at v2.6.23 62 kB view raw
1#ifndef __LINUX_USB_H 2#define __LINUX_USB_H 3 4#include <linux/mod_devicetable.h> 5#include <linux/usb/ch9.h> 6 7#define USB_MAJOR 180 8#define USB_DEVICE_MAJOR 189 9 10 11#ifdef __KERNEL__ 12 13#include <linux/errno.h> /* for -ENODEV */ 14#include <linux/delay.h> /* for mdelay() */ 15#include <linux/interrupt.h> /* for in_interrupt() */ 16#include <linux/list.h> /* for struct list_head */ 17#include <linux/kref.h> /* for struct kref */ 18#include <linux/device.h> /* for struct device */ 19#include <linux/fs.h> /* for struct file_operations */ 20#include <linux/completion.h> /* for struct completion */ 21#include <linux/sched.h> /* for current && schedule_timeout */ 22#include <linux/mutex.h> /* for struct mutex */ 23 24struct usb_device; 25struct usb_driver; 26 27/*-------------------------------------------------------------------------*/ 28 29/* 30 * Host-side wrappers for standard USB descriptors ... these are parsed 31 * from the data provided by devices. Parsing turns them from a flat 32 * sequence of descriptors into a hierarchy: 33 * 34 * - devices have one (usually) or more configs; 35 * - configs have one (often) or more interfaces; 36 * - interfaces have one (usually) or more settings; 37 * - each interface setting has zero or (usually) more endpoints. 38 * 39 * And there might be other descriptors mixed in with those. 40 * 41 * Devices may also have class-specific or vendor-specific descriptors. 42 */ 43 44struct ep_device; 45 46/** 47 * struct usb_host_endpoint - host-side endpoint descriptor and queue 48 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder 49 * @urb_list: urbs queued to this endpoint; maintained by usbcore 50 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH) 51 * with one or more transfer descriptors (TDs) per urb 52 * @ep_dev: ep_device for sysfs info 53 * @extra: descriptors following this endpoint in the configuration 54 * @extralen: how many bytes of "extra" are valid 55 * 56 * USB requests are always queued to a given endpoint, identified by a 57 * descriptor within an active interface in a given USB configuration. 58 */ 59struct usb_host_endpoint { 60 struct usb_endpoint_descriptor desc; 61 struct list_head urb_list; 62 void *hcpriv; 63 struct ep_device *ep_dev; /* For sysfs info */ 64 65 unsigned char *extra; /* Extra descriptors */ 66 int extralen; 67}; 68 69/* host-side wrapper for one interface setting's parsed descriptors */ 70struct usb_host_interface { 71 struct usb_interface_descriptor desc; 72 73 /* array of desc.bNumEndpoint endpoints associated with this 74 * interface setting. these will be in no particular order. 75 */ 76 struct usb_host_endpoint *endpoint; 77 78 char *string; /* iInterface string, if present */ 79 unsigned char *extra; /* Extra descriptors */ 80 int extralen; 81}; 82 83enum usb_interface_condition { 84 USB_INTERFACE_UNBOUND = 0, 85 USB_INTERFACE_BINDING, 86 USB_INTERFACE_BOUND, 87 USB_INTERFACE_UNBINDING, 88}; 89 90/** 91 * struct usb_interface - what usb device drivers talk to 92 * @altsetting: array of interface structures, one for each alternate 93 * setting that may be selected. Each one includes a set of 94 * endpoint configurations. They will be in no particular order. 95 * @num_altsetting: number of altsettings defined. 96 * @cur_altsetting: the current altsetting. 97 * @intf_assoc: interface association descriptor 98 * @driver: the USB driver that is bound to this interface. 99 * @minor: the minor number assigned to this interface, if this 100 * interface is bound to a driver that uses the USB major number. 101 * If this interface does not use the USB major, this field should 102 * be unused. The driver should set this value in the probe() 103 * function of the driver, after it has been assigned a minor 104 * number from the USB core by calling usb_register_dev(). 105 * @condition: binding state of the interface: not bound, binding 106 * (in probe()), bound to a driver, or unbinding (in disconnect()) 107 * @is_active: flag set when the interface is bound and not suspended. 108 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup 109 * capability during autosuspend. 110 * @dev: driver model's view of this device 111 * @usb_dev: if an interface is bound to the USB major, this will point 112 * to the sysfs representation for that device. 113 * @pm_usage_cnt: PM usage counter for this interface; autosuspend is not 114 * allowed unless the counter is 0. 115 * 116 * USB device drivers attach to interfaces on a physical device. Each 117 * interface encapsulates a single high level function, such as feeding 118 * an audio stream to a speaker or reporting a change in a volume control. 119 * Many USB devices only have one interface. The protocol used to talk to 120 * an interface's endpoints can be defined in a usb "class" specification, 121 * or by a product's vendor. The (default) control endpoint is part of 122 * every interface, but is never listed among the interface's descriptors. 