at v2.6.23 56 kB view raw
1/* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61#include <linux/mm.h> 62#include <linux/socket.h> 63#include <linux/file.h> 64#include <linux/net.h> 65#include <linux/interrupt.h> 66#include <linux/rcupdate.h> 67#include <linux/netdevice.h> 68#include <linux/proc_fs.h> 69#include <linux/seq_file.h> 70#include <linux/mutex.h> 71#include <linux/wanrouter.h> 72#include <linux/if_bridge.h> 73#include <linux/if_frad.h> 74#include <linux/if_vlan.h> 75#include <linux/init.h> 76#include <linux/poll.h> 77#include <linux/cache.h> 78#include <linux/module.h> 79#include <linux/highmem.h> 80#include <linux/mount.h> 81#include <linux/security.h> 82#include <linux/syscalls.h> 83#include <linux/compat.h> 84#include <linux/kmod.h> 85#include <linux/audit.h> 86#include <linux/wireless.h> 87 88#include <asm/uaccess.h> 89#include <asm/unistd.h> 90 91#include <net/compat.h> 92 93#include <net/sock.h> 94#include <linux/netfilter.h> 95 96static int sock_no_open(struct inode *irrelevant, struct file *dontcare); 97static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 98 unsigned long nr_segs, loff_t pos); 99static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 100 unsigned long nr_segs, loff_t pos); 101static int sock_mmap(struct file *file, struct vm_area_struct *vma); 102 103static int sock_close(struct inode *inode, struct file *file); 104static unsigned int sock_poll(struct file *file, 105 struct poll_table_struct *wait); 106static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 107#ifdef CONFIG_COMPAT 108static long compat_sock_ioctl(struct file *file, 109 unsigned int cmd, unsigned long arg); 110#endif 111static int sock_fasync(int fd, struct file *filp, int on); 112static ssize_t sock_sendpage(struct file *file, struct page *page, 113 int offset, size_t size, loff_t *ppos, int more); 114 115/* 116 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 117 * in the operation structures but are done directly via the socketcall() multiplexor. 118 */ 119 120static const struct file_operations socket_file_ops = { 121 .owner = THIS_MODULE, 122 .llseek = no_llseek, 123 .aio_read = sock_aio_read, 124 .aio_write = sock_aio_write, 125 .poll = sock_poll, 126 .unlocked_ioctl = sock_ioctl, 127#ifdef CONFIG_COMPAT 128 .compat_ioctl = compat_sock_ioctl, 129#endif 130 .mmap = sock_mmap, 131 .open = sock_no_open, /* special open code to disallow open via /proc */ 132 .release = sock_close, 133 .fasync = sock_fasync, 134 .sendpage = sock_sendpage, 135 .splice_write = generic_splice_sendpage, 136}; 137 138/* 139 * The protocol list. Each protocol is registered in here. 140 */ 141 142static DEFINE_SPINLOCK(net_family_lock); 143static const struct net_proto_family *net_families[NPROTO] __read_mostly; 144 145/* 146 * Statistics counters of the socket lists 147 */ 148 149static DEFINE_PER_CPU(int, sockets_in_use) = 0; 150 151/* 152 * Support routines. 153 * Move socket addresses back and forth across the kernel/user 154 * divide and look after the messy bits. 155 */ 156 157#define MAX_SOCK_ADDR 128 /* 108 for Unix domain - 158 16 for IP, 16 for IPX, 159 24 for IPv6, 160 about 80 for AX.25 161 must be at least one bigger than 162 the AF_UNIX size (see net/unix/af_unix.c 163 :unix_mkname()). 164 */ 165 166/** 167 * move_addr_to_kernel - copy a socket address into kernel space 168 * @uaddr: Address in user space 169 * @kaddr: Address in kernel space 170 * @ulen: Length in user space 171 * 172 * The address is copied into kernel space. If the provided address is 173 * too long an error code of -EINVAL is returned. If the copy gives 174 * invalid addresses -EFAULT is returned. On a success 0 is returned. 175 */ 176 177int move_addr_to_kernel(void __user *uaddr, int ulen, void *kaddr) 178{ 179 if (ulen < 0 || ulen > MAX_SOCK_ADDR) 180 return -EINVAL; 181 if (ulen == 0) 182 return 0; 183 if (copy_from_user(kaddr, uaddr, ulen)) 184 return -EFAULT; 185 return audit_sockaddr(ulen, kaddr); 186} 187 188/** 189 * move_addr_to_user - copy an address to user space 190 * @kaddr: kernel space address 191 * @klen: length of address in kernel 192 * @uaddr: user space address 193 * @ulen: pointer to user length field 194 * 195 * The value pointed to by ulen on entry is the buffer length available. 196 * This is overwritten with the buffer space used. -EINVAL is returned 197 * if an overlong buffer is specified or a negative buffer size. -EFAULT 198 * is returned if either the buffer or the length field are not 199 * accessible. 200 * After copying the data up to the limit the user specifies, the true 201 * length of the data is written over the length limit the user 202 * specified. Zero is returned for a success. 203 */ 204 205int move_addr_to_user(void *kaddr, int klen, void __user *uaddr, 206 int __user *ulen) 207{ 208 int err; 209 int len; 210 211 err = get_user(len, ulen); 212 if (err) 213 return err; 214 if (len > klen) 215 len = klen; 216 if (len < 0 || len > MAX_SOCK_ADDR) 217 return -EINVAL; 218 if (len) { 219 if (audit_sockaddr(klen, kaddr)) 220 return -ENOMEM; 221 if (copy_to_user(uaddr, kaddr, len)) 222 return -EFAULT; 223 } 224 /* 225 * "fromlen shall refer to the value before truncation.." 226 * 1003.1g 227 */ 228 return __put_user(klen, ulen); 229} 230 231#define SOCKFS_MAGIC 0x534F434B 232 233static struct kmem_cache *sock_inode_cachep __read_mostly; 234 235static struct inode *sock_alloc_inode(struct super_block *sb) 236{ 237 struct socket_alloc *ei; 238 239 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 240 if (!ei) 241 return NULL; 242 init_waitqueue_head(&ei->socket.wait); 243 244 ei->socket.fasync_list = NULL; 245 ei->socket.state = SS_UNCONNECTED; 246 ei->socket.flags = 0; 247 ei->socket.ops = NULL; 248 ei->socket.sk = NULL; 249 ei->socket.file = NULL; 250 251 return &ei->vfs_inode; 252} 253 254static void sock_destroy_inode(struct inode *inode) 255{ 256 kmem_cache_free(sock_inode_cachep, 257 container_of(inode, struct socket_alloc, vfs_inode)); 258} 259 260static void init_once(void *foo, struct kmem_cache *cachep, unsigned long flags) 261{ 262 struct socket_alloc *ei = (struct socket_alloc *)foo; 263 264 inode_init_once(&ei->vfs_inode); 265} 266 267static int init_inodecache(void) 268{ 269 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 270 sizeof(struct socket_alloc), 271 0, 272 (SLAB_HWCACHE_ALIGN | 273 SLAB_RECLAIM_ACCOUNT | 274 SLAB_MEM_SPREAD), 275 init_once); 276 if (sock_inode_cachep == NULL) 277 return -ENOMEM; 278 return 0; 279} 280 281static struct super_operations sockfs_ops = { 282 .alloc_inode = sock_alloc_inode, 283 .destroy_inode =sock_destroy_inode, 284 .statfs = simple_statfs, 285}; 286 287static int sockfs_get_sb(struct file_system_type *fs_type, 288 int flags, const char *dev_name, void *data, 289 struct vfsmount *mnt) 290{ 291 return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC, 292 mnt); 293} 294 295static struct vfsmount *sock_mnt __read_mostly; 296 297static struct file_system_type sock_fs_type = { 298 .name = "sockfs", 299 .get_sb = sockfs_get_sb, 300 .kill_sb = kill_anon_super, 301}; 302 303static int sockfs_delete_dentry(struct dentry *dentry) 304{ 305 /* 306 * At creation time, we pretended this dentry was hashed 307 * (by clearing DCACHE_UNHASHED bit in d_flags) 308 * At delete time, we restore the truth : not hashed. 309 * (so that dput() can proceed correctly) 310 */ 311 dentry->d_flags |= DCACHE_UNHASHED; 312 return 0; 313} 314 315/* 316 * sockfs_dname() is called from d_path(). 