at v2.6.23 102 kB view raw
1/* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75#include <asm/uaccess.h> 76#include <asm/system.h> 77#include <linux/bitops.h> 78#include <linux/capability.h> 79#include <linux/cpu.h> 80#include <linux/types.h> 81#include <linux/kernel.h> 82#include <linux/sched.h> 83#include <linux/mutex.h> 84#include <linux/string.h> 85#include <linux/mm.h> 86#include <linux/socket.h> 87#include <linux/sockios.h> 88#include <linux/errno.h> 89#include <linux/interrupt.h> 90#include <linux/if_ether.h> 91#include <linux/netdevice.h> 92#include <linux/etherdevice.h> 93#include <linux/notifier.h> 94#include <linux/skbuff.h> 95#include <net/sock.h> 96#include <linux/rtnetlink.h> 97#include <linux/proc_fs.h> 98#include <linux/seq_file.h> 99#include <linux/stat.h> 100#include <linux/if_bridge.h> 101#include <linux/if_macvlan.h> 102#include <net/dst.h> 103#include <net/pkt_sched.h> 104#include <net/checksum.h> 105#include <linux/highmem.h> 106#include <linux/init.h> 107#include <linux/kmod.h> 108#include <linux/module.h> 109#include <linux/kallsyms.h> 110#include <linux/netpoll.h> 111#include <linux/rcupdate.h> 112#include <linux/delay.h> 113#include <net/wext.h> 114#include <net/iw_handler.h> 115#include <asm/current.h> 116#include <linux/audit.h> 117#include <linux/dmaengine.h> 118#include <linux/err.h> 119#include <linux/ctype.h> 120#include <linux/if_arp.h> 121 122/* 123 * The list of packet types we will receive (as opposed to discard) 124 * and the routines to invoke. 125 * 126 * Why 16. Because with 16 the only overlap we get on a hash of the 127 * low nibble of the protocol value is RARP/SNAP/X.25. 128 * 129 * NOTE: That is no longer true with the addition of VLAN tags. Not 130 * sure which should go first, but I bet it won't make much 131 * difference if we are running VLANs. The good news is that 132 * this protocol won't be in the list unless compiled in, so 133 * the average user (w/out VLANs) will not be adversely affected. 134 * --BLG 135 * 136 * 0800 IP 137 * 8100 802.1Q VLAN 138 * 0001 802.3 139 * 0002 AX.25 140 * 0004 802.2 141 * 8035 RARP 142 * 0005 SNAP 143 * 0805 X.25 144 * 0806 ARP 145 * 8137 IPX 146 * 0009 Localtalk 147 * 86DD IPv6 148 */ 149 150static DEFINE_SPINLOCK(ptype_lock); 151static struct list_head ptype_base[16] __read_mostly; /* 16 way hashed list */ 152static struct list_head ptype_all __read_mostly; /* Taps */ 153 154#ifdef CONFIG_NET_DMA 155struct net_dma { 156 struct dma_client client; 157 spinlock_t lock; 158 cpumask_t channel_mask; 159 struct dma_chan *channels[NR_CPUS]; 160}; 161 162static enum dma_state_client 163netdev_dma_event(struct dma_client *client, struct dma_chan *chan, 164 enum dma_state state); 165 166static struct net_dma net_dma = { 167 .client = { 168 .event_callback = netdev_dma_event, 169 }, 170}; 171#endif 172 173/* 174 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 175 * semaphore. 176 * 177 * Pure readers hold dev_base_lock for reading. 178 * 179 * Writers must hold the rtnl semaphore while they loop through the 180 * dev_base_head list, and hold dev_base_lock for writing when they do the 181 * actual updates. This allows pure readers to access the list even 182 * while a writer is preparing to update it. 183 * 184 * To put it another way, dev_base_lock is held for writing only to 185 * protect against pure readers; the rtnl semaphore provides the 186 * protection against other writers. 187 * 188 * See, for example usages, register_netdevice() and 189 * unregister_netdevice(), which must be called with the rtnl 190 * semaphore held. 191 */ 192LIST_HEAD(dev_base_head); 193DEFINE_RWLOCK(dev_base_lock); 194 195EXPORT_SYMBOL(dev_base_head); 196EXPORT_SYMBOL(dev_base_lock); 197 198#define NETDEV_HASHBITS 8 199static struct hlist_head dev_name_head[1<<NETDEV_HASHBITS]; 200static struct hlist_head dev_index_head[1<<NETDEV_HASHBITS]; 201 202static inline struct hlist_head *dev_name_hash(const char *name) 203{ 204 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 205 return &dev_name_head[hash & ((1<<NETDEV_HASHBITS)-1)]; 206} 207 208static inline struct hlist_head *dev_index_hash(int ifindex) 209{ 210 return &dev_index_head[ifindex & ((1<<NETDEV_HASHBITS)-1)]; 211} 212 213/* 214 * Our notifier list 215 */ 216 217static RAW_NOTIFIER_HEAD(netdev_chain); 218 219/* 220 * Device drivers call our routines to queue packets here. We empty the 221 * queue in the local softnet handler. 222 */ 223DEFINE_PER_CPU(struct softnet_data, softnet_data) = { NULL }; 224 225#ifdef CONFIG_SYSFS 226extern int netdev_sysfs_init(void); 227extern int netdev_register_sysfs(struct net_device *); 228extern void netdev_unregister_sysfs(struct net_device *); 229#else 230#define netdev_sysfs_init() (0) 231#define netdev_register_sysfs(dev) (0) 232#define netdev_unregister_sysfs(dev) do { } while(0) 233#endif 234 235#ifdef CONFIG_DEBUG_LOCK_ALLOC 236/* 237 * register_netdevice() inits dev->_xmit_lock and sets lockdep class 238 * according to dev->type 239 */ 240static const unsigned short netdev_lock_type[] = 241 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 242 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 243 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 244 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 245 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 246 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 247 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 248 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 249 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 250 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 251 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 252 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 253 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211, 254 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_VOID, 255 ARPHRD_NONE}; 256 257static const char *netdev_lock_name[] = 258 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 259 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 260 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 261 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 262 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 263 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 264 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 265 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 266 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 267 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 268 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 269 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 270 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211", 271 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_VOID", 272 "_xmit_NONE"}; 273 274static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 275 276static inline unsigned short netdev_lock_pos(unsigned short dev_type) 277{ 278 int i; 279 280 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 281 if (netdev_lock_type[i] == dev_type) 282 return i; 283 /* the last key is used by default */ 284 return ARRAY_SIZE(netdev_lock_type) - 1; 285} 286 287static inline void netdev_set_lockdep_class(spinlock_t *lock, 288 unsigned short dev_type) 289{ 290 int i; 291 292 i = netdev_lock_pos(dev_type); 293 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 294 netdev_lock_name[i]); 295} 296#else 297static inline void netdev_set_lockdep_class(spinlock_t *lock, 298 unsigned short dev_type) 299{ 300} 301#endif 302 303/******************************************************************************* 304 305 Protocol management and registration routines 306 307*******************************************************************************/ 308 309/* 310 * Add a protocol ID to the list. Now that the input handler is 311 * smarter we can dispense with all the messy stuff that used to be 312 * here. 313 * 314 * BEWARE!!! Protocol handlers, mangling input packets, 315 * MUST BE last in hash buckets and checking protocol handlers 316 * MUST start from promiscuous ptype_all chain in net_bh. 317 * It is true now, do not change it. 318 * Explanation follows: if protocol handler, mangling packet, will 319 * be the first on list, it is not able to sense, that packet 320 * is cloned and should be copied-on-write, so that it will 321 * change it and subsequent readers will get broken packet. 322 * --ANK (980803) 323 */ 324 325/** 326 * dev_add_pack - add packet handler 327 * @pt: packet type declaration 328 * 329 * Add a protocol handler to the networking stack. The passed &packet_type 330 * is linked into kernel lists and may not be freed until it has been 331 * removed from the kernel lists. 332 * 333 * This call does not sleep therefore it can not 334 * guarantee all CPU's that are in middle of receiving packets 335 * will see the new packet type (until the next received packet). 336 */ 337 338void dev_add_pack(struct packet_type *pt) 339{ 340 int hash; 341 342 spin_lock_bh(&ptype_lock); 343 if (pt->type == htons(ETH_P_ALL)) 344 list_add_rcu(&pt->list, &ptype_all); 345 else { 346 hash = ntohs(pt->type) & 15; 347 list_add_rcu(&pt->list, &ptype_base[hash]); 348 } 349 spin_unlock_bh(&ptype_lock); 350} 351 352/** 353 * __dev_remove_pack - remove packet handler 354 * @pt: packet type declaration 355 * 356 * Remove a protocol handler that was previously added to the kernel 357 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 358 * from the kernel lists and can be freed or reused once this function 359 * returns. 360 * 361 * The packet type might still be in use by receivers 362 * and must not be freed until after all the CPU's have gone 363 * through a quiescent state. 364 */ 365void __dev_remove_pack(struct packet_type *pt) 366{ 367 struct list_head *head; 368 struct packet_type *pt1; 369 370 spin_lock_bh(&ptype_lock); 371 372 if (pt->type == htons(ETH_P_ALL)) 373 head = &ptype_all; 374 else 375 head = &ptype_base[ntohs(pt->type) & 15]; 376 377 list_for_each_entry(pt1, head, list) { 378 if (pt == pt1) { 379 list_del_rcu(&pt->list); 380 goto out; 381 } 382 } 383 384 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt); 385out: 386 spin_unlock_bh(&ptype_lock); 387} 388/** 389 * dev_remove_pack - remove packet handler 390 * @pt: packet type declaration 391 * 392 * Remove a protocol handler that was previously added to the kernel 393 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 394 * from the kernel lists and can be freed or reused once this function 395 * returns. 396 * 397 * This call sleeps to guarantee that no CPU is looking at the packet 398 * type after return. 399 */ 400void dev_remove_pack(struct packet_type *pt) 401{ 402 __dev_remove_pack(pt); 403 404 synchronize_net(); 405} 406 407/****************************************************************************** 408 409 Device Boot-time Settings Routines 410 411*******************************************************************************/ 412 413/* Boot time configuration table */ 414static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 415 416/** 417 * netdev_boot_setup_add - add new setup entry 418 * @name: name of the device 419 * @map: configured settings for the device 420 * 421 * Adds new setup entry to the dev_boot_setup list. The function 422 * returns 0 on error and 1 on success. This is a generic routine to 423 * all netdevices. 424 */ 425static int netdev_boot_setup_add(char *name, struct ifmap *map) 426{ 427 struct netdev_boot_setup *s; 428 int i; 429 430 s = dev_boot_setup; 431 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 432 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 433 memset(s[i].name, 0, sizeof(s[i].name)); 434 strcpy(s[i].name, name); 435 memcpy(&s[i].map, map, sizeof(s[i].map)); 436 break; 437 } 438 } 439 440 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 441} 442 443/** 444 * netdev_boot_setup_check - check boot time settings 445 * @dev: the netdevice 446 * 447 * Check boot time settings for the device. 448 * The found settings are set for the device to be used 449 * later in the device probing. 450 * Returns 0 if no settings found, 1 if they are. 451 */ 452int netdev_boot_setup_check(struct net_device *dev) 453{ 454 struct netdev_boot_setup *s = dev_boot_setup; 455 int i; 456 457 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 458 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 459 !strncmp(dev->name, s[i].name, strlen(s[i].name))) { 460 dev->irq = s[i].map.irq; 461 dev->base_addr = s[i].map.base_addr; 462 dev->mem_start = s[i].map.mem_start; 463 dev->mem_end = s[i].map.mem_end; 464 return 1; 465 } 466 } 467 return 0; 468} 469 470 471/** 472 * netdev_boot_base - get address from boot time settings 473 * @prefix: prefix for network device 474 * @unit: id for network device 475 * 476 * Check boot time settings for the base address of device. 477 * The found settings are set for the device to be used 478 * later in the device probing. 479 * Returns 0 if no settings found. 480 */ 481unsigned long netdev_boot_base(const char *prefix, int unit) 482{ 483 const struct netdev_boot_setup *s = dev_boot_setup; 484 char name[IFNAMSIZ]; 485 int i; 486 487 sprintf(name, "%s%d", prefix, unit); 488 489 /* 490 * If device already registered then return base of 1 491 * to indicate not to probe for this interface 492 */ 493 if (__dev_get_by_name(name)) 494 return 1; 495 496 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 497 if (!strcmp(name, s[i].name)) 498 return s[i].map.base_addr; 499 return 0; 500} 501 502/* 503 * Saves at boot time configured settings for any netdevice. 504 */ 505int __init netdev_boot_setup(char *str) 506{ 507 int ints[5]; 508 struct ifmap map; 509 510 str = get_options(str, ARRAY_SIZE(ints), ints); 511 if (!str || !