123 * 124 * The driver that is bound to the interface can use standard driver model 125 * calls such as dev_get_drvdata() on the dev member of this structure. 126 * 127 * Each interface may have alternate settings. The initial configuration 128 * of a device sets altsetting 0, but the device driver can change 129 * that setting using usb_set_interface(). Alternate settings are often 130 * used to control the use of periodic endpoints, such as by having 131 * different endpoints use different amounts of reserved USB bandwidth. 132 * All standards-conformant USB devices that use isochronous endpoints 133 * will use them in non-default settings. 134 * 135 * The USB specification says that alternate setting numbers must run from 136 * 0 to one less than the total number of alternate settings. But some 137 * devices manage to mess this up, and the structures aren't necessarily 138 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to 139 * look up an alternate setting in the altsetting array based on its number. 140 */ 141struct usb_interface { 142 /* array of alternate settings for this interface, 143 * stored in no particular order */ 144 struct usb_host_interface *altsetting; 145 146 struct usb_host_interface *cur_altsetting; /* the currently 147 * active alternate setting */ 148 unsigned num_altsetting; /* number of alternate settings */ 149 150 /* If there is an interface association descriptor then it will list 151 * the associated interfaces */ 152 struct usb_interface_assoc_descriptor *intf_assoc; 153 154 int minor; /* minor number this interface is 155 * bound to */ 156 enum usb_interface_condition condition; /* state of binding */ 157 unsigned is_active:1; /* the interface is not suspended */ 158 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */ 159 160 struct device dev; /* interface specific device info */ 161 struct device *usb_dev; /* pointer to the usb class's device, if any */ 162 int pm_usage_cnt; /* usage counter for autosuspend */ 163}; 164#define to_usb_interface(d) container_of(d, struct usb_interface, dev) 165#define interface_to_usbdev(intf) \ 166 container_of(intf->dev.parent, struct usb_device, dev) 167 168static inline void *usb_get_intfdata (struct usb_interface *intf) 169{ 170 return dev_get_drvdata (&intf->dev); 171} 172 173static inline void usb_set_intfdata (struct usb_interface *intf, void *data) 174{ 175 dev_set_drvdata(&intf->dev, data); 176} 177 178struct usb_interface *usb_get_intf(struct usb_interface *intf); 179void usb_put_intf(struct usb_interface *intf); 180 181/* this maximum is arbitrary */ 182#define USB_MAXINTERFACES 32 183#define USB_MAXIADS USB_MAXINTERFACES/2 184 185/** 186 * struct usb_interface_cache - long-term representation of a device interface 187 * @num_altsetting: number of altsettings defined. 188 * @ref: reference counter. 189 * @altsetting: variable-length array of interface structures, one for 190 * each alternate setting that may be selected. Each one includes a 191 * set of endpoint configurations. They will be in no particular order. 192 * 193 * These structures persist for the lifetime of a usb_device, unlike 194 * struct usb_interface (which persists only as long as its configuration 195 * is installed). The altsetting arrays can be accessed through these 196 * structures at any time, permitting comparison of configurations and 197 * providing support for the /proc/bus/usb/devices pseudo-file. 198 */ 199struct usb_interface_cache { 200 unsigned num_altsetting; /* number of alternate settings */ 201 struct kref ref; /* reference counter */ 202 203 /* variable-length array of alternate settings for this interface, 204 * stored in no particular order */ 205 struct usb_host_interface altsetting[0]; 206}; 207#define ref_to_usb_interface_cache(r) \ 208 container_of(r, struct usb_interface_cache, ref) 209#define altsetting_to_usb_interface_cache(a) \ 210 container_of(a, struct usb_interface_cache, altsetting[0]) 211 212/** 213 * struct usb_host_config - representation of a device's configuration 214 * @desc: the device's configuration descriptor. 215 * @string: pointer to the cached version of the iConfiguration string, if 216 * present for this configuration. 217 * @intf_assoc: list of any interface association descriptors in this config 218 * @interface: array of pointers to usb_interface structures, one for each 219 * interface in the configuration. The number of interfaces is stored 220 * in desc.bNumInterfaces. These pointers are valid only while the 221 * the configuration is active. 222 * @intf_cache: array of pointers to usb_interface_cache structures, one 223 * for each interface in the configuration. These structures exist 224 * for the entire life of the device. 225 * @extra: pointer to buffer containing all extra descriptors associated 226 * with this configuration (those preceding the first interface 227 * descriptor). 228 * @extralen: length of the extra descriptors buffer. 