317 */ 318static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 319{ 320 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 321 dentry->d_inode->i_ino); 322} 323 324static struct dentry_operations sockfs_dentry_operations = { 325 .d_delete = sockfs_delete_dentry, 326 .d_dname = sockfs_dname, 327}; 328 329/* 330 * Obtains the first available file descriptor and sets it up for use. 331 * 332 * These functions create file structures and maps them to fd space 333 * of the current process. On success it returns file descriptor 334 * and file struct implicitly stored in sock->file. 335 * Note that another thread may close file descriptor before we return 336 * from this function. We use the fact that now we do not refer 337 * to socket after mapping. If one day we will need it, this 338 * function will increment ref. count on file by 1. 339 * 340 * In any case returned fd MAY BE not valid! 341 * This race condition is unavoidable 342 * with shared fd spaces, we cannot solve it inside kernel, 343 * but we take care of internal coherence yet. 344 */ 345 346static int sock_alloc_fd(struct file **filep) 347{ 348 int fd; 349 350 fd = get_unused_fd(); 351 if (likely(fd >= 0)) { 352 struct file *file = get_empty_filp(); 353 354 *filep = file; 355 if (unlikely(!file)) { 356 put_unused_fd(fd); 357 return -ENFILE; 358 } 359 } else 360 *filep = NULL; 361 return fd; 362} 363 364static int sock_attach_fd(struct socket *sock, struct file *file) 365{ 366 struct qstr name = { .name = "" }; 367 368 file->f_path.dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name); 369 if (unlikely(!file->f_path.dentry)) 370 return -ENOMEM; 371 372 file->f_path.dentry->d_op = &sockfs_dentry_operations; 373 /* 374 * We dont want to push this dentry into global dentry hash table. 375 * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED 376 * This permits a working /proc/$pid/fd/XXX on sockets 377 */ 378 file->f_path.dentry->d_flags &= ~DCACHE_UNHASHED; 379 d_instantiate(file->f_path.dentry, SOCK_INODE(sock)); 380 file->f_path.mnt = mntget(sock_mnt); 381 file->f_mapping = file->f_path.dentry->d_inode->i_mapping; 382 383 sock->file = file; 384 file->f_op = SOCK_INODE(sock)->i_fop = &socket_file_ops; 385 file->f_mode = FMODE_READ | FMODE_WRITE; 386 file->f_flags = O_RDWR; 387 file->f_pos = 0; 388 file->private_data = sock; 389 390 return 0; 391} 392 393int sock_map_fd(struct socket *sock) 394{ 395 struct file *newfile; 396 int fd = sock_alloc_fd(&newfile); 397 398 if (likely(fd >= 0)) { 399 int err = sock_attach_fd(sock, newfile); 400 401 if (unlikely(err < 0)) { 402 put_filp(newfile); 403 put_unused_fd(fd); 404 return err; 405 } 406 fd_install(fd, newfile); 407 } 408 return fd; 409} 410 411static struct socket *sock_from_file(struct file *file, int *err) 412{ 413 if (file->f_op == &socket_file_ops) 414 return file->private_data; /* set in sock_map_fd */ 415 416 *err = -ENOTSOCK; 417 return NULL; 418} 419 420/** 421 * sockfd_lookup - Go from a file number to its socket slot 422 * @fd: file handle 423 * @err: pointer to an error code return 424 * 425 * The file handle passed in is locked and the socket it is bound 426 * too is returned. If an error occurs the err pointer is overwritten 427 * with a negative errno code and NULL is returned. The function checks 428 * for both invalid handles and passing a handle which is not a socket. 429 * 430 * On a success the socket object pointer is returned. 431 */ 432 433struct socket *sockfd_lookup(int fd, int *err) 434{ 435 struct file *file; 436 struct socket *sock; 437 438 file = fget(fd); 439 if (!file) { 440 *err = -EBADF; 441 return NULL; 442 } 443 444 sock = sock_from_file(file, err); 445 if (!sock) 446 fput(file); 447 return sock; 448} 449 450static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 451{ 452 struct file *file; 453 struct socket *sock; 454 455 *err = -EBADF; 456 file = fget_light(fd, fput_needed); 457 if (file) { 458 sock = sock_from_file(file, err); 459 if (sock) 460 return sock; 461 fput_light(file, *fput_needed); 462 } 463 return NULL; 464} 465 466/** 467 * sock_alloc - allocate a socket 468 * 469 * Allocate a new inode and socket object. The two are bound together 470 * and initialised. The socket is then returned. If we are out of inodes 471 * NULL is returned. 472 */ 473 474static struct socket *sock_alloc(void) 475{ 476 struct inode *inode; 477 struct socket *sock; 478 479 inode = new_inode(sock_mnt->mnt_sb); 480 if (!inode) 481 return NULL; 482 483 sock = SOCKET_I(inode); 484 485 inode->i_mode = S_IFSOCK | S_IRWXUGO; 486 inode->i_uid = current->fsuid; 487 inode->i_gid = current->fsgid; 488 489 get_cpu_var(sockets_in_use)++; 490 put_cpu_var(sockets_in_use); 491 return sock; 492} 493 494/* 495 * In theory you can't get an open on this inode, but /proc provides 496 * a back door. Remember to keep it shut otherwise you'll let the 497 * creepy crawlies in. 498 */ 499 500static int sock_no_open(struct inode *irrelevant, struct file *dontcare) 501{ 502 return -ENXIO; 503} 504 505const struct file_operations bad_sock_fops = { 506 .owner = THIS_MODULE, 507 .open = sock_no_open, 508}; 509 510/** 511 * sock_release - close a socket 512 * @sock: socket to close 513 * 514 * The socket is released from the protocol stack if it has a release 515 * callback, and the inode is then released if the socket is bound to 516 * an inode not a file. 517 */ 518 519void sock_release(struct socket *sock) 520{ 521 if (sock->ops) { 522 struct module *owner = sock->ops->owner; 523 524 sock->ops->release(sock); 525 sock->ops = NULL; 526 module_put(owner); 527 } 528 529 if (sock->fasync_list) 530 printk(KERN_ERR "sock_release: fasync list not empty!\n"); 531 532 get_cpu_var(sockets_in_use)--; 533 put_cpu_var(sockets_in_use); 534 if (!sock->file) { 535 iput(SOCK_INODE(sock)); 536 return; 537 } 538 sock->file = NULL; 539} 540 541static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock, 542 struct msghdr *msg, size_t size) 543{ 544 struct sock_iocb *si = kiocb_to_siocb(iocb); 545 int err; 546 547 si->sock = sock; 548 si->scm = NULL; 549 si->msg = msg; 550 si->size = size; 551 552 err = security_socket_sendmsg(sock, msg, size); 553 if (err) 554 return err; 555 556 return sock->ops->sendmsg(iocb, sock, msg, size); 557} 558 559int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 560{ 561 struct kiocb iocb; 562 struct sock_iocb siocb; 563 int ret; 564 565 init_sync_kiocb(&iocb, NULL); 566 iocb.private = &siocb; 567 ret = __sock_sendmsg(&iocb, sock, msg, size); 568 if (-EIOCBQUEUED == ret) 569 ret = wait_on_sync_kiocb(&iocb); 570 return ret; 571} 572 573int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 574 struct kvec *vec, size_t num, size_t size) 575{ 576 mm_segment_t oldfs = get_fs(); 577 int result; 578 579 set_fs(KERNEL_DS); 580 /* 581 * the following is safe, since for compiler definitions of kvec and 582 * iovec are identical, yielding the same in-core layout and alignment 583 */ 584 msg->msg_iov = (struct iovec *)vec; 585 msg->msg_iovlen = num; 586 result = sock_sendmsg(sock, msg, size); 587 set_fs(oldfs); 588 return result; 589} 590 591/* 592 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 593 */ 594void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 595 struct sk_buff *skb) 596{ 597 ktime_t kt = skb->tstamp; 598 599 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 600 struct timeval tv; 601 /* Race occurred between timestamp enabling and packet 602 receiving. Fill in the current time for now. */ 603 if (kt.tv64 == 0) 604 kt = ktime_get_real(); 