*str) 512 return 0; 513 514 /* Save settings */ 515 memset(&map, 0, sizeof(map)); 516 if (ints[0] > 0) 517 map.irq = ints[1]; 518 if (ints[0] > 1) 519 map.base_addr = ints[2]; 520 if (ints[0] > 2) 521 map.mem_start = ints[3]; 522 if (ints[0] > 3) 523 map.mem_end = ints[4]; 524 525 /* Add new entry to the list */ 526 return netdev_boot_setup_add(str, &map); 527} 528 529__setup("netdev=", netdev_boot_setup); 530 531/******************************************************************************* 532 533 Device Interface Subroutines 534 535*******************************************************************************/ 536 537/** 538 * __dev_get_by_name - find a device by its name 539 * @name: name to find 540 * 541 * Find an interface by name. Must be called under RTNL semaphore 542 * or @dev_base_lock. If the name is found a pointer to the device 543 * is returned. If the name is not found then %NULL is returned. The 544 * reference counters are not incremented so the caller must be 545 * careful with locks. 546 */ 547 548struct net_device *__dev_get_by_name(const char *name) 549{ 550 struct hlist_node *p; 551 552 hlist_for_each(p, dev_name_hash(name)) { 553 struct net_device *dev 554 = hlist_entry(p, struct net_device, name_hlist); 555 if (!strncmp(dev->name, name, IFNAMSIZ)) 556 return dev; 557 } 558 return NULL; 559} 560 561/** 562 * dev_get_by_name - find a device by its name 563 * @name: name to find 564 * 565 * Find an interface by name. This can be called from any 566 * context and does its own locking. The returned handle has 567 * the usage count incremented and the caller must use dev_put() to 568 * release it when it is no longer needed. %NULL is returned if no 569 * matching device is found. 570 */ 571 572struct net_device *dev_get_by_name(const char *name) 573{ 574 struct net_device *dev; 575 576 read_lock(&dev_base_lock); 577 dev = __dev_get_by_name(name); 578 if (dev) 579 dev_hold(dev); 580 read_unlock(&dev_base_lock); 581 return dev; 582} 583 584/** 585 * __dev_get_by_index - find a device by its ifindex 586 * @ifindex: index of device 587 * 588 * Search for an interface by index. Returns %NULL if the device 589 * is not found or a pointer to the device. The device has not 590 * had its reference counter increased so the caller must be careful 591 * about locking. The caller must hold either the RTNL semaphore 592 * or @dev_base_lock. 593 */ 594 595struct net_device *__dev_get_by_index(int ifindex) 596{ 597 struct hlist_node *p; 598 599 hlist_for_each(p, dev_index_hash(ifindex)) { 600 struct net_device *dev 601 = hlist_entry(p, struct net_device, index_hlist); 602 if (dev->ifindex == ifindex) 603 return dev; 604 } 605 return NULL; 606} 607 608 609/** 610 * dev_get_by_index - find a device by its ifindex 611 * @ifindex: index of device 612 * 613 * Search for an interface by index. Returns NULL if the device 614 * is not found or a pointer to the device. The device returned has 615 * had a reference added and the pointer is safe until the user calls 616 * dev_put to indicate they have finished with it. 617 */ 618 619struct net_device *dev_get_by_index(int ifindex) 620{ 621 struct net_device *dev; 622 623 read_lock(&dev_base_lock); 624 dev = __dev_get_by_index(ifindex); 625 if (dev) 626 dev_hold(dev); 627 read_unlock(&dev_base_lock); 628 return dev; 629} 630 631/** 632 * dev_getbyhwaddr - find a device by its hardware address 633 * @type: media type of device 634 * @ha: hardware address 635 * 636 * Search for an interface by MAC address. Returns NULL if the device 637 * is not found or a pointer to the device. The caller must hold the 638 * rtnl semaphore. The returned device has not had its ref count increased 639 * and the caller must therefore be careful about locking 640 * 641 * BUGS: 642 * If the API was consistent this would be __dev_get_by_hwaddr 643 */ 644 645struct net_device *dev_getbyhwaddr(unsigned short type, char *ha) 646{ 647 struct net_device *dev; 648 649 ASSERT_RTNL(); 650 651 for_each_netdev(dev) 652 if (dev->type == type && 653 !memcmp(dev->dev_addr, ha, dev->addr_len)) 654 return dev; 655 656 return NULL; 657} 658 659EXPORT_SYMBOL(dev_getbyhwaddr); 660 661struct net_device *__dev_getfirstbyhwtype(unsigned short type) 662{ 663 struct net_device *dev; 664 665 ASSERT_RTNL(); 666 for_each_netdev(dev) 667 if (dev->type == type) 668 return dev; 669 670 return NULL; 671} 672 673EXPORT_SYMBOL(__dev_getfirstbyhwtype); 674 675struct net_device *dev_getfirstbyhwtype(unsigned short type) 676{ 677 struct net_device *dev; 678 679 rtnl_lock(); 680 dev = __dev_getfirstbyhwtype(type); 681 if (dev) 682 dev_hold(dev); 683 rtnl_unlock(); 684 return dev; 685} 686 687EXPORT_SYMBOL(dev_getfirstbyhwtype); 688 689/** 690 * dev_get_by_flags - find any device with given flags 691 * @if_flags: IFF_* values 692 * @mask: bitmask of bits in if_flags to check 693 * 694 * Search for any interface with the given flags. Returns NULL if a device 695 * is not found or a pointer to the device. The device returned has 696 * had a reference added and the pointer is safe until the user calls 697 * dev_put to indicate they have finished with it. 698 */ 699 700struct net_device * dev_get_by_flags(unsigned short if_flags, unsigned short mask) 701{ 702 struct net_device *dev, *ret; 703 704 ret = NULL; 705 read_lock(&dev_base_lock); 706 for_each_netdev(dev) { 707 if (((dev->flags ^ if_flags) & mask) == 0) { 708 dev_hold(dev); 709 ret = dev; 710 break; 711 } 712 } 713 read_unlock(&dev_base_lock); 714 return ret; 715} 716 717/** 718 * dev_valid_name - check if name is okay for network device 719 * @name: name string 720 * 721 * Network device names need to be valid file names to 722 * to allow sysfs to work. We also disallow any kind of 723 * whitespace. 724 */ 725int dev_valid_name(const char *name) 726{ 727 if (*name == '\0') 728 return 0; 729 if (strlen(name) >= IFNAMSIZ) 730 return 0; 731 if (!strcmp(name, ".") || !strcmp(name, "..")) 732 return 0; 733 734 while (*name) { 735 if (*name == '/' || isspace(*name)) 736 return 0; 737 name++; 738 } 739 return 1; 740} 741 742/** 743 * dev_alloc_name - allocate a name for a device 744 * @dev: device 745 * @name: name format string 746 * 747 * Passed a format string - eg "lt%d" it will try and find a suitable 748 * id. It scans list of devices to build up a free map, then chooses 749 * the first empty slot. The caller must hold the dev_base or rtnl lock 750 * while allocating the name and adding the device in order to avoid 751 * duplicates. 752 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 753 * Returns the number of the unit assigned or a negative errno code. 754 */ 755 756int dev_alloc_name(struct net_device *dev, const char *name) 757{ 758 int i = 0; 759 char buf[IFNAMSIZ]; 760 const char *p; 761 const int max_netdevices = 8*PAGE_SIZE; 762 long *inuse; 763 struct net_device *d; 764 765 p = strnchr(name, IFNAMSIZ-1, '%'); 766 if (p) { 767 /* 768 * Verify the string as this thing may have come from 769 * the user. There must be either one "%d" and no other "%" 770 * characters. 771 */ 772 if (p[1] != 'd' || strchr(p + 2, '%')) 773 return -EINVAL; 774 775 /* Use one page as a bit array of possible slots */ 776 inuse = (long *) get_zeroed_page(GFP_ATOMIC); 777 if (!inuse) 778 return -ENOMEM; 779 780 for_each_netdev(d) { 781 if (!sscanf(d->name, name, &i)) 782 continue; 783 if (i < 0 || i >= max_netdevices) 784 continue; 785 786 /* avoid cases where sscanf is not exact inverse of printf */ 787 snprintf(buf, sizeof(buf), name, i); 788 if (!strncmp(buf, d->name, IFNAMSIZ)) 789 set_bit(i, inuse); 790 } 791 792 i = find_first_zero_bit(inuse, max_netdevices); 793 free_page((unsigned long) inuse); 794 } 795 796 snprintf(buf, sizeof(buf), name, i); 797 if (!__dev_get_by_name(buf)) { 798 strlcpy(dev->name, buf, IFNAMSIZ); 799 return i; 800 } 801 802 /* It is possible to run out of possible slots 803 * when the name is long and there isn't enough space left 804 * for the digits, or if all bits are used. 805 */ 806 return -ENFILE; 807} 808 809 810/** 811 * dev_change_name - change name of a device 812 * @dev: device 813 * @newname: name (or format string) must be at least IFNAMSIZ 814 * 815 * Change name of a device, can pass format strings "eth%d". 816 * for wildcarding. 817 */ 818int dev_change_name(struct net_device *dev, char *newname) 819{ 820 char oldname[IFNAMSIZ]; 821 int err = 0; 822 int ret; 823 824 ASSERT_RTNL(); 825 826 if (dev->flags & IFF_UP) 827 return -EBUSY; 828 829 if (!dev_valid_name(newname)) 830 return -EINVAL; 831 832 memcpy(oldname, dev->name, IFNAMSIZ); 833 834 if (strchr(newname, '%')) { 835 err = dev_alloc_name(dev, newname); 836 if (err < 0) 837 return err; 838 strcpy(newname, dev->name); 839 } 840 else if (__dev_get_by_name(newname)) 841 return -EEXIST; 842 else 843 strlcpy(dev->name, newname, IFNAMSIZ); 844 845rollback: 846 device_rename(&dev->dev, dev->name); 847 848 write_lock_bh(&dev_base_lock); 849 hlist_del(&dev->name_hlist); 850 hlist_add_head(&dev->name_hlist, dev_name_hash(dev->name)); 851 write_unlock_bh(&dev_base_lock); 852 853 ret = raw_notifier_call_chain(&netdev_chain, NETDEV_CHANGENAME, dev); 854 ret = notifier_to_errno(ret); 855 856 if (ret) { 857 if (err) { 858 printk(KERN_ERR 859 "%s: name change rollback failed: %d.\n", 860 dev->name, ret); 861 } else { 862 err = ret; 863 memcpy(dev->name, oldname, IFNAMSIZ); 864 goto rollback; 865 } 866 } 867 868 return err; 869} 870 871/** 872 * netdev_features_change - device changes features 873 * @dev: device to cause notification 874 * 875 * Called to indicate a device has changed features. 876 */ 877void netdev_features_change(struct net_device *dev) 878{ 879 raw_notifier_call_chain(&netdev_chain, NETDEV_FEAT_CHANGE, dev); 880} 881EXPORT_SYMBOL(netdev_features_change); 882 883/** 884 * netdev_state_change - device changes state 885 * @dev: device to cause notification 886 * 887 * Called to indicate a device has changed state. This function calls 888 * the notifier chains for netdev_chain and sends a NEWLINK message 889 * to the routing socket. 890 */ 891void netdev_state_change(struct net_device *dev) 892{ 893 if (dev->flags & IFF_UP) { 894 raw_notifier_call_chain(&netdev_chain, 895 NETDEV_CHANGE, dev); 896 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 897 } 898} 899 900/** 901 * dev_load - load a network module 902 * @name: name of interface 903 * 904 * If a network interface is not present and the process has suitable 905 * privileges this function loads the module. If module loading is not 906 * available in this kernel then it becomes a nop. 907 */ 908 909void dev_load(const char *name) 910{ 911 struct net_device *dev; 912 913 read_lock(&dev_base_lock); 914 dev = __dev_get_by_name(name); 915 read_unlock(&dev_base_lock); 916 917 if (!dev && capable(CAP_SYS_MODULE)) 918 request_module("%s", name); 919} 920 921static int default_rebuild_header(struct sk_buff *skb) 922{ 923 printk(KERN_DEBUG "%s: default_rebuild_header called -- BUG!\n", 924 skb->dev ? skb->dev->name : "NULL!!!"); 925 kfree_skb(skb); 926 return 1; 927} 928 929/** 930 * dev_open - prepare an interface for use. 931 * @dev: device to open 932 * 933 * Takes a device from down to up state. The device's private open 934 * function is invoked and then the multicast lists are loaded. Finally 935 * the device is moved into the up state and a %NETDEV_UP message is 936 * sent to the netdev notifier chain. 937 * 938 * Calling this function on an active interface is a nop. On a failure 939 * a negative errno code is returned. 940 */ 941int dev_open(struct net_device *dev) 942{ 943 int ret = 0; 944 945 /* 946 * Is it already up? 947 */ 948 949 if (dev->flags & IFF_UP) 950 return 0; 951 952 /* 953 * Is it even present? 954 */ 955 if (!netif_device_present(dev)) 956 return -ENODEV; 957 958 /* 959 * Call device private open method 960 */ 961 set_bit(__LINK_STATE_START, &dev->state); 962 if (dev->open) { 963 ret = dev->open(dev); 964 if (ret) 965 clear_bit(__LINK_STATE_START, &dev->state); 966 } 967 968 /* 969 * If it went open OK then: 970 */ 971 972 if (!ret) { 973 /* 974 * Set the flags. 975 */ 976 dev->flags |= IFF_UP; 977 978 /* 979 * Initialize multicasting status 980 */ 981 dev_set_rx_mode(dev); 982 983 /* 984 * Wakeup transmit queue engine 985 */ 986 dev_activate(dev); 987 988 /* 989 * ... and announce new interface. 990 */ 991 raw_notifier_call_chain(&netdev_chain, NETDEV_UP, dev); 992 } 993 return ret; 994} 995 996/** 997 * dev_close - shutdown an interface. 998 * @dev: device to shutdown 999 * 1000 * This function moves an active device into down state. A 1001 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1002 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1003 * chain. 1004 */ 1005int dev_close(struct net_device *dev) 1006{ 1007 if (!(dev->flags & IFF_UP)) 1008 return 0; 1009 1010 /* 1011 * Tell people we are going down, so that they can 1012 * prepare to death, when device is still operating. 1013 */ 1014 raw_notifier_call_chain(&netdev_chain, NETDEV_GOING_DOWN, dev); 1015 1016 dev_deactivate(dev); 1017 1018 clear_bit(__LINK_STATE_START, &dev->state); 1019 1020 /* Synchronize to scheduled poll. We cannot touch poll list, 1021 * it can be even on different cpu. So just clear netif_running(), 1022 * and wait when poll really will happen. Actually, the best place 1023 * for this is inside dev->stop() after device stopped its irq 1024 * engine, but this requires more changes in devices. */ 1025 1026 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1027 while (test_bit(__LINK_STATE_RX_SCHED, &dev->state)) { 1028 /* No hurry. */ 1029 msleep(1); 1030 } 1031 1032 /* 1033 * Call the device specific close. This cannot fail. 1034 * Only if device is UP 1035 * 1036 * We allow it to be called even after a DETACH hot-plug 1037 * event. 1038 */ 1039 if (dev->stop) 1040 dev->stop(dev); 1041 1042 /* 1043 * Device is now down. 1044 */ 1045 1046 dev->flags &= ~IFF_UP; 1047 1048 /* 1049 * Tell people we are down 1050 */ 1051 raw_notifier_call_chain(&netdev_chain, NETDEV_DOWN, dev); 1052 1053 return 0; 1054} 1055 1056 1057/* 1058 * Device change register/unregister. These are not inline or static 1059 * as we export them to the world. 