and update checksum */ 772static int e100_eeprom_save(struct nic *nic, u16 start, u16 count) 773{ 774 u16 addr, addr_len = 8, checksum = 0; 775 776 /* Try reading with an 8-bit addr len to discover actual addr len */ 777 e100_eeprom_read(nic, &addr_len, 0); 778 nic->eeprom_wc = 1 << addr_len; 779 780 if(start + count >= nic->eeprom_wc) 781 return -EINVAL; 782 783 for(addr = start; addr < start + count; addr++) 784 e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]); 785 786 /* The checksum, stored in the last word, is calculated such that 787 * the sum of words should be 0xBABA */ 788 for(addr = 0; addr < nic->eeprom_wc - 1; addr++) 789 checksum += cpu_to_le16(nic->eeprom[addr]); 790 nic->eeprom[nic->eeprom_wc - 1] = le16_to_cpu(0xBABA - checksum); 791 e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1, 792 nic->eeprom[nic->eeprom_wc - 1]); 793 794 return 0; 795} 796 797#define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */ 798#define E100_WAIT_SCB_FAST 20 /* delay like the old code */ 799static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr) 800{ 801 unsigned long flags; 802 unsigned int i; 803 int err = 0; 804 805 spin_lock_irqsave(&nic->cmd_lock, flags); 806 807 /* Previous command is accepted when SCB clears */ 808 for(i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) { 809 if(likely(!ioread8(&nic->csr->scb.cmd_lo))) 810 break; 811 cpu_relax(); 812 if(unlikely(i > E100_WAIT_SCB_FAST)) 813 udelay(5); 814 } 815 if(unlikely(i == E100_WAIT_SCB_TIMEOUT)) { 816 err = -EAGAIN; 817 goto err_unlock; 818 } 819 820 if(unlikely(cmd != cuc_resume)) 821 iowrite32(dma_addr, &nic->csr->scb.gen_ptr); 822 iowrite8(cmd, &nic->csr->scb.cmd_lo); 823 824err_unlock: 825 spin_unlock_irqrestore(&nic->cmd_lock, flags); 826 827 return err; 828} 829 830static int e100_exec_cb(struct nic *nic, struct sk_buff *skb, 831 void (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *)) 832{ 833 struct cb *cb; 834 unsigned long flags; 835 int err = 0; 836 837 spin_lock_irqsave(&nic->cb_lock, flags); 838 839 if(unlikely(!nic->cbs_avail)) { 840 err = -ENOMEM; 841 goto err_unlock; 842 } 843 844 cb = nic->cb_to_use; 845 nic->cb_to_use = cb->next; 846 nic->cbs_avail--; 847 cb->skb = skb; 848 849 if(unlikely(!nic->cbs_avail)) 850 err = -ENOSPC; 851 852 cb_prepare(nic, cb, skb); 853 854 /* Order is important otherwise we'll be in a race with h/w: 855 * set S-bit in current first, then clear S-bit in previous. */ 856 cb->command |= cpu_to_le16(cb_s); 857 wmb(); 858 cb->prev->command &= cpu_to_le16(~cb_s); 859 860 while(nic->cb_to_send != nic->cb_to_use) { 861 if(unlikely(e100_exec_cmd(nic, nic->cuc_cmd, 862 nic->cb_to_send->dma_addr))) { 863 /* Ok, here's where things get sticky. It's 864 * possible that we can't schedule the command 865 * because the controller is too busy, so 866 * let's just queue the command and try again 867 * when another command is scheduled. */ 868 if(err == -ENOSPC) { 869 //request a reset 870 schedule_work(&nic->tx_timeout_task); 871 } 872 break; 873 } else { 874 nic->cuc_cmd = cuc_resume; 875 nic->cb_to_send = nic->cb_to_send->next; 876 } 877 } 878 879err_unlock: 880 spin_unlock_irqrestore(&nic->cb_lock, flags); 881 882 return err; 883} 884 885static u16 mdio_ctrl(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data) 886{ 887 u32 data_out = 0; 888 unsigned int i; 889 unsigned long flags; 890 891 892 /* 893 * Stratus87247: we shouldn't be writing the MDI control 894 * register until the Ready bit shows True. Also, since 895 * manipulation of the MDI control registers is a multi-step 896 * procedure it should be done under lock. 897 */ 898 spin_lock_irqsave(&nic->mdio_lock, flags); 899 for (i = 100; i; --i) { 900 if (ioread32(&nic->csr->mdi_ctrl) & mdi_ready) 901 break; 902 udelay(20); 903 } 904 if (unlikely(!i)) { 905 printk("e100.mdio_ctrl(%s) won't go Ready\n", 906 nic->netdev->name ); 907 spin_unlock_irqrestore(&nic->mdio_lock, flags); 908 return 0; /* No way to indicate timeout error */ 909 } 910 iowrite32((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl); 911 912 for (i = 0; i < 100; i++) { 913 udelay(20); 914 if ((data_out = ioread32(&nic->csr->mdi_ctrl)) & mdi_ready) 915 break; 916 } 917 spin_unlock_irqrestore(&nic->mdio_lock, flags); 918 DPRINTK(HW, DEBUG, 919 "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n", 920 dir == mdi_read ? "READ" : "WRITE", addr, reg, data, data_out); 921 return (u16)data_out; 922} 923 924static int mdio_read(struct net_device *netdev, int addr, int reg) 925{ 926 return mdio_ctrl(netdev_priv(netdev), addr, mdi_read, reg, 0); 927} 928 929static void mdio_write(struct net_device *netdev, int addr, int reg, int data) 930{ 931 mdio_ctrl(netdev_priv(netdev), addr, mdi_write, reg, data); 932} 933 934static void e100_get_defaults(struct nic *nic) 935{ 936 struct param_range rfds = { .min = 16, .max = 256, .count = 256 }; 937 struct param_range cbs = { .min = 64, .max = 256, .count = 128 }; 938 939 /* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */ 940 nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->pdev->revision; 941 if(nic->mac == mac_unknown) 942 nic->mac = mac_82557_D100_A; 943 944 nic->params.rfds = rfds; 945 nic->params.cbs = cbs; 946 947 /* Quadwords to DMA into FIFO before starting frame transmit */ 948 nic->tx_threshold = 0xE0; 949 950 /* no interrupt for every tx completion, delay = 256us if not 557*/ 951 nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf | 952 ((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i)); 953 954 /* Template for a freshly allocated RFD */ 955 nic->blank_rfd.command = cpu_to_le16(cb_el); 956 nic->blank_rfd.rbd = 0xFFFFFFFF; 957 nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN); 958 959 /* MII setup */ 960 nic->mii.phy_id_mask = 0x1F; 961 nic->mii.reg_num_mask = 0x1F; 962 nic->mii.dev = nic->netdev; 963 nic->mii.mdio_read = mdio_read; 964 nic->mii.mdio_write = mdio_write; 965} 966 967static void e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb) 968{ 969 struct config *config = &cb->u.config; 970 u8 *c = (u8 *)config; 971 972 cb->command = cpu_to_le16(cb_config); 973 974 memset(config, 0, sizeof(struct config)); 975 976 config->byte_count = 0x16; /* bytes in this struct */ 977 config->rx_fifo_limit = 0x8; /* bytes in FIFO before DMA */ 978 config->direct_rx_dma = 0x1; /* reserved */ 979 config->standard_tcb = 0x1; /* 1=standard, 0=extended */ 980 config->standard_stat_counter = 0x1; /* 1=standard, 0=extended */ 981 config->rx_discard_short_frames = 0x1; /* 1=discard, 0=pass */ 982 config->tx_underrun_retry = 0x3; /* # of underrun retries */ 983 config->mii_mode = 0x1; /* 1=MII mode, 0=503 mode */ 984 config->pad10 = 0x6; 985 config->no_source_addr_insertion = 0x1; /* 1=no, 0=yes */ 986 config->preamble_length = 0x2; /* 0=1, 1=3, 2=7, 3=15 bytes */ 987 config->ifs = 0x6; /* x16 = inter frame spacing */ 988 config->ip_addr_hi = 0xF2; /* ARP IP filter - not used */ 989 config->pad15_1 = 0x1; 990 config->pad15_2 = 0x1; 991 config->crs_or_cdt = 0x0; /* 0=CRS only, 1=CRS or CDT */ 992 config->fc_delay_hi = 0x40; /* time delay for fc frame */ 993 config->tx_padding = 0x1; /* 1=pad short frames */ 994 config->fc_priority_threshold = 0x7; /* 7=priority fc disabled */ 995 config->pad18 = 0x1; 996 config->full_duplex_pin = 0x1; /* 1=examine FDX# pin */ 997 config->pad20_1 = 0x1F; 998 config->fc_priority_location = 0x1; /* 1=byte#31, 0=byte#19 */ 999 config->pad21_1 = 0x5; 1000 1001 config->adaptive_ifs = nic->adaptive_ifs; 1002 config->loopback = nic->loopback; 1003 1004 if(nic->mii.force_media && nic->mii.full_duplex) 1005 config->full_duplex_force = 0x1; /* 1=force, 0=auto */ 1006 1007 if(nic->flags & promiscuous || nic->loopback) { 1008 config->rx_save_bad_frames = 0x1; /* 1=save, 0=discard */ 1009 config->rx_discard_short_frames = 0x0; /* 1=discard, 0=save */ 1010 config->promiscuous_mode = 0x1; /* 1=on, 0=off */ 1011 } 1012 1013 if(nic->flags & multicast_all) 1014 config->multicast_all = 0x1; /* 1=accept, 0=no */ 1015 1016 /* disable WoL when up */ 1017 if(netif_running(nic->netdev) || !