605 skb->tstamp = kt; 606 tv = ktime_to_timeval(kt); 607 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, sizeof(tv), &tv); 608 } else { 609 struct timespec ts; 610 /* Race occurred between timestamp enabling and packet 611 receiving. Fill in the current time for now. */ 612 if (kt.tv64 == 0) 613 kt = ktime_get_real(); 614 skb->tstamp = kt; 615 ts = ktime_to_timespec(kt); 616 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, sizeof(ts), &ts); 617 } 618} 619 620EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 621 622static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock, 623 struct msghdr *msg, size_t size, int flags) 624{ 625 int err; 626 struct sock_iocb *si = kiocb_to_siocb(iocb); 627 628 si->sock = sock; 629 si->scm = NULL; 630 si->msg = msg; 631 si->size = size; 632 si->flags = flags; 633 634 err = security_socket_recvmsg(sock, msg, size, flags); 635 if (err) 636 return err; 637 638 return sock->ops->recvmsg(iocb, sock, msg, size, flags); 639} 640 641int sock_recvmsg(struct socket *sock, struct msghdr *msg, 642 size_t size, int flags) 643{ 644 struct kiocb iocb; 645 struct sock_iocb siocb; 646 int ret; 647 648 init_sync_kiocb(&iocb, NULL); 649 iocb.private = &siocb; 650 ret = __sock_recvmsg(&iocb, sock, msg, size, flags); 651 if (-EIOCBQUEUED == ret) 652 ret = wait_on_sync_kiocb(&iocb); 653 return ret; 654} 655 656int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 657 struct kvec *vec, size_t num, size_t size, int flags) 658{ 659 mm_segment_t oldfs = get_fs(); 660 int result; 661 662 set_fs(KERNEL_DS); 663 /* 664 * the following is safe, since for compiler definitions of kvec and 665 * iovec are identical, yielding the same in-core layout and alignment 666 */ 667 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num; 668 result = sock_recvmsg(sock, msg, size, flags); 669 set_fs(oldfs); 670 return result; 671} 672 673static void sock_aio_dtor(struct kiocb *iocb) 674{ 675 kfree(iocb->private); 676} 677 678static ssize_t sock_sendpage(struct file *file, struct page *page, 679 int offset, size_t size, loff_t *ppos, int more) 680{ 681 struct socket *sock; 682 int flags; 683 684 sock = file->private_data; 685 686 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT; 687 if (more) 688 flags |= MSG_MORE; 689 690 return sock->ops->sendpage(sock, page, offset, size, flags); 691} 692 693static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb, 694 struct sock_iocb *siocb) 695{ 696 if (!is_sync_kiocb(iocb)) { 697 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL); 698 if (!siocb) 699 return NULL; 700 iocb->ki_dtor = sock_aio_dtor; 701 } 702 703 siocb->kiocb = iocb; 704 iocb->private = siocb; 705 return siocb; 706} 707 708static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb, 709 struct file *file, const struct iovec *iov, 710 unsigned long nr_segs) 711{ 712 struct socket *sock = file->private_data; 713 size_t size = 0; 714 int i; 715 716 for (i = 0; i < nr_segs; i++) 717 size += iov[i].iov_len; 718 719 msg->msg_name = NULL; 720 msg->msg_namelen = 0; 721 msg->msg_control = NULL; 722 msg->msg_controllen = 0; 723 msg->msg_iov = (struct iovec *)iov; 724 msg->msg_iovlen = nr_segs; 725 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 726 727 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags); 728} 729 730static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 731 unsigned long nr_segs, loff_t pos) 732{ 733 struct sock_iocb siocb, *x; 734 735 if (pos != 0) 736 return -ESPIPE; 737 738 if (iocb->ki_left == 0) /* Match SYS5 behaviour */ 739 return 0; 740 741 742 x = alloc_sock_iocb(iocb, &siocb); 743 if (!x) 744 return -ENOMEM; 745 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 746} 747 748static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb, 749 struct file *file, const struct iovec *iov, 750 unsigned long nr_segs) 751{ 752 struct socket *sock = file->private_data; 753 size_t size = 0; 754 int i; 755 756 for (i = 0; i < nr_segs; i++) 757 size += iov[i].iov_len; 758 759 msg->msg_name = NULL; 760 msg->msg_namelen = 0; 761 msg->msg_control = NULL; 762 msg->msg_controllen = 0; 763 msg->msg_iov = (struct iovec *)iov; 764 msg->msg_iovlen = nr_segs; 765 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 766 if (sock->type == SOCK_SEQPACKET) 767 msg->msg_flags |= MSG_EOR; 768 769 return __sock_sendmsg(iocb, sock, msg, size); 770} 771 772static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 773 unsigned long nr_segs, loff_t pos) 774{ 775 struct sock_iocb siocb, *x; 776 777 if (pos != 0) 778 return -ESPIPE; 779 780 x = alloc_sock_iocb(iocb, &siocb); 781 if (!x) 782 return -ENOMEM; 783 784 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 785} 786 787/* 788 * Atomic setting of ioctl hooks to avoid race 789 * with module unload. 790 */ 791 792static DEFINE_MUTEX(br_ioctl_mutex); 793static int (*br_ioctl_hook) (unsigned int cmd, void __user *arg) = NULL; 794 795void brioctl_set(int (*hook) (unsigned int, void __user *)) 796{ 797 mutex_lock(&br_ioctl_mutex); 798 br_ioctl_hook = hook; 799 mutex_unlock(&br_ioctl_mutex); 800} 801 802EXPORT_SYMBOL(brioctl_set); 803 804static DEFINE_MUTEX(vlan_ioctl_mutex); 805static int (*vlan_ioctl_hook) (void __user *arg); 806 807void vlan_ioctl_set(int (*hook) (void __user *)) 808{ 809 mutex_lock(&vlan_ioctl_mutex); 810 vlan_ioctl_hook = hook; 811 mutex_unlock(&vlan_ioctl_mutex); 812} 813 814EXPORT_SYMBOL(vlan_ioctl_set); 815 816static DEFINE_MUTEX(dlci_ioctl_mutex); 817static int (*dlci_ioctl_hook) (unsigned int, void __user *); 818 819void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 820{ 821 mutex_lock(&dlci_ioctl_mutex); 822 dlci_ioctl_hook = hook; 823 mutex_unlock(&dlci_ioctl_mutex); 824} 825 826EXPORT_SYMBOL(dlci_ioctl_set); 827 828/* 829 * With an ioctl, arg may well be a user mode pointer, but we don't know 830 * what to do with it - that's up to the protocol still. 831 */ 832 833static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 834{ 835 struct socket *sock; 836 void __user *argp = (void __user *)arg; 837 int pid, err; 838 839 sock = file->private_data; 840 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 841 err = dev_ioctl(cmd, argp); 842 } else 843#ifdef CONFIG_WIRELESS_EXT 844 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 845 err = dev_ioctl(cmd, argp); 846 } else 847#endif /* CONFIG_WIRELESS_EXT */ 848 switch (cmd) { 849 case FIOSETOWN: 850 case SIOCSPGRP: 851 err = -EFAULT; 852 if (get_user(pid, (int __user *)argp)) 853 break; 854 err = f_setown(sock->file, pid, 1); 855 break; 856 case FIOGETOWN: 857 case SIOCGPGRP: 858 err = put_user(f_getown(sock->file), 859 (int __user *)argp); 860 break; 861 case SIOCGIFBR: 862 case SIOCSIFBR: 863 case SIOCBRADDBR: 864 case SIOCBRDELBR: 865 err = -ENOPKG; 866 if (!br_ioctl_hook) 867 request_module("bridge"); 868 869 mutex_lock(&br_ioctl_mutex); 870 if (br_ioctl_hook) 871 err = br_ioctl_hook(cmd, argp); 872 mutex_unlock(&br_ioctl_mutex); 873 break; 874 case SIOCGIFVLAN: 875 case SIOCSIFVLAN: 876 err = -ENOPKG; 877 if (!vlan_ioctl_hook) 878 request_module("8021q"); 879 880 mutex_lock(&vlan_ioctl_mutex); 881 if (vlan_ioctl_hook) 882 err = vlan_ioctl_hook(argp); 883 mutex_unlock(&vlan_ioctl_mutex); 884 break; 885 case SIOCADDDLCI: 886 case SIOCDELDLCI: 887 err = -ENOPKG; 888 if (!dlci_ioctl_hook) 889 request_module("dlci"); 890 891 if (dlci_ioctl_hook) { 892 mutex_lock(&dlci_ioctl_mutex); 893 err = dlci_ioctl_hook(cmd, argp); 894 mutex_unlock(&dlci_ioctl_mutex); 895 } 896 break; 897 default: 898 err = sock->ops->ioctl(sock, cmd, arg); 899 900 /* 901 * If this ioctl is unknown try to hand it down 902 * to the NIC driver. 