1060 */ 1061 1062/** 1063 * register_netdevice_notifier - register a network notifier block 1064 * @nb: notifier 1065 * 1066 * Register a notifier to be called when network device events occur. 1067 * The notifier passed is linked into the kernel structures and must 1068 * not be reused until it has been unregistered. A negative errno code 1069 * is returned on a failure. 1070 * 1071 * When registered all registration and up events are replayed 1072 * to the new notifier to allow device to have a race free 1073 * view of the network device list. 1074 */ 1075 1076int register_netdevice_notifier(struct notifier_block *nb) 1077{ 1078 struct net_device *dev; 1079 struct net_device *last; 1080 int err; 1081 1082 rtnl_lock(); 1083 err = raw_notifier_chain_register(&netdev_chain, nb); 1084 if (err) 1085 goto unlock; 1086 1087 for_each_netdev(dev) { 1088 err = nb->notifier_call(nb, NETDEV_REGISTER, dev); 1089 err = notifier_to_errno(err); 1090 if (err) 1091 goto rollback; 1092 1093 if (!(dev->flags & IFF_UP)) 1094 continue; 1095 1096 nb->notifier_call(nb, NETDEV_UP, dev); 1097 } 1098 1099unlock: 1100 rtnl_unlock(); 1101 return err; 1102 1103rollback: 1104 last = dev; 1105 for_each_netdev(dev) { 1106 if (dev == last) 1107 break; 1108 1109 if (dev->flags & IFF_UP) { 1110 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1111 nb->notifier_call(nb, NETDEV_DOWN, dev); 1112 } 1113 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1114 } 1115 goto unlock; 1116} 1117 1118/** 1119 * unregister_netdevice_notifier - unregister a network notifier block 1120 * @nb: notifier 1121 * 1122 * Unregister a notifier previously registered by 1123 * register_netdevice_notifier(). The notifier is unlinked into the 1124 * kernel structures and may then be reused. A negative errno code 1125 * is returned on a failure. 1126 */ 1127 1128int unregister_netdevice_notifier(struct notifier_block *nb) 1129{ 1130 int err; 1131 1132 rtnl_lock(); 1133 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1134 rtnl_unlock(); 1135 return err; 1136} 1137 1138/** 1139 * call_netdevice_notifiers - call all network notifier blocks 1140 * @val: value passed unmodified to notifier function 1141 * @v: pointer passed unmodified to notifier function 1142 * 1143 * Call all network notifier blocks. Parameters and return value 1144 * are as for raw_notifier_call_chain(). 1145 */ 1146 1147int call_netdevice_notifiers(unsigned long val, void *v) 1148{ 1149 return raw_notifier_call_chain(&netdev_chain, val, v); 1150} 1151 1152/* When > 0 there are consumers of rx skb time stamps */ 1153static atomic_t netstamp_needed = ATOMIC_INIT(0); 1154 1155void net_enable_timestamp(void) 1156{ 1157 atomic_inc(&netstamp_needed); 1158} 1159 1160void net_disable_timestamp(void) 1161{ 1162 atomic_dec(&netstamp_needed); 1163} 1164 1165static inline void net_timestamp(struct sk_buff *skb) 1166{ 1167 if (atomic_read(&netstamp_needed)) 1168 __net_timestamp(skb); 1169 else 1170 skb->tstamp.tv64 = 0; 1171} 1172 1173/* 1174 * Support routine. Sends outgoing frames to any network 1175 * taps currently in use. 1176 */ 1177 1178static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1179{ 1180 struct packet_type *ptype; 1181 1182 net_timestamp(skb); 1183 1184 rcu_read_lock(); 1185 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1186 /* Never send packets back to the socket 1187 * they originated from - MvS (miquels@drinkel.ow.org) 1188 */ 1189 if ((ptype->dev == dev || !ptype->dev) && 1190 (ptype->af_packet_priv == NULL || 1191 (struct sock *)ptype->af_packet_priv != skb->sk)) { 1192 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC); 1193 if (!skb2) 1194 break; 1195 1196 /* skb->nh should be correctly 1197 set by sender, so that the second statement is 1198 just protection against buggy protocols. 1199 */ 1200 skb_reset_mac_header(skb2); 1201 1202 if (skb_network_header(skb2) < skb2->data || 1203 skb2->network_header > skb2->tail) { 1204 if (net_ratelimit()) 1205 printk(KERN_CRIT "protocol %04x is " 1206 "buggy, dev %s\n", 1207 skb2->protocol, dev->name); 1208 skb_reset_network_header(skb2); 1209 } 1210 1211 skb2->transport_header = skb2->network_header; 1212 skb2->pkt_type = PACKET_OUTGOING; 1213 ptype->func(skb2, skb->dev, ptype, skb->dev); 1214 } 1215 } 1216 rcu_read_unlock(); 1217} 1218 1219 1220void __netif_schedule(struct net_device *dev) 1221{ 1222 if (!test_and_set_bit(__LINK_STATE_SCHED, &dev->state)) { 1223 unsigned long flags; 1224 struct softnet_data *sd; 1225 1226 local_irq_save(flags); 1227 sd = &__get_cpu_var(softnet_data); 1228 dev->next_sched = sd->output_queue; 1229 sd->output_queue = dev; 1230 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1231 local_irq_restore(flags); 1232 } 1233} 1234EXPORT_SYMBOL(__netif_schedule); 1235 1236void __netif_rx_schedule(struct net_device *dev) 1237{ 1238 unsigned long flags; 1239 1240 local_irq_save(flags); 1241 dev_hold(dev); 1242 list_add_tail(&dev->poll_list, &__get_cpu_var(softnet_data).poll_list); 1243 if (dev->quota < 0) 1244 dev->quota += dev->weight; 1245 else 1246 dev->quota = dev->weight; 1247 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 1248 local_irq_restore(flags); 1249} 1250EXPORT_SYMBOL(__netif_rx_schedule); 1251 1252void dev_kfree_skb_any(struct sk_buff *skb) 1253{ 1254 if (in_irq() || irqs_disabled()) 1255 dev_kfree_skb_irq(skb); 1256 else 1257 dev_kfree_skb(skb); 1258} 1259EXPORT_SYMBOL(dev_kfree_skb_any); 1260 1261 1262/* Hot-plugging. */ 1263void netif_device_detach(struct net_device *dev) 1264{ 1265 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1266 netif_running(dev)) { 1267 netif_stop_queue(dev); 1268 } 1269} 1270EXPORT_SYMBOL(netif_device_detach); 1271 1272void netif_device_attach(struct net_device *dev) 1273{ 1274 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1275 netif_running(dev)) { 1276 netif_wake_queue(dev); 1277 __netdev_watchdog_up(dev); 1278 } 1279} 1280EXPORT_SYMBOL(netif_device_attach); 1281 1282 1283/* 1284 * Invalidate hardware checksum when packet is to be mangled, and 1285 * complete checksum manually on outgoing path. 1286 */ 1287int skb_checksum_help(struct sk_buff *skb) 1288{ 1289 __wsum csum; 1290 int ret = 0, offset; 1291 1292 if (skb->ip_summed == CHECKSUM_COMPLETE) 1293 goto out_set_summed; 1294 1295 if (unlikely(skb_shinfo(skb)->gso_size)) { 1296 /* Let GSO fix up the checksum. */ 1297 goto out_set_summed; 1298 } 1299 1300 if (skb_cloned(skb)) { 1301 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1302 if (ret) 1303 goto out; 1304 } 1305 1306 offset = skb->csum_start - skb_headroom(skb); 1307 BUG_ON(offset > (int)skb->len); 1308 csum = skb_checksum(skb, offset, skb->len-offset, 0); 1309 1310 offset = skb_headlen(skb) - offset; 1311 BUG_ON(offset <= 0); 1312 BUG_ON(skb->csum_offset + 2 > offset); 1313 1314 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 1315 csum_fold(csum); 1316out_set_summed: 1317 skb->ip_summed = CHECKSUM_NONE; 1318out: 1319 return ret; 1320} 1321 1322/** 1323 * skb_gso_segment - Perform segmentation on skb. 1324 * @skb: buffer to segment 1325 * @features: features for the output path (see dev->features) 1326 * 1327 * This function segments the given skb and returns a list of segments. 1328 * 1329 * It may return NULL if the skb requires no segmentation. This is 1330 * only possible when GSO is used for verifying header integrity. 1331 */ 1332struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features) 1333{ 1334 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 1335 struct packet_type *ptype; 1336 __be16 type = skb->protocol; 1337 int err; 1338 1339 BUG_ON(skb_shinfo(skb)->frag_list); 1340 1341 skb_reset_mac_header(skb); 1342 skb->mac_len = skb->network_header - skb->mac_header; 1343 __skb_pull(skb, skb->mac_len); 1344 1345 if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) { 1346 if (skb_header_cloned(skb) && 1347 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 1348 return ERR_PTR(err); 1349 } 1350 1351 rcu_read_lock(); 1352 list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type) & 15], list) { 1353 if (ptype->type == type && !ptype->dev && ptype->gso_segment) { 1354 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1355 err = ptype->gso_send_check(skb); 1356 segs = ERR_PTR(err); 1357 if (err || skb_gso_ok(skb, features)) 1358 break; 1359 __skb_push(skb, (skb->data - 1360 skb_network_header(skb))); 1361 } 1362 segs = ptype->gso_segment(skb, features); 1363 break; 1364 } 1365 } 1366 rcu_read_unlock(); 1367 1368 __skb_push(skb, skb->data - skb_mac_header(skb)); 1369 1370 return segs; 1371} 1372 1373EXPORT_SYMBOL(skb_gso_segment); 1374 1375/* Take action when hardware reception checksum errors are detected. */ 1376#ifdef CONFIG_BUG 1377void netdev_rx_csum_fault(struct net_device *dev) 1378{ 1379 if (net_ratelimit()) { 1380 printk(KERN_ERR "%s: hw csum failure.\n", 1381 dev ? dev->name : "<unknown>"); 1382 dump_stack(); 1383 } 1384} 1385EXPORT_SYMBOL(netdev_rx_csum_fault); 1386#endif 1387 1388/* Actually, we should eliminate this check as soon as we know, that: 1389 * 1. IOMMU is present and allows to map all the memory. 1390 * 2. No high memory really exists on this machine. 1391 */ 1392 1393static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 1394{ 1395#ifdef CONFIG_HIGHMEM 1396 int i; 1397 1398 if (dev->features & NETIF_F_HIGHDMA) 1399 return 0; 1400 1401 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1402 if (PageHighMem(skb_shinfo(skb)->frags[i].page)) 1403 return 1; 1404 1405#endif 1406 return 0; 1407} 1408 1409struct dev_gso_cb { 1410 void (*destructor)(struct sk_buff *skb); 1411}; 1412 1413#define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 1414 1415static void dev_gso_skb_destructor(struct sk_buff *skb) 1416{ 1417 struct dev_gso_cb *cb; 1418 1419 do { 1420 struct sk_buff *nskb = skb->next; 1421 1422 skb->next = nskb->next; 1423 nskb->next = NULL; 1424 kfree_skb(nskb); 1425 } while (skb->next); 1426 1427 cb = DEV_GSO_CB(skb); 1428 if (cb->destructor) 1429 cb->destructor(skb); 1430} 1431 1432/** 1433 * dev_gso_segment - Perform emulated hardware segmentation on skb. 1434 * @skb: buffer to segment 1435 * 1436 * This function segments the given skb and stores the list of segments 1437 * in skb->next. 1438 */ 1439static int dev_gso_segment(struct sk_buff *skb) 1440{ 1441 struct net_device *dev = skb->dev; 1442 struct sk_buff *segs; 1443 int features = dev->features & ~(illegal_highdma(dev, skb) ? 1444 NETIF_F_SG : 0); 1445 1446 segs = skb_gso_segment(skb, features); 1447 1448 /* Verifying header integrity only. */ 1449 if (!segs) 1450 return 0; 1451 1452 if (unlikely(IS_ERR(segs))) 1453 return PTR_ERR(segs); 1454 1455 skb->next = segs; 1456 DEV_GSO_CB(skb)->destructor = skb->destructor; 1457 skb->destructor = dev_gso_skb_destructor; 1458 1459 return 0; 1460} 1461 1462int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev) 1463{ 1464 if (likely(!skb->next)) { 1465 if (!list_empty(&ptype_all)) 1466 dev_queue_xmit_nit(skb, dev); 1467 1468 if (netif_needs_gso(dev, skb)) { 1469 if (unlikely(dev_gso_segment(skb))) 1470 goto out_kfree_skb; 1471 if (skb->next) 1472 goto gso; 1473 } 1474 1475 return dev->hard_start_xmit(skb, dev); 1476 } 1477 1478gso: 1479 do { 1480 struct sk_buff *nskb = skb->next; 1481 int rc; 1482 1483 skb->next = nskb->next; 1484 nskb->next = NULL; 1485 rc = dev->hard_start_xmit(nskb, dev); 1486 if (unlikely(rc)) { 1487 nskb->next = skb->next; 1488 skb->next = nskb; 1489 return rc; 1490 } 1491 if (unlikely((netif_queue_stopped(dev) || 1492 netif_subqueue_stopped(dev, skb->queue_mapping)) && 1493 skb->next)) 1494 return NETDEV_TX_BUSY; 1495 } while (skb->next); 1496 1497 skb->destructor = DEV_GSO_CB(skb)->destructor; 1498 1499out_kfree_skb: 1500 kfree_skb(skb); 1501 return 0; 1502} 1503 1504#define HARD_TX_LOCK(dev, cpu) { \ 1505 if ((dev->features & NETIF_F_LLTX) == 0) { \ 1506 netif_tx_lock(dev); \ 1507 } \ 1508} 1509 1510#define HARD_TX_UNLOCK(dev) { \ 1511 if ((dev->features & NETIF_F_LLTX) == 0) { \ 1512 netif_tx_unlock(dev); \ 1513 } \ 1514} 1515 1516/** 1517 * dev_queue_xmit - transmit a buffer 1518 * @skb: buffer to transmit 1519 * 1520 * Queue a buffer for transmission to a network device. The caller must 1521 * have set the device and priority and built the buffer before calling 1522 * this function. The function can be called from an interrupt. 1523 * 1524 * A negative errno code is returned on a failure. A success does not 1525 * guarantee the frame will be transmitted as it may be dropped due 1526 * to congestion or traffic shaping. 1527 * 1528 * ----------------------------------------------------------------------------------- 1529 * I notice this method can also return errors from the queue disciplines, 1530 * including NET_XMIT_DROP, which is a positive value. So, errors can also 1531 * be positive. 1532 * 1533 * Regardless of the return value, the skb is consumed, so it is currently 1534 * difficult to retry a send to this method. (You can bump the ref count 1535 * before sending to hold a reference for retry if you are careful.) 1536 * 1537 * When calling this method, interrupts MUST be enabled. This is because 1538 * the BH enable code must have IRQs enabled so that it will not deadlock. 1539 * --BLG 1540 */ 1541 1542int dev_queue_xmit(struct sk_buff *skb) 1543{ 1544 struct net_device *dev = skb->dev; 1545 struct Qdisc *q; 1546 int rc = -ENOMEM; 1547 1548 /* GSO will handle the following emulations directly. */ 1549 if (netif_needs_gso(dev, skb)) 1550 goto gso; 1551 1552 if (skb_shinfo(skb)->frag_list && 1553 !