(nic->flags & wol_magic)) 1018 config->magic_packet_disable = 0x1; /* 1=off, 0=on */ 1019 1020 if(nic->mac >= mac_82558_D101_A4) { 1021 config->fc_disable = 0x1; /* 1=Tx fc off, 0=Tx fc on */ 1022 config->mwi_enable = 0x1; /* 1=enable, 0=disable */ 1023 config->standard_tcb = 0x0; /* 1=standard, 0=extended */ 1024 config->rx_long_ok = 0x1; /* 1=VLANs ok, 0=standard */ 1025 if (nic->mac >= mac_82559_D101M) { 1026 config->tno_intr = 0x1; /* TCO stats enable */ 1027 /* Enable TCO in extended config */ 1028 if (nic->mac >= mac_82551_10) { 1029 config->byte_count = 0x20; /* extended bytes */ 1030 config->rx_d102_mode = 0x1; /* GMRC for TCO */ 1031 } 1032 } else { 1033 config->standard_stat_counter = 0x0; 1034 } 1035 } 1036 1037 DPRINTK(HW, DEBUG, "[00-07]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n", 1038 c[0], c[1], c[2], c[3], c[4], c[5], c[6], c[7]); 1039 DPRINTK(HW, DEBUG, "[08-15]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n", 1040 c[8], c[9], c[10], c[11], c[12], c[13], c[14], c[15]); 1041 DPRINTK(HW, DEBUG, "[16-23]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n", 1042 c[16], c[17], c[18], c[19], c[20], c[21], c[22], c[23]); 1043} 1044 1045/********************************************************/ 1046/* Micro code for 8086:1229 Rev 8 */ 1047/********************************************************/ 1048 1049/* Parameter values for the D101M B-step */ 1050#define D101M_CPUSAVER_TIMER_DWORD 78 1051#define D101M_CPUSAVER_BUNDLE_DWORD 65 1052#define D101M_CPUSAVER_MIN_SIZE_DWORD 126 1053 1054#define D101M_B_RCVBUNDLE_UCODE \ 1055{\ 10560x00550215, 0xFFFF0437, 0xFFFFFFFF, 0x06A70789, 0xFFFFFFFF, 0x0558FFFF, \ 10570x000C0001, 0x00101312, 0x000C0008, 0x00380216, \ 10580x0010009C, 0x00204056, 0x002380CC, 0x00380056, \ 10590x0010009C, 0x00244C0B, 0x00000800, 0x00124818, \ 10600x00380438, 0x00000000, 0x00140000, 0x00380555, \ 10610x00308000, 0x00100662, 0x00100561, 0x000E0408, \ 10620x00134861, 0x000C0002, 0x00103093, 0x00308000, \ 10630x00100624, 0x00100561, 0x000E0408, 0x00100861, \ 10640x000C007E, 0x00222C21, 0x000C0002, 0x00103093, \ 10650x00380C7A, 0x00080000, 0x00103090, 0x00380C7A, \ 10660x00000000, 0x00000000, 0x00000000, 0x00000000, \ 10670x0010009C, 0x00244C2D, 0x00010004, 0x00041000, \ 10680x003A0437, 0x00044010, 0x0038078A, 0x00000000, \ 10690x00100099, 0x00206C7A, 0x0010009C, 0x00244C48, \ 10700x00130824, 0x000C0001, 0x00101213, 0x00260C75, \ 10710x00041000, 0x00010004, 0x00130826, 0x000C0006, \ 10720x002206A8, 0x0013C926, 0x00101313, 0x003806A8, \ 10730x00000000, 0x00000000, 0x00000000, 0x00000000, \ 10740x00000000, 0x00000000, 0x00000000, 0x00000000, \ 10750x00080600, 0x00101B10, 0x00050004, 0x00100826, \ 10760x00101210, 0x00380C34, 0x00000000, 0x00000000, \ 10770x0021155B, 0x00100099, 0x00206559, 0x0010009C, \ 10780x00244559, 0x00130836, 0x000C0000, 0x00220C62, \ 10790x000C0001, 0x00101B13, 0x00229C0E, 0x00210C0E, \ 10800x00226C0E, 0x00216C0E, 0x0022FC0E, 0x00215C0E, \ 10810x00214C0E, 0x00380555, 0x00010004, 0x00041000, \ 10820x00278C67, 0x00040800, 0x00018100, 0x003A0437, \ 10830x00130826, 0x000C0001, 0x00220559, 0x00101313, \ 10840x00380559, 0x00000000, 0x00000000, 0x00000000, \ 10850x00000000, 0x00000000, 0x00000000, 0x00000000, \ 10860x00000000, 0x00130831, 0x0010090B, 0x00124813, \ 10870x000CFF80, 0x002606AB, 0x00041000, 0x00010004, \ 10880x003806A8, 0x00000000, 0x00000000, 0x00000000, \ 1089} 1090 1091/********************************************************/ 1092/* Micro code for 8086:1229 Rev 9 */ 1093/********************************************************/ 1094 1095/* Parameter values for the D101S */ 1096#define D101S_CPUSAVER_TIMER_DWORD 78 1097#define D101S_CPUSAVER_BUNDLE_DWORD 67 1098#define D101S_CPUSAVER_MIN_SIZE_DWORD 128 1099 1100#define D101S_RCVBUNDLE_UCODE \ 1101{\ 11020x00550242, 0xFFFF047E, 0xFFFFFFFF, 0x06FF0818, 0xFFFFFFFF, 0x05A6FFFF, \ 11030x000C0001, 0x00101312, 0x000C0008, 0x00380243, \ 11040x0010009C, 0x00204056, 0x002380D0, 0x00380056, \ 11050x0010009C, 0x00244F8B, 0x00000800, 0x00124818, \ 11060x0038047F, 0x00000000, 0x00140000, 0x003805A3, \ 11070x00308000, 0x00100610, 0x00100561, 0x000E0408, \ 11080x00134861, 0x000C0002, 0x00103093, 0x00308000, \ 11090x00100624, 0x00100561, 0x000E0408, 0x00100861, \ 11100x000C007E, 0x00222FA1, 0x000C0002, 0x00103093, \ 11110x00380F90, 0x00080000, 0x00103090, 0x00380F90, \ 11120x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11130x0010009C, 0x00244FAD, 0x00010004, 0x00041000, \ 11140x003A047E, 0x00044010, 0x00380819, 0x00000000, \ 11150x00100099, 0x00206FFD, 0x0010009A, 0x0020AFFD, \ 11160x0010009C, 0x00244FC8, 0x00130824, 0x000C0001, \ 11170x00101213, 0x00260FF7, 0x00041000, 0x00010004, \ 11180x00130826, 0x000C0006, 0x00220700, 0x0013C926, \ 11190x00101313, 0x00380700, 0x00000000, 0x00000000, \ 11200x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11210x00080600, 0x00101B10, 0x00050004, 0x00100826, \ 11220x00101210, 0x00380FB6, 0x00000000, 0x00000000, \ 11230x002115A9, 0x00100099, 0x002065A7, 0x0010009A, \ 11240x0020A5A7, 0x0010009C, 0x002445A7, 0x00130836, \ 11250x000C0000, 0x00220FE4, 0x000C0001, 0x00101B13, \ 11260x00229F8E, 0x00210F8E, 0x00226F8E, 0x00216F8E, \ 11270x0022FF8E, 0x00215F8E, 0x00214F8E, 0x003805A3, \ 11280x00010004, 0x00041000, 0x00278FE9, 0x00040800, \ 11290x00018100, 0x003A047E, 0x00130826, 0x000C0001, \ 11300x002205A7, 0x00101313, 0x003805A7, 0x00000000, \ 11310x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11320x00000000, 0x00000000, 0x00000000, 0x00130831, \ 11330x0010090B, 0x00124813, 0x000CFF80, 0x00260703, \ 11340x00041000, 0x00010004, 0x00380700 \ 1135} 1136 1137/********************************************************/ 1138/* Micro code for the 8086:1229 Rev F/10 */ 1139/********************************************************/ 1140 1141/* Parameter values for the D102 E-step */ 1142#define D102_E_CPUSAVER_TIMER_DWORD 42 1143#define D102_E_CPUSAVER_BUNDLE_DWORD 54 1144#define D102_E_CPUSAVER_MIN_SIZE_DWORD 46 1145 1146#define D102_E_RCVBUNDLE_UCODE \ 1147{\ 11480x007D028F, 0x0E4204F9, 0x14ED0C85, 0x14FA14E9, 0x0EF70E36, 0x1FFF1FFF, \ 11490x00E014B9, 0x00000000, 0x00000000, 0x00000000, \ 11500x00E014BD, 0x00000000, 0x00000000, 0x00000000, \ 11510x00E014D5, 0x00000000, 0x00000000, 0x00000000, \ 11520x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11530x00E014C1, 0x00000000, 0x00000000, 0x00000000, \ 11540x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11550x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11560x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11570x00E014C8, 0x00000000, 0x00000000, 0x00000000, \ 11580x00200600, 0x00E014EE, 0x00000000, 0x00000000, \ 11590x0030FF80, 0x00940E46, 0x00038200, 0x00102000, \ 11600x00E00E43, 0x00000000, 0x00000000, 0x00000000, \ 11610x00300006, 0x00E014FB, 0x00000000, 0x00000000, \ 11620x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11630x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11640x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11650x00906E41, 0x00800E3C, 0x00E00E39, 0x00000000, \ 11660x00906EFD, 0x00900EFD, 0x00E00EF8, 0x00000000, \ 11670x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11680x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11690x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11700x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11710x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11720x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11730x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11740x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11750x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11760x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11770x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11780x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11790x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11800x00000000, 0x00000000, 0x00000000, 0x00000000, \ 1181} 1182 1183static void e100_setup_ucode(struct nic *nic, struct cb *cb, struct sk_buff *skb) 1184{ 1185/* *INDENT-OFF* */ 1186 static struct { 1187 u32 ucode[UCODE_SIZE + 1]; 1188 u8 mac; 1189 u8 timer_dword; 1190 u8 bundle_dword; 1191 u8 min_size_dword; 1192 } ucode_opts[] = { 1193 { D101M_B_RCVBUNDLE_UCODE, 1194 mac_82559_D101M, 1195 D101M_CPUSAVER_TIMER_DWORD, 1196 D101M_CPUSAVER_BUNDLE_DWORD, 1197 D101M_CPUSAVER_MIN_SIZE_DWORD }, 1198 { D101S_RCVBUNDLE_UCODE, 1199 mac_82559_D101S, 1200 D101S_CPUSAVER_TIMER_DWORD, 1201 D101S_CPUSAVER_BUNDLE_DWORD, 1202 D101S_CPUSAVER_MIN_SIZE_DWORD }, 1203 { D102_E_RCVBUNDLE_UCODE, 1204 mac_82551_F, 1205 D102_E_CPUSAVER_TIMER_DWORD, 1206 D102_E_CPUSAVER_BUNDLE_DWORD, 1207 D102_E_CPUSAVER_MIN_SIZE_DWORD }, 1208 { D102_E_RCVBUNDLE_UCODE, 1209 mac_82551_10, 1210 D102_E_CPUSAVER_TIMER_DWORD, 1211 D102_E_CPUSAVER_BUNDLE_DWORD, 1212 D102_E_CPUSAVER_MIN_SIZE_DWORD }, 1213 { {0}, 0, 0, 0, 0} 1214 }, *opts; 1215/* *INDENT-ON* */ 1216 1217/************************************************************************* 1218* CPUSaver parameters 1219* 1220* All CPUSaver parameters are 16-bit literals that are part of a 1221* "move immediate value" instruction. By changing the value of 1222* the literal in the instruction before the code is loaded, the 1223* driver can change the algorithm. 1224* 1225* INTDELAY - This loads the dead-man timer with its initial value. 1226* When this timer expires the interrupt is asserted, and the 1227* timer is reset each time a new packet is received. (see 1228* BUNDLEMAX below to set the limit on number of chained packets) 1229* The current default is 0x600 or 1536. Experiments show that 1230* the value should probably stay within the 0x200 - 0x1000. 