229 * 230 * USB devices may have multiple configurations, but only one can be active 231 * at any time. Each encapsulates a different operational environment; 232 * for example, a dual-speed device would have separate configurations for 233 * full-speed and high-speed operation. The number of configurations 234 * available is stored in the device descriptor as bNumConfigurations. 235 * 236 * A configuration can contain multiple interfaces. Each corresponds to 237 * a different function of the USB device, and all are available whenever 238 * the configuration is active. The USB standard says that interfaces 239 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot 240 * of devices get this wrong. In addition, the interface array is not 241 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to 242 * look up an interface entry based on its number. 243 * 244 * Device drivers should not attempt to activate configurations. The choice 245 * of which configuration to install is a policy decision based on such 246 * considerations as available power, functionality provided, and the user's 247 * desires (expressed through userspace tools). However, drivers can call 248 * usb_reset_configuration() to reinitialize the current configuration and 249 * all its interfaces. 250 */ 251struct usb_host_config { 252 struct usb_config_descriptor desc; 253 254 char *string; /* iConfiguration string, if present */ 255 256 /* List of any Interface Association Descriptors in this 257 * configuration. */ 258 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS]; 259 260 /* the interfaces associated with this configuration, 261 * stored in no particular order */ 262 struct usb_interface *interface[USB_MAXINTERFACES]; 263 264 /* Interface information available even when this is not the 265 * active configuration */ 266 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES]; 267 268 unsigned char *extra; /* Extra descriptors */ 269 int extralen; 270}; 271 272int __usb_get_extra_descriptor(char *buffer, unsigned size, 273 unsigned char type, void **ptr); 274#define usb_get_extra_descriptor(ifpoint,type,ptr)\ 275 __usb_get_extra_descriptor((ifpoint)->extra,(ifpoint)->extralen,\ 276 type,(void**)ptr) 277 278/* ----------------------------------------------------------------------- */ 279 280/* USB device number allocation bitmap */ 281struct usb_devmap { 282 unsigned long devicemap[128 / (8*sizeof(unsigned long))]; 283}; 284 285/* 286 * Allocated per bus (tree of devices) we have: 287 */ 288struct usb_bus { 289 struct device *controller; /* host/master side hardware */ 290 int busnum; /* Bus number (in order of reg) */ 291 char *bus_name; /* stable id (PCI slot_name etc) */ 292 u8 uses_dma; /* Does the host controller use DMA? */ 293 u8 otg_port; /* 0, or number of OTG/HNP port */ 294 unsigned is_b_host:1; /* true during some HNP roleswitches */ 295 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */ 296 297 int devnum_next; /* Next open device number in 298 * round-robin allocation */ 299 300 struct usb_devmap devmap; /* device address allocation map */ 301 struct usb_device *root_hub; /* Root hub */ 302 struct list_head bus_list; /* list of busses */ 303 304 int bandwidth_allocated; /* on this bus: how much of the time 305 * reserved for periodic (intr/iso) 306 * requests is used, on average? 307 * Units: microseconds/frame. 308 * Limits: Full/low speed reserve 90%, 309 * while high speed reserves 80%. 310 */ 311 int bandwidth_int_reqs; /* number of Interrupt requests */ 312 int bandwidth_isoc_reqs; /* number of Isoc. requests */ 313 314#ifdef CONFIG_USB_DEVICEFS 315 struct dentry *usbfs_dentry; /* usbfs dentry entry for the bus */ 316#endif 317 struct class_device *class_dev; /* class device for this bus */ 318 319#if defined(CONFIG_USB_MON) 320 struct mon_bus *mon_bus; /* non-null when associated */ 321 int monitored; /* non-zero when monitored */ 322#endif 323}; 324 325/* ----------------------------------------------------------------------- */ 326 327/* This is arbitrary. 328 * From USB 2.0 spec Table 11-13, offset 7, a hub can 329 * have up to 255 ports. The most yet reported is 10. 330 * 331 * Current Wireless USB host hardware (Intel i1480 for example) allows 332 * up to 22 devices to connect. Upcoming hardware might raise that 333 * limit. Because the arrays need to add a bit for hub status data, we 334 * do 31, so plus one evens out to four bytes. 335 */ 336#define USB_MAXCHILDREN (31) 337 338struct usb_tt; 339 340/* 341 * struct usb_device - kernel's representation of a USB device 342 * 343 * FIXME: Write the kerneldoc! 344 * 345 * Usbcore drivers should not set usbdev->state directly. Instead use 346 * usb_set_device_state(). 