(dev->features & NETIF_F_FRAGLIST) && 1554 __skb_linearize(skb)) 1555 goto out_kfree_skb; 1556 1557 /* Fragmented skb is linearized if device does not support SG, 1558 * or if at least one of fragments is in highmem and device 1559 * does not support DMA from it. 1560 */ 1561 if (skb_shinfo(skb)->nr_frags && 1562 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) && 1563 __skb_linearize(skb)) 1564 goto out_kfree_skb; 1565 1566 /* If packet is not checksummed and device does not support 1567 * checksumming for this protocol, complete checksumming here. 1568 */ 1569 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1570 skb_set_transport_header(skb, skb->csum_start - 1571 skb_headroom(skb)); 1572 1573 if (!(dev->features & NETIF_F_GEN_CSUM) && 1574 !((dev->features & NETIF_F_IP_CSUM) && 1575 skb->protocol == htons(ETH_P_IP)) && 1576 !((dev->features & NETIF_F_IPV6_CSUM) && 1577 skb->protocol == htons(ETH_P_IPV6))) 1578 if (skb_checksum_help(skb)) 1579 goto out_kfree_skb; 1580 } 1581 1582gso: 1583 spin_lock_prefetch(&dev->queue_lock); 1584 1585 /* Disable soft irqs for various locks below. Also 1586 * stops preemption for RCU. 1587 */ 1588 rcu_read_lock_bh(); 1589 1590 /* Updates of qdisc are serialized by queue_lock. 1591 * The struct Qdisc which is pointed to by qdisc is now a 1592 * rcu structure - it may be accessed without acquiring 1593 * a lock (but the structure may be stale.) The freeing of the 1594 * qdisc will be deferred until it's known that there are no 1595 * more references to it. 1596 * 1597 * If the qdisc has an enqueue function, we still need to 1598 * hold the queue_lock before calling it, since queue_lock 1599 * also serializes access to the device queue. 1600 */ 1601 1602 q = rcu_dereference(dev->qdisc); 1603#ifdef CONFIG_NET_CLS_ACT 1604 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS); 1605#endif 1606 if (q->enqueue) { 1607 /* Grab device queue */ 1608 spin_lock(&dev->queue_lock); 1609 q = dev->qdisc; 1610 if (q->enqueue) { 1611 /* reset queue_mapping to zero */ 1612 skb->queue_mapping = 0; 1613 rc = q->enqueue(skb, q); 1614 qdisc_run(dev); 1615 spin_unlock(&dev->queue_lock); 1616 1617 rc = rc == NET_XMIT_BYPASS ? NET_XMIT_SUCCESS : rc; 1618 goto out; 1619 } 1620 spin_unlock(&dev->queue_lock); 1621 } 1622 1623 /* The device has no queue. Common case for software devices: 1624 loopback, all the sorts of tunnels... 1625 1626 Really, it is unlikely that netif_tx_lock protection is necessary 1627 here. (f.e. loopback and IP tunnels are clean ignoring statistics 1628 counters.) 1629 However, it is possible, that they rely on protection 1630 made by us here. 1631 1632 Check this and shot the lock. It is not prone from deadlocks. 1633 Either shot noqueue qdisc, it is even simpler 8) 1634 */ 1635 if (dev->flags & IFF_UP) { 1636 int cpu = smp_processor_id(); /* ok because BHs are off */ 1637 1638 if (dev->xmit_lock_owner != cpu) { 1639 1640 HARD_TX_LOCK(dev, cpu); 1641 1642 if (!netif_queue_stopped(dev) && 1643 !netif_subqueue_stopped(dev, skb->queue_mapping)) { 1644 rc = 0; 1645 if (!dev_hard_start_xmit(skb, dev)) { 1646 HARD_TX_UNLOCK(dev); 1647 goto out; 1648 } 1649 } 1650 HARD_TX_UNLOCK(dev); 1651 if (net_ratelimit()) 1652 printk(KERN_CRIT "Virtual device %s asks to " 1653 "queue packet!\n", dev->name); 1654 } else { 1655 /* Recursion is detected! It is possible, 1656 * unfortunately */ 1657 if (net_ratelimit()) 1658 printk(KERN_CRIT "Dead loop on virtual device " 1659 "%s, fix it urgently!\n", dev->name); 1660 } 1661 } 1662 1663 rc = -ENETDOWN; 1664 rcu_read_unlock_bh(); 1665 1666out_kfree_skb: 1667 kfree_skb(skb); 1668 return rc; 1669out: 1670 rcu_read_unlock_bh(); 1671 return rc; 1672} 1673 1674 1675/*======================================================================= 1676 Receiver routines 1677 =======================================================================*/ 1678 1679int netdev_max_backlog __read_mostly = 1000; 1680int netdev_budget __read_mostly = 300; 1681int weight_p __read_mostly = 64; /* old backlog weight */ 1682 1683DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, }; 1684 1685 1686/** 1687 * netif_rx - post buffer to the network code 1688 * @skb: buffer to post 1689 * 1690 * This function receives a packet from a device driver and queues it for 1691 * the upper (protocol) levels to process. It always succeeds. The buffer 1692 * may be dropped during processing for congestion control or by the 1693 * protocol layers. 1694 * 1695 * return values: 1696 * NET_RX_SUCCESS (no congestion) 1697 * NET_RX_CN_LOW (low congestion) 1698 * NET_RX_CN_MOD (moderate congestion) 1699 * NET_RX_CN_HIGH (high congestion) 1700 * NET_RX_DROP (packet was dropped) 1701 * 1702 */ 1703 1704int netif_rx(struct sk_buff *skb) 1705{ 1706 struct softnet_data *queue; 1707 unsigned long flags; 1708 1709 /* if netpoll wants it, pretend we never saw it */ 1710 if (netpoll_rx(skb)) 1711 return NET_RX_DROP; 1712 1713 if (!skb->tstamp.tv64) 1714 net_timestamp(skb); 1715 1716 /* 1717 * The code is rearranged so that the path is the most 1718 * short when CPU is congested, but is still operating. 1719 */ 1720 local_irq_save(flags); 1721 queue = &__get_cpu_var(softnet_data); 1722 1723 __get_cpu_var(netdev_rx_stat).total++; 1724 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) { 1725 if (queue->input_pkt_queue.qlen) { 1726enqueue: 1727 dev_hold(skb->dev); 1728 __skb_queue_tail(&queue->input_pkt_queue, skb); 1729 local_irq_restore(flags); 1730 return NET_RX_SUCCESS; 1731 } 1732 1733 netif_rx_schedule(&queue->backlog_dev); 1734 goto enqueue; 1735 } 1736 1737 __get_cpu_var(netdev_rx_stat).dropped++; 1738 local_irq_restore(flags); 1739 1740 kfree_skb(skb); 1741 return NET_RX_DROP; 1742} 1743 1744int netif_rx_ni(struct sk_buff *skb) 1745{ 1746 int err; 1747 1748 preempt_disable(); 1749 err = netif_rx(skb); 1750 if (local_softirq_pending()) 1751 do_softirq(); 1752 preempt_enable(); 1753 1754 return err; 1755} 1756 1757EXPORT_SYMBOL(netif_rx_ni); 1758 1759static inline struct net_device *skb_bond(struct sk_buff *skb) 1760{ 1761 struct net_device *dev = skb->dev; 1762 1763 if (dev->master) { 1764 if (skb_bond_should_drop(skb)) { 1765 kfree_skb(skb); 1766 return NULL; 1767 } 1768 skb->dev = dev->master; 1769 } 1770 1771 return dev; 1772} 1773 1774static void net_tx_action(struct softirq_action *h) 1775{ 1776 struct softnet_data *sd = &__get_cpu_var(softnet_data); 1777 1778 if (sd->completion_queue) { 1779 struct sk_buff *clist; 1780 1781 local_irq_disable(); 1782 clist = sd->completion_queue; 1783 sd->completion_queue = NULL; 1784 local_irq_enable(); 1785 1786 while (clist) { 1787 struct sk_buff *skb = clist; 1788 clist = clist->next; 1789 1790 BUG_TRAP(!atomic_read(&skb->users)); 1791 __kfree_skb(skb); 1792 } 1793 } 1794 1795 if (sd->output_queue) { 1796 struct net_device *head; 1797 1798 local_irq_disable(); 1799 head = sd->output_queue; 1800 sd->output_queue = NULL; 1801 local_irq_enable(); 1802 1803 while (head) { 1804 struct net_device *dev = head; 1805 head = head->next_sched; 1806 1807 smp_mb__before_clear_bit(); 1808 clear_bit(__LINK_STATE_SCHED, &dev->state); 1809 1810 if (spin_trylock(&dev->queue_lock)) { 1811 qdisc_run(dev); 1812 spin_unlock(&dev->queue_lock); 1813 } else { 1814 netif_schedule(dev); 1815 } 1816 } 1817 } 1818} 1819 1820static inline int deliver_skb(struct sk_buff *skb, 1821 struct packet_type *pt_prev, 1822 struct net_device *orig_dev) 1823{ 1824 atomic_inc(&skb->users); 1825 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1826} 1827 1828#if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE) 1829/* These hooks defined here for ATM */ 1830struct net_bridge; 1831struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br, 1832 unsigned char *addr); 1833void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly; 1834 1835/* 1836 * If bridge module is loaded call bridging hook. 1837 * returns NULL if packet was consumed. 1838 */ 1839struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p, 1840 struct sk_buff *skb) __read_mostly; 1841static inline struct sk_buff *handle_bridge(struct sk_buff *skb, 1842 struct packet_type **pt_prev, int *ret, 1843 struct net_device *orig_dev) 1844{ 1845 struct net_bridge_port *port; 1846 1847 if (skb->pkt_type == PACKET_LOOPBACK || 1848 (port = rcu_dereference(skb->dev->br_port)) == NULL) 1849 return skb; 1850 1851 if (*pt_prev) { 1852 *ret = deliver_skb(skb, *pt_prev, orig_dev); 1853 *pt_prev = NULL; 1854 } 1855 1856 return br_handle_frame_hook(port, skb); 1857} 1858#else 1859#define handle_bridge(skb, pt_prev, ret, orig_dev) (skb) 1860#endif 1861 1862#if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE) 1863struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly; 1864EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook); 1865 1866static inline struct sk_buff *handle_macvlan(struct sk_buff *skb, 1867 struct packet_type **pt_prev, 1868 int *ret, 1869 struct net_device *orig_dev) 1870{ 1871 if (skb->dev->macvlan_port == NULL) 1872 return skb; 1873 1874 if (*pt_prev) { 1875 *ret = deliver_skb(skb, *pt_prev, orig_dev); 1876 *pt_prev = NULL; 1877 } 1878 return macvlan_handle_frame_hook(skb); 1879} 1880#else 1881#define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb) 1882#endif 1883 1884#ifdef CONFIG_NET_CLS_ACT 1885/* TODO: Maybe we should just force sch_ingress to be compiled in 1886 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 1887 * a compare and 2 stores extra right now if we dont have it on 1888 * but have CONFIG_NET_CLS_ACT 1889 * NOTE: This doesnt stop any functionality; if you dont have 1890 * the ingress scheduler, you just cant add policies on ingress. 1891 * 1892 */ 1893static int ing_filter(struct sk_buff *skb) 1894{ 1895 struct Qdisc *q; 1896 struct net_device *dev = skb->dev; 1897 int result = TC_ACT_OK; 1898 1899 if (dev->qdisc_ingress) { 1900 __u32 ttl = (__u32) G_TC_RTTL(skb->tc_verd); 1901 if (MAX_RED_LOOP < ttl++) { 1902 printk(KERN_WARNING "Redir loop detected Dropping packet (%d->%d)\n", 1903 skb->iif, skb->dev->ifindex); 1904 return TC_ACT_SHOT; 1905 } 1906 1907 skb->tc_verd = SET_TC_RTTL(skb->tc_verd,ttl); 1908 1909 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_INGRESS); 1910 1911 spin_lock(&dev->ingress_lock); 1912 if ((q = dev->qdisc_ingress) != NULL) 1913 result = q->enqueue(skb, q); 1914 spin_unlock(&dev->ingress_lock); 1915 1916 } 1917 1918 return result; 1919} 1920#endif 1921 1922int netif_receive_skb(struct sk_buff *skb) 1923{ 1924 struct packet_type *ptype, *pt_prev; 1925 struct net_device *orig_dev; 1926 int ret = NET_RX_DROP; 1927 __be16 type; 1928 1929 /* if we've gotten here through NAPI, check netpoll */ 1930 if (skb->dev->poll && netpoll_rx(skb)) 1931 return NET_RX_DROP; 1932 1933 if (!skb->tstamp.tv64) 1934 net_timestamp(skb); 1935 1936 if (!skb->iif) 1937 skb->iif = skb->dev->ifindex; 1938 1939 orig_dev = skb_bond(skb); 1940 1941 if (!orig_dev) 1942 return NET_RX_DROP; 1943 1944 __get_cpu_var(netdev_rx_stat).total++; 1945 1946 skb_reset_network_header(skb); 1947 skb_reset_transport_header(skb); 1948 skb->mac_len = skb->network_header - skb->mac_header; 1949 1950 pt_prev = NULL; 1951 1952 rcu_read_lock(); 1953 1954#ifdef CONFIG_NET_CLS_ACT 1955 if (skb->tc_verd & TC_NCLS) { 1956 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 1957 goto ncls; 1958 } 1959#endif 1960 1961 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1962 if (!ptype->dev || ptype->dev == skb->dev) { 1963 if (pt_prev) 1964 ret = deliver_skb(skb, pt_prev, orig_dev); 1965 pt_prev = ptype; 1966 } 1967 } 1968 1969#ifdef CONFIG_NET_CLS_ACT 1970 if (pt_prev) { 1971 ret = deliver_skb(skb, pt_prev, orig_dev); 1972 pt_prev = NULL; /* noone else should process this after*/ 1973 } else { 1974 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd); 1975 } 1976 1977 ret = ing_filter(skb); 1978 1979 if (ret == TC_ACT_SHOT || (ret == TC_ACT_STOLEN)) { 1980 kfree_skb(skb); 1981 goto out; 1982 } 1983 1984 skb->tc_verd = 0; 1985ncls: 1986#endif 1987 1988 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev); 1989 if (!skb) 1990 goto out; 1991 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev); 1992 if (!skb) 1993 goto out; 1994 1995 type = skb->protocol; 1996 list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type)&15], list) { 1997 if (ptype->type == type && 1998 (!ptype->dev || ptype->dev == skb->dev)) { 1999 if (pt_prev) 2000 ret = deliver_skb(skb, pt_prev, orig_dev); 2001 pt_prev = ptype; 2002 } 2003 } 2004 2005 if (pt_prev) { 2006 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2007 } else { 2008 kfree_skb(skb); 2009 /* Jamal, now you will not able to escape explaining 2010 * me how you were going to use this. :-) 2011 */ 2012 ret = NET_RX_DROP; 2013 } 2014 2015out: 2016 rcu_read_unlock(); 2017 return ret; 2018} 2019 2020static int process_backlog(struct net_device *backlog_dev, int *budget) 2021{ 2022 int work = 0; 2023 int quota = min(backlog_dev->quota, *budget); 2024 struct softnet_data *queue = &__get_cpu_var(softnet_data); 2025 unsigned long start_time = jiffies; 2026 2027 backlog_dev->weight = weight_p; 2028 for (;;) { 2029 struct sk_buff *skb; 2030 struct net_device *dev; 2031 2032 local_irq_disable(); 2033 skb = __skb_dequeue(&queue->input_pkt_queue); 2034 if (!skb) 2035 goto job_done; 2036 local_irq_enable(); 2037 2038 dev = skb->dev; 2039 2040 netif_receive_skb(skb); 2041 2042 dev_put(dev); 2043 2044 work++; 2045 2046 if (work >= quota || jiffies - start_time > 1) 2047 break; 2048 2049 } 2050 2051 backlog_dev->quota -= work; 2052 *budget -= work; 2053 return -1; 2054 2055job_done: 2056 backlog_dev->quota -= work; 2057 *budget -= work; 2058 2059 list_del(&backlog_dev->poll_list); 2060 smp_mb__before_clear_bit(); 2061 netif_poll_enable(backlog_dev); 2062 2063 local_irq_enable(); 2064 return 0; 2065} 2066 2067static void net_rx_action(struct softirq_action *h) 2068{ 2069 struct softnet_data *queue = &__get_cpu_var(softnet_data); 2070 unsigned long start_time = jiffies; 2071 int budget = netdev_budget; 2072 void *have; 2073 2074 local_irq_disable(); 2075 2076 while (!list_empty(&queue->poll_list)) { 2077 struct net_device *dev; 2078 2079 if (budget <= 0 || jiffies - start_time > 1) 2080 goto softnet_break; 2081 2082 local_irq_enable(); 2083 2084 dev = list_entry(queue->poll_list.next, 2085 struct net_device, poll_list); 2086 have = netpoll_poll_lock(dev); 2087 2088 if (dev->quota <= 0 || dev->poll(dev, &budget)) { 2089 netpoll_poll_unlock(have); 2090 local_irq_disable(); 2091 list_move_tail(&dev->poll_list, &queue->poll_list); 2092 if (dev->quota < 0) 2093 dev->quota += dev->weight; 2094 else 2095 dev->quota = dev->weight; 2096 } else { 2097 netpoll_poll_unlock(have); 2098 dev_put(dev); 2099 local_irq_disable(); 2100 } 2101 } 2102out: 2103 local_irq_enable(); 2104#ifdef CONFIG_NET_DMA 2105 /* 2106 * There may not be any more sk_buffs coming right now, so push 2107 * any pending DMA copies to hardware 2108 */ 2109 if (!cpus_empty(net_dma.channel_mask)) { 2110 int chan_idx; 2111 for_each_cpu_mask(chan_idx, net_dma.channel_mask) { 2112 struct dma_chan *chan = net_dma.channels[chan_idx]; 2113 if (chan) 2114 dma_async_memcpy_issue_pending(chan); 2115 } 2116 } 2117#endif 2118 return; 2119 2120softnet_break: 2121 __get_cpu_var(netdev_rx_stat).time_squeeze++; 2122 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2123 goto out; 2124} 2125 2126static gifconf_func_t * gifconf_list [NPROTO]; 2127 2128/** 2129 * register_gifconf - register a SIOCGIF handler 2130 * @family: Address family 2131 * @gifconf: Function handler 2132 * 2133 * Register protocol dependent address dumping routines. The handler 2134 * that is passed must not be freed or reused until it has been replaced 2135 * by another handler. 