903 */ 904 if (err == -ENOIOCTLCMD) 905 err = dev_ioctl(cmd, argp); 906 break; 907 } 908 return err; 909} 910 911int sock_create_lite(int family, int type, int protocol, struct socket **res) 912{ 913 int err; 914 struct socket *sock = NULL; 915 916 err = security_socket_create(family, type, protocol, 1); 917 if (err) 918 goto out; 919 920 sock = sock_alloc(); 921 if (!sock) { 922 err = -ENOMEM; 923 goto out; 924 } 925 926 sock->type = type; 927 err = security_socket_post_create(sock, family, type, protocol, 1); 928 if (err) 929 goto out_release; 930 931out: 932 *res = sock; 933 return err; 934out_release: 935 sock_release(sock); 936 sock = NULL; 937 goto out; 938} 939 940/* No kernel lock held - perfect */ 941static unsigned int sock_poll(struct file *file, poll_table *wait) 942{ 943 struct socket *sock; 944 945 /* 946 * We can't return errors to poll, so it's either yes or no. 947 */ 948 sock = file->private_data; 949 return sock->ops->poll(file, sock, wait); 950} 951 952static int sock_mmap(struct file *file, struct vm_area_struct *vma) 953{ 954 struct socket *sock = file->private_data; 955 956 return sock->ops->mmap(file, sock, vma); 957} 958 959static int sock_close(struct inode *inode, struct file *filp) 960{ 961 /* 962 * It was possible the inode is NULL we were 963 * closing an unfinished socket. 964 */ 965 966 if (!inode) { 967 printk(KERN_DEBUG "sock_close: NULL inode\n"); 968 return 0; 969 } 970 sock_fasync(-1, filp, 0); 971 sock_release(SOCKET_I(inode)); 972 return 0; 973} 974 975/* 976 * Update the socket async list 977 * 978 * Fasync_list locking strategy. 979 * 980 * 1. fasync_list is modified only under process context socket lock 981 * i.e. under semaphore. 982 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 983 * or under socket lock. 984 * 3. fasync_list can be used from softirq context, so that 985 * modification under socket lock have to be enhanced with 986 * write_lock_bh(&sk->sk_callback_lock). 987 * --ANK (990710) 988 */ 989 990static int sock_fasync(int fd, struct file *filp, int on) 991{ 992 struct fasync_struct *fa, *fna = NULL, **prev; 993 struct socket *sock; 994 struct sock *sk; 995 996 if (on) { 997 fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL); 998 if (fna == NULL) 999 return -ENOMEM; 1000 } 1001 1002 sock = filp->private_data; 1003 1004 sk = sock->sk; 1005 if (sk == NULL) { 1006 kfree(fna); 1007 return -EINVAL; 1008 } 1009 1010 lock_sock(sk); 1011 1012 prev = &(sock->fasync_list); 1013 1014 for (fa = *prev; fa != NULL; prev = &fa->fa_next, fa = *prev) 1015 if (fa->fa_file == filp) 1016 break; 1017 1018 if (on) { 1019 if (fa != NULL) { 1020 write_lock_bh(&sk->sk_callback_lock); 1021 fa->fa_fd = fd; 1022 write_unlock_bh(&sk->sk_callback_lock); 1023 1024 kfree(fna); 1025 goto out; 1026 } 1027 fna->fa_file = filp; 1028 fna->fa_fd = fd; 1029 fna->magic = FASYNC_MAGIC; 1030 fna->fa_next = sock->fasync_list; 1031 write_lock_bh(&sk->sk_callback_lock); 1032 sock->fasync_list = fna; 1033 write_unlock_bh(&sk->sk_callback_lock); 1034 } else { 1035 if (fa != NULL) { 1036 write_lock_bh(&sk->sk_callback_lock); 1037 *prev = fa->fa_next; 1038 write_unlock_bh(&sk->sk_callback_lock); 1039 kfree(fa); 1040 } 1041 } 1042 1043out: 1044 release_sock(sock->sk); 1045 return 0; 1046} 1047 1048/* This function may be called only under socket lock or callback_lock */ 1049 1050int sock_wake_async(struct socket *sock, int how, int band) 1051{ 1052 if (!sock || !sock->fasync_list) 1053 return -1; 1054 switch (how) { 1055 case 1: 1056 1057 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags)) 1058 break; 1059 goto call_kill; 1060 case 2: 1061 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags)) 1062 break; 1063 /* fall through */ 1064 case 0: 1065call_kill: 1066 __kill_fasync(sock->fasync_list, SIGIO, band); 1067 break; 1068 case 3: 1069 __kill_fasync(sock->fasync_list, SIGURG, band); 1070 } 1071 return 0; 1072} 1073 1074static int __sock_create(int family, int type, int protocol, 1075 struct socket **res, int kern) 1076{ 1077 int err; 1078 struct socket *sock; 1079 const struct net_proto_family *pf; 1080 1081 /* 1082 * Check protocol is in range 1083 */ 1084 if (family < 0 || family >= NPROTO) 1085 return -EAFNOSUPPORT; 1086 if (type < 0 || type >= SOCK_MAX) 1087 return -EINVAL; 1088 1089 /* Compatibility. 1090 1091 This uglymoron is moved from INET layer to here to avoid 1092 deadlock in module load. 1093 */ 1094 if (family == PF_INET && type == SOCK_PACKET) { 1095 static int warned; 1096 if (!warned) { 1097 warned = 1; 1098 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1099 current->comm); 1100 } 1101 family = PF_PACKET; 1102 } 1103 1104 err = security_socket_create(family, type, protocol, kern); 1105 if (err) 1106 return err; 1107 1108 /* 1109 * Allocate the socket and allow the family to set things up. if 1110 * the protocol is 0, the family is instructed to select an appropriate 1111 * default. 1112 */ 1113 sock = sock_alloc(); 1114 if (!sock) { 1115 if (net_ratelimit()) 1116 printk(KERN_WARNING "socket: no more sockets\n"); 1117 return -ENFILE; /* Not exactly a match, but its the 1118 closest posix thing */ 1119 } 1120 1121 sock->type = type; 1122 1123#if defined(CONFIG_KMOD) 1124 /* Attempt to load a protocol module if the find failed. 1125 * 1126 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1127 * requested real, full-featured networking support upon configuration. 1128 * Otherwise module support will break! 1129 */ 1130 if (net_families[family] == NULL) 1131 request_module("net-pf-%d", family); 1132#endif 1133 1134 rcu_read_lock(); 1135 pf = rcu_dereference(net_families[family]); 1136 err = -EAFNOSUPPORT; 1137 if (!pf) 1138 goto out_release; 1139 1140 /* 1141 * We will call the ->create function, that possibly is in a loadable 1142 * module, so we have to bump that loadable module refcnt first. 1143 */ 1144 if (!try_module_get(pf->owner)) 1145 goto out_release; 1146 1147 /* Now protected by module ref count */ 1148 rcu_read_unlock(); 1149 1150 err = pf->create(sock, protocol); 1151 if (err < 0) 1152 goto out_module_put; 1153 1154 /* 1155 * Now to bump the refcnt of the [loadable] module that owns this 1156 * socket at sock_release time we decrement its refcnt. 1157 */ 1158 if (!try_module_get(sock->ops->owner)) 1159 goto out_module_busy; 1160 1161 /* 1162 * Now that we're done with the ->create function, the [loadable] 1163 * module can have its refcnt decremented 1164 */ 1165 module_put(pf->owner); 1166 err = security_socket_post_create(sock, family, type, protocol, kern); 1167 if (err) 1168 goto out_sock_release; 1169 *res = sock; 1170 1171 return 0; 1172 1173out_module_busy: 1174 err = -EAFNOSUPPORT; 1175out_module_put: 1176 sock->ops = NULL; 1177 module_put(pf->owner); 1178out_sock_release: 1179 sock_release(sock); 1180 return err; 1181 1182out_release: 1183 rcu_read_unlock(); 1184 goto out_sock_release; 1185} 1186 1187int sock_create(int family, int type, int protocol, struct socket **res) 1188{ 1189 return __sock_create(family, type, protocol, res, 0); 1190} 1191 1192int sock_create_kern(int family, int type, int protocol, struct socket **res) 1193{ 1194 return __sock_create(family, type, protocol, res, 1); 1195} 1196 1197asmlinkage long sys_socket(int family, int type, int protocol) 1198{ 1199 int retval; 1200 struct socket *sock; 1201 1202 retval = sock_create(family, type, protocol, &sock); 1203 if (retval < 0) 1204 goto out; 1205 1206 retval = sock_map_fd(sock); 1207 if (retval < 0) 1208 goto out_release; 1209 1210out: 1211 /* It may be already another descriptor 8) Not kernel problem. */ 1212 return retval; 1213 1214out_release: 1215 sock_release(sock); 1216 return retval; 1217} 1218 1219/* 1220 * Create a pair of connected sockets. 