347 */ 348struct usb_device { 349 int devnum; /* Address on USB bus */ 350 char devpath [16]; /* Use in messages: /port/port/... */ 351 enum usb_device_state state; /* configured, not attached, etc */ 352 enum usb_device_speed speed; /* high/full/low (or error) */ 353 354 struct usb_tt *tt; /* low/full speed dev, highspeed hub */ 355 int ttport; /* device port on that tt hub */ 356 357 unsigned int toggle[2]; /* one bit for each endpoint 358 * ([0] = IN, [1] = OUT) */ 359 360 struct usb_device *parent; /* our hub, unless we're the root */ 361 struct usb_bus *bus; /* Bus we're part of */ 362 struct usb_host_endpoint ep0; 363 364 struct device dev; /* Generic device interface */ 365 366 struct usb_device_descriptor descriptor;/* Descriptor */ 367 struct usb_host_config *config; /* All of the configs */ 368 369 struct usb_host_config *actconfig;/* the active configuration */ 370 struct usb_host_endpoint *ep_in[16]; 371 struct usb_host_endpoint *ep_out[16]; 372 373 char **rawdescriptors; /* Raw descriptors for each config */ 374 375 unsigned short bus_mA; /* Current available from the bus */ 376 u8 portnum; /* Parent port number (origin 1) */ 377 u8 level; /* Number of USB hub ancestors */ 378 379 unsigned discon_suspended:1; /* Disconnected while suspended */ 380 unsigned have_langid:1; /* whether string_langid is valid */ 381 int string_langid; /* language ID for strings */ 382 383 /* static strings from the device */ 384 char *product; /* iProduct string, if present */ 385 char *manufacturer; /* iManufacturer string, if present */ 386 char *serial; /* iSerialNumber string, if present */ 387 388 struct list_head filelist; 389#ifdef CONFIG_USB_DEVICE_CLASS 390 struct device *usb_classdev; 391#endif 392#ifdef CONFIG_USB_DEVICEFS 393 struct dentry *usbfs_dentry; /* usbfs dentry entry for the device */ 394#endif 395 /* 396 * Child devices - these can be either new devices 397 * (if this is a hub device), or different instances 398 * of this same device. 399 * 400 * Each instance needs its own set of data structures. 401 */ 402 403 int maxchild; /* Number of ports if hub */ 404 struct usb_device *children[USB_MAXCHILDREN]; 405 406 int pm_usage_cnt; /* usage counter for autosuspend */ 407 u32 quirks; /* quirks of the whole device */ 408 409#ifdef CONFIG_PM 410 struct delayed_work autosuspend; /* for delayed autosuspends */ 411 struct mutex pm_mutex; /* protects PM operations */ 412 413 unsigned long last_busy; /* time of last use */ 414 int autosuspend_delay; /* in jiffies */ 415 416 unsigned auto_pm:1; /* autosuspend/resume in progress */ 417 unsigned do_remote_wakeup:1; /* remote wakeup should be enabled */ 418 unsigned reset_resume:1; /* needs reset instead of resume */ 419 unsigned persist_enabled:1; /* USB_PERSIST enabled for this dev */ 420 unsigned autosuspend_disabled:1; /* autosuspend and autoresume */ 421 unsigned autoresume_disabled:1; /* disabled by the user */ 422#endif 423}; 424#define to_usb_device(d) container_of(d, struct usb_device, dev) 425 426extern struct usb_device *usb_get_dev(struct usb_device *dev); 427extern void usb_put_dev(struct usb_device *dev); 428 429/* USB device locking */ 430#define usb_lock_device(udev) down(&(udev)->dev.sem) 431#define usb_unlock_device(udev) up(&(udev)->dev.sem) 432#define usb_trylock_device(udev) down_trylock(&(udev)->dev.sem) 433extern int usb_lock_device_for_reset(struct usb_device *udev, 434 const struct usb_interface *iface); 435 436/* USB port reset for device reinitialization */ 437extern int usb_reset_device(struct usb_device *dev); 438extern int usb_reset_composite_device(struct usb_device *dev, 439 struct usb_interface *iface); 440 441extern struct usb_device *usb_find_device(u16 vendor_id, u16 product_id); 442 443/* USB autosuspend and autoresume */ 444#ifdef CONFIG_USB_SUSPEND 445extern int usb_autopm_set_interface(struct usb_interface *intf); 446extern int usb_autopm_get_interface(struct usb_interface *intf); 447extern void usb_autopm_put_interface(struct usb_interface *intf); 448 449static inline void usb_autopm_enable(struct usb_interface *intf) 450{ 451 intf->pm_usage_cnt = 0; 452 usb_autopm_set_interface(intf); 453} 454 455static inline void usb_autopm_disable(struct usb_interface *intf) 456{ 457 intf->pm_usage_cnt = 1; 458 usb_autopm_set_interface(intf); 459} 460 461static inline void usb_mark_last_busy(struct usb_device *udev) 462{ 463 udev->last_busy = jiffies; 464} 465 466#else 467 468static inline int usb_autopm_set_interface(struct usb_interface *intf) 469{ return 0; } 470 471static inline int usb_autopm_get_interface(struct usb_interface *intf) 472{ return 0; } 473 474static inline void usb_autopm_put_interface(struct usb_interface *intf) 475{ } 476static inline void usb_autopm_enable(struct usb_interface *intf) 477{ } 478static inline void usb_autopm_disable(struct usb_interface *intf) 479{ } 480static inline void usb_mark_last_busy(struct usb_device *udev) 481{ } 482#endif 483 484/*-------------------------------------------------------------------------*/ 485 486/* for drivers using iso endpoints */ 487extern int usb_get_current_frame_number (struct usb_device *usb_dev); 488 489/* used these for multi-interface device registration */ 490extern int usb_driver_claim_interface(struct usb_driver *driver, 491 struct usb_interface *iface, void* priv); 492 493/** 494 * usb_interface_claimed - returns true iff an interface is claimed 495 * @iface: the interface being checked 496 * 497 * Returns true (nonzero) iff the interface is claimed, else false (zero). 