2136 */ 2137int register_gifconf(unsigned int family, gifconf_func_t * gifconf) 2138{ 2139 if (family >= NPROTO) 2140 return -EINVAL; 2141 gifconf_list[family] = gifconf; 2142 return 0; 2143} 2144 2145 2146/* 2147 * Map an interface index to its name (SIOCGIFNAME) 2148 */ 2149 2150/* 2151 * We need this ioctl for efficient implementation of the 2152 * if_indextoname() function required by the IPv6 API. Without 2153 * it, we would have to search all the interfaces to find a 2154 * match. --pb 2155 */ 2156 2157static int dev_ifname(struct ifreq __user *arg) 2158{ 2159 struct net_device *dev; 2160 struct ifreq ifr; 2161 2162 /* 2163 * Fetch the caller's info block. 2164 */ 2165 2166 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 2167 return -EFAULT; 2168 2169 read_lock(&dev_base_lock); 2170 dev = __dev_get_by_index(ifr.ifr_ifindex); 2171 if (!dev) { 2172 read_unlock(&dev_base_lock); 2173 return -ENODEV; 2174 } 2175 2176 strcpy(ifr.ifr_name, dev->name); 2177 read_unlock(&dev_base_lock); 2178 2179 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 2180 return -EFAULT; 2181 return 0; 2182} 2183 2184/* 2185 * Perform a SIOCGIFCONF call. This structure will change 2186 * size eventually, and there is nothing I can do about it. 2187 * Thus we will need a 'compatibility mode'. 2188 */ 2189 2190static int dev_ifconf(char __user *arg) 2191{ 2192 struct ifconf ifc; 2193 struct net_device *dev; 2194 char __user *pos; 2195 int len; 2196 int total; 2197 int i; 2198 2199 /* 2200 * Fetch the caller's info block. 2201 */ 2202 2203 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 2204 return -EFAULT; 2205 2206 pos = ifc.ifc_buf; 2207 len = ifc.ifc_len; 2208 2209 /* 2210 * Loop over the interfaces, and write an info block for each. 2211 */ 2212 2213 total = 0; 2214 for_each_netdev(dev) { 2215 for (i = 0; i < NPROTO; i++) { 2216 if (gifconf_list[i]) { 2217 int done; 2218 if (!pos) 2219 done = gifconf_list[i](dev, NULL, 0); 2220 else 2221 done = gifconf_list[i](dev, pos + total, 2222 len - total); 2223 if (done < 0) 2224 return -EFAULT; 2225 total += done; 2226 } 2227 } 2228 } 2229 2230 /* 2231 * All done. Write the updated control block back to the caller. 2232 */ 2233 ifc.ifc_len = total; 2234 2235 /* 2236 * Both BSD and Solaris return 0 here, so we do too. 2237 */ 2238 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 2239} 2240 2241#ifdef CONFIG_PROC_FS 2242/* 2243 * This is invoked by the /proc filesystem handler to display a device 2244 * in detail. 2245 */ 2246void *dev_seq_start(struct seq_file *seq, loff_t *pos) 2247{ 2248 loff_t off; 2249 struct net_device *dev; 2250 2251 read_lock(&dev_base_lock); 2252 if (!*pos) 2253 return SEQ_START_TOKEN; 2254 2255 off = 1; 2256 for_each_netdev(dev) 2257 if (off++ == *pos) 2258 return dev; 2259 2260 return NULL; 2261} 2262 2263void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2264{ 2265 ++*pos; 2266 return v == SEQ_START_TOKEN ? 2267 first_net_device() : next_net_device((struct net_device *)v); 2268} 2269 2270void dev_seq_stop(struct seq_file *seq, void *v) 2271{ 2272 read_unlock(&dev_base_lock); 2273} 2274 2275static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 2276{ 2277 struct net_device_stats *stats = dev->get_stats(dev); 2278 2279 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu " 2280 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n", 2281 dev->name, stats->rx_bytes, stats->rx_packets, 2282 stats->rx_errors, 2283 stats->rx_dropped + stats->rx_missed_errors, 2284 stats->rx_fifo_errors, 2285 stats->rx_length_errors + stats->rx_over_errors + 2286 stats->rx_crc_errors + stats->rx_frame_errors, 2287 stats->rx_compressed, stats->multicast, 2288 stats->tx_bytes, stats->tx_packets, 2289 stats->tx_errors, stats->tx_dropped, 2290 stats->tx_fifo_errors, stats->collisions, 2291 stats->tx_carrier_errors + 2292 stats->tx_aborted_errors + 2293 stats->tx_window_errors + 2294 stats->tx_heartbeat_errors, 2295 stats->tx_compressed); 2296} 2297 2298/* 2299 * Called from the PROCfs module. This now uses the new arbitrary sized 2300 * /proc/net interface to create /proc/net/dev 2301 */ 2302static int dev_seq_show(struct seq_file *seq, void *v) 2303{ 2304 if (v == SEQ_START_TOKEN) 2305 seq_puts(seq, "Inter-| Receive " 2306 " | Transmit\n" 2307 " face |bytes packets errs drop fifo frame " 2308 "compressed multicast|bytes packets errs " 2309 "drop fifo colls carrier compressed\n"); 2310 else 2311 dev_seq_printf_stats(seq, v); 2312 return 0; 2313} 2314 2315static struct netif_rx_stats *softnet_get_online(loff_t *pos) 2316{ 2317 struct netif_rx_stats *rc = NULL; 2318 2319 while (*pos < NR_CPUS) 2320 if (cpu_online(*pos)) { 2321 rc = &per_cpu(netdev_rx_stat, *pos); 2322 break; 2323 } else 2324 ++*pos; 2325 return rc; 2326} 2327 2328static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 2329{ 2330 return softnet_get_online(pos); 2331} 2332 2333static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2334{ 2335 ++*pos; 2336 return softnet_get_online(pos); 2337} 2338 2339static void softnet_seq_stop(struct seq_file *seq, void *v) 2340{ 2341} 2342 2343static int softnet_seq_show(struct seq_file *seq, void *v) 2344{ 2345 struct netif_rx_stats *s = v; 2346 2347 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 2348 s->total, s->dropped, s->time_squeeze, 0, 2349 0, 0, 0, 0, /* was fastroute */ 2350 s->cpu_collision ); 2351 return 0; 2352} 2353 2354static const struct seq_operations dev_seq_ops = { 2355 .start = dev_seq_start, 2356 .next = dev_seq_next, 2357 .stop = dev_seq_stop, 2358 .show = dev_seq_show, 2359}; 2360 2361static int dev_seq_open(struct inode *inode, struct file *file) 2362{ 2363 return seq_open(file, &dev_seq_ops); 2364} 2365 2366static const struct file_operations dev_seq_fops = { 2367 .owner = THIS_MODULE, 2368 .open = dev_seq_open, 2369 .read = seq_read, 2370 .llseek = seq_lseek, 2371 .release = seq_release, 2372}; 2373 2374static const struct seq_operations softnet_seq_ops = { 2375 .start = softnet_seq_start, 2376 .next = softnet_seq_next, 2377 .stop = softnet_seq_stop, 2378 .show = softnet_seq_show, 2379}; 2380 2381static int softnet_seq_open(struct inode *inode, struct file *file) 2382{ 2383 return seq_open(file, &softnet_seq_ops); 2384} 2385 2386static const struct file_operations softnet_seq_fops = { 2387 .owner = THIS_MODULE, 2388 .open = softnet_seq_open, 2389 .read = seq_read, 2390 .llseek = seq_lseek, 2391 .release = seq_release, 2392}; 2393 2394static void *ptype_get_idx(loff_t pos) 2395{ 2396 struct packet_type *pt = NULL; 2397 loff_t i = 0; 2398 int t; 2399 2400 list_for_each_entry_rcu(pt, &ptype_all, list) { 2401 if (i == pos) 2402 return pt; 2403 ++i; 2404 } 2405 2406 for (t = 0; t < 16; t++) { 2407 list_for_each_entry_rcu(pt, &ptype_base[t], list) { 2408 if (i == pos) 2409 return pt; 2410 ++i; 2411 } 2412 } 2413 return NULL; 2414} 2415 2416static void *ptype_seq_start(struct seq_file *seq, loff_t *pos) 2417{ 2418 rcu_read_lock(); 2419 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN; 2420} 2421 2422static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2423{ 2424 struct packet_type *pt; 2425 struct list_head *nxt; 2426 int hash; 2427 2428 ++*pos; 2429 if (v == SEQ_START_TOKEN) 2430 return ptype_get_idx(0); 2431 2432 pt = v; 2433 nxt = pt->list.next; 2434 if (pt->type == htons(ETH_P_ALL)) { 2435 if (nxt != &ptype_all) 2436 goto found; 2437 hash = 0; 2438 nxt = ptype_base[0].next; 2439 } else 2440 hash = ntohs(pt->type) & 15; 2441 2442 while (nxt == &ptype_base[hash]) { 2443 if (++hash >= 16) 2444 return NULL; 2445 nxt = ptype_base[hash].next; 2446 } 2447found: 2448 return list_entry(nxt, struct packet_type, list); 2449} 2450 2451static void ptype_seq_stop(struct seq_file *seq, void *v) 2452{ 2453 rcu_read_unlock(); 2454} 2455 2456static void ptype_seq_decode(struct seq_file *seq, void *sym) 2457{ 2458#ifdef CONFIG_KALLSYMS 2459 unsigned long offset = 0, symsize; 2460 const char *symname; 2461 char *modname; 2462 char namebuf[128]; 2463 2464 symname = kallsyms_lookup((unsigned long)sym, &symsize, &offset, 2465 &modname, namebuf); 2466 2467 if (symname) { 2468 char *delim = ":"; 2469 2470 if (!modname) 2471 modname = delim = ""; 2472 seq_printf(seq, "%s%s%s%s+0x%lx", delim, modname, delim, 2473 symname, offset); 2474 return; 2475 } 2476#endif 2477 2478 seq_printf(seq, "[%p]", sym); 2479} 2480 2481static int ptype_seq_show(struct seq_file *seq, void *v) 2482{ 2483 struct packet_type *pt = v; 2484 2485 if (v == SEQ_START_TOKEN) 2486 seq_puts(seq, "Type Device Function\n"); 2487 else { 2488 if (pt->type == htons(ETH_P_ALL)) 2489 seq_puts(seq, "ALL "); 2490 else 2491 seq_printf(seq, "%04x", ntohs(pt->type)); 2492 2493 seq_printf(seq, " %-8s ", 2494 pt->dev ? pt->dev->name : ""); 2495 ptype_seq_decode(seq, pt->func); 2496 seq_putc(seq, '\n'); 2497 } 2498 2499 return 0; 2500} 2501 2502static const struct seq_operations ptype_seq_ops = { 2503 .start = ptype_seq_start, 2504 .next = ptype_seq_next, 2505 .stop = ptype_seq_stop, 2506 .show = ptype_seq_show, 2507}; 2508 2509static int ptype_seq_open(struct inode *inode, struct file *file) 2510{ 2511 return seq_open(file, &ptype_seq_ops); 2512} 2513 2514static const struct file_operations ptype_seq_fops = { 2515 .owner = THIS_MODULE, 2516 .open = ptype_seq_open, 2517 .read = seq_read, 2518 .llseek = seq_lseek, 2519 .release = seq_release, 2520}; 2521 2522 2523static int __init dev_proc_init(void) 2524{ 2525 int rc = -ENOMEM; 2526 2527 if (!proc_net_fops_create("dev", S_IRUGO, &dev_seq_fops)) 2528 goto out; 2529 if (!proc_net_fops_create("softnet_stat", S_IRUGO, &softnet_seq_fops)) 2530 goto out_dev; 2531 if (!proc_net_fops_create("ptype", S_IRUGO, &ptype_seq_fops)) 2532 goto out_dev2; 2533 2534 if (wext_proc_init()) 2535 goto out_softnet; 2536 rc = 0; 2537out: 2538 return rc; 2539out_softnet: 2540 proc_net_remove("ptype"); 2541out_dev2: 2542 proc_net_remove("softnet_stat"); 2543out_dev: 2544 proc_net_remove("dev"); 2545 goto out; 2546} 2547#else 2548#define dev_proc_init() 0 2549#endif /* CONFIG_PROC_FS */ 2550 2551 2552/** 2553 * netdev_set_master - set up master/slave pair 2554 * @slave: slave device 2555 * @master: new master device 2556 * 2557 * Changes the master device of the slave. Pass %NULL to break the 2558 * bonding. The caller must hold the RTNL semaphore. On a failure 2559 * a negative errno code is returned. On success the reference counts 2560 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the 2561 * function returns zero. 2562 */ 2563int netdev_set_master(struct net_device *slave, struct net_device *master) 2564{ 2565 struct net_device *old = slave->master; 2566 2567 ASSERT_RTNL(); 2568 2569 if (master) { 2570 if (old) 2571 return -EBUSY; 2572 dev_hold(master); 2573 } 2574 2575 slave->master = master; 2576 2577 synchronize_net(); 2578 2579 if (old) 2580 dev_put(old); 2581 2582 if (master) 2583 slave->flags |= IFF_SLAVE; 2584 else 2585 slave->flags &= ~IFF_SLAVE; 2586 2587 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 2588 return 0; 2589} 2590 2591static void __dev_set_promiscuity(struct net_device *dev, int inc) 2592{ 2593 unsigned short old_flags = dev->flags; 2594 2595 ASSERT_RTNL(); 2596 2597 if ((dev->promiscuity += inc) == 0) 2598 dev->flags &= ~IFF_PROMISC; 2599 else 2600 dev->flags |= IFF_PROMISC; 2601 if (dev->flags != old_flags) { 2602 printk(KERN_INFO "device %s %s promiscuous mode\n", 2603 dev->name, (dev->flags & IFF_PROMISC) ? "entered" : 2604 "left"); 2605 audit_log(current->audit_context, GFP_ATOMIC, 2606 AUDIT_ANOM_PROMISCUOUS, 2607 "dev=%s prom=%d old_prom=%d auid=%u", 2608 dev->name, (dev->flags & IFF_PROMISC), 2609 (old_flags & IFF_PROMISC), 2610 audit_get_loginuid(current->audit_context)); 2611 2612 if (dev->change_rx_flags) 2613 dev->change_rx_flags(dev, IFF_PROMISC); 2614 } 2615} 2616 2617/** 2618 * dev_set_promiscuity - update promiscuity count on a device 2619 * @dev: device 2620 * @inc: modifier 2621 * 2622 * Add or remove promiscuity from a device. While the count in the device 2623 * remains above zero the interface remains promiscuous. Once it hits zero 2624 * the device reverts back to normal filtering operation. A negative inc 2625 * value is used to drop promiscuity on the device. 