1221 */ 1222 1223asmlinkage long sys_socketpair(int family, int type, int protocol, 1224 int __user *usockvec) 1225{ 1226 struct socket *sock1, *sock2; 1227 int fd1, fd2, err; 1228 struct file *newfile1, *newfile2; 1229 1230 /* 1231 * Obtain the first socket and check if the underlying protocol 1232 * supports the socketpair call. 1233 */ 1234 1235 err = sock_create(family, type, protocol, &sock1); 1236 if (err < 0) 1237 goto out; 1238 1239 err = sock_create(family, type, protocol, &sock2); 1240 if (err < 0) 1241 goto out_release_1; 1242 1243 err = sock1->ops->socketpair(sock1, sock2); 1244 if (err < 0) 1245 goto out_release_both; 1246 1247 fd1 = sock_alloc_fd(&newfile1); 1248 if (unlikely(fd1 < 0)) 1249 goto out_release_both; 1250 1251 fd2 = sock_alloc_fd(&newfile2); 1252 if (unlikely(fd2 < 0)) { 1253 put_filp(newfile1); 1254 put_unused_fd(fd1); 1255 goto out_release_both; 1256 } 1257 1258 err = sock_attach_fd(sock1, newfile1); 1259 if (unlikely(err < 0)) { 1260 goto out_fd2; 1261 } 1262 1263 err = sock_attach_fd(sock2, newfile2); 1264 if (unlikely(err < 0)) { 1265 fput(newfile1); 1266 goto out_fd1; 1267 } 1268 1269 err = audit_fd_pair(fd1, fd2); 1270 if (err < 0) { 1271 fput(newfile1); 1272 fput(newfile2); 1273 goto out_fd; 1274 } 1275 1276 fd_install(fd1, newfile1); 1277 fd_install(fd2, newfile2); 1278 /* fd1 and fd2 may be already another descriptors. 1279 * Not kernel problem. 1280 */ 1281 1282 err = put_user(fd1, &usockvec[0]); 1283 if (!err) 1284 err = put_user(fd2, &usockvec[1]); 1285 if (!err) 1286 return 0; 1287 1288 sys_close(fd2); 1289 sys_close(fd1); 1290 return err; 1291 1292out_release_both: 1293 sock_release(sock2); 1294out_release_1: 1295 sock_release(sock1); 1296out: 1297 return err; 1298 1299out_fd2: 1300 put_filp(newfile1); 1301 sock_release(sock1); 1302out_fd1: 1303 put_filp(newfile2); 1304 sock_release(sock2); 1305out_fd: 1306 put_unused_fd(fd1); 1307 put_unused_fd(fd2); 1308 goto out; 1309} 1310 1311/* 1312 * Bind a name to a socket. Nothing much to do here since it's 1313 * the protocol's responsibility to handle the local address. 1314 * 1315 * We move the socket address to kernel space before we call 1316 * the protocol layer (having also checked the address is ok). 1317 */ 1318 1319asmlinkage long sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1320{ 1321 struct socket *sock; 1322 char address[MAX_SOCK_ADDR]; 1323 int err, fput_needed; 1324 1325 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1326 if (sock) { 1327 err = move_addr_to_kernel(umyaddr, addrlen, address); 1328 if (err >= 0) { 1329 err = security_socket_bind(sock, 1330 (struct sockaddr *)address, 1331 addrlen); 1332 if (!err) 1333 err = sock->ops->bind(sock, 1334 (struct sockaddr *) 1335 address, addrlen); 1336 } 1337 fput_light(sock->file, fput_needed); 1338 } 1339 return err; 1340} 1341 1342/* 1343 * Perform a listen. Basically, we allow the protocol to do anything 1344 * necessary for a listen, and if that works, we mark the socket as 1345 * ready for listening. 1346 */ 1347 1348int sysctl_somaxconn __read_mostly = SOMAXCONN; 1349 1350asmlinkage long sys_listen(int fd, int backlog) 1351{ 1352 struct socket *sock; 1353 int err, fput_needed; 1354 1355 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1356 if (sock) { 1357 if ((unsigned)backlog > sysctl_somaxconn) 1358 backlog = sysctl_somaxconn; 1359 1360 err = security_socket_listen(sock, backlog); 1361 if (!err) 1362 err = sock->ops->listen(sock, backlog); 1363 1364 fput_light(sock->file, fput_needed); 1365 } 1366 return err; 1367} 1368 1369/* 1370 * For accept, we attempt to create a new socket, set up the link 1371 * with the client, wake up the client, then return the new 1372 * connected fd. We collect the address of the connector in kernel 1373 * space and move it to user at the very end. This is unclean because 1374 * we open the socket then return an error. 1375 * 1376 * 1003.1g adds the ability to recvmsg() to query connection pending 1377 * status to recvmsg. We need to add that support in a way thats 1378 * clean when we restucture accept also. 1379 */ 1380 1381asmlinkage long sys_accept(int fd, struct sockaddr __user *upeer_sockaddr, 1382 int __user *upeer_addrlen) 1383{ 1384 struct socket *sock, *newsock; 1385 struct file *newfile; 1386 int err, len, newfd, fput_needed; 1387 char address[MAX_SOCK_ADDR]; 1388 1389 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1390 if (!sock) 1391 goto out; 1392 1393 err = -ENFILE; 1394 if (!(newsock = sock_alloc())) 1395 goto out_put; 1396 1397 newsock->type = sock->type; 1398 newsock->ops = sock->ops; 1399 1400 /* 1401 * We don't need try_module_get here, as the listening socket (sock) 1402 * has the protocol module (sock->ops->owner) held. 1403 */ 1404 __module_get(newsock->ops->owner); 1405 1406 newfd = sock_alloc_fd(&newfile); 1407 if (unlikely(newfd < 0)) { 1408 err = newfd; 1409 sock_release(newsock); 1410 goto out_put; 1411 } 1412 1413 err = sock_attach_fd(newsock, newfile); 1414 if (err < 0) 1415 goto out_fd_simple; 1416 1417 err = security_socket_accept(sock, newsock); 1418 if (err) 1419 goto out_fd; 1420 1421 err = sock->ops->accept(sock, newsock, sock->file->f_flags); 1422 if (err < 0) 1423 goto out_fd; 1424 1425 if (upeer_sockaddr) { 1426 if (newsock->ops->getname(newsock, (struct sockaddr *)address, 1427 &len, 2) < 0) { 1428 err = -ECONNABORTED; 1429 goto out_fd; 1430 } 1431 err = move_addr_to_user(address, len, upeer_sockaddr, 1432 upeer_addrlen); 1433 if (err < 0) 1434 goto out_fd; 1435 } 1436 1437 /* File flags are not inherited via accept() unlike another OSes. */ 1438 1439 fd_install(newfd, newfile); 1440 err = newfd; 1441 1442 security_socket_post_accept(sock, newsock); 1443 1444out_put: 1445 fput_light(sock->file, fput_needed); 1446out: 1447 return err; 1448out_fd_simple: 1449 sock_release(newsock); 1450 put_filp(newfile); 1451 put_unused_fd(newfd); 1452 goto out_put; 1453out_fd: 1454 fput(newfile); 1455 put_unused_fd(newfd); 1456 goto out_put; 1457} 1458 1459/* 1460 * Attempt to connect to a socket with the server address. The address 1461 * is in user space so we verify it is OK and move it to kernel space. 1462 * 1463 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1464 * break bindings 1465 * 1466 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1467 * other SEQPACKET protocols that take time to connect() as it doesn't 1468 * include the -EINPROGRESS status for such sockets. 1469 */ 1470 1471asmlinkage long sys_connect(int fd, struct sockaddr __user *uservaddr, 1472 int addrlen) 1473{ 1474 struct socket *sock; 1475 char address[MAX_SOCK_ADDR]; 1476 int err, fput_needed; 1477 1478 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1479 if (!sock) 1480 goto out; 1481 err = move_addr_to_kernel(uservaddr, addrlen, address); 1482 if (err < 0) 1483 goto out_put; 1484 1485 err = 1486 security_socket_connect(sock, (struct sockaddr *)address, addrlen); 1487 if (err) 1488 goto out_put; 1489 1490 err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen, 1491 sock->file->f_flags); 1492out_put: 1493 fput_light(sock->file, fput_needed); 1494out: 1495 return err; 1496} 1497 1498/* 1499 * Get the local address ('name') of a socket object. Move the obtained 1500 * name to user space. 