498 * Callers must own the driver model's usb bus readlock. So driver 499 * probe() entries don't need extra locking, but other call contexts 500 * may need to explicitly claim that lock. 501 * 502 */ 503static inline int usb_interface_claimed(struct usb_interface *iface) { 504 return (iface->dev.driver != NULL); 505} 506 507extern void usb_driver_release_interface(struct usb_driver *driver, 508 struct usb_interface *iface); 509const struct usb_device_id *usb_match_id(struct usb_interface *interface, 510 const struct usb_device_id *id); 511extern int usb_match_one_id(struct usb_interface *interface, 512 const struct usb_device_id *id); 513 514extern struct usb_interface *usb_find_interface(struct usb_driver *drv, 515 int minor); 516extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev, 517 unsigned ifnum); 518extern struct usb_host_interface *usb_altnum_to_altsetting( 519 const struct usb_interface *intf, unsigned int altnum); 520 521 522/** 523 * usb_make_path - returns stable device path in the usb tree 524 * @dev: the device whose path is being constructed 525 * @buf: where to put the string 526 * @size: how big is "buf"? 527 * 528 * Returns length of the string (> 0) or negative if size was too small. 529 * 530 * This identifier is intended to be "stable", reflecting physical paths in 531 * hardware such as physical bus addresses for host controllers or ports on 532 * USB hubs. That makes it stay the same until systems are physically 533 * reconfigured, by re-cabling a tree of USB devices or by moving USB host 534 * controllers. Adding and removing devices, including virtual root hubs 535 * in host controller driver modules, does not change these path identifers; 536 * neither does rebooting or re-enumerating. These are more useful identifiers 537 * than changeable ("unstable") ones like bus numbers or device addresses. 538 * 539 * With a partial exception for devices connected to USB 2.0 root hubs, these 540 * identifiers are also predictable. So long as the device tree isn't changed, 541 * plugging any USB device into a given hub port always gives it the same path. 542 * Because of the use of "companion" controllers, devices connected to ports on 543 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are 544 * high speed, and a different one if they are full or low speed. 545 */ 546static inline int usb_make_path (struct usb_device *dev, char *buf, 547 size_t size) 548{ 549 int actual; 550 actual = snprintf (buf, size, "usb-%s-%s", dev->bus->bus_name, 551 dev->devpath); 552 return (actual >= (int)size) ? -1 : actual; 553} 554 555/*-------------------------------------------------------------------------*/ 556 557/** 558 * usb_endpoint_dir_in - check if the endpoint has IN direction 559 * @epd: endpoint to be checked 560 * 561 * Returns true if the endpoint is of type IN, otherwise it returns false. 562 */ 563static inline int usb_endpoint_dir_in(const struct usb_endpoint_descriptor *epd) 564{ 565 return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN); 566} 567 568/** 569 * usb_endpoint_dir_out - check if the endpoint has OUT direction 570 * @epd: endpoint to be checked 571 * 572 * Returns true if the endpoint is of type OUT, otherwise it returns false. 573 */ 574static inline int usb_endpoint_dir_out(const struct usb_endpoint_descriptor *epd) 575{ 576 return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT); 577} 578 579/** 580 * usb_endpoint_xfer_bulk - check if the endpoint has bulk transfer type 581 * @epd: endpoint to be checked 582 * 583 * Returns true if the endpoint is of type bulk, otherwise it returns false. 584 */ 585static inline int usb_endpoint_xfer_bulk(const struct usb_endpoint_descriptor *epd) 586{ 587 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 588 USB_ENDPOINT_XFER_BULK); 589} 590 591/** 592 * usb_endpoint_xfer_control - check if the endpoint has control transfer type 593 * @epd: endpoint to be checked 594 * 595 * Returns true if the endpoint is of type control, otherwise it returns false. 596 */ 597static inline int usb_endpoint_xfer_control(const struct usb_endpoint_descriptor *epd) 598{ 599 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 600 USB_ENDPOINT_XFER_CONTROL); 601} 602 603/** 604 * usb_endpoint_xfer_int - check if the endpoint has interrupt transfer type 605 * @epd: endpoint to be checked 606 * 607 * Returns true if the endpoint is of type interrupt, otherwise it returns 608 * false. 609 */ 610static inline int usb_endpoint_xfer_int(const struct usb_endpoint_descriptor *epd) 611{ 612 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 613 USB_ENDPOINT_XFER_INT); 614} 615 616/** 617 * usb_endpoint_xfer_isoc - check if the endpoint has isochronous transfer type 618 * @epd: endpoint to be checked 619 * 620 * Returns true if the endpoint is of type isochronous, otherwise it returns 621 * false. 