2626 */ 2627void dev_set_promiscuity(struct net_device *dev, int inc) 2628{ 2629 unsigned short old_flags = dev->flags; 2630 2631 __dev_set_promiscuity(dev, inc); 2632 if (dev->flags != old_flags) 2633 dev_set_rx_mode(dev); 2634} 2635 2636/** 2637 * dev_set_allmulti - update allmulti count on a device 2638 * @dev: device 2639 * @inc: modifier 2640 * 2641 * Add or remove reception of all multicast frames to a device. While the 2642 * count in the device remains above zero the interface remains listening 2643 * to all interfaces. Once it hits zero the device reverts back to normal 2644 * filtering operation. A negative @inc value is used to drop the counter 2645 * when releasing a resource needing all multicasts. 2646 */ 2647 2648void dev_set_allmulti(struct net_device *dev, int inc) 2649{ 2650 unsigned short old_flags = dev->flags; 2651 2652 ASSERT_RTNL(); 2653 2654 dev->flags |= IFF_ALLMULTI; 2655 if ((dev->allmulti += inc) == 0) 2656 dev->flags &= ~IFF_ALLMULTI; 2657 if (dev->flags ^ old_flags) { 2658 if (dev->change_rx_flags) 2659 dev->change_rx_flags(dev, IFF_ALLMULTI); 2660 dev_set_rx_mode(dev); 2661 } 2662} 2663 2664/* 2665 * Upload unicast and multicast address lists to device and 2666 * configure RX filtering. When the device doesn't support unicast 2667 * filtering it is put in promiscous mode while unicast addresses 2668 * are present. 2669 */ 2670void __dev_set_rx_mode(struct net_device *dev) 2671{ 2672 /* dev_open will call this function so the list will stay sane. */ 2673 if (!(dev->flags&IFF_UP)) 2674 return; 2675 2676 if (!netif_device_present(dev)) 2677 return; 2678 2679 if (dev->set_rx_mode) 2680 dev->set_rx_mode(dev); 2681 else { 2682 /* Unicast addresses changes may only happen under the rtnl, 2683 * therefore calling __dev_set_promiscuity here is safe. 2684 */ 2685 if (dev->uc_count > 0 && !dev->uc_promisc) { 2686 __dev_set_promiscuity(dev, 1); 2687 dev->uc_promisc = 1; 2688 } else if (dev->uc_count == 0 && dev->uc_promisc) { 2689 __dev_set_promiscuity(dev, -1); 2690 dev->uc_promisc = 0; 2691 } 2692 2693 if (dev->set_multicast_list) 2694 dev->set_multicast_list(dev); 2695 } 2696} 2697 2698void dev_set_rx_mode(struct net_device *dev) 2699{ 2700 netif_tx_lock_bh(dev); 2701 __dev_set_rx_mode(dev); 2702 netif_tx_unlock_bh(dev); 2703} 2704 2705int __dev_addr_delete(struct dev_addr_list **list, int *count, 2706 void *addr, int alen, int glbl) 2707{ 2708 struct dev_addr_list *da; 2709 2710 for (; (da = *list) != NULL; list = &da->next) { 2711 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 && 2712 alen == da->da_addrlen) { 2713 if (glbl) { 2714 int old_glbl = da->da_gusers; 2715 da->da_gusers = 0; 2716 if (old_glbl == 0) 2717 break; 2718 } 2719 if (--da->da_users) 2720 return 0; 2721 2722 *list = da->next; 2723 kfree(da); 2724 (*count)--; 2725 return 0; 2726 } 2727 } 2728 return -ENOENT; 2729} 2730 2731int __dev_addr_add(struct dev_addr_list **list, int *count, 2732 void *addr, int alen, int glbl) 2733{ 2734 struct dev_addr_list *da; 2735 2736 for (da = *list; da != NULL; da = da->next) { 2737 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 && 2738 da->da_addrlen == alen) { 2739 if (glbl) { 2740 int old_glbl = da->da_gusers; 2741 da->da_gusers = 1; 2742 if (old_glbl) 2743 return 0; 2744 } 2745 da->da_users++; 2746 return 0; 2747 } 2748 } 2749 2750 da = kmalloc(sizeof(*da), GFP_ATOMIC); 2751 if (da == NULL) 2752 return -ENOMEM; 2753 memcpy(da->da_addr, addr, alen); 2754 da->da_addrlen = alen; 2755 da->da_users = 1; 2756 da->da_gusers = glbl ? 1 : 0; 2757 da->next = *list; 2758 *list = da; 2759 (*count)++; 2760 return 0; 2761} 2762 2763/** 2764 * dev_unicast_delete - Release secondary unicast address. 2765 * @dev: device 2766 * @addr: address to delete 2767 * @alen: length of @addr 2768 * 2769 * Release reference to a secondary unicast address and remove it 2770 * from the device if the reference count drops to zero. 2771 * 2772 * The caller must hold the rtnl_mutex. 2773 */ 2774int dev_unicast_delete(struct net_device *dev, void *addr, int alen) 2775{ 2776 int err; 2777 2778 ASSERT_RTNL(); 2779 2780 netif_tx_lock_bh(dev); 2781 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0); 2782 if (!err) 2783 __dev_set_rx_mode(dev); 2784 netif_tx_unlock_bh(dev); 2785 return err; 2786} 2787EXPORT_SYMBOL(dev_unicast_delete); 2788 2789/** 2790 * dev_unicast_add - add a secondary unicast address 2791 * @dev: device 2792 * @addr: address to delete 2793 * @alen: length of @addr 2794 * 2795 * Add a secondary unicast address to the device or increase 2796 * the reference count if it already exists. 2797 * 2798 * The caller must hold the rtnl_mutex. 2799 */ 2800int dev_unicast_add(struct net_device *dev, void *addr, int alen) 2801{ 2802 int err; 2803 2804 ASSERT_RTNL(); 2805 2806 netif_tx_lock_bh(dev); 2807 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0); 2808 if (!err) 2809 __dev_set_rx_mode(dev); 2810 netif_tx_unlock_bh(dev); 2811 return err; 2812} 2813EXPORT_SYMBOL(dev_unicast_add); 2814 2815static void __dev_addr_discard(struct dev_addr_list **list) 2816{ 2817 struct dev_addr_list *tmp; 2818 2819 while (*list != NULL) { 2820 tmp = *list; 2821 *list = tmp->next; 2822 if (tmp->da_users > tmp->da_gusers) 2823 printk("__dev_addr_discard: address leakage! " 2824 "da_users=%d\n", tmp->da_users); 2825 kfree(tmp); 2826 } 2827} 2828 2829static void dev_addr_discard(struct net_device *dev) 2830{ 2831 netif_tx_lock_bh(dev); 2832 2833 __dev_addr_discard(&dev->uc_list); 2834 dev->uc_count = 0; 2835 2836 __dev_addr_discard(&dev->mc_list); 2837 dev->mc_count = 0; 2838 2839 netif_tx_unlock_bh(dev); 2840} 2841 2842unsigned dev_get_flags(const struct net_device *dev) 2843{ 2844 unsigned flags; 2845 2846 flags = (dev->flags & ~(IFF_PROMISC | 2847 IFF_ALLMULTI | 2848 IFF_RUNNING | 2849 IFF_LOWER_UP | 2850 IFF_DORMANT)) | 2851 (dev->gflags & (IFF_PROMISC | 2852 IFF_ALLMULTI)); 2853 2854 if (netif_running(dev)) { 2855 if (netif_oper_up(dev)) 2856 flags |= IFF_RUNNING; 2857 if (netif_carrier_ok(dev)) 2858 flags |= IFF_LOWER_UP; 2859 if (netif_dormant(dev)) 2860 flags |= IFF_DORMANT; 2861 } 2862 2863 return flags; 2864} 2865 2866int dev_change_flags(struct net_device *dev, unsigned flags) 2867{ 2868 int ret, changes; 2869 int old_flags = dev->flags; 2870 2871 ASSERT_RTNL(); 2872 2873 /* 2874 * Set the flags on our device. 2875 */ 2876 2877 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 2878 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 2879 IFF_AUTOMEDIA)) | 2880 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 2881 IFF_ALLMULTI)); 2882 2883 /* 2884 * Load in the correct multicast list now the flags have changed. 2885 */ 2886 2887 if (dev->change_rx_flags && (dev->flags ^ flags) & IFF_MULTICAST) 2888 dev->change_rx_flags(dev, IFF_MULTICAST); 2889 2890 dev_set_rx_mode(dev); 2891 2892 /* 2893 * Have we downed the interface. We handle IFF_UP ourselves 2894 * according to user attempts to set it, rather than blindly 2895 * setting it. 2896 */ 2897 2898 ret = 0; 2899 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 2900 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev); 2901 2902 if (!ret) 2903 dev_set_rx_mode(dev); 2904 } 2905 2906 if (dev->flags & IFF_UP && 2907 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI | 2908 IFF_VOLATILE))) 2909 raw_notifier_call_chain(&netdev_chain, 2910 NETDEV_CHANGE, dev); 2911 2912 if ((flags ^ dev->gflags) & IFF_PROMISC) { 2913 int inc = (flags & IFF_PROMISC) ? +1 : -1; 2914 dev->gflags ^= IFF_PROMISC; 2915 dev_set_promiscuity(dev, inc); 2916 } 2917 2918 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 2919 is important. Some (broken) drivers set IFF_PROMISC, when 2920 IFF_ALLMULTI is requested not asking us and not reporting. 2921 */ 2922 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 2923 int inc = (flags & IFF_ALLMULTI) ? +1 : -1; 2924 dev->gflags ^= IFF_ALLMULTI; 2925 dev_set_allmulti(dev, inc); 2926 } 2927 2928 /* Exclude state transition flags, already notified */ 2929 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING); 2930 if (changes) 2931 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 2932 2933 return ret; 2934} 2935 2936int dev_set_mtu(struct net_device *dev, int new_mtu) 2937{ 2938 int err; 2939 2940 if (new_mtu == dev->mtu) 2941 return 0; 2942 2943 /* MTU must be positive. */ 2944 if (new_mtu < 0) 2945 return -EINVAL; 2946 2947 if (!netif_device_present(dev)) 2948 return -ENODEV; 2949 2950 err = 0; 2951 if (dev->change_mtu) 2952 err = dev->change_mtu(dev, new_mtu); 2953 else 2954 dev->mtu = new_mtu; 2955 if (!err && dev->flags & IFF_UP) 2956 raw_notifier_call_chain(&netdev_chain, 2957 NETDEV_CHANGEMTU, dev); 2958 return err; 2959} 2960 2961int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 2962{ 2963 int err; 2964 2965 if (!dev->set_mac_address) 2966 return -EOPNOTSUPP; 2967 if (sa->sa_family != dev->type) 2968 return -EINVAL; 2969 if (!netif_device_present(dev)) 2970 return -ENODEV; 2971 err = dev->set_mac_address(dev, sa); 2972 if (!err) 2973 raw_notifier_call_chain(&netdev_chain, 2974 NETDEV_CHANGEADDR, dev); 2975 return err; 2976} 2977 2978/* 2979 * Perform the SIOCxIFxxx calls. 2980 */ 2981static int dev_ifsioc(struct ifreq *ifr, unsigned int cmd) 2982{ 2983 int err; 2984 struct net_device *dev = __dev_get_by_name(ifr->ifr_name); 2985 2986 if (!dev) 2987 return -ENODEV; 2988 2989 switch (cmd) { 2990 case SIOCGIFFLAGS: /* Get interface flags */ 2991 ifr->ifr_flags = dev_get_flags(dev); 2992 return 0; 2993 2994 case SIOCSIFFLAGS: /* Set interface flags */ 2995 return dev_change_flags(dev, ifr->ifr_flags); 2996 2997 case SIOCGIFMETRIC: /* Get the metric on the interface 2998 (currently unused) */ 2999 ifr->ifr_metric = 0; 3000 return 0; 3001 3002 case SIOCSIFMETRIC: /* Set the metric on the interface 3003 (currently unused) */ 3004 return -EOPNOTSUPP; 3005 3006 case SIOCGIFMTU: /* Get the MTU of a device */ 3007 ifr->ifr_mtu = dev->mtu; 3008 return 0; 3009 3010 case SIOCSIFMTU: /* Set the MTU of a device */ 3011 return dev_set_mtu(dev, ifr->ifr_mtu); 3012 3013 case SIOCGIFHWADDR: 3014 if (!dev->addr_len) 3015 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 3016 else 3017 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 3018 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 3019 ifr->ifr_hwaddr.sa_family = dev->type; 3020 return 0; 3021 3022 case SIOCSIFHWADDR: 3023 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 3024 3025 case SIOCSIFHWBROADCAST: 3026 if (ifr->ifr_hwaddr.sa_family != dev->type) 3027 return -EINVAL; 3028 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 3029 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 3030 raw_notifier_call_chain(&netdev_chain, 3031 NETDEV_CHANGEADDR, dev); 3032 return 0; 3033 3034 case SIOCGIFMAP: 3035 ifr->ifr_map.mem_start = dev->mem_start; 3036 ifr->ifr_map.mem_end = dev->mem_end; 3037 ifr->ifr_map.base_addr = dev->base_addr; 3038 ifr->ifr_map.irq = dev->irq; 3039 ifr->ifr_map.dma = dev->dma; 3040 ifr->ifr_map.port = dev->if_port; 3041 return 0; 3042 3043 case SIOCSIFMAP: 3044 if (dev->set_config) { 3045 if (!netif_device_present(dev)) 3046 return -ENODEV; 3047 return dev->set_config(dev, &ifr->ifr_map); 3048 } 3049 return -EOPNOTSUPP; 3050 3051 case SIOCADDMULTI: 3052 if (!dev->set_multicast_list || 3053 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 3054 return -EINVAL; 3055 if (!netif_device_present(dev)) 3056 return -ENODEV; 3057 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data, 3058 dev->addr_len, 1); 3059 3060 case SIOCDELMULTI: 3061 if (!dev->set_multicast_list || 3062 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 3063 return -EINVAL; 3064 if (!netif_device_present(dev)) 3065 return -ENODEV; 3066 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data, 3067 dev->addr_len, 1); 3068 3069 case SIOCGIFINDEX: 3070 ifr->ifr_ifindex = dev->ifindex; 3071 return 0; 3072 3073 case SIOCGIFTXQLEN: 3074 ifr->ifr_qlen = dev->tx_queue_len; 3075 return 0; 3076 3077 case SIOCSIFTXQLEN: 3078 if (ifr->ifr_qlen < 0) 3079 return -EINVAL; 3080 dev->tx_queue_len = ifr->ifr_qlen; 3081 return 0; 3082 3083 case SIOCSIFNAME: 3084 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 3085 return dev_change_name(dev, ifr->ifr_newname); 3086 3087 /* 3088 * Unknown or private ioctl 3089 */ 3090 3091 default: 3092 if ((cmd >= SIOCDEVPRIVATE && 3093 cmd <= SIOCDEVPRIVATE + 15) || 3094 cmd == SIOCBONDENSLAVE || 3095 cmd == SIOCBONDRELEASE || 3096 cmd == SIOCBONDSETHWADDR || 3097 cmd == SIOCBONDSLAVEINFOQUERY || 3098 cmd == SIOCBONDINFOQUERY || 3099 cmd == SIOCBONDCHANGEACTIVE || 3100 cmd == SIOCGMIIPHY || 3101 cmd == SIOCGMIIREG || 3102 cmd == SIOCSMIIREG || 3103 cmd == SIOCBRADDIF || 3104 cmd == SIOCBRDELIF || 3105 cmd == SIOCWANDEV) { 3106 err = -EOPNOTSUPP; 3107 if (dev->do_ioctl) { 3108 if (netif_device_present(dev)) 3109 err = dev->do_ioctl(dev, ifr, 3110 cmd); 3111 else 3112 err = -ENODEV; 3113 } 3114 } else 3115 err = -EINVAL; 3116 3117 } 3118 return err; 3119} 3120 3121/* 3122 * This function handles all "interface"-type I/O control requests. The actual 3123 * 'doing' part of this is dev_ifsioc above. 3124 */ 3125 3126/** 3127 * dev_ioctl - network device ioctl 3128 * @cmd: command to issue 3129 * @arg: pointer to a struct ifreq in user space 3130 * 3131 * Issue ioctl functions to devices. This is normally called by the 3132 * user space syscall interfaces but can sometimes be useful for 3133 * other purposes. The return value is the return from the syscall if 3134 * positive or a negative errno code on error. 3135 */ 3136 3137int dev_ioctl(unsigned int cmd, void __user *arg) 3138{ 3139 struct ifreq ifr; 3140 int ret; 3141 char *colon; 3142 3143 /* One special case: SIOCGIFCONF takes ifconf argument 3144 and requires shared lock, because it sleeps writing 3145 to user space. 3146 */ 3147 3148 if (cmd == SIOCGIFCONF) { 3149 rtnl_lock(); 3150 ret = dev_ifconf((char __user *) arg); 3151 rtnl_unlock(); 3152 return ret; 3153 } 3154 if (cmd == SIOCGIFNAME) 3155 return dev_ifname((struct ifreq __user *)arg); 3156 3157 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 3158 return -EFAULT; 3159 3160 ifr.ifr_name[IFNAMSIZ-1] = 0; 3161 3162 colon = strchr(ifr.ifr_name, ':'); 3163 if (colon) 3164 *colon = 0; 3165 3166 /* 3167 * See which interface the caller is talking about. 