1501 */ 1502 1503asmlinkage long sys_getsockname(int fd, struct sockaddr __user *usockaddr, 1504 int __user *usockaddr_len) 1505{ 1506 struct socket *sock; 1507 char address[MAX_SOCK_ADDR]; 1508 int len, err, fput_needed; 1509 1510 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1511 if (!sock) 1512 goto out; 1513 1514 err = security_socket_getsockname(sock); 1515 if (err) 1516 goto out_put; 1517 1518 err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 0); 1519 if (err) 1520 goto out_put; 1521 err = move_addr_to_user(address, len, usockaddr, usockaddr_len); 1522 1523out_put: 1524 fput_light(sock->file, fput_needed); 1525out: 1526 return err; 1527} 1528 1529/* 1530 * Get the remote address ('name') of a socket object. Move the obtained 1531 * name to user space. 1532 */ 1533 1534asmlinkage long sys_getpeername(int fd, struct sockaddr __user *usockaddr, 1535 int __user *usockaddr_len) 1536{ 1537 struct socket *sock; 1538 char address[MAX_SOCK_ADDR]; 1539 int len, err, fput_needed; 1540 1541 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1542 if (sock != NULL) { 1543 err = security_socket_getpeername(sock); 1544 if (err) { 1545 fput_light(sock->file, fput_needed); 1546 return err; 1547 } 1548 1549 err = 1550 sock->ops->getname(sock, (struct sockaddr *)address, &len, 1551 1); 1552 if (!err) 1553 err = move_addr_to_user(address, len, usockaddr, 1554 usockaddr_len); 1555 fput_light(sock->file, fput_needed); 1556 } 1557 return err; 1558} 1559 1560/* 1561 * Send a datagram to a given address. We move the address into kernel 1562 * space and check the user space data area is readable before invoking 1563 * the protocol. 1564 */ 1565 1566asmlinkage long sys_sendto(int fd, void __user *buff, size_t len, 1567 unsigned flags, struct sockaddr __user *addr, 1568 int addr_len) 1569{ 1570 struct socket *sock; 1571 char address[MAX_SOCK_ADDR]; 1572 int err; 1573 struct msghdr msg; 1574 struct iovec iov; 1575 int fput_needed; 1576 struct file *sock_file; 1577 1578 sock_file = fget_light(fd, &fput_needed); 1579 err = -EBADF; 1580 if (!sock_file) 1581 goto out; 1582 1583 sock = sock_from_file(sock_file, &err); 1584 if (!sock) 1585 goto out_put; 1586 iov.iov_base = buff; 1587 iov.iov_len = len; 1588 msg.msg_name = NULL; 1589 msg.msg_iov = &iov; 1590 msg.msg_iovlen = 1; 1591 msg.msg_control = NULL; 1592 msg.msg_controllen = 0; 1593 msg.msg_namelen = 0; 1594 if (addr) { 1595 err = move_addr_to_kernel(addr, addr_len, address); 1596 if (err < 0) 1597 goto out_put; 1598 msg.msg_name = address; 1599 msg.msg_namelen = addr_len; 1600 } 1601 if (sock->file->f_flags & O_NONBLOCK) 1602 flags |= MSG_DONTWAIT; 1603 msg.msg_flags = flags; 1604 err = sock_sendmsg(sock, &msg, len); 1605 1606out_put: 1607 fput_light(sock_file, fput_needed); 1608out: 1609 return err; 1610} 1611 1612/* 1613 * Send a datagram down a socket. 1614 */ 1615 1616asmlinkage long sys_send(int fd, void __user *buff, size_t len, unsigned flags) 1617{ 1618 return sys_sendto(fd, buff, len, flags, NULL, 0); 1619} 1620 1621/* 1622 * Receive a frame from the socket and optionally record the address of the 1623 * sender. We verify the buffers are writable and if needed move the 1624 * sender address from kernel to user space. 1625 */ 1626 1627asmlinkage long sys_recvfrom(int fd, void __user *ubuf, size_t size, 1628 unsigned flags, struct sockaddr __user *addr, 1629 int __user *addr_len) 1630{ 1631 struct socket *sock; 1632 struct iovec iov; 1633 struct msghdr msg; 1634 char address[MAX_SOCK_ADDR]; 1635 int err, err2; 1636 struct file *sock_file; 1637 int fput_needed; 1638 1639 sock_file = fget_light(fd, &fput_needed); 1640 err = -EBADF; 1641 if (!sock_file) 1642 goto out; 1643 1644 sock = sock_from_file(sock_file, &err); 1645 if (!sock) 1646 goto out_put; 1647 1648 msg.msg_control = NULL; 1649 msg.msg_controllen = 0; 1650 msg.msg_iovlen = 1; 1651 msg.msg_iov = &iov; 1652 iov.iov_len = size; 1653 iov.iov_base = ubuf; 1654 msg.msg_name = address; 1655 msg.msg_namelen = MAX_SOCK_ADDR; 1656 if (sock->file->f_flags & O_NONBLOCK) 1657 flags |= MSG_DONTWAIT; 1658 err = sock_recvmsg(sock, &msg, size, flags); 1659 1660 if (err >= 0 && addr != NULL) { 1661 err2 = move_addr_to_user(address, msg.msg_namelen, addr, addr_len); 1662 if (err2 < 0) 1663 err = err2; 1664 } 1665out_put: 1666 fput_light(sock_file, fput_needed); 1667out: 1668 return err; 1669} 1670 1671/* 1672 * Receive a datagram from a socket. 1673 */ 1674 1675asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size, 1676 unsigned flags) 1677{ 1678 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1679} 1680 1681/* 1682 * Set a socket option. Because we don't know the option lengths we have 1683 * to pass the user mode parameter for the protocols to sort out. 1684 */ 1685 1686asmlinkage long sys_setsockopt(int fd, int level, int optname, 1687 char __user *optval, int optlen) 1688{ 1689 int err, fput_needed; 1690 struct socket *sock; 1691 1692 if (optlen < 0) 1693 return -EINVAL; 1694 1695 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1696 if (sock != NULL) { 1697 err = security_socket_setsockopt(sock, level, optname); 1698 if (err) 1699 goto out_put; 1700 1701 if (level == SOL_SOCKET) 1702 err = 1703 sock_setsockopt(sock, level, optname, optval, 1704 optlen); 1705 else 1706 err = 1707 sock->ops->setsockopt(sock, level, optname, optval, 1708 optlen); 1709out_put: 1710 fput_light(sock->file, fput_needed); 1711 } 1712 return err; 1713} 1714 1715/* 1716 * Get a socket option. Because we don't know the option lengths we have 1717 * to pass a user mode parameter for the protocols to sort out. 1718 */ 1719 1720asmlinkage long sys_getsockopt(int fd, int level, int optname, 1721 char __user *optval, int __user *optlen) 1722{ 1723 int err, fput_needed; 1724 struct socket *sock; 1725 1726 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1727 if (sock != NULL) { 1728 err = security_socket_getsockopt(sock, level, optname); 1729 if (err) 1730 goto out_put; 1731 1732 if (level == SOL_SOCKET) 1733 err = 1734 sock_getsockopt(sock, level, optname, optval, 1735 optlen); 1736 else 1737 err = 1738 sock->ops->getsockopt(sock, level, optname, optval, 1739 optlen); 1740out_put: 1741 fput_light(sock->file, fput_needed); 1742 } 1743 return err; 1744} 1745 1746/* 1747 * Shutdown a socket. 1748 */ 1749 1750asmlinkage long sys_shutdown(int fd, int how) 1751{ 1752 int err, fput_needed; 1753 struct socket *sock; 1754 1755 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1756 if (sock != NULL) { 1757 err = security_socket_shutdown(sock, how); 1758 if (!err) 1759 err = sock->ops->shutdown(sock, how); 1760 fput_light(sock->file, fput_needed); 1761 } 1762 return err; 1763} 1764 1765/* A couple of helpful macros for getting the address of the 32/64 bit 1766 * fields which are the same type (int / unsigned) on our platforms. 