622 */ 623static inline int usb_endpoint_xfer_isoc(const struct usb_endpoint_descriptor *epd) 624{ 625 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 626 USB_ENDPOINT_XFER_ISOC); 627} 628 629/** 630 * usb_endpoint_is_bulk_in - check if the endpoint is bulk IN 631 * @epd: endpoint to be checked 632 * 633 * Returns true if the endpoint has bulk transfer type and IN direction, 634 * otherwise it returns false. 635 */ 636static inline int usb_endpoint_is_bulk_in(const struct usb_endpoint_descriptor *epd) 637{ 638 return (usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_in(epd)); 639} 640 641/** 642 * usb_endpoint_is_bulk_out - check if the endpoint is bulk OUT 643 * @epd: endpoint to be checked 644 * 645 * Returns true if the endpoint has bulk transfer type and OUT direction, 646 * otherwise it returns false. 647 */ 648static inline int usb_endpoint_is_bulk_out(const struct usb_endpoint_descriptor *epd) 649{ 650 return (usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_out(epd)); 651} 652 653/** 654 * usb_endpoint_is_int_in - check if the endpoint is interrupt IN 655 * @epd: endpoint to be checked 656 * 657 * Returns true if the endpoint has interrupt transfer type and IN direction, 658 * otherwise it returns false. 659 */ 660static inline int usb_endpoint_is_int_in(const struct usb_endpoint_descriptor *epd) 661{ 662 return (usb_endpoint_xfer_int(epd) && usb_endpoint_dir_in(epd)); 663} 664 665/** 666 * usb_endpoint_is_int_out - check if the endpoint is interrupt OUT 667 * @epd: endpoint to be checked 668 * 669 * Returns true if the endpoint has interrupt transfer type and OUT direction, 670 * otherwise it returns false. 671 */ 672static inline int usb_endpoint_is_int_out(const struct usb_endpoint_descriptor *epd) 673{ 674 return (usb_endpoint_xfer_int(epd) && usb_endpoint_dir_out(epd)); 675} 676 677/** 678 * usb_endpoint_is_isoc_in - check if the endpoint is isochronous IN 679 * @epd: endpoint to be checked 680 * 681 * Returns true if the endpoint has isochronous transfer type and IN direction, 682 * otherwise it returns false. 683 */ 684static inline int usb_endpoint_is_isoc_in(const struct usb_endpoint_descriptor *epd) 685{ 686 return (usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_in(epd)); 687} 688 689/** 690 * usb_endpoint_is_isoc_out - check if the endpoint is isochronous OUT 691 * @epd: endpoint to be checked 692 * 693 * Returns true if the endpoint has isochronous transfer type and OUT direction, 694 * otherwise it returns false. 695 */ 696static inline int usb_endpoint_is_isoc_out(const struct usb_endpoint_descriptor *epd) 697{ 698 return (usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_out(epd)); 699} 700 701/*-------------------------------------------------------------------------*/ 702 703#define USB_DEVICE_ID_MATCH_DEVICE \ 704 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT) 705#define USB_DEVICE_ID_MATCH_DEV_RANGE \ 706 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI) 707#define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \ 708 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE) 709#define USB_DEVICE_ID_MATCH_DEV_INFO \ 710 (USB_DEVICE_ID_MATCH_DEV_CLASS | \ 711 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \ 712 USB_DEVICE_ID_MATCH_DEV_PROTOCOL) 713#define USB_DEVICE_ID_MATCH_INT_INFO \ 714 (USB_DEVICE_ID_MATCH_INT_CLASS | \ 715 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \ 716 USB_DEVICE_ID_MATCH_INT_PROTOCOL) 717 718/** 719 * USB_DEVICE - macro used to describe a specific usb device 720 * @vend: the 16 bit USB Vendor ID 721 * @prod: the 16 bit USB Product ID 722 * 723 * This macro is used to create a struct usb_device_id that matches a 724 * specific device. 725 */ 726#define USB_DEVICE(vend,prod) \ 727 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, .idVendor = (vend), \ 728 .idProduct = (prod) 729/** 730 * USB_DEVICE_VER - macro used to describe a specific usb device with a 731 * version range 732 * @vend: the 16 bit USB Vendor ID 733 * @prod: the 16 bit USB Product ID 734 * @lo: the bcdDevice_lo value 735 * @hi: the bcdDevice_hi value 736 * 737 * This macro is used to create a struct usb_device_id that matches a 738 * specific device, with a version range. 739 */ 740#define USB_DEVICE_VER(vend,prod,lo,hi) \ 741 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \ 742 .idVendor = (vend), .idProduct = (prod), \ 743 .bcdDevice_lo = (lo), .bcdDevice_hi = (hi) 744 745/** 746 * USB_DEVICE_INTERFACE_PROTOCOL - macro used to describe a usb 747 * device with a specific interface protocol 748 * @vend: the 16 bit USB Vendor ID 749 * @prod: the 16 bit USB Product ID 750 * @pr: bInterfaceProtocol value 751 * 752 * This macro is used to create a struct usb_device_id that matches a 753 * specific interface protocol of devices. 