1231* 1232* BUNDLEMAX - 1233* This sets the maximum number of frames that will be bundled. In 1234* some situations, such as the TCP windowing algorithm, it may be 1235* better to limit the growth of the bundle size than let it go as 1236* high as it can, because that could cause too much added latency. 1237* The default is six, because this is the number of packets in the 1238* default TCP window size. A value of 1 would make CPUSaver indicate 1239* an interrupt for every frame received. If you do not want to put 1240* a limit on the bundle size, set this value to xFFFF. 1241* 1242* BUNDLESMALL - 1243* This contains a bit-mask describing the minimum size frame that 1244* will be bundled. The default masks the lower 7 bits, which means 1245* that any frame less than 128 bytes in length will not be bundled, 1246* but will instead immediately generate an interrupt. This does 1247* not affect the current bundle in any way. Any frame that is 128 1248* bytes or large will be bundled normally. This feature is meant 1249* to provide immediate indication of ACK frames in a TCP environment. 1250* Customers were seeing poor performance when a machine with CPUSaver 1251* enabled was sending but not receiving. The delay introduced when 1252* the ACKs were received was enough to reduce total throughput, because 1253* the sender would sit idle until the ACK was finally seen. 1254* 1255* The current default is 0xFF80, which masks out the lower 7 bits. 1256* This means that any frame which is x7F (127) bytes or smaller 1257* will cause an immediate interrupt. Because this value must be a 1258* bit mask, there are only a few valid values that can be used. To 1259* turn this feature off, the driver can write the value xFFFF to the 1260* lower word of this instruction (in the same way that the other 1261* parameters are used). Likewise, a value of 0xF800 (2047) would 1262* cause an interrupt to be generated for every frame, because all 1263* standard Ethernet frames are <= 2047 bytes in length. 1264*************************************************************************/ 1265 1266/* if you wish to disable the ucode functionality, while maintaining the 1267 * workarounds it provides, set the following defines to: 1268 * BUNDLESMALL 0 1269 * BUNDLEMAX 1 1270 * INTDELAY 1 1271 */ 1272#define BUNDLESMALL 1 1273#define BUNDLEMAX (u16)6 1274#define INTDELAY (u16)1536 /* 0x600 */ 1275 1276 /* do not load u-code for ICH devices */ 1277 if (nic->flags & ich) 1278 goto noloaducode; 1279 1280 /* Search for ucode match against h/w revision */ 1281 for (opts = ucode_opts; opts->mac; opts++) { 1282 int i; 1283 u32 *ucode = opts->ucode; 1284 if (nic->mac != opts->mac) 1285 continue; 1286 1287 /* Insert user-tunable settings */ 1288 ucode[opts->timer_dword] &= 0xFFFF0000; 1289 ucode[opts->timer_dword] |= INTDELAY; 1290 ucode[opts->bundle_dword] &= 0xFFFF0000; 1291 ucode[opts->bundle_dword] |= BUNDLEMAX; 1292 ucode[opts->min_size_dword] &= 0xFFFF0000; 1293 ucode[opts->min_size_dword] |= (BUNDLESMALL) ? 0xFFFF : 0xFF80; 1294 1295 for (i = 0; i < UCODE_SIZE; i++) 1296 cb->u.ucode[i] = cpu_to_le32(ucode[i]); 1297 cb->command = cpu_to_le16(cb_ucode | cb_el); 1298 return; 1299 } 1300 1301noloaducode: 1302 cb->command = cpu_to_le16(cb_nop | cb_el); 1303} 1304 1305static inline int e100_exec_cb_wait(struct nic *nic, struct sk_buff *skb, 1306 void (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *)) 1307{ 1308 int err = 0, counter = 50; 1309 struct cb *cb = nic->cb_to_clean; 1310 1311 if ((err = e100_exec_cb(nic, NULL, e100_setup_ucode))) 1312 DPRINTK(PROBE,ERR, "ucode cmd failed with error %d\n", err); 1313 1314 /* must restart cuc */ 1315 nic->cuc_cmd = cuc_start; 1316 1317 /* wait for completion */ 1318 e100_write_flush(nic); 1319 udelay(10); 1320 1321 /* wait for possibly (ouch) 500ms */ 1322 while (!(cb->status & cpu_to_le16(cb_complete))) { 1323 msleep(10); 1324 if (!--counter) break; 1325 } 1326 1327 /* ack any interrupts, something could have been set */ 1328 iowrite8(~0, &nic->csr->scb.stat_ack); 1329 1330 /* if the command failed, or is not OK, notify and return */ 1331 if (!counter || !(cb->status & cpu_to_le16(cb_ok))) { 1332 DPRINTK(PROBE,ERR, "ucode load failed\n"); 1333 err = -EPERM; 1334 } 1335 1336 return err; 1337} 1338 1339static void e100_setup_iaaddr(struct nic *nic, struct cb *cb, 1340 struct sk_buff *skb) 1341{ 1342 cb->command = cpu_to_le16(cb_iaaddr); 1343 memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN); 1344} 1345 1346static void e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb) 1347{ 1348 cb->command = cpu_to_le16(cb_dump); 1349 cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr + 1350 offsetof(struct mem, dump_buf)); 1351} 1352 1353#define NCONFIG_AUTO_SWITCH 0x0080 1354#define MII_NSC_CONG MII_RESV1 1355#define NSC_CONG_ENABLE 0x0100 1356#define NSC_CONG_TXREADY 0x0400 1357#define ADVERTISE_FC_SUPPORTED 0x0400 1358static int e100_phy_init(struct nic *nic) 1359{ 1360 struct net_device *netdev = nic->netdev; 1361 u32 addr; 1362 u16 bmcr, stat, id_lo, id_hi, cong; 1363 1364 /* Discover phy addr by searching addrs in order {1,0,2,..., 31} */ 1365 for(addr = 0; addr < 32; addr++) { 1366 nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr; 1367 bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR); 1368 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR); 1369 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR); 1370 if(!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0)))) 1371 break; 1372 } 1373 DPRINTK(HW, DEBUG, "phy_addr = %d\n", nic->mii.phy_id); 1374 if(addr == 32) 1375 return -EAGAIN; 1376 1377 /* Selected the phy and isolate the rest */ 1378 for(addr = 0; addr < 32; addr++) { 1379 if(addr != nic->mii.phy_id) { 1380 mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE); 1381 } else { 1382 bmcr = mdio_read(netdev, addr, MII_BMCR); 1383 mdio_write(netdev, addr, MII_BMCR, 1384 bmcr & ~BMCR_ISOLATE); 1385 } 1386 } 1387 1388 /* Get phy ID */ 1389 id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1); 1390 id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2); 1391 nic->phy = (u32)id_hi << 16 | (u32)id_lo; 1392 DPRINTK(HW, DEBUG, "phy ID = 0x%08X\n", nic->phy); 1393 1394 /* Handle National tx phys */ 1395#define NCS_PHY_MODEL_MASK 0xFFF0FFFF 1396 if((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) { 1397 /* Disable congestion control */ 1398 cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG); 1399 cong |= NSC_CONG_TXREADY; 1400 cong &= ~NSC_CONG_ENABLE; 1401 mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong); 1402 } 1403 1404 if((nic->mac >= mac_82550_D102) || ((nic->flags & ich) && 1405 (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) && 1406 !(nic->eeprom[eeprom_cnfg_mdix] & eeprom_mdix_enabled))) { 1407 /* enable/disable MDI/MDI-X auto-switching. */ 1408 mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG, 1409 nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH); 1410 } 1411 1412 return 0; 1413} 1414 1415static int e100_hw_init(struct nic *nic) 1416{ 1417 int err; 1418 1419 e100_hw_reset(nic); 1420 1421 DPRINTK(HW, ERR, "e100_hw_init\n"); 1422 if(!in_interrupt() && (err = e100_self_test(nic))) 1423 return err; 1424 1425 if((err = e100_phy_init(nic))) 1426 return err; 1427 if((err = e100_exec_cmd(nic, cuc_load_base, 0))) 1428 return err; 1429 if((err = e100_exec_cmd(nic, ruc_load_base, 0))) 1430 return err; 1431 if ((err = e100_exec_cb_wait(nic, NULL, e100_setup_ucode))) 1432 return err; 1433 if((err = e100_exec_cb(nic, NULL, e100_configure))) 1434 return err; 1435 if((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr))) 1436 return err; 1437 if((err = e100_exec_cmd(nic, cuc_dump_addr, 1438 nic->dma_addr + offsetof(struct mem, stats)))) 1439 return err; 1440 if((err = e100_exec_cmd(nic, cuc_dump_reset, 0))) 1441 return err; 1442 1443 e100_disable_irq(nic); 1444 1445 return 0; 1446} 1447 1448static void e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb) 1449{ 1450 struct net_device *netdev = nic->netdev; 1451 struct dev_mc_list *list = netdev->mc_list; 1452 u16 i, count = min(netdev->mc_count, E100_MAX_MULTICAST_ADDRS); 1453 1454 cb->command = cpu_to_le16(cb_multi); 1455 cb->u.multi.count = cpu_to_le16(count * ETH_ALEN); 1456 for(i = 0; list && i < count; i++, list = list->next) 1457 memcpy(&cb->u.multi.addr[i*ETH_ALEN], &list->dmi_addr, 1458 ETH_ALEN); 1459} 1460 1461static void e100_set_multicast_list(struct net_device *netdev) 1462{ 1463 struct nic *nic = netdev_priv(netdev); 1464 1465 DPRINTK(HW, DEBUG, "mc_count=%d, flags=0x%04X\n", 1466 netdev->mc_count, netdev->flags); 1467 1468 if(netdev->flags & IFF_PROMISC) 1469 nic->flags |= promiscuous; 1470 else 1471 nic->flags &= ~promiscuous; 1472 1473 if(netdev->flags & IFF_ALLMULTI || 1474 netdev->mc_count > E100_MAX_MULTICAST_ADDRS) 1475 nic->flags |= multicast_all; 1476 else 1477 nic->flags &= ~multicast_all; 1478 1479 e100_exec_cb(nic, NULL, e100_configure); 1480 e100_exec_cb(nic, NULL, e100_multi); 1481} 1482 1483static void e100_update_stats(struct nic *nic) 1484{ 1485 struct net_device *dev = nic->netdev; 1486 struct net_device_stats *ns = &dev->stats; 1487 struct stats *s = &nic->mem->stats; 1488 u32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause : 1489 (nic->mac < mac_82559_D101M) ? (u32 *)&s->xmt_tco_frames : 1490 &s->complete; 1491 1492 /* Device's stats reporting may take several microseconds to 1493 * complete, so where always waiting for results of the 1494 * previous command. */ 1495 1496 if(*complete == le32_to_cpu(cuc_dump_reset_complete)) { 1497 *complete = 0; 1498 nic->tx_frames = le32_to_cpu(s->tx_good_frames); 1499 nic->tx_collisions = le32_to_cpu(s->tx_total_collisions); 1500 ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions); 1501 ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions); 1502 ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs); 1503 ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns); 1504 ns->collisions += nic->tx_collisions; 1505 ns->tx_errors += le32_to_cpu(s->tx_max_collisions) + 1506 le32_to_cpu(s->tx_lost_crs); 1507 ns->rx_length_errors += le32_to_cpu(s->rx_short_frame_errors) + 1508 nic->rx_over_length_errors; 1509 ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors); 1510 ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors); 1511 ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors); 1512 ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors); 1513 ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors); 1514 ns->rx_errors += le32_to_cpu(s->rx_crc_errors) + 1515 le32_to_cpu(s->rx_alignment_errors) + 1516 le32_to_cpu(s->rx_short_frame_errors) + 1517 le32_to_cpu(s->rx_cdt_errors); 1518 nic->tx_deferred += le32_to_cpu(s->tx_deferred); 1519 nic->tx_single_collisions += 1520 le32_to_cpu(s->tx_single_collisions); 1521 nic->tx_multiple_collisions += 1522 le32_to_cpu(s->tx_multiple_collisions); 1523 if(nic->mac >= mac_82558_D101_A4) { 1524 nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause); 1525 nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause); 1526 nic->rx_fc_unsupported += 1527 le32_to_cpu(s->fc_rcv_unsupported); 1528 if(nic->mac >= mac_82559_D101M) { 1529 nic->tx_tco_frames += 1530 le16_to_cpu(s->xmt_tco_frames); 1531 nic->rx_tco_frames += 1532 le16_to_cpu(s->rcv_tco_frames); 1533 } 1534 } 1535 } 1536 1537 1538 if(e100_exec_cmd(nic, cuc_dump_reset, 0)) 1539 DPRINTK(TX_ERR, DEBUG, "exec cuc_dump_reset failed\n"); 1540} 1541 1542static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex) 1543{ 1544 /* Adjust inter-frame-spacing (IFS) between two transmits if 1545 * we're getting collisions on a half-duplex connection. */ 1546 1547 if(duplex == DUPLEX_HALF) { 1548 u32 prev = nic->adaptive_ifs; 1549 u32 min_frames = (speed == SPEED_100) ? 1000 : 100; 1550 1551 if((nic->tx_frames / 32 < nic->tx_collisions) && 1552 (nic->tx_frames > min_frames)) { 1553 if(nic->adaptive_ifs < 60) 1554 nic->adaptive_ifs += 5; 1555 } else if (nic->tx_frames < min_frames) { 1556 if(nic->adaptive_ifs >= 5) 1557 nic->adaptive_ifs -= 5; 1558 } 1559 if(nic->adaptive_ifs != prev) 1560 e100_exec_cb(nic, NULL, e100_configure); 1561 } 1562} 1563 1564static void e100_watchdog(unsigned long data) 1565{ 1566 struct nic *nic = (struct nic *)data; 1567 struct ethtool_cmd cmd; 1568 1569 DPRINTK(TIMER, DEBUG, "right now = %ld\n", jiffies); 1570 1571 /* mii library handles link maintenance tasks */ 1572 1573 mii_ethtool_gset(&nic->mii, &cmd); 1574 1575 if(mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) { 1576 DPRINTK(LINK, INFO, "link up, %sMbps, %s-duplex\n", 1577 cmd.speed == SPEED_100 ? "100" : "10", 1578 cmd.duplex == DUPLEX_FULL ? "full" : "half"); 1579 } else if(!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) { 1580 DPRINTK(LINK, INFO, "link down\n"); 1581 } 1582 1583 mii_check_link(&nic->mii); 1584 1585 /* Software generated interrupt to recover from (rare) Rx 1586 * allocation failure. 1587 * Unfortunately have to use a spinlock to not re-enable interrupts 1588 * accidentally, due to hardware that shares a register between the 1589 * interrupt mask bit and the SW Interrupt generation bit */ 1590 spin_lock_irq(&nic->cmd_lock); 1591 iowrite8(ioread8(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi); 1592 e100_write_flush(nic); 1593 spin_unlock_irq(&nic->cmd_lock); 1594 1595 e100_update_stats(nic); 1596 e100_adjust_adaptive_ifs(nic, cmd.speed, cmd.duplex); 1597 1598 if(nic->mac <= mac_82557_D100_C) 1599 /* Issue a multicast command to workaround a 557 lock up */ 1600 e100_set_multicast_list(nic->netdev); 1601 1602 if(nic->flags & ich && cmd.speed==SPEED_10 && cmd.duplex==DUPLEX_HALF) 1603 /* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */ 1604 nic->flags |= ich_10h_workaround; 1605 else 1606 nic->flags &= ~ich_10h_workaround; 1607 1608 mod_timer(&nic->watchdog, 1609 round_jiffies(jiffies + E100_WATCHDOG_PERIOD)); 1610} 1611 1612static void e100_xmit_prepare(struct nic *nic, struct cb *cb, 1613 struct sk_buff *skb) 1614{ 1615 cb->command = nic->tx_command; 1616 /* interrupt every 16 packets regardless of delay */ 1617 if((nic->cbs_avail & ~15) == nic->cbs_avail) 1618 cb->command |= cpu_to_le16(cb_i); 1619 cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd); 1620 cb->u.tcb.tcb_byte_count = 0; 1621 cb->u.tcb.threshold = nic->tx_threshold; 1622 cb->u.tcb.tbd_count = 1; 1623 cb->u.tcb.tbd.buf_addr = cpu_to_le32(pci_map_single(nic->pdev, 1624 skb->data, skb->len, PCI_DMA_TODEVICE)); 1625 /* check for mapping failure? */ 1626 cb->u.tcb.tbd.size = cpu_to_le16(skb->len); 1627} 1628 1629static int e100_xmit_frame(struct sk_buff *skb, struct net_device *netdev) 1630{ 1631 struct nic *nic = netdev_priv(netdev); 1632 int err; 1633 1634 if(nic->flags & ich_10h_workaround) { 1635 /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang. 1636 Issue a NOP command followed by a 1us delay before 1637 issuing the Tx command. */ 1638 if(e100_exec_cmd(nic, cuc_nop, 0)) 1639 DPRINTK(TX_ERR, DEBUG, "exec cuc_nop failed\n"); 1640 udelay(1); 1641 } 1642 1643 err = e100_exec_cb(nic, skb, e100_xmit_prepare); 1644 1645 switch(err) { 1646 case -ENOSPC: 1647 /* We queued the skb, but now we're out of space. */ 1648 DPRINTK(TX_ERR, DEBUG, "No space for CB\n"); 1649 netif_stop_queue(netdev); 1650 break; 1651 case -ENOMEM: 1652 /* This is a hard error - log it. */ 1653 DPRINTK(TX_ERR, DEBUG, "Out of Tx resources, returning skb\n"); 1654 netif_stop_queue(netdev); 1655 return 1; 1656 } 1657 1658 netdev->trans_start = jiffies; 1659 return 0; 1660} 1661 1662static int e100_tx_clean(struct nic *nic) 1663{ 1664 struct net_device *dev = nic->netdev; 1665 struct cb *cb; 1666 int tx_cleaned = 0; 1667 1668 spin_lock(&nic->cb_lock); 1669 1670 /* Clean CBs marked complete */ 1671 for(cb = nic->cb_to_clean; 1672 cb->status & cpu_to_le16(cb_complete); 1673 cb = nic->cb_to_clean = cb->next) { 1674 DPRINTK(TX_DONE, DEBUG, "cb[%d]->status = 0x%04X\n", 1675 (int)(((void*)cb - (void*)nic->cbs)/sizeof(struct cb)), 1676 cb->status); 1677 1678 if(likely(cb->skb != NULL)) { 1679 dev->stats.tx_packets++; 1680 dev->stats.tx_bytes += cb->skb->len; 1681 1682 pci_unmap_single(nic->pdev, 1683 le32_to_cpu(cb->u.tcb.tbd.buf_addr), 1684 le16_to_cpu(cb->u.tcb.tbd.size), 1685 PCI_DMA_TODEVICE); 1686 dev_kfree_skb_any(cb->skb); 1687 cb->skb = NULL; 1688 tx_cleaned = 1; 1689 } 1690 cb->status = 0; 1691 nic->cbs_avail++; 1692 } 1693 1694 spin_unlock(&nic->cb_lock); 1695 1696 /* Recover from running out of Tx resources in xmit_frame */ 1697 if(unlikely(tx_cleaned && netif_queue_stopped(nic->netdev))) 1698 netif_wake_queue(nic->netdev); 1699 1700 return tx_cleaned; 1701} 1702 1703static void e100_clean_cbs(struct nic *nic) 1704{ 1705 if(nic->cbs) { 1706 while(nic->cbs_avail != nic->params.cbs.count) { 1707 struct cb *cb = nic->cb_to_clean; 1708 if(cb->skb) { 1709 pci_unmap_single(nic->pdev, 1710 le32_to_cpu(cb->u.tcb.tbd.buf_addr), 1711 le16_to_cpu(cb->u.tcb.tbd.size), 1712 PCI_DMA_TODEVICE); 1713 dev_kfree_skb(cb->skb); 1714 } 1715 nic->cb_to_clean = nic->cb_to_clean->next; 1716 nic->cbs_avail++; 1717 } 1718 pci_free_consistent(nic->pdev, 1719 sizeof(struct cb) * nic->params.cbs.count, 1720 nic->cbs, nic->cbs_dma_addr); 1721 nic->cbs = NULL; 1722 nic->cbs_avail = 0; 1723 } 1724 nic->cuc_cmd = cuc_start; 1725 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = 1726 nic->cbs; 1727} 1728 1729static int e100_alloc_cbs(struct nic *nic) 1730{ 1731 struct cb *cb; 1732 unsigned int i, count = nic->params.cbs.count; 1733 1734 nic->cuc_cmd = cuc_start; 1735 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL; 1736 nic->cbs_avail = 0; 1737 1738 nic->cbs = pci_alloc_consistent(nic->pdev, 1739 sizeof(struct cb) * count, &nic->cbs_dma_addr); 1740 if(!nic->cbs) 1741 return -ENOMEM; 1742 1743 for(cb = nic->cbs, i = 0; i < count; cb++, i++) { 1744 cb->next = (i + 1 < count) ? cb + 1 : nic->cbs; 1745 cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1; 1746 1747 cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb); 1748 cb->link = cpu_to_le32(nic->cbs_dma_addr + 1749 ((i+1) % count) * sizeof(struct cb)); 1750 cb->skb = NULL; 1751 } 1752 1753 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs; 1754 nic->cbs_avail = count; 1755 1756 return 0; 1757} 1758 1759static inline void e100_start_receiver(struct nic *nic, struct rx *rx) 1760{ 1761 if(!nic->rxs) return; 1762 if(RU_SUSPENDED != nic->ru_running) return; 1763 1764 /* handle init time starts */ 1765 if(!rx) rx = nic->rxs; 1766 1767 /* (Re)start RU if suspended or idle and RFA is non-NULL */ 1768 if(rx->skb) { 1769 e100_exec_cmd(nic, ruc_start, rx->dma_addr); 1770 nic->ru_running = RU_RUNNING; 1771 } 1772} 1773 1774#define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN) 1775static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx) 1776{ 1777 if(!(rx->skb = netdev_alloc_skb(nic->netdev, RFD_BUF_LEN + NET_IP_ALIGN))) 1778 return -ENOMEM; 1779 1780 /* Align, init, and map the RFD. */ 1781 skb_reserve(rx->skb, NET_IP_ALIGN); 1782 skb_copy_to_linear_data(rx->skb, &nic->blank_rfd, sizeof(struct rfd)); 1783 rx->dma_addr = pci_map_single(nic->pdev, rx->skb->data, 1784 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL); 1785 1786 if(pci_dma_mapping_error(rx->dma_addr)) { 1787 dev_kfree_skb_any(rx->skb); 1788 rx->skb = NULL; 1789 rx->dma_addr = 0; 1790 return -ENOMEM; 1791 } 1792 1793 /* Link the RFD to end of RFA by linking previous RFD to 1794 * this one, and clearing EL bit of previous. */ 1795 if(rx->prev->skb) { 1796 struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data; 1797 put_unaligned(cpu_to_le32(rx->dma_addr), 1798 (u32 *)&prev_rfd->link); 1799 wmb(); 1800 prev_rfd->command &= ~cpu_to_le16(cb_el); 1801 pci_dma_sync_single_for_device(nic->pdev, rx->prev->dma_addr, 1802 sizeof(struct rfd), PCI_DMA_TODEVICE); 1803 } 1804 1805 return 0; 1806} 1807 1808static int e100_rx_indicate(struct nic *nic, struct rx *rx, 1809 unsigned int *work_done, unsigned int work_to_do) 1810{ 1811 struct net_device *dev = nic->netdev; 1812 struct sk_buff *skb = rx->skb; 1813 struct rfd *rfd = (struct rfd *)skb->data; 1814 u16 rfd_status, actual_size; 1815 1816 if(unlikely(work_done && *work_done >= work_to_do)) 1817 return -EAGAIN; 1818 1819 /* Need to sync before taking a peek at cb_complete bit */ 1820 pci_dma_sync_single_for_cpu(nic->pdev, rx->dma_addr, 1821 sizeof(struct rfd), PCI_DMA_FROMDEVICE); 1822 rfd_status = le16_to_cpu(rfd->status); 1823 1824 DPRINTK(RX_STATUS, DEBUG, "status=0x%04X\n", rfd_status); 1825 1826 /* If data isn't ready, nothing to indicate */ 1827 if(unlikely(!(rfd_status & cb_complete))) 1828 return -ENODATA; 1829 1830 /* Get actual data size */ 1831 actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF; 1832 if(unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd))) 1833 actual_size = RFD_BUF_LEN - sizeof(struct rfd); 1834 1835 /* Get data */ 1836 pci_unmap_single(nic->pdev, rx->dma_addr, 1837 RFD_BUF_LEN, PCI_DMA_FROMDEVICE); 1838 1839 /* this allows for a fast restart without re-enabling interrupts */ 1840 if(le16_to_cpu(rfd->command) & cb_el) 1841 nic->ru_running = RU_SUSPENDED; 1842 1843 /* Pull off the RFD and put the actual data (minus eth hdr) */ 1844 skb_reserve(skb, sizeof(struct rfd)); 1845 skb_put(skb, actual_size); 1846 skb->protocol = eth_type_trans(skb, nic->netdev); 1847 1848 if(unlikely(!(rfd_status & cb_ok))) { 1849 /* Don't indicate if hardware indicates errors */ 1850 dev_kfree_skb_any(skb); 1851 } else if(actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN) { 1852 /* Don't indicate oversized frames */ 1853 nic->rx_over_length_errors++; 1854 dev_kfree_skb_any(skb); 1855 } else { 1856 dev->stats.rx_packets++; 1857 dev->stats.rx_bytes += actual_size; 1858 nic->netdev->last_rx = jiffies; 1859 netif_receive_skb(skb); 1860 if(work_done) 1861 (*work_done)++; 1862 } 1863 1864 rx->skb = NULL; 1865 1866 return 0; 1867} 1868 1869static void e100_rx_clean(struct nic *nic, unsigned int *work_done, 1870 unsigned int work_to_do) 1871{ 1872 struct rx *rx; 1873 int restart_required = 0; 1874 struct rx *rx_to_start = NULL; 1875 1876 /* are we already rnr? then pay attention!!! this ensures that 1877 * the state machine progression never allows a start with a 1878 * partially cleaned list, avoiding a race between hardware 1879 * and rx_to_clean when in NAPI mode */ 1880 if(RU_SUSPENDED == nic->ru_running) 1881 restart_required = 1; 1882 1883 /* Indicate newly arrived packets */ 1884 for(rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) { 1885 int err = e100_rx_indicate(nic, rx, work_done, work_to_do); 1886 if(-EAGAIN == err) { 1887 /* hit quota so have more work to do, restart once 1888 * cleanup is complete */ 1889 restart_required = 0; 1890 break; 1891 } else if(-ENODATA == err) 1892 break; /* No more to clean */ 1893 } 1894 1895 /* save our starting point as the place we'll restart the receiver */ 1896 if(restart_required) 1897 rx_to_start = nic->rx_to_clean; 1898 1899 /* Alloc new skbs to refill list */ 1900 for(rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) { 1901 if(unlikely(e100_rx_alloc_skb(nic, rx))) 1902 break; /* Better luck next time (see watchdog) */ 1903 } 1904 1905 if(restart_required) { 1906 // ack the rnr? 1907 writeb(stat_ack_rnr, &nic->csr->scb.stat_ack); 1908 e100_start_receiver(nic, rx_to_start); 1909 if(work_done) 1910 (*work_done)++; 1911 } 1912} 1913 1914static void e100_rx_clean_list(struct nic *nic) 1915{ 1916 struct rx *rx; 1917 unsigned int i, count = nic->params.rfds.count; 1918 1919 nic->ru_running = RU_UNINITIALIZED; 1920 1921 if(nic->rxs) { 1922 for(rx = nic->rxs, i = 0; i < count; rx++, i++) { 1923 if(rx->skb) { 1924 pci_unmap_single(nic->pdev, rx->dma_addr, 1925 RFD_BUF_LEN, PCI_DMA_FROMDEVICE); 1926 dev_kfree_skb(rx->skb); 1927 } 1928 } 1929 kfree(nic->rxs); 1930 nic->rxs = NULL; 1931 } 1932 1933 nic->rx_to_use = nic->rx_to_clean = NULL; 1934} 1935 1936static int e100_rx_alloc_list(struct nic *nic) 1937{ 1938 struct rx *rx; 1939 unsigned int i, count = nic->params.rfds.count; 1940 1941 nic->rx_to_use = nic->rx_to_clean = NULL; 1942 nic->ru_running = RU_UNINITIALIZED; 1943 1944 if(!(nic->rxs = kcalloc(count, sizeof(struct rx), GFP_ATOMIC))) 1945 return -ENOMEM; 1946 1947 for(rx = nic->rxs, i = 0; i < count; rx++, i++) { 1948 rx->next = (i + 1 < count) ? rx + 1 : nic->rxs; 1949 rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1; 1950 if(e100_rx_alloc_skb(nic, rx)) { 1951 e100_rx_clean_list(nic); 1952 return -ENOMEM; 1953 } 1954 } 1955 1956 nic->rx_to_use = nic->rx_to_clean = nic->rxs; 1957 nic->ru_running = RU_SUSPENDED; 1958 1959 return 0; 1960} 1961 1962static irqreturn_t e100_intr(int irq, void *dev_id) 1963{ 1964 struct net_device *netdev = dev_id; 1965 struct nic *nic = netdev_priv(netdev); 1966 u8 stat_ack = ioread8(&nic->csr->scb.stat_ack); 1967 1968 DPRINTK(INTR, DEBUG, "stat_ack = 0x%02X\n", stat_ack); 1969 1970 if(stat_ack == stat_ack_not_ours || /* Not our interrupt */ 1971 stat_ack == stat_ack_not_present) /* Hardware is ejected */ 1972 return IRQ_NONE; 1973 1974 /* Ack interrupt(s) */ 1975 iowrite8(stat_ack, &nic->csr->scb.stat_ack); 1976 1977 /* We hit Receive No Resource (RNR); restart RU after cleaning */ 1978 if(stat_ack & stat_ack_rnr) 1979 nic->ru_running = RU_SUSPENDED; 1980 1981 if(likely(netif_rx_schedule_prep(netdev, &nic->napi))) { 1982 e100_disable_irq(nic); 1983 __netif_rx_schedule(netdev, &nic->napi); 1984 } 1985 1986 return IRQ_HANDLED; 1987} 1988 1989static int e100_poll(struct napi_struct *napi, int budget) 1990{ 1991 struct nic *nic = container_of(napi, struct nic, napi); 1992 struct net_device *netdev = nic->netdev; 1993 unsigned int work_done = 0; 1994 int tx_cleaned; 1995 1996 e100_rx_clean(nic, &work_done, budget); 1997 tx_cleaned = e100_tx_clean(nic); 1998 1999 /* If no Rx and Tx cleanup work was done, exit polling mode. */ 2000 if((!tx_cleaned && (work_done == 0)) || !netif_running(netdev)) { 2001 netif_rx_complete(netdev, napi); 2002 e100_enable_irq(nic); 2003 } 2004 2005 return work_done; 2006} 2007 2008#ifdef CONFIG_NET_POLL_CONTROLLER 2009static void e100_netpoll(struct net_device *netdev) 2010{ 2011 struct nic *nic = netdev_priv(netdev); 2012 2013 e100_disable_irq(nic); 2014 e100_intr(nic->pdev->irq, netdev); 2015 e100_tx_clean(nic); 2016 e100_enable_irq(nic); 2017} 2018#endif 2019 2020static int e100_set_mac_address(struct net_device *netdev, void *p) 2021{ 2022 struct nic *nic = netdev_priv(netdev); 2023 struct sockaddr *addr = p; 2024 2025 if (!is_valid_ether_addr(addr->sa_data)) 2026 return -EADDRNOTAVAIL; 2027 2028 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); 2029 e100_exec_cb(nic, NULL, e100_setup_iaaddr); 2030 2031 return 0; 2032} 2033 2034static int e100_change_mtu(struct net_device *netdev, int new_mtu) 2035{ 2036 if(new_mtu < ETH_ZLEN || new_mtu > ETH_DATA_LEN) 2037 return -EINVAL; 2038 netdev->mtu = new_mtu; 2039 return 0; 2040} 2041 2042static int e100_asf(struct nic *nic) 2043{ 2044 /* ASF can be enabled from eeprom */ 2045 return((nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) && 2046 (nic->eeprom[eeprom_config_asf] & eeprom_asf) && 2047 !