1767 */ 1768#define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1769#define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1770#define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1771 1772/* 1773 * BSD sendmsg interface 1774 */ 1775 1776asmlinkage long sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags) 1777{ 1778 struct compat_msghdr __user *msg_compat = 1779 (struct compat_msghdr __user *)msg; 1780 struct socket *sock; 1781 char address[MAX_SOCK_ADDR]; 1782 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 1783 unsigned char ctl[sizeof(struct cmsghdr) + 20] 1784 __attribute__ ((aligned(sizeof(__kernel_size_t)))); 1785 /* 20 is size of ipv6_pktinfo */ 1786 unsigned char *ctl_buf = ctl; 1787 struct msghdr msg_sys; 1788 int err, ctl_len, iov_size, total_len; 1789 int fput_needed; 1790 1791 err = -EFAULT; 1792 if (MSG_CMSG_COMPAT & flags) { 1793 if (get_compat_msghdr(&msg_sys, msg_compat)) 1794 return -EFAULT; 1795 } 1796 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr))) 1797 return -EFAULT; 1798 1799 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1800 if (!sock) 1801 goto out; 1802 1803 /* do not move before msg_sys is valid */ 1804 err = -EMSGSIZE; 1805 if (msg_sys.msg_iovlen > UIO_MAXIOV) 1806 goto out_put; 1807 1808 /* Check whether to allocate the iovec area */ 1809 err = -ENOMEM; 1810 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec); 1811 if (msg_sys.msg_iovlen > UIO_FASTIOV) { 1812 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); 1813 if (!iov) 1814 goto out_put; 1815 } 1816 1817 /* This will also move the address data into kernel space */ 1818 if (MSG_CMSG_COMPAT & flags) { 1819 err = verify_compat_iovec(&msg_sys, iov, address, VERIFY_READ); 1820 } else 1821 err = verify_iovec(&msg_sys, iov, address, VERIFY_READ); 1822 if (err < 0) 1823 goto out_freeiov; 1824 total_len = err; 1825 1826 err = -ENOBUFS; 1827 1828 if (msg_sys.msg_controllen > INT_MAX) 1829 goto out_freeiov; 1830 ctl_len = msg_sys.msg_controllen; 1831 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 1832 err = 1833 cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl, 1834 sizeof(ctl)); 1835 if (err) 1836 goto out_freeiov; 1837 ctl_buf = msg_sys.msg_control; 1838 ctl_len = msg_sys.msg_controllen; 1839 } else if (ctl_len) { 1840 if (ctl_len > sizeof(ctl)) { 1841 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 1842 if (ctl_buf == NULL) 1843 goto out_freeiov; 1844 } 1845 err = -EFAULT; 1846 /* 1847 * Careful! Before this, msg_sys.msg_control contains a user pointer. 1848 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 1849 * checking falls down on this. 1850 */ 1851 if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control, 1852 ctl_len)) 1853 goto out_freectl; 1854 msg_sys.msg_control = ctl_buf; 1855 } 1856 msg_sys.msg_flags = flags; 1857 1858 if (sock->file->f_flags & O_NONBLOCK) 1859 msg_sys.msg_flags |= MSG_DONTWAIT; 1860 err = sock_sendmsg(sock, &msg_sys, total_len); 1861 1862out_freectl: 1863 if (ctl_buf != ctl) 1864 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 1865out_freeiov: 1866 if (iov != iovstack) 1867 sock_kfree_s(sock->sk, iov, iov_size); 1868out_put: 1869 fput_light(sock->file, fput_needed); 1870out: 1871 return err; 1872} 1873 1874/* 1875 * BSD recvmsg interface 1876 */ 1877 1878asmlinkage long sys_recvmsg(int fd, struct msghdr __user *msg, 1879 unsigned int flags) 1880{ 1881 struct compat_msghdr __user *msg_compat = 1882 (struct compat_msghdr __user *)msg; 1883 struct socket *sock; 1884 struct iovec iovstack[UIO_FASTIOV]; 1885 struct iovec *iov = iovstack; 1886 struct msghdr msg_sys; 1887 unsigned long cmsg_ptr; 1888 int err, iov_size, total_len, len; 1889 int fput_needed; 1890 1891 /* kernel mode address */ 1892 char addr[MAX_SOCK_ADDR]; 1893 1894 /* user mode address pointers */ 1895 struct sockaddr __user *uaddr; 1896 int __user *uaddr_len; 1897 1898 if (MSG_CMSG_COMPAT & flags) { 1899 if (get_compat_msghdr(&msg_sys, msg_compat)) 1900 return -EFAULT; 1901 } 1902 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr))) 1903 return -EFAULT; 1904 1905 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1906 if (!sock) 1907 goto out; 1908 1909 err = -EMSGSIZE; 1910 if (msg_sys.msg_iovlen > UIO_MAXIOV) 1911 goto out_put; 1912 1913 /* Check whether to allocate the iovec area */ 1914 err = -ENOMEM; 1915 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec); 1916 if (msg_sys.msg_iovlen > UIO_FASTIOV) { 1917 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); 1918 if (!iov) 1919 goto out_put; 1920 } 1921 1922 /* 1923 * Save the user-mode address (verify_iovec will change the 1924 * kernel msghdr to use the kernel address space) 1925 */ 1926 1927 uaddr = (void __user *)msg_sys.msg_name; 1928 uaddr_len = COMPAT_NAMELEN(msg); 1929 if (MSG_CMSG_COMPAT & flags) { 1930 err = verify_compat_iovec(&msg_sys, iov, addr, VERIFY_WRITE); 1931 } else 1932 err = verify_iovec(&msg_sys, iov, addr, VERIFY_WRITE); 1933 if (err < 0) 1934 goto out_freeiov; 1935 total_len = err; 1936 1937 cmsg_ptr = (unsigned long)msg_sys.msg_control; 1938 msg_sys.msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 1939 1940 if (sock->file->f_flags & O_NONBLOCK) 1941 flags |= MSG_DONTWAIT; 1942 err = sock_recvmsg(sock, &msg_sys, total_len, flags); 1943 if (err < 0) 1944 goto out_freeiov; 1945 len = err; 1946 1947 if (uaddr != NULL) { 1948 err = move_addr_to_user(addr, msg_sys.msg_namelen, uaddr, 1949 uaddr_len); 1950 if (err < 0) 1951 goto out_freeiov; 1952 } 1953 err = __put_user((msg_sys.msg_flags & ~MSG_CMSG_COMPAT), 1954 COMPAT_FLAGS(msg)); 1955 if (err) 1956 goto out_freeiov; 1957 if (MSG_CMSG_COMPAT & flags) 1958 err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr, 1959 &msg_compat->msg_controllen); 1960 else 1961 err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr, 1962 &msg->msg_controllen); 1963 if (err) 1964 goto out_freeiov; 1965 err = len; 1966 1967out_freeiov: 1968 if (iov != iovstack) 1969 sock_kfree_s(sock->sk, iov, iov_size); 1970out_put: 1971 fput_light(sock->file, fput_needed); 1972out: 1973 return err; 1974} 1975 1976#ifdef __ARCH_WANT_SYS_SOCKETCALL 1977 1978/* Argument list sizes for sys_socketcall */ 1979#define AL(x) ((x) * sizeof(unsigned long)) 1980static const unsigned char nargs[18]={ 1981 AL(0),AL(3),AL(3),AL(3),AL(2),AL(3), 1982 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6), 1983 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3) 1984}; 1985 1986#undef AL 1987 1988/* 1989 * System call vectors. 1990 * 1991 * Argument checking cleaned up. Saved 20% in size. 1992 * This function doesn't need to set the kernel lock because 1993 * it is set by the callees. 1994 */ 1995 1996asmlinkage long sys_socketcall(int call, unsigned long __user *args) 1997{ 1998 unsigned long a[6]; 1999 unsigned long a0, a1; 2000 int err; 2001 2002 if (call < 1 || call > SYS_RECVMSG) 2003 return -EINVAL; 2004 2005 /* copy_from_user should be SMP safe. */ 2006 if (copy_from_user(a, args, nargs[call])) 2007 return -EFAULT; 2008 2009 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2010 if (err) 2011 return err; 2012 2013 a0 = a[0]; 2014 a1 = a[1]; 2015 2016 switch (call) { 2017 case SYS_SOCKET: 2018 err = sys_socket(a0, a1, a[2]); 2019 break; 2020 case SYS_BIND: 2021 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2022 break; 2023 case SYS_CONNECT: 2024 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2025 break; 2026 case SYS_LISTEN: 2027 err = sys_listen(a0, a1); 2028 break; 2029 case SYS_ACCEPT: 2030 err = 2031 sys_accept(a0, (struct sockaddr __user *)a1, 2032 (int __user *)a[2]); 2033 break; 2034 case SYS_GETSOCKNAME: 2035 err = 2036 sys_getsockname(a0, (struct sockaddr __user *)a1, 2037 (int __user *)a[2]); 2038 break; 2039 case SYS_GETPEERNAME: 2040 err = 2041 sys_getpeername(a0, (struct sockaddr __user *)a1, 2042 (int __user *)a[2]); 2043 break; 2044 case SYS_SOCKETPAIR: 2045 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2046 break; 2047 case SYS_SEND: 2048 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 2049 break; 2050 case SYS_SENDTO: 2051 