754 */ 755#define USB_DEVICE_INTERFACE_PROTOCOL(vend,prod,pr) \ 756 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_INT_PROTOCOL, \ 757 .idVendor = (vend), \ 758 .idProduct = (prod), \ 759 .bInterfaceProtocol = (pr) 760 761/** 762 * USB_DEVICE_INFO - macro used to describe a class of usb devices 763 * @cl: bDeviceClass value 764 * @sc: bDeviceSubClass value 765 * @pr: bDeviceProtocol value 766 * 767 * This macro is used to create a struct usb_device_id that matches a 768 * specific class of devices. 769 */ 770#define USB_DEVICE_INFO(cl,sc,pr) \ 771 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, .bDeviceClass = (cl), \ 772 .bDeviceSubClass = (sc), .bDeviceProtocol = (pr) 773 774/** 775 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces 776 * @cl: bInterfaceClass value 777 * @sc: bInterfaceSubClass value 778 * @pr: bInterfaceProtocol value 779 * 780 * This macro is used to create a struct usb_device_id that matches a 781 * specific class of interfaces. 782 */ 783#define USB_INTERFACE_INFO(cl,sc,pr) \ 784 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, .bInterfaceClass = (cl), \ 785 .bInterfaceSubClass = (sc), .bInterfaceProtocol = (pr) 786 787/** 788 * USB_DEVICE_AND_INTERFACE_INFO - macro used to describe a specific usb device 789 * with a class of usb interfaces 790 * @vend: the 16 bit USB Vendor ID 791 * @prod: the 16 bit USB Product ID 792 * @cl: bInterfaceClass value 793 * @sc: bInterfaceSubClass value 794 * @pr: bInterfaceProtocol value 795 * 796 * This macro is used to create a struct usb_device_id that matches a 797 * specific device with a specific class of interfaces. 798 * 799 * This is especially useful when explicitly matching devices that have 800 * vendor specific bDeviceClass values, but standards-compliant interfaces. 801 */ 802#define USB_DEVICE_AND_INTERFACE_INFO(vend,prod,cl,sc,pr) \ 803 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \ 804 | USB_DEVICE_ID_MATCH_DEVICE, \ 805 .idVendor = (vend), .idProduct = (prod), \ 806 .bInterfaceClass = (cl), \ 807 .bInterfaceSubClass = (sc), .bInterfaceProtocol = (pr) 808 809/* ----------------------------------------------------------------------- */ 810 811/* Stuff for dynamic usb ids */ 812struct usb_dynids { 813 spinlock_t lock; 814 struct list_head list; 815}; 816 817struct usb_dynid { 818 struct list_head node; 819 struct usb_device_id id; 820}; 821 822extern ssize_t usb_store_new_id(struct usb_dynids *dynids, 823 struct device_driver *driver, 824 const char *buf, size_t count); 825 826/** 827 * struct usbdrv_wrap - wrapper for driver-model structure 828 * @driver: The driver-model core driver structure. 829 * @for_devices: Non-zero for device drivers, 0 for interface drivers. 830 */ 831struct usbdrv_wrap { 832 struct device_driver driver; 833 int for_devices; 834}; 835 836/** 837 * struct usb_driver - identifies USB interface driver to usbcore 838 * @name: The driver name should be unique among USB drivers, 839 * and should normally be the same as the module name. 840 * @probe: Called to see if the driver is willing to manage a particular 841 * interface on a device. If it is, probe returns zero and uses 842 * dev_set_drvdata() to associate driver-specific data with the 843 * interface. It may also use usb_set_interface() to specify the 844 * appropriate altsetting. If unwilling to manage the interface, 845 * return a negative errno value. 846 * @disconnect: Called when the interface is no longer accessible, usually 847 * because its device has been (or is being) disconnected or the 848 * driver module is being unloaded. 849 * @ioctl: Used for drivers that want to talk to userspace through 850 * the "usbfs" filesystem. This lets devices provide ways to 851 * expose information to user space regardless of where they 852 * do (or don't) show up otherwise in the filesystem. 853 * @suspend: Called when the device is going to be suspended by the system. 854 * @resume: Called when the device is being resumed by the system. 855 * @reset_resume: Called when the suspended device has been reset instead 856 * of being resumed. 857 * @pre_reset: Called by usb_reset_composite_device() when the device 858 * is about to be reset. 859 * @post_reset: Called by usb_reset_composite_device() after the device 860 * has been reset, or in lieu of @resume following a reset-resume 861 * (i.e., the device is reset instead of being resumed, as might 862 * happen if power was lost). The second argument tells which is 863 * the reason. 864 * @id_table: USB drivers use ID table to support hotplugging. 865 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set 866 * or your driver's probe function will never get called. 867 * @dynids: used internally to hold the list of dynamically added device 868 * ids for this driver. 869 * @drvwrap: Driver-model core structure wrapper. 870 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be 871 * added to this driver by preventing the sysfs file from being created. 