(nic->eeprom[eeprom_config_asf] & eeprom_gcl) && 2048 ((nic->eeprom[eeprom_smbus_addr] & 0xFF) != 0xFE)); 2049} 2050 2051static int e100_up(struct nic *nic) 2052{ 2053 int err; 2054 2055 if((err = e100_rx_alloc_list(nic))) 2056 return err; 2057 if((err = e100_alloc_cbs(nic))) 2058 goto err_rx_clean_list; 2059 if((err = e100_hw_init(nic))) 2060 goto err_clean_cbs; 2061 e100_set_multicast_list(nic->netdev); 2062 e100_start_receiver(nic, NULL); 2063 mod_timer(&nic->watchdog, jiffies); 2064 if((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED, 2065 nic->netdev->name, nic->netdev))) 2066 goto err_no_irq; 2067 netif_wake_queue(nic->netdev); 2068 napi_enable(&nic->napi); 2069 /* enable ints _after_ enabling poll, preventing a race between 2070 * disable ints+schedule */ 2071 e100_enable_irq(nic); 2072 return 0; 2073 2074err_no_irq: 2075 del_timer_sync(&nic->watchdog); 2076err_clean_cbs: 2077 e100_clean_cbs(nic); 2078err_rx_clean_list: 2079 e100_rx_clean_list(nic); 2080 return err; 2081} 2082 2083static void e100_down(struct nic *nic) 2084{ 2085 /* wait here for poll to complete */ 2086 napi_disable(&nic->napi); 2087 netif_stop_queue(nic->netdev); 2088 e100_hw_reset(nic); 2089 free_irq(nic->pdev->irq, nic->netdev); 2090 del_timer_sync(&nic->watchdog); 2091 netif_carrier_off(nic->netdev); 2092 e100_clean_cbs(nic); 2093 e100_rx_clean_list(nic); 2094} 2095 2096static void e100_tx_timeout(struct net_device *netdev) 2097{ 2098 struct nic *nic = netdev_priv(netdev); 2099 2100 /* Reset outside of interrupt context, to avoid request_irq 2101 * in interrupt context */ 2102 schedule_work(&nic->tx_timeout_task); 2103} 2104 2105static void e100_tx_timeout_task(struct work_struct *work) 2106{ 2107 struct nic *nic = container_of(work, struct nic, tx_timeout_task); 2108 struct net_device *netdev = nic->netdev; 2109 2110 DPRINTK(TX_ERR, DEBUG, "scb.status=0x%02X\n", 2111 ioread8(&nic->csr->scb.status)); 2112 e100_down(netdev_priv(netdev)); 2113 e100_up(netdev_priv(netdev)); 2114} 2115 2116static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode) 2117{ 2118 int err; 2119 struct sk_buff *skb; 2120 2121 /* Use driver resources to perform internal MAC or PHY 2122 * loopback test. A single packet is prepared and transmitted 2123 * in loopback mode, and the test passes if the received 2124 * packet compares byte-for-byte to the transmitted packet. */ 2125 2126 if((err = e100_rx_alloc_list(nic))) 2127 return err; 2128 if((err = e100_alloc_cbs(nic))) 2129 goto err_clean_rx; 2130 2131 /* ICH PHY loopback is broken so do MAC loopback instead */ 2132 if(nic->flags & ich && loopback_mode == lb_phy) 2133 loopback_mode = lb_mac; 2134 2135 nic->loopback = loopback_mode; 2136 if((err = e100_hw_init(nic))) 2137 goto err_loopback_none; 2138 2139 if(loopback_mode == lb_phy) 2140 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 2141 BMCR_LOOPBACK); 2142 2143 e100_start_receiver(nic, NULL); 2144 2145 if(!(skb = netdev_alloc_skb(nic->netdev, ETH_DATA_LEN))) { 2146 err = -ENOMEM; 2147 goto err_loopback_none; 2148 } 2149 skb_put(skb, ETH_DATA_LEN); 2150 memset(skb->data, 0xFF, ETH_DATA_LEN); 2151 e100_xmit_frame(skb, nic->netdev); 2152 2153 msleep(10); 2154 2155 pci_dma_sync_single_for_cpu(nic->pdev, nic->rx_to_clean->dma_addr, 2156 RFD_BUF_LEN, PCI_DMA_FROMDEVICE); 2157 2158 if(memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd), 2159 skb->data, ETH_DATA_LEN)) 2160 err = -EAGAIN; 2161 2162err_loopback_none: 2163 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0); 2164 nic->loopback = lb_none; 2165 e100_clean_cbs(nic); 2166 e100_hw_reset(nic); 2167err_clean_rx: 2168 e100_rx_clean_list(nic); 2169 return err; 2170} 2171 2172#define MII_LED_CONTROL 0x1B 2173static void e100_blink_led(unsigned long data) 2174{ 2175 struct nic *nic = (struct nic *)data; 2176 enum led_state { 2177 led_on = 0x01, 2178 led_off = 0x04, 2179 led_on_559 = 0x05, 2180 led_on_557 = 0x07, 2181 }; 2182 2183 nic->leds = (nic->leds & led_on) ? led_off : 2184 (nic->mac < mac_82559_D101M) ? led_on_557 : led_on_559; 2185 mdio_write(nic->netdev, nic->mii.phy_id, MII_LED_CONTROL, nic->leds); 2186 mod_timer(&nic->blink_timer, jiffies + HZ / 4); 2187} 2188 2189static int e100_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd) 2190{ 2191 struct nic *nic = netdev_priv(netdev); 2192 return mii_ethtool_gset(&nic->mii, cmd); 2193} 2194 2195static int e100_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd) 2196{ 2197 struct nic *nic = netdev_priv(netdev); 2198 int err; 2199 2200 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET); 2201 err = mii_ethtool_sset(&nic->mii, cmd); 2202 e100_exec_cb(nic, NULL, e100_configure); 2203 2204 return err; 2205} 2206 2207static void e100_get_drvinfo(struct net_device *netdev, 2208 struct ethtool_drvinfo *info) 2209{ 2210 struct nic *nic = netdev_priv(netdev); 2211 strcpy(info->driver, DRV_NAME); 2212 strcpy(info->version, DRV_VERSION); 2213 strcpy(info->fw_version, "N/A"); 2214 strcpy(info->bus_info, pci_name(nic->pdev)); 2215} 2216 2217static int e100_get_regs_len(struct net_device *netdev) 2218{ 2219 struct nic *nic = netdev_priv(netdev); 2220#define E100_PHY_REGS 0x1C 2221#define E100_REGS_LEN 1 + E100_PHY_REGS + \ 2222 sizeof(nic->mem->dump_buf) / sizeof(u32) 2223 return E100_REGS_LEN * sizeof(u32); 2224} 2225 2226static void e100_get_regs(struct net_device *netdev, 2227 struct ethtool_regs *regs, void *p) 2228{ 2229 struct nic *nic = netdev_priv(netdev); 2230 u32 *buff = p; 2231 int i; 2232 2233 regs->version = (1 << 24) | nic->pdev->revision; 2234 buff[0] = ioread8(&nic->csr->scb.cmd_hi) << 24 | 2235 ioread8(&nic->csr->scb.cmd_lo) << 16 | 2236 ioread16(&nic->csr->scb.status); 2237 for(i = E100_PHY_REGS; i >= 0; i--) 2238 buff[1 + E100_PHY_REGS - i] = 2239 mdio_read(netdev, nic->mii.phy_id, i); 2240 memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf)); 2241 e100_exec_cb(nic, NULL, e100_dump); 2242 msleep(10); 2243 memcpy(&buff[2 + E100_PHY_REGS], nic->mem->dump_buf, 2244 sizeof(nic->mem->dump_buf)); 2245} 2246 2247static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 2248{ 2249 struct nic *nic = netdev_priv(netdev); 2250 wol->supported = (nic->mac >= mac_82558_D101_A4) ? WAKE_MAGIC : 0; 2251 wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0; 2252} 2253 2254static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 2255{ 2256 struct nic *nic = netdev_priv(netdev); 2257 2258 if(wol->wolopts != WAKE_MAGIC && wol->wolopts != 0) 2259 return -EOPNOTSUPP; 2260 2261 if(wol->wolopts) 2262 nic->flags |= wol_magic; 2263 else 2264 nic->flags &= ~wol_magic; 2265 2266 e100_exec_cb(nic, NULL, e100_configure); 2267 2268 return 0; 2269} 2270 2271static u32 e100_get_msglevel(struct net_device *netdev) 2272{ 2273 struct nic *nic = netdev_priv(netdev); 2274 return nic->msg_enable; 2275} 2276 2277static void e100_set_msglevel(struct net_device *netdev, u32 value) 2278{ 2279 struct nic *nic = netdev_priv(netdev); 2280 nic->msg_enable = value; 2281} 2282 2283static int e100_nway_reset(struct net_device *netdev) 2284{ 2285 struct nic *nic = netdev_priv(netdev); 2286 return mii_nway_restart(&nic->mii); 2287} 2288 2289static u32 e100_get_link(struct net_device *netdev) 2290{ 2291 struct nic *nic = netdev_priv(netdev); 2292 return mii_link_ok(&nic->mii); 2293} 2294 2295static int e100_get_eeprom_len(struct net_device *netdev) 2296{ 2297 struct nic *nic = netdev_priv(netdev); 2298 return nic->eeprom_wc << 1; 2299} 2300 2301#define E100_EEPROM_MAGIC 0x1234 2302static int e100_get_eeprom(struct net_device *netdev, 2303 struct ethtool_eeprom *eeprom, u8 *bytes) 2304{ 2305 struct nic *nic = netdev_priv(netdev); 2306 2307 eeprom->magic = E100_EEPROM_MAGIC; 2308 memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len); 2309 2310 return 0; 2311} 2312 2313static int e100_set_eeprom(struct net_device *netdev, 2314 struct ethtool_eeprom *eeprom, u8 *bytes) 2315{ 2316 struct nic *nic = netdev_priv(netdev); 2317 2318 if(eeprom->magic != E100_EEPROM_MAGIC) 2319 return -EINVAL; 2320 2321 memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len); 2322 2323 return e100_eeprom_save(nic, eeprom->offset >> 1, 2324 (eeprom->len >> 1) + 1); 2325} 2326 2327static void e100_get_ringparam(struct net_device *netdev, 2328 struct ethtool_ringparam *ring) 2329{ 2330 struct nic *nic = netdev_priv(netdev); 2331 struct param_range *rfds = &nic->params.rfds; 2332 struct param_range *cbs = &nic->params.cbs; 2333 2334 ring->rx_max_pending = rfds->max; 2335 ring->tx_max_pending = cbs->max; 2336 ring->rx_mini_max_pending = 0; 2337 ring->rx_jumbo_max_pending = 0; 2338 ring->rx_pending = rfds->count; 2339 ring->tx_pending = cbs->count; 2340 ring->rx_mini_pending = 0; 2341 ring->rx_jumbo_pending = 0; 2342} 2343 2344static int e100_set_ringparam(struct net_device *netdev, 2345 struct ethtool_ringparam *ring) 2346{ 2347 struct nic *nic = netdev_priv(netdev); 2348 struct param_range *rfds = &nic->params.rfds; 2349 struct param_range *cbs = &nic->params.cbs; 2350 2351 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) 2352 return -EINVAL; 2353 2354 if(netif_running(netdev)) 2355 e100_down(nic); 2356 rfds->count = max(ring->rx_pending, rfds->min); 2357 rfds->count = min(rfds->count, rfds->max); 2358 cbs->count = max(ring->tx_pending, cbs->min); 2359 cbs->count = min(cbs->count, cbs->max); 2360 DPRINTK(DRV, INFO, "Ring Param settings: rx: %d, tx %d\n", 2361 rfds->count, cbs->count); 2362 if(netif_running(netdev)) 2363 e100_up(nic); 2364 2365 return 0; 2366} 2367 2368static const char e100_gstrings_test[][ETH_GSTRING_LEN] = { 2369 "Link test (on/offline)", 2370 "Eeprom test (on/offline)", 2371 "Self test (offline)", 2372 "Mac loopback (offline)", 2373 "Phy loopback (offline)", 2374}; 2375#define E100_TEST_LEN sizeof(e100_gstrings_test) / ETH_GSTRING_LEN 2376 2377static void e100_diag_test(struct net_device *netdev, 2378 struct ethtool_test *test, u64 *data) 2379{ 2380 struct ethtool_cmd cmd; 2381 struct nic *nic = netdev_priv(netdev); 2382 int i, err; 2383 2384 memset(data, 0, E100_TEST_LEN * sizeof(u64)); 2385 data[0] = !mii_link_ok(&nic->mii); 2386 data[1] = e100_eeprom_load(nic); 2387 if(test->flags & ETH_TEST_FL_OFFLINE) { 2388 2389 /* save speed, duplex & autoneg settings */ 2390 err = mii_ethtool_gset(&nic->mii, &cmd); 2391 2392 if(netif_running(netdev)) 2393 e100_down(nic); 2394 data[2] = e100_self_test(nic); 2395 data[3] = e100_loopback_test(nic, lb_mac); 2396 data[4] = e100_loopback_test(nic, lb_phy); 2397 2398 /* restore speed, duplex & autoneg settings */ 2399 err = mii_ethtool_sset(&nic->mii, &cmd); 2400 2401 if(netif_running(netdev)) 2402 e100_up(nic); 2403 } 2404 for(i = 0; i < E100_TEST_LEN; i++) 2405 test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0; 2406 2407 msleep_interruptible(4 * 1000); 2408} 2409 2410static int e100_phys_id(struct net_device *netdev, u32 data) 2411{ 2412 struct nic *nic = netdev_priv(netdev); 2413 2414 if(!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ)) 2415 data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ); 2416 mod_timer(&nic->blink_timer, jiffies); 2417 msleep_interruptible(data * 1000); 2418 del_timer_sync(&nic->blink_timer); 2419 mdio_write(netdev, nic->mii.phy_id, MII_LED_CONTROL, 0); 2420 2421 return 0; 2422} 2423 2424static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = { 2425 "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors", 2426 "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions", 2427 "rx_length_errors", "rx_over_errors", "rx_crc_errors", 2428 "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors", 2429 "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors", 2430 "tx_heartbeat_errors", "tx_window_errors", 2431 /* device-specific stats */ 2432 "tx_deferred", "tx_single_collisions", "tx_multi_collisions", 2433 "tx_flow_control_pause", "rx_flow_control_pause", 2434 "rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets", 2435}; 2436#define E100_NET_STATS_LEN 21 2437#define E100_STATS_LEN sizeof(e100_gstrings_stats) / ETH_GSTRING_LEN 2438 2439static int e100_get_sset_count(struct net_device *netdev, int sset) 2440{ 2441 switch (sset) { 2442 case ETH_SS_TEST: 2443 return E100_TEST_LEN; 2444 case ETH_SS_STATS: 2445 return E100_STATS_LEN; 2446 default: 2447 return -EOPNOTSUPP; 2448 } 2449} 2450 2451static void e100_get_ethtool_stats(struct net_device *netdev, 2452 struct ethtool_stats *stats, u64 *data) 2453{ 2454 struct nic *nic = netdev_priv(netdev); 2455 int i; 2456 2457 for(i = 0; i < E100_NET_STATS_LEN; i++) 2458 data[i] = ((unsigned long *)&netdev->stats)[i]; 2459 2460 data[i++] = nic->tx_deferred; 2461 data[i++] = nic->tx_single_collisions; 2462 data[i++] = nic->tx_multiple_collisions; 2463 data[i++] = nic->tx_fc_pause; 2464 data[i++] = nic->rx_fc_pause; 2465 data[i++] = nic->rx_fc_unsupported; 2466 data[i++] = nic->tx_tco_frames; 2467 data[i++] = nic->rx_tco_frames; 2468} 2469 2470static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data) 2471{ 2472 switch(stringset) { 2473 case ETH_SS_TEST: 2474 memcpy(data, *e100_gstrings_test, sizeof(e100_gstrings_test)); 2475 break; 2476 case ETH_SS_STATS: 2477 memcpy(data, *e100_gstrings_stats, sizeof(e100_gstrings_stats)); 2478 break; 2479 } 2480} 2481 2482static const struct ethtool_ops e100_ethtool_ops = { 2483 .get_settings = e100_get_settings, 2484 .set_settings = e100_set_settings, 2485 .get_drvinfo = e100_get_drvinfo, 2486 .get_regs_len = e100_get_regs_len, 2487 .get_regs = e100_get_regs, 2488 .get_wol = e100_get_wol, 2489 .set_wol = e100_set_wol, 2490 .get_msglevel = e100_get_msglevel, 2491 .set_msglevel = e100_set_msglevel, 2492 .nway_reset = e100_nway_reset, 2493 .get_link = e100_get_link, 2494 .get_eeprom_len = e100_get_eeprom_len, 2495 .get_eeprom = e100_get_eeprom, 2496 .set_eeprom = e100_set_eeprom, 2497 .get_ringparam = e100_get_ringparam, 2498 .set_ringparam = e100_set_ringparam, 2499 .self_test = e100_diag_test, 2500 .get_strings = e100_get_strings, 2501 .phys_id = e100_phys_id, 2502 .get_ethtool_stats = e100_get_ethtool_stats, 2503 .get_sset_count = e100_get_sset_count, 2504}; 2505 2506static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 2507{ 2508 struct nic *nic = netdev_priv(netdev); 2509 2510 return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL); 2511} 2512 2513static int e100_alloc(struct nic *nic) 2514{ 2515 nic->mem = pci_alloc_consistent(nic->pdev, sizeof(struct mem), 2516 &nic->dma_addr); 2517 return nic->mem ? 0 : -ENOMEM; 2518} 2519 2520static void e100_free(struct nic *nic) 2521{ 2522 if(nic->mem) { 2523 pci_free_consistent(nic->pdev, sizeof(struct mem), 2524 nic->mem, nic->dma_addr); 2525 nic->mem = NULL; 2526 } 2527} 2528 2529static int e100_open(struct net_device *netdev) 2530{ 2531 struct nic *nic = netdev_priv(netdev); 2532 int err = 0; 2533 2534 netif_carrier_off(netdev); 2535 if((err = e100_up(nic))) 2536 DPRINTK(IFUP, ERR, "Cannot open interface, aborting.\n"); 2537 return err; 2538} 2539 2540static int e100_close(struct net_device *netdev) 2541{ 2542 e100_down(netdev_priv(netdev)); 2543 return 0; 2544} 2545 2546static int __devinit e100_probe(struct pci_dev *pdev, 2547 const struct pci_device_id *ent) 2548{ 2549 struct net_device *netdev; 2550 struct nic *nic; 2551 int err; 2552 DECLARE_MAC_BUF(mac); 2553 2554 if(!(netdev = alloc_etherdev(sizeof(struct nic)))) { 2555 if(((1 << debug) - 1) & NETIF_MSG_PROBE) 2556 printk(KERN_ERR PFX "Etherdev alloc failed, abort.\n"); 2557 return -ENOMEM; 2558 } 2559 2560 netdev->open = e100_open; 2561 netdev->stop = e100_close; 2562 netdev->hard_start_xmit = e100_xmit_frame; 2563 netdev->set_multicast_list = e100_set_multicast_list; 2564 netdev->set_mac_address = e100_set_mac_address; 2565 netdev->change_mtu = e100_change_mtu; 2566 netdev->do_ioctl = e100_do_ioctl; 2567 SET_ETHTOOL_OPS(netdev, &e100_ethtool_ops); 2568 netdev->tx_timeout = e100_tx_timeout; 2569 netdev->watchdog_timeo = E100_WATCHDOG_PERIOD; 2570#ifdef CONFIG_NET_POLL_CONTROLLER 2571 netdev->poll_controller = e100_netpoll; 2572#endif 2573 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); 2574 2575 nic = netdev_priv(netdev); 2576 netif_napi_add(netdev, &nic->napi, e100_poll, E100_NAPI_WEIGHT); 2577 nic->netdev = netdev; 2578 nic->pdev = pdev; 2579 nic->msg_enable = (1 << debug) - 1; 2580 pci_set_drvdata(pdev, netdev); 2581 2582 if((err = pci_enable_device(pdev))) { 2583 DPRINTK(PROBE, ERR, "Cannot enable PCI device, aborting.\n"); 2584 goto err_out_free_dev; 2585 } 2586 2587 if(!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 2588 DPRINTK(PROBE, ERR, "Cannot find proper PCI device " 2589 "base address, aborting.