err = sys_sendto(a0, (void __user *)a1, a[2], a[3], 2052 (struct sockaddr __user *)a[4], a[5]); 2053 break; 2054 case SYS_RECV: 2055 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 2056 break; 2057 case SYS_RECVFROM: 2058 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2059 (struct sockaddr __user *)a[4], 2060 (int __user *)a[5]); 2061 break; 2062 case SYS_SHUTDOWN: 2063 err = sys_shutdown(a0, a1); 2064 break; 2065 case SYS_SETSOCKOPT: 2066 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 2067 break; 2068 case SYS_GETSOCKOPT: 2069 err = 2070 sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2071 (int __user *)a[4]); 2072 break; 2073 case SYS_SENDMSG: 2074 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]); 2075 break; 2076 case SYS_RECVMSG: 2077 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]); 2078 break; 2079 default: 2080 err = -EINVAL; 2081 break; 2082 } 2083 return err; 2084} 2085 2086#endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2087 2088/** 2089 * sock_register - add a socket protocol handler 2090 * @ops: description of protocol 2091 * 2092 * This function is called by a protocol handler that wants to 2093 * advertise its address family, and have it linked into the 2094 * socket interface. The value ops->family coresponds to the 2095 * socket system call protocol family. 2096 */ 2097int sock_register(const struct net_proto_family *ops) 2098{ 2099 int err; 2100 2101 if (ops->family >= NPROTO) { 2102 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family, 2103 NPROTO); 2104 return -ENOBUFS; 2105 } 2106 2107 spin_lock(&net_family_lock); 2108 if (net_families[ops->family]) 2109 err = -EEXIST; 2110 else { 2111 net_families[ops->family] = ops; 2112 err = 0; 2113 } 2114 spin_unlock(&net_family_lock); 2115 2116 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family); 2117 return err; 2118} 2119 2120/** 2121 * sock_unregister - remove a protocol handler 2122 * @family: protocol family to remove 2123 * 2124 * This function is called by a protocol handler that wants to 2125 * remove its address family, and have it unlinked from the 2126 * new socket creation. 2127 * 2128 * If protocol handler is a module, then it can use module reference 2129 * counts to protect against new references. If protocol handler is not 2130 * a module then it needs to provide its own protection in 2131 * the ops->create routine. 2132 */ 2133void sock_unregister(int family) 2134{ 2135 BUG_ON(family < 0 || family >= NPROTO); 2136 2137 spin_lock(&net_family_lock); 2138 net_families[family] = NULL; 2139 spin_unlock(&net_family_lock); 2140 2141 synchronize_rcu(); 2142 2143 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family); 2144} 2145 2146static int __init sock_init(void) 2147{ 2148 /* 2149 * Initialize sock SLAB cache. 2150 */ 2151 2152 sk_init(); 2153 2154 /* 2155 * Initialize skbuff SLAB cache 2156 */ 2157 skb_init(); 2158 2159 /* 2160 * Initialize the protocols module. 2161 */ 2162 2163 init_inodecache(); 2164 register_filesystem(&sock_fs_type); 2165 sock_mnt = kern_mount(&sock_fs_type); 2166 2167 /* The real protocol initialization is performed in later initcalls. 2168 */ 2169 2170#ifdef CONFIG_NETFILTER 2171 netfilter_init(); 2172#endif 2173 2174 return 0; 2175} 2176 2177core_initcall(sock_init); /* early initcall */ 2178 2179#ifdef CONFIG_PROC_FS 2180void socket_seq_show(struct seq_file *seq) 2181{ 2182 int cpu; 2183 int counter = 0; 2184 2185 for_each_possible_cpu(cpu) 2186 counter += per_cpu(sockets_in_use, cpu); 2187 2188 /* It can be negative, by the way. 8) */ 2189 if (counter < 0) 2190 counter = 0; 2191 2192 seq_printf(seq, "sockets: used %d\n", counter); 2193} 2194#endif /* CONFIG_PROC_FS */ 2195 2196#ifdef CONFIG_COMPAT 2197static long compat_sock_ioctl(struct file *file, unsigned cmd, 2198 unsigned long arg) 2199{ 2200 struct socket *sock = file->private_data; 2201 int ret = -ENOIOCTLCMD; 2202 2203 if (sock->ops->compat_ioctl) 2204 ret = sock->ops->compat_ioctl(sock, cmd, arg); 2205 2206 return ret; 2207} 2208#endif 2209 2210int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 2211{ 2212 return sock->ops->bind(sock, addr, addrlen); 2213} 2214 2215int kernel_listen(struct socket *sock, int backlog) 2216{ 2217 return sock->ops->listen(sock, backlog); 2218} 2219 2220int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 2221{ 2222 struct sock *sk = sock->sk; 2223 int err; 2224 2225 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 2226 newsock); 2227 if (err < 0) 2228 goto done; 2229 2230 err = sock->ops->accept(sock, *newsock, flags); 2231 if (err < 0) { 2232 sock_release(*newsock); 2233 goto done; 2234 } 2235 2236 (*newsock)->ops = sock->ops; 2237 2238done: 2239 return err; 2240} 2241 2242int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 2243 int flags) 2244{ 2245 return sock->ops->connect(sock, addr, addrlen, flags); 2246} 2247 2248int kernel_getsockname(struct socket *sock, struct sockaddr *addr, 2249 int *addrlen) 2250{ 2251 return sock->ops->getname(sock, addr, addrlen, 0); 2252} 2253 2254int kernel_getpeername(struct socket *sock, struct sockaddr *addr, 2255 int *addrlen) 2256{ 2257 return sock->ops->getname(sock, addr, addrlen, 1); 2258} 2259 2260int kernel_getsockopt(struct socket *sock, int level, int optname, 2261 char *optval, int *optlen) 2262{ 2263 mm_segment_t oldfs = get_fs(); 2264 int err; 2265 2266 set_fs(KERNEL_DS); 2267 if (level == SOL_SOCKET) 2268 err = sock_getsockopt(sock, level, optname, optval, optlen); 2269 else 2270 err = sock->ops->getsockopt(sock, level, optname, optval, 2271 optlen); 2272 set_fs(oldfs); 2273 return err; 2274} 2275 2276int kernel_setsockopt(struct socket *sock, int level, int optname, 2277 char *optval, int optlen) 2278{ 2279 mm_segment_t oldfs = get_fs(); 2280 int err; 2281 2282 set_fs(KERNEL_DS); 2283 if (level == SOL_SOCKET) 2284 err = sock_setsockopt(sock, level, optname, optval, optlen); 2285 else 2286 err = sock->ops->setsockopt(sock, level, optname, optval, 2287 optlen); 2288 set_fs(oldfs); 2289 return err; 2290} 2291 2292int kernel_sendpage(struct socket *sock, struct page *page, int offset, 2293 size_t size, int flags) 2294{ 2295 if (sock->ops->sendpage) 2296 return sock->ops->sendpage(sock, page, offset, size, flags); 2297 2298 return sock_no_sendpage(sock, page, offset, size, flags); 2299} 2300 2301int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg) 2302{ 2303 mm_segment_t oldfs = get_fs(); 2304 int err; 2305 2306 set_fs(KERNEL_DS); 2307 err = sock->ops->ioctl(sock, cmd, arg); 2308 set_fs(oldfs); 2309 2310 return err; 2311} 2312 2313/* ABI emulation layers need these two */ 2314EXPORT_SYMBOL(move_addr_to_kernel); 2315EXPORT_SYMBOL(move_addr_to_user); 2316EXPORT_SYMBOL(sock_create); 2317EXPORT_SYMBOL(sock_create_kern); 2318EXPORT_SYMBOL(sock_create_lite); 2319EXPORT_SYMBOL(sock_map_fd); 2320EXPORT_SYMBOL(sock_recvmsg); 2321EXPORT_SYMBOL(sock_register); 2322EXPORT_SYMBOL(sock_release); 2323EXPORT_SYMBOL(sock_sendmsg); 2324EXPORT_SYMBOL(sock_unregister); 2325EXPORT_SYMBOL(sock_wake_async); 2326EXPORT_SYMBOL(sockfd_lookup); 2327EXPORT_SYMBOL(kernel_sendmsg); 2328EXPORT_SYMBOL(kernel_recvmsg); 2329EXPORT_SYMBOL(kernel_bind); 2330EXPORT_SYMBOL(kernel_listen); 2331EXPORT_SYMBOL(kernel_accept); 2332EXPORT_SYMBOL(kernel_connect); 2333EXPORT_SYMBOL(kernel_getsockname); 2334EXPORT_SYMBOL(kernel_getpeername); 2335EXPORT_SYMBOL(kernel_getsockopt); 2336EXPORT_SYMBOL(kernel_setsockopt); 2337EXPORT_SYMBOL(kernel_sendpage); 2338EXPORT_SYMBOL(kernel_sock_ioctl);