3168 */ 3169 3170 switch (cmd) { 3171 /* 3172 * These ioctl calls: 3173 * - can be done by all. 3174 * - atomic and do not require locking. 3175 * - return a value 3176 */ 3177 case SIOCGIFFLAGS: 3178 case SIOCGIFMETRIC: 3179 case SIOCGIFMTU: 3180 case SIOCGIFHWADDR: 3181 case SIOCGIFSLAVE: 3182 case SIOCGIFMAP: 3183 case SIOCGIFINDEX: 3184 case SIOCGIFTXQLEN: 3185 dev_load(ifr.ifr_name); 3186 read_lock(&dev_base_lock); 3187 ret = dev_ifsioc(&ifr, cmd); 3188 read_unlock(&dev_base_lock); 3189 if (!ret) { 3190 if (colon) 3191 *colon = ':'; 3192 if (copy_to_user(arg, &ifr, 3193 sizeof(struct ifreq))) 3194 ret = -EFAULT; 3195 } 3196 return ret; 3197 3198 case SIOCETHTOOL: 3199 dev_load(ifr.ifr_name); 3200 rtnl_lock(); 3201 ret = dev_ethtool(&ifr); 3202 rtnl_unlock(); 3203 if (!ret) { 3204 if (colon) 3205 *colon = ':'; 3206 if (copy_to_user(arg, &ifr, 3207 sizeof(struct ifreq))) 3208 ret = -EFAULT; 3209 } 3210 return ret; 3211 3212 /* 3213 * These ioctl calls: 3214 * - require superuser power. 3215 * - require strict serialization. 3216 * - return a value 3217 */ 3218 case SIOCGMIIPHY: 3219 case SIOCGMIIREG: 3220 case SIOCSIFNAME: 3221 if (!capable(CAP_NET_ADMIN)) 3222 return -EPERM; 3223 dev_load(ifr.ifr_name); 3224 rtnl_lock(); 3225 ret = dev_ifsioc(&ifr, cmd); 3226 rtnl_unlock(); 3227 if (!ret) { 3228 if (colon) 3229 *colon = ':'; 3230 if (copy_to_user(arg, &ifr, 3231 sizeof(struct ifreq))) 3232 ret = -EFAULT; 3233 } 3234 return ret; 3235 3236 /* 3237 * These ioctl calls: 3238 * - require superuser power. 3239 * - require strict serialization. 3240 * - do not return a value 3241 */ 3242 case SIOCSIFFLAGS: 3243 case SIOCSIFMETRIC: 3244 case SIOCSIFMTU: 3245 case SIOCSIFMAP: 3246 case SIOCSIFHWADDR: 3247 case SIOCSIFSLAVE: 3248 case SIOCADDMULTI: 3249 case SIOCDELMULTI: 3250 case SIOCSIFHWBROADCAST: 3251 case SIOCSIFTXQLEN: 3252 case SIOCSMIIREG: 3253 case SIOCBONDENSLAVE: 3254 case SIOCBONDRELEASE: 3255 case SIOCBONDSETHWADDR: 3256 case SIOCBONDCHANGEACTIVE: 3257 case SIOCBRADDIF: 3258 case SIOCBRDELIF: 3259 if (!capable(CAP_NET_ADMIN)) 3260 return -EPERM; 3261 /* fall through */ 3262 case SIOCBONDSLAVEINFOQUERY: 3263 case SIOCBONDINFOQUERY: 3264 dev_load(ifr.ifr_name); 3265 rtnl_lock(); 3266 ret = dev_ifsioc(&ifr, cmd); 3267 rtnl_unlock(); 3268 return ret; 3269 3270 case SIOCGIFMEM: 3271 /* Get the per device memory space. We can add this but 3272 * currently do not support it */ 3273 case SIOCSIFMEM: 3274 /* Set the per device memory buffer space. 3275 * Not applicable in our case */ 3276 case SIOCSIFLINK: 3277 return -EINVAL; 3278 3279 /* 3280 * Unknown or private ioctl. 3281 */ 3282 default: 3283 if (cmd == SIOCWANDEV || 3284 (cmd >= SIOCDEVPRIVATE && 3285 cmd <= SIOCDEVPRIVATE + 15)) { 3286 dev_load(ifr.ifr_name); 3287 rtnl_lock(); 3288 ret = dev_ifsioc(&ifr, cmd); 3289 rtnl_unlock(); 3290 if (!ret && copy_to_user(arg, &ifr, 3291 sizeof(struct ifreq))) 3292 ret = -EFAULT; 3293 return ret; 3294 } 3295 /* Take care of Wireless Extensions */ 3296 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) 3297 return wext_handle_ioctl(&ifr, cmd, arg); 3298 return -EINVAL; 3299 } 3300} 3301 3302 3303/** 3304 * dev_new_index - allocate an ifindex 3305 * 3306 * Returns a suitable unique value for a new device interface 3307 * number. The caller must hold the rtnl semaphore or the 3308 * dev_base_lock to be sure it remains unique. 3309 */ 3310static int dev_new_index(void) 3311{ 3312 static int ifindex; 3313 for (;;) { 3314 if (++ifindex <= 0) 3315 ifindex = 1; 3316 if (!__dev_get_by_index(ifindex)) 3317 return ifindex; 3318 } 3319} 3320 3321static int dev_boot_phase = 1; 3322 3323/* Delayed registration/unregisteration */ 3324static DEFINE_SPINLOCK(net_todo_list_lock); 3325static struct list_head net_todo_list = LIST_HEAD_INIT(net_todo_list); 3326 3327static void net_set_todo(struct net_device *dev) 3328{ 3329 spin_lock(&net_todo_list_lock); 3330 list_add_tail(&dev->todo_list, &net_todo_list); 3331 spin_unlock(&net_todo_list_lock); 3332} 3333 3334/** 3335 * register_netdevice - register a network device 3336 * @dev: device to register 3337 * 3338 * Take a completed network device structure and add it to the kernel 3339 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 3340 * chain. 0 is returned on success. A negative errno code is returned 3341 * on a failure to set up the device, or if the name is a duplicate. 3342 * 3343 * Callers must hold the rtnl semaphore. You may want 3344 * register_netdev() instead of this. 3345 * 3346 * BUGS: 3347 * The locking appears insufficient to guarantee two parallel registers 3348 * will not get the same name. 3349 */ 3350 3351int register_netdevice(struct net_device *dev) 3352{ 3353 struct hlist_head *head; 3354 struct hlist_node *p; 3355 int ret; 3356 3357 BUG_ON(dev_boot_phase); 3358 ASSERT_RTNL(); 3359 3360 might_sleep(); 3361 3362 /* When net_device's are persistent, this will be fatal. */ 3363 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 3364 3365 spin_lock_init(&dev->queue_lock); 3366 spin_lock_init(&dev->_xmit_lock); 3367 netdev_set_lockdep_class(&dev->_xmit_lock, dev->type); 3368 dev->xmit_lock_owner = -1; 3369 spin_lock_init(&dev->ingress_lock); 3370 3371 dev->iflink = -1; 3372 3373 /* Init, if this function is available */ 3374 if (dev->init) { 3375 ret = dev->init(dev); 3376 if (ret) { 3377 if (ret > 0) 3378 ret = -EIO; 3379 goto out; 3380 } 3381 } 3382 3383 if (!dev_valid_name(dev->name)) { 3384 ret = -EINVAL; 3385 goto err_uninit; 3386 } 3387 3388 dev->ifindex = dev_new_index(); 3389 if (dev->iflink == -1) 3390 dev->iflink = dev->ifindex; 3391 3392 /* Check for existence of name */ 3393 head = dev_name_hash(dev->name); 3394 hlist_for_each(p, head) { 3395 struct net_device *d 3396 = hlist_entry(p, struct net_device, name_hlist); 3397 if (!strncmp(d->name, dev->name, IFNAMSIZ)) { 3398 ret = -EEXIST; 3399 goto err_uninit; 3400 } 3401 } 3402 3403 /* Fix illegal checksum combinations */ 3404 if ((dev->features & NETIF_F_HW_CSUM) && 3405 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 3406 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n", 3407 dev->name); 3408 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 3409 } 3410 3411 if ((dev->features & NETIF_F_NO_CSUM) && 3412 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 3413 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n", 3414 dev->name); 3415 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM); 3416 } 3417 3418 3419 /* Fix illegal SG+CSUM combinations. */ 3420 if ((dev->features & NETIF_F_SG) && 3421 !(dev->features & NETIF_F_ALL_CSUM)) { 3422 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no checksum feature.\n", 3423 dev->name); 3424 dev->features &= ~NETIF_F_SG; 3425 } 3426 3427 /* TSO requires that SG is present as well. */ 3428 if ((dev->features & NETIF_F_TSO) && 3429 !(dev->features & NETIF_F_SG)) { 3430 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no SG feature.\n", 3431 dev->name); 3432 dev->features &= ~NETIF_F_TSO; 3433 } 3434 if (dev->features & NETIF_F_UFO) { 3435 if (!(dev->features & NETIF_F_HW_CSUM)) { 3436 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no " 3437 "NETIF_F_HW_CSUM feature.\n", 3438 dev->name); 3439 dev->features &= ~NETIF_F_UFO; 3440 } 3441 if (!(dev->features & NETIF_F_SG)) { 3442 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no " 3443 "NETIF_F_SG feature.\n", 3444 dev->name); 3445 dev->features &= ~NETIF_F_UFO; 3446 } 3447 } 3448 3449 /* 3450 * nil rebuild_header routine, 3451 * that should be never called and used as just bug trap. 3452 */ 3453 3454 if (!dev->rebuild_header) 3455 dev->rebuild_header = default_rebuild_header; 3456 3457 ret = netdev_register_sysfs(dev); 3458 if (ret) 3459 goto err_uninit; 3460 dev->reg_state = NETREG_REGISTERED; 3461 3462 /* 3463 * Default initial state at registry is that the 3464 * device is present. 3465 */ 3466 3467 set_bit(__LINK_STATE_PRESENT, &dev->state); 3468 3469 dev_init_scheduler(dev); 3470 write_lock_bh(&dev_base_lock); 3471 list_add_tail(&dev->dev_list, &dev_base_head); 3472 hlist_add_head(&dev->name_hlist, head); 3473 hlist_add_head(&dev->index_hlist, dev_index_hash(dev->ifindex)); 3474 dev_hold(dev); 3475 write_unlock_bh(&dev_base_lock); 3476 3477 /* Notify protocols, that a new device appeared. */ 3478 ret = raw_notifier_call_chain(&netdev_chain, NETDEV_REGISTER, dev); 3479 ret = notifier_to_errno(ret); 3480 if (ret) 3481 unregister_netdevice(dev); 3482 3483out: 3484 return ret; 3485 3486err_uninit: 3487 if (dev->uninit) 3488 dev->uninit(dev); 3489 goto out; 3490} 3491 3492/** 3493 * register_netdev - register a network device 3494 * @dev: device to register 3495 * 3496 * Take a completed network device structure and add it to the kernel 3497 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 3498 * chain. 0 is returned on success. A negative errno code is returned 3499 * on a failure to set up the device, or if the name is a duplicate. 3500 * 3501 * This is a wrapper around register_netdevice that takes the rtnl semaphore 3502 * and expands the device name if you passed a format string to 3503 * alloc_netdev. 3504 */ 3505int register_netdev(struct net_device *dev) 3506{ 3507 int err; 3508 3509 rtnl_lock(); 3510 3511 /* 3512 * If the name is a format string the caller wants us to do a 3513 * name allocation. 3514 */ 3515 if (strchr(dev->name, '%')) { 3516 err = dev_alloc_name(dev, dev->name); 3517 if (err < 0) 3518 goto out; 3519 } 3520 3521 err = register_netdevice(dev); 3522out: 3523 rtnl_unlock(); 3524 return err; 3525} 3526EXPORT_SYMBOL(register_netdev); 3527 3528/* 3529 * netdev_wait_allrefs - wait until all references are gone. 3530 * 3531 * This is called when unregistering network devices. 3532 * 3533 * Any protocol or device that holds a reference should register 3534 * for netdevice notification, and cleanup and put back the 3535 * reference if they receive an UNREGISTER event. 3536 * We can get stuck here if buggy protocols don't correctly 3537 * call dev_put. 3538 */ 3539static void netdev_wait_allrefs(struct net_device *dev) 3540{ 3541 unsigned long rebroadcast_time, warning_time; 3542 3543 rebroadcast_time = warning_time = jiffies; 3544 while (atomic_read(&dev->refcnt) != 0) { 3545 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 3546 rtnl_lock(); 3547 3548 /* Rebroadcast unregister notification */ 3549 raw_notifier_call_chain(&netdev_chain, 3550 NETDEV_UNREGISTER, dev); 3551 3552 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 3553 &dev->state)) { 3554 /* We must not have linkwatch events 3555 * pending on unregister. If this 3556 * happens, we simply run the queue 3557 * unscheduled, resulting in a noop 3558 * for this device. 3559 */ 3560 linkwatch_run_queue(); 3561 } 3562 3563 __rtnl_unlock(); 3564 3565 rebroadcast_time = jiffies; 3566 } 3567 3568 msleep(250); 3569 3570 if (time_after(jiffies, warning_time + 10 * HZ)) { 3571 printk(KERN_EMERG "unregister_netdevice: " 3572 "waiting for %s to become free. Usage " 3573 "count = %d\n", 3574 dev->name, atomic_read(&dev->refcnt)); 3575 warning_time = jiffies; 3576 } 3577 } 3578} 3579 3580/* The sequence is: 3581 * 3582 * rtnl_lock(); 3583 * ... 3584 * register_netdevice(x1); 3585 * register_netdevice(x2); 3586 * ... 3587 * unregister_netdevice(y1); 3588 * unregister_netdevice(y2); 3589 * ... 3590 * rtnl_unlock(); 3591 * free_netdev(y1); 3592 * free_netdev(y2); 3593 * 3594 * We are invoked by rtnl_unlock() after it drops the semaphore. 3595 * This allows us to deal with problems: 3596 * 1) We can delete sysfs objects which invoke hotplug 3597 * without deadlocking with linkwatch via keventd. 3598 * 2) Since we run with the RTNL semaphore not held, we can sleep 3599 * safely in order to wait for the netdev refcnt to drop to zero. 3600 */ 3601static DEFINE_MUTEX(net_todo_run_mutex); 3602void netdev_run_todo(void) 3603{ 3604 struct list_head list; 3605 3606 /* Need to guard against multiple cpu's getting out of order. */ 3607 mutex_lock(&net_todo_run_mutex); 3608 3609 /* Not safe to do outside the semaphore. We must not return 3610 * until all unregister events invoked by the local processor 3611 * have been completed (either by this todo run, or one on 3612 * another cpu). 3613 */ 3614 if (list_empty(&net_todo_list)) 3615 goto out; 3616 3617 /* Snapshot list, allow later requests */ 3618 spin_lock(&net_todo_list_lock); 3619 list_replace_init(&net_todo_list, &list); 3620 spin_unlock(&net_todo_list_lock); 3621 3622 while (!list_empty(&list)) { 3623 struct net_device *dev 3624 = list_entry(list.next, struct net_device, todo_list); 3625 list_del(&dev->todo_list); 3626 3627 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 3628 printk(KERN_ERR "network todo '%s' but state %d\n", 3629 dev->name, dev->reg_state); 3630 dump_stack(); 3631 continue; 3632 } 3633 3634 dev->reg_state = NETREG_UNREGISTERED; 3635 3636 netdev_wait_allrefs(dev); 3637 3638 /* paranoia */ 3639 BUG_ON(atomic_read(&dev->refcnt)); 3640 BUG_TRAP(!dev->ip_ptr); 3641 BUG_TRAP(!dev->ip6_ptr); 3642 BUG_TRAP(!dev->dn_ptr); 3643 3644 if (dev->destructor) 3645 dev->destructor(dev); 3646 3647 /* Free network device */ 3648 kobject_put(&dev->dev.kobj); 3649 } 3650 3651out: 3652 mutex_unlock(&net_todo_run_mutex); 3653} 3654 3655static struct net_device_stats *internal_stats(struct net_device *dev) 3656{ 3657 return &dev->stats; 3658} 3659 3660/** 3661 * alloc_netdev_mq - allocate network device 3662 * @sizeof_priv: size of private data to allocate space for 3663 * @name: device name format string 3664 * @setup: callback to initialize device 3665 * @queue_count: the number of subqueues to allocate 3666 * 3667 * Allocates a struct net_device with private data area for driver use 3668 * and performs basic initialization. Also allocates subquue structs 3669 * for each queue on the device at the end of the netdevice. 