\n"); 2590 err = -ENODEV; 2591 goto err_out_disable_pdev; 2592 } 2593 2594 if((err = pci_request_regions(pdev, DRV_NAME))) { 2595 DPRINTK(PROBE, ERR, "Cannot obtain PCI resources, aborting.\n"); 2596 goto err_out_disable_pdev; 2597 } 2598 2599 if((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) { 2600 DPRINTK(PROBE, ERR, "No usable DMA configuration, aborting.\n"); 2601 goto err_out_free_res; 2602 } 2603 2604 SET_NETDEV_DEV(netdev, &pdev->dev); 2605 2606 if (use_io) 2607 DPRINTK(PROBE, INFO, "using i/o access mode\n"); 2608 2609 nic->csr = pci_iomap(pdev, (use_io ? 1 : 0), sizeof(struct csr)); 2610 if(!nic->csr) { 2611 DPRINTK(PROBE, ERR, "Cannot map device registers, aborting.\n"); 2612 err = -ENOMEM; 2613 goto err_out_free_res; 2614 } 2615 2616 if(ent->driver_data) 2617 nic->flags |= ich; 2618 else 2619 nic->flags &= ~ich; 2620 2621 e100_get_defaults(nic); 2622 2623 /* locks must be initialized before calling hw_reset */ 2624 spin_lock_init(&nic->cb_lock); 2625 spin_lock_init(&nic->cmd_lock); 2626 spin_lock_init(&nic->mdio_lock); 2627 2628 /* Reset the device before pci_set_master() in case device is in some 2629 * funky state and has an interrupt pending - hint: we don't have the 2630 * interrupt handler registered yet. */ 2631 e100_hw_reset(nic); 2632 2633 pci_set_master(pdev); 2634 2635 init_timer(&nic->watchdog); 2636 nic->watchdog.function = e100_watchdog; 2637 nic->watchdog.data = (unsigned long)nic; 2638 init_timer(&nic->blink_timer); 2639 nic->blink_timer.function = e100_blink_led; 2640 nic->blink_timer.data = (unsigned long)nic; 2641 2642 INIT_WORK(&nic->tx_timeout_task, e100_tx_timeout_task); 2643 2644 if((err = e100_alloc(nic))) { 2645 DPRINTK(PROBE, ERR, "Cannot alloc driver memory, aborting.\n"); 2646 goto err_out_iounmap; 2647 } 2648 2649 if((err = e100_eeprom_load(nic))) 2650 goto err_out_free; 2651 2652 e100_phy_init(nic); 2653 2654 memcpy(netdev->dev_addr, nic->eeprom, ETH_ALEN); 2655 memcpy(netdev->perm_addr, nic->eeprom, ETH_ALEN); 2656 if (!is_valid_ether_addr(netdev->perm_addr)) { 2657 if (!eeprom_bad_csum_allow) { 2658 DPRINTK(PROBE, ERR, "Invalid MAC address from " 2659 "EEPROM, aborting.\n"); 2660 err = -EAGAIN; 2661 goto err_out_free; 2662 } else { 2663 DPRINTK(PROBE, ERR, "Invalid MAC address from EEPROM, " 2664 "you MUST configure one.\n"); 2665 } 2666 } 2667 2668 /* Wol magic packet can be enabled from eeprom */ 2669 if((nic->mac >= mac_82558_D101_A4) && 2670 (nic->eeprom[eeprom_id] & eeprom_id_wol)) 2671 nic->flags |= wol_magic; 2672 2673 /* ack any pending wake events, disable PME */ 2674 err = pci_enable_wake(pdev, 0, 0); 2675 if (err) 2676 DPRINTK(PROBE, ERR, "Error clearing wake event\n"); 2677 2678 strcpy(netdev->name, "eth%d"); 2679 if((err = register_netdev(netdev))) { 2680 DPRINTK(PROBE, ERR, "Cannot register net device, aborting.\n"); 2681 goto err_out_free; 2682 } 2683 2684 DPRINTK(PROBE, INFO, "addr 0x%llx, irq %d, MAC addr %s\n", 2685 (unsigned long long)pci_resource_start(pdev, use_io ? 1 : 0), 2686 pdev->irq, print_mac(mac, netdev->dev_addr)); 2687 2688 return 0; 2689 2690err_out_free: 2691 e100_free(nic); 2692err_out_iounmap: 2693 pci_iounmap(pdev, nic->csr); 2694err_out_free_res: 2695 pci_release_regions(pdev); 2696err_out_disable_pdev: 2697 pci_disable_device(pdev); 2698err_out_free_dev: 2699 pci_set_drvdata(pdev, NULL); 2700 free_netdev(netdev); 2701 return err; 2702} 2703 2704static void __devexit e100_remove(struct pci_dev *pdev) 2705{ 2706 struct net_device *netdev = pci_get_drvdata(pdev); 2707 2708 if(netdev) { 2709 struct nic *nic = netdev_priv(netdev); 2710 unregister_netdev(netdev); 2711 e100_free(nic); 2712 iounmap(nic->csr); 2713 free_netdev(netdev); 2714 pci_release_regions(pdev); 2715 pci_disable_device(pdev); 2716 pci_set_drvdata(pdev, NULL); 2717 } 2718} 2719 2720#ifdef CONFIG_PM 2721static int e100_suspend(struct pci_dev *pdev, pm_message_t state) 2722{ 2723 struct net_device *netdev = pci_get_drvdata(pdev); 2724 struct nic *nic = netdev_priv(netdev); 2725 2726 if (netif_running(netdev)) 2727 napi_disable(&nic->napi); 2728 del_timer_sync(&nic->watchdog); 2729 netif_carrier_off(nic->netdev); 2730 netif_device_detach(netdev); 2731 2732 pci_save_state(pdev); 2733 2734 if ((nic->flags & wol_magic) | e100_asf(nic)) { 2735 pci_enable_wake(pdev, PCI_D3hot, 1); 2736 pci_enable_wake(pdev, PCI_D3cold, 1); 2737 } else { 2738 pci_enable_wake(pdev, PCI_D3hot, 0); 2739 pci_enable_wake(pdev, PCI_D3cold, 0); 2740 } 2741 2742 pci_disable_device(pdev); 2743 free_irq(pdev->irq, netdev); 2744 pci_set_power_state(pdev, PCI_D3hot); 2745 2746 return 0; 2747} 2748 2749static int e100_resume(struct pci_dev *pdev) 2750{ 2751 struct net_device *netdev = pci_get_drvdata(pdev); 2752 struct nic *nic = netdev_priv(netdev); 2753 2754 pci_set_power_state(pdev, PCI_D0); 2755 pci_restore_state(pdev); 2756 /* ack any pending wake events, disable PME */ 2757 pci_enable_wake(pdev, 0, 0); 2758 2759 netif_device_attach(netdev); 2760 if (netif_running(netdev)) 2761 e100_up(nic); 2762 2763 return 0; 2764} 2765#endif /* CONFIG_PM */ 2766 2767static void e100_shutdown(struct pci_dev *pdev) 2768{ 2769 struct net_device *netdev = pci_get_drvdata(pdev); 2770 struct nic *nic = netdev_priv(netdev); 2771 2772 if (netif_running(netdev)) 2773 napi_disable(&nic->napi); 2774 del_timer_sync(&nic->watchdog); 2775 netif_carrier_off(nic->netdev); 2776 2777 if ((nic->flags & wol_magic) | e100_asf(nic)) { 2778 pci_enable_wake(pdev, PCI_D3hot, 1); 2779 pci_enable_wake(pdev, PCI_D3cold, 1); 2780 } else { 2781 pci_enable_wake(pdev, PCI_D3hot, 0); 2782 pci_enable_wake(pdev, PCI_D3cold, 0); 2783 } 2784 2785 pci_disable_device(pdev); 2786 pci_set_power_state(pdev, PCI_D3hot); 2787} 2788 2789/* ------------------ PCI Error Recovery infrastructure -------------- */ 2790/** 2791 * e100_io_error_detected - called when PCI error is detected. 2792 * @pdev: Pointer to PCI device 2793 * @state: The current pci conneection state 2794 */ 2795static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state) 2796{ 2797 struct net_device *netdev = pci_get_drvdata(pdev); 2798 struct nic *nic = netdev_priv(netdev); 2799 2800 /* Similar to calling e100_down(), but avoids adpater I/O. */ 2801 netdev->stop(netdev); 2802 2803 /* Detach; put netif into state similar to hotplug unplug. */ 2804 napi_enable(&nic->napi); 2805 netif_device_detach(netdev); 2806 pci_disable_device(pdev); 2807 2808 /* Request a slot reset. */ 2809 return PCI_ERS_RESULT_NEED_RESET; 2810} 2811 2812/** 2813 * e100_io_slot_reset - called after the pci bus has been reset. 2814 * @pdev: Pointer to PCI device 2815 * 2816 * Restart the card from scratch. 2817 */ 2818static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev) 2819{ 2820 struct net_device *netdev = pci_get_drvdata(pdev); 2821 struct nic *nic = netdev_priv(netdev); 2822 2823 if (pci_enable_device(pdev)) { 2824 printk(KERN_ERR "e100: Cannot re-enable PCI device after reset.\n"); 2825 return PCI_ERS_RESULT_DISCONNECT; 2826 } 2827 pci_set_master(pdev); 2828 2829 /* Only one device per card can do a reset */ 2830 if (0 != PCI_FUNC(pdev->devfn)) 2831 return PCI_ERS_RESULT_RECOVERED; 2832 e100_hw_reset(nic); 2833 e100_phy_init(nic); 2834 2835 return PCI_ERS_RESULT_RECOVERED; 2836} 2837 2838/** 2839 * e100_io_resume - resume normal operations 2840 * @pdev: Pointer to PCI device 2841 * 2842 * Resume normal operations after an error recovery 2843 * sequence has been completed. 2844 */ 2845static void e100_io_resume(struct pci_dev *pdev) 2846{ 2847 struct net_device *netdev = pci_get_drvdata(pdev); 2848 struct nic *nic = netdev_priv(netdev); 2849 2850 /* ack any pending wake events, disable PME */ 2851 pci_enable_wake(pdev, 0, 0); 2852 2853 netif_device_attach(netdev); 2854 if (netif_running(netdev)) { 2855 e100_open(netdev); 2856 mod_timer(&nic->watchdog, jiffies); 2857 } 2858} 2859 2860static struct pci_error_handlers e100_err_handler = { 2861 .error_detected = e100_io_error_detected, 2862 .slot_reset = e100_io_slot_reset, 2863 .resume = e100_io_resume, 2864}; 2865 2866static struct pci_driver e100_driver = { 2867 .name = DRV_NAME, 2868 .id_table = e100_id_table, 2869 .probe = e100_probe, 2870 .remove = __devexit_p(e100_remove), 2871#ifdef CONFIG_PM 2872 /* Power Management hooks */ 2873 .suspend = e100_suspend, 2874 .resume = e100_resume, 2875#endif 2876 .shutdown = e100_shutdown, 2877 .err_handler = &e100_err_handler, 2878}; 2879 2880static int __init e100_init_module(void) 2881{ 2882 if(((1 << debug) - 1) & NETIF_MSG_DRV) { 2883 printk(KERN_INFO PFX "%s, %s\n", DRV_DESCRIPTION, DRV_VERSION); 2884 printk(KERN_INFO PFX "%s\n", DRV_COPYRIGHT); 2885 } 2886 return pci_register_driver(&e100_driver); 2887} 2888 2889static void __exit e100_cleanup_module(void) 2890{ 2891 pci_unregister_driver(&e100_driver); 2892} 2893 2894module_init(e100_init_module); 2895module_exit(e100_cleanup_module);