3670 */ 3671struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name, 3672 void (*setup)(struct net_device *), unsigned int queue_count) 3673{ 3674 void *p; 3675 struct net_device *dev; 3676 int alloc_size; 3677 3678 BUG_ON(strlen(name) >= sizeof(dev->name)); 3679 3680 /* ensure 32-byte alignment of both the device and private area */ 3681 alloc_size = (sizeof(*dev) + NETDEV_ALIGN_CONST + 3682 (sizeof(struct net_device_subqueue) * (queue_count - 1))) & 3683 ~NETDEV_ALIGN_CONST; 3684 alloc_size += sizeof_priv + NETDEV_ALIGN_CONST; 3685 3686 p = kzalloc(alloc_size, GFP_KERNEL); 3687 if (!p) { 3688 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n"); 3689 return NULL; 3690 } 3691 3692 dev = (struct net_device *) 3693 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST); 3694 dev->padded = (char *)dev - (char *)p; 3695 3696 if (sizeof_priv) { 3697 dev->priv = ((char *)dev + 3698 ((sizeof(struct net_device) + 3699 (sizeof(struct net_device_subqueue) * 3700 (queue_count - 1)) + NETDEV_ALIGN_CONST) 3701 & ~NETDEV_ALIGN_CONST)); 3702 } 3703 3704 dev->egress_subqueue_count = queue_count; 3705 3706 dev->get_stats = internal_stats; 3707 setup(dev); 3708 strcpy(dev->name, name); 3709 return dev; 3710} 3711EXPORT_SYMBOL(alloc_netdev_mq); 3712 3713/** 3714 * free_netdev - free network device 3715 * @dev: device 3716 * 3717 * This function does the last stage of destroying an allocated device 3718 * interface. The reference to the device object is released. 3719 * If this is the last reference then it will be freed. 3720 */ 3721void free_netdev(struct net_device *dev) 3722{ 3723#ifdef CONFIG_SYSFS 3724 /* Compatibility with error handling in drivers */ 3725 if (dev->reg_state == NETREG_UNINITIALIZED) { 3726 kfree((char *)dev - dev->padded); 3727 return; 3728 } 3729 3730 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 3731 dev->reg_state = NETREG_RELEASED; 3732 3733 /* will free via device release */ 3734 put_device(&dev->dev); 3735#else 3736 kfree((char *)dev - dev->padded); 3737#endif 3738} 3739 3740/* Synchronize with packet receive processing. */ 3741void synchronize_net(void) 3742{ 3743 might_sleep(); 3744 synchronize_rcu(); 3745} 3746 3747/** 3748 * unregister_netdevice - remove device from the kernel 3749 * @dev: device 3750 * 3751 * This function shuts down a device interface and removes it 3752 * from the kernel tables. On success 0 is returned, on a failure 3753 * a negative errno code is returned. 3754 * 3755 * Callers must hold the rtnl semaphore. You may want 3756 * unregister_netdev() instead of this. 3757 */ 3758 3759void unregister_netdevice(struct net_device *dev) 3760{ 3761 BUG_ON(dev_boot_phase); 3762 ASSERT_RTNL(); 3763 3764 /* Some devices call without registering for initialization unwind. */ 3765 if (dev->reg_state == NETREG_UNINITIALIZED) { 3766 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never " 3767 "was registered\n", dev->name, dev); 3768 3769 WARN_ON(1); 3770 return; 3771 } 3772 3773 BUG_ON(dev->reg_state != NETREG_REGISTERED); 3774 3775 /* If device is running, close it first. */ 3776 if (dev->flags & IFF_UP) 3777 dev_close(dev); 3778 3779 /* And unlink it from device chain. */ 3780 write_lock_bh(&dev_base_lock); 3781 list_del(&dev->dev_list); 3782 hlist_del(&dev->name_hlist); 3783 hlist_del(&dev->index_hlist); 3784 write_unlock_bh(&dev_base_lock); 3785 3786 dev->reg_state = NETREG_UNREGISTERING; 3787 3788 synchronize_net(); 3789 3790 /* Shutdown queueing discipline. */ 3791 dev_shutdown(dev); 3792 3793 3794 /* Notify protocols, that we are about to destroy 3795 this device. They should clean all the things. 3796 */ 3797 raw_notifier_call_chain(&netdev_chain, NETDEV_UNREGISTER, dev); 3798 3799 /* 3800 * Flush the unicast and multicast chains 3801 */ 3802 dev_addr_discard(dev); 3803 3804 if (dev->uninit) 3805 dev->uninit(dev); 3806 3807 /* Notifier chain MUST detach us from master device. */ 3808 BUG_TRAP(!dev->master); 3809 3810 /* Remove entries from sysfs */ 3811 netdev_unregister_sysfs(dev); 3812 3813 /* Finish processing unregister after unlock */ 3814 net_set_todo(dev); 3815 3816 synchronize_net(); 3817 3818 dev_put(dev); 3819} 3820 3821/** 3822 * unregister_netdev - remove device from the kernel 3823 * @dev: device 3824 * 3825 * This function shuts down a device interface and removes it 3826 * from the kernel tables. On success 0 is returned, on a failure 3827 * a negative errno code is returned. 3828 * 3829 * This is just a wrapper for unregister_netdevice that takes 3830 * the rtnl semaphore. In general you want to use this and not 3831 * unregister_netdevice. 3832 */ 3833void unregister_netdev(struct net_device *dev) 3834{ 3835 rtnl_lock(); 3836 unregister_netdevice(dev); 3837 rtnl_unlock(); 3838} 3839 3840EXPORT_SYMBOL(unregister_netdev); 3841 3842static int dev_cpu_callback(struct notifier_block *nfb, 3843 unsigned long action, 3844 void *ocpu) 3845{ 3846 struct sk_buff **list_skb; 3847 struct net_device **list_net; 3848 struct sk_buff *skb; 3849 unsigned int cpu, oldcpu = (unsigned long)ocpu; 3850 struct softnet_data *sd, *oldsd; 3851 3852 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 3853 return NOTIFY_OK; 3854 3855 local_irq_disable(); 3856 cpu = smp_processor_id(); 3857 sd = &per_cpu(softnet_data, cpu); 3858 oldsd = &per_cpu(softnet_data, oldcpu); 3859 3860 /* Find end of our completion_queue. */ 3861 list_skb = &sd->completion_queue; 3862 while (*list_skb) 3863 list_skb = &(*list_skb)->next; 3864 /* Append completion queue from offline CPU. */ 3865 *list_skb = oldsd->completion_queue; 3866 oldsd->completion_queue = NULL; 3867 3868 /* Find end of our output_queue. */ 3869 list_net = &sd->output_queue; 3870 while (*list_net) 3871 list_net = &(*list_net)->next_sched; 3872 /* Append output queue from offline CPU. */ 3873 *list_net = oldsd->output_queue; 3874 oldsd->output_queue = NULL; 3875 3876 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3877 local_irq_enable(); 3878 3879 /* Process offline CPU's input_pkt_queue */ 3880 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) 3881 netif_rx(skb); 3882 3883 return NOTIFY_OK; 3884} 3885 3886#ifdef CONFIG_NET_DMA 3887/** 3888 * net_dma_rebalance - try to maintain one DMA channel per CPU 3889 * @net_dma: DMA client and associated data (lock, channels, channel_mask) 3890 * 3891 * This is called when the number of channels allocated to the net_dma client 3892 * changes. The net_dma client tries to have one DMA channel per CPU. 3893 */ 3894 3895static void net_dma_rebalance(struct net_dma *net_dma) 3896{ 3897 unsigned int cpu, i, n, chan_idx; 3898 struct dma_chan *chan; 3899 3900 if (cpus_empty(net_dma->channel_mask)) { 3901 for_each_online_cpu(cpu) 3902 rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL); 3903 return; 3904 } 3905 3906 i = 0; 3907 cpu = first_cpu(cpu_online_map); 3908 3909 for_each_cpu_mask(chan_idx, net_dma->channel_mask) { 3910 chan = net_dma->channels[chan_idx]; 3911 3912 n = ((num_online_cpus() / cpus_weight(net_dma->channel_mask)) 3913 + (i < (num_online_cpus() % 3914 cpus_weight(net_dma->channel_mask)) ? 1 : 0)); 3915 3916 while(n) { 3917 per_cpu(softnet_data, cpu).net_dma = chan; 3918 cpu = next_cpu(cpu, cpu_online_map); 3919 n--; 3920 } 3921 i++; 3922 } 3923} 3924 3925/** 3926 * netdev_dma_event - event callback for the net_dma_client 3927 * @client: should always be net_dma_client 3928 * @chan: DMA channel for the event 3929 * @state: DMA state to be handled 3930 */ 3931static enum dma_state_client 3932netdev_dma_event(struct dma_client *client, struct dma_chan *chan, 3933 enum dma_state state) 3934{ 3935 int i, found = 0, pos = -1; 3936 struct net_dma *net_dma = 3937 container_of(client, struct net_dma, client); 3938 enum dma_state_client ack = DMA_DUP; /* default: take no action */ 3939 3940 spin_lock(&net_dma->lock); 3941 switch (state) { 3942 case DMA_RESOURCE_AVAILABLE: 3943 for (i = 0; i < NR_CPUS; i++) 3944 if (net_dma->channels[i] == chan) { 3945 found = 1; 3946 break; 3947 } else if (net_dma->channels[i] == NULL && pos < 0) 3948 pos = i; 3949 3950 if (!found && pos >= 0) { 3951 ack = DMA_ACK; 3952 net_dma->channels[pos] = chan; 3953 cpu_set(pos, net_dma->channel_mask); 3954 net_dma_rebalance(net_dma); 3955 } 3956 break; 3957 case DMA_RESOURCE_REMOVED: 3958 for (i = 0; i < NR_CPUS; i++) 3959 if (net_dma->channels[i] == chan) { 3960 found = 1; 3961 pos = i; 3962 break; 3963 } 3964 3965 if (found) { 3966 ack = DMA_ACK; 3967 cpu_clear(pos, net_dma->channel_mask); 3968 net_dma->channels[i] = NULL; 3969 net_dma_rebalance(net_dma); 3970 } 3971 break; 3972 default: 3973 break; 3974 } 3975 spin_unlock(&net_dma->lock); 3976 3977 return ack; 3978} 3979 3980/** 3981 * netdev_dma_regiser - register the networking subsystem as a DMA client 3982 */ 3983static int __init netdev_dma_register(void) 3984{ 3985 spin_lock_init(&net_dma.lock); 3986 dma_cap_set(DMA_MEMCPY, net_dma.client.cap_mask); 3987 dma_async_client_register(&net_dma.client); 3988 dma_async_client_chan_request(&net_dma.client); 3989 return 0; 3990} 3991 3992#else 3993static int __init netdev_dma_register(void) { return -ENODEV; } 3994#endif /* CONFIG_NET_DMA */ 3995 3996/** 3997 * netdev_compute_feature - compute conjunction of two feature sets 3998 * @all: first feature set 3999 * @one: second feature set 4000 * 4001 * Computes a new feature set after adding a device with feature set 4002 * @one to the master device with current feature set @all. Returns 4003 * the new feature set. 4004 */ 4005int netdev_compute_features(unsigned long all, unsigned long one) 4006{ 4007 /* if device needs checksumming, downgrade to hw checksumming */ 4008 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM)) 4009 all ^= NETIF_F_NO_CSUM | NETIF_F_HW_CSUM; 4010 4011 /* if device can't do all checksum, downgrade to ipv4/ipv6 */ 4012 if (all & NETIF_F_HW_CSUM && !(one & NETIF_F_HW_CSUM)) 4013 all ^= NETIF_F_HW_CSUM 4014 | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; 4015 4016 if (one & NETIF_F_GSO) 4017 one |= NETIF_F_GSO_SOFTWARE; 4018 one |= NETIF_F_GSO; 4019 4020 /* If even one device supports robust GSO, enable it for all. */ 4021 if (one & NETIF_F_GSO_ROBUST) 4022 all |= NETIF_F_GSO_ROBUST; 4023 4024 all &= one | NETIF_F_LLTX; 4025 4026 if (!(all & NETIF_F_ALL_CSUM)) 4027 all &= ~NETIF_F_SG; 4028 if (!(all & NETIF_F_SG)) 4029 all &= ~NETIF_F_GSO_MASK; 4030 4031 return all; 4032} 4033EXPORT_SYMBOL(netdev_compute_features); 4034 4035/* 4036 * Initialize the DEV module. At boot time this walks the device list and 4037 * unhooks any devices that fail to initialise (normally hardware not 4038 * present) and leaves us with a valid list of present and active devices. 4039 * 4040 */ 4041 4042/* 4043 * This is called single threaded during boot, so no need 4044 * to take the rtnl semaphore. 4045 */ 4046static int __init net_dev_init(void) 4047{ 4048 int i, rc = -ENOMEM; 4049 4050 BUG_ON(!dev_boot_phase); 4051 4052 if (dev_proc_init()) 4053 goto out; 4054 4055 if (netdev_sysfs_init()) 4056 goto out; 4057 4058 INIT_LIST_HEAD(&ptype_all); 4059 for (i = 0; i < 16; i++) 4060 INIT_LIST_HEAD(&ptype_base[i]); 4061 4062 for (i = 0; i < ARRAY_SIZE(dev_name_head); i++) 4063 INIT_HLIST_HEAD(&dev_name_head[i]); 4064 4065 for (i = 0; i < ARRAY_SIZE(dev_index_head); i++) 4066 INIT_HLIST_HEAD(&dev_index_head[i]); 4067 4068 /* 4069 * Initialise the packet receive queues. 4070 */ 4071 4072 for_each_possible_cpu(i) { 4073 struct softnet_data *queue; 4074 4075 queue = &per_cpu(softnet_data, i); 4076 skb_queue_head_init(&queue->input_pkt_queue); 4077 queue->completion_queue = NULL; 4078 INIT_LIST_HEAD(&queue->poll_list); 4079 set_bit(__LINK_STATE_START, &queue->backlog_dev.state); 4080 queue->backlog_dev.weight = weight_p; 4081 queue->backlog_dev.poll = process_backlog; 4082 atomic_set(&queue->backlog_dev.refcnt, 1); 4083 } 4084 4085 netdev_dma_register(); 4086 4087 dev_boot_phase = 0; 4088 4089 open_softirq(NET_TX_SOFTIRQ, net_tx_action, NULL); 4090 open_softirq(NET_RX_SOFTIRQ, net_rx_action, NULL); 4091 4092 hotcpu_notifier(dev_cpu_callback, 0); 4093 dst_init(); 4094 dev_mcast_init(); 4095 rc = 0; 4096out: 4097 return rc; 4098} 4099 4100subsys_initcall(net_dev_init); 4101 4102EXPORT_SYMBOL(__dev_get_by_index); 4103EXPORT_SYMBOL(__dev_get_by_name); 4104EXPORT_SYMBOL(__dev_remove_pack); 4105EXPORT_SYMBOL(dev_valid_name); 4106EXPORT_SYMBOL(dev_add_pack); 4107EXPORT_SYMBOL(dev_alloc_name); 4108EXPORT_SYMBOL(dev_close); 4109EXPORT_SYMBOL(dev_get_by_flags); 4110EXPORT_SYMBOL(dev_get_by_index); 4111EXPORT_SYMBOL(dev_get_by_name); 4112EXPORT_SYMBOL(dev_open); 4113EXPORT_SYMBOL(dev_queue_xmit); 4114EXPORT_SYMBOL(dev_remove_pack); 4115EXPORT_SYMBOL(dev_set_allmulti); 4116EXPORT_SYMBOL(dev_set_promiscuity); 4117EXPORT_SYMBOL(dev_change_flags); 4118EXPORT_SYMBOL(dev_set_mtu); 4119EXPORT_SYMBOL(dev_set_mac_address); 4120EXPORT_SYMBOL(free_netdev); 4121EXPORT_SYMBOL(netdev_boot_setup_check); 4122EXPORT_SYMBOL(netdev_set_master); 4123EXPORT_SYMBOL(netdev_state_change); 4124EXPORT_SYMBOL(netif_receive_skb); 4125EXPORT_SYMBOL(netif_rx); 4126EXPORT_SYMBOL(register_gifconf); 4127EXPORT_SYMBOL(register_netdevice); 4128EXPORT_SYMBOL(register_netdevice_notifier); 4129EXPORT_SYMBOL(skb_checksum_help); 4130EXPORT_SYMBOL(synchronize_net); 4131EXPORT_SYMBOL(unregister_netdevice); 4132EXPORT_SYMBOL(unregister_netdevice_notifier); 4133EXPORT_SYMBOL(net_enable_timestamp); 4134EXPORT_SYMBOL(net_disable_timestamp); 4135EXPORT_SYMBOL(dev_get_flags); 4136 4137#if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE) 4138EXPORT_SYMBOL(br_handle_frame_hook); 4139EXPORT_SYMBOL(br_fdb_get_hook); 4140EXPORT_SYMBOL(br_fdb_put_hook); 4141#endif 4142 4143#ifdef CONFIG_KMOD 4144EXPORT_SYMBOL(dev_load); 4145#endif 4146 4147EXPORT_PER_CPU_SYMBOL(softnet_data);