872 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 873 * for interfaces bound to this driver. 874 * 875 * USB interface drivers must provide a name, probe() and disconnect() 876 * methods, and an id_table. Other driver fields are optional. 877 * 878 * The id_table is used in hotplugging. It holds a set of descriptors, 879 * and specialized data may be associated with each entry. That table 880 * is used by both user and kernel mode hotplugging support. 881 * 882 * The probe() and disconnect() methods are called in a context where 883 * they can sleep, but they should avoid abusing the privilege. Most 884 * work to connect to a device should be done when the device is opened, 885 * and undone at the last close. The disconnect code needs to address 886 * concurrency issues with respect to open() and close() methods, as 887 * well as forcing all pending I/O requests to complete (by unlinking 888 * them as necessary, and blocking until the unlinks complete). 889 */ 890struct usb_driver { 891 const char *name; 892 893 int (*probe) (struct usb_interface *intf, 894 const struct usb_device_id *id); 895 896 void (*disconnect) (struct usb_interface *intf); 897 898 int (*ioctl) (struct usb_interface *intf, unsigned int code, 899 void *buf); 900 901 int (*suspend) (struct usb_interface *intf, pm_message_t message); 902 int (*resume) (struct usb_interface *intf); 903 int (*reset_resume)(struct usb_interface *intf); 904 905 int (*pre_reset)(struct usb_interface *intf); 906 int (*post_reset)(struct usb_interface *intf); 907 908 const struct usb_device_id *id_table; 909 910 struct usb_dynids dynids; 911 struct usbdrv_wrap drvwrap; 912 unsigned int no_dynamic_id:1; 913 unsigned int supports_autosuspend:1; 914}; 915#define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver) 916 917/** 918 * struct usb_device_driver - identifies USB device driver to usbcore 919 * @name: The driver name should be unique among USB drivers, 920 * and should normally be the same as the module name. 921 * @probe: Called to see if the driver is willing to manage a particular 922 * device. If it is, probe returns zero and uses dev_set_drvdata() 923 * to associate driver-specific data with the device. If unwilling 924 * to manage the device, return a negative errno value. 925 * @disconnect: Called when the device is no longer accessible, usually 926 * because it has been (or is being) disconnected or the driver's 927 * module is being unloaded. 928 * @suspend: Called when the device is going to be suspended by the system. 929 * @resume: Called when the device is being resumed by the system. 930 * @drvwrap: Driver-model core structure wrapper. 931 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 932 * for devices bound to this driver. 933 * 934 * USB drivers must provide all the fields listed above except drvwrap. 935 */ 936struct usb_device_driver { 937 const char *name; 938 939 int (*probe) (struct usb_device *udev); 940 void (*disconnect) (struct usb_device *udev); 941 942 int (*suspend) (struct usb_device *udev, pm_message_t message); 943 int (*resume) (struct usb_device *udev); 944 struct usbdrv_wrap drvwrap; 945 unsigned int supports_autosuspend:1; 946}; 947#define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \ 948 drvwrap.driver) 949 950extern struct bus_type usb_bus_type; 951 952/** 953 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number 954 * @name: the usb class device name for this driver. Will show up in sysfs. 955 * @fops: pointer to the struct file_operations of this driver. 956 * @minor_base: the start of the minor range for this driver. 957 * 958 * This structure is used for the usb_register_dev() and 959 * usb_unregister_dev() functions, to consolidate a number of the 960 * parameters used for them. 961 */ 962struct usb_class_driver { 963 char *name; 964 const struct file_operations *fops; 965 int minor_base; 966}; 967 968/* 969 * use these in module_init()/module_exit() 970 * and don't forget MODULE_DEVICE_TABLE(usb, ...) 971 */ 972extern int usb_register_driver(struct usb_driver *, struct module *, 973 const char *); 974static inline int usb_register(struct usb_driver *driver) 975{ 976 return usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME); 977} 978extern void usb_deregister(struct usb_driver *); 979 980extern int usb_register_device_driver(struct usb_device_driver *, 981 struct module *); 982extern void usb_deregister_device_driver(struct usb_device_driver *); 983 984extern int usb_register_dev(struct usb_interface *intf, 985 struct usb_class_driver *class_driver); 986extern void usb_deregister_dev(struct usb_interface *intf, 987 struct usb_class_driver *class_driver); 988 989extern int usb_disabled(void); 990 991/* ----------------------------------------------------------------------- */ 992 993/* 994 * URB support, for asynchronous request completions 995 */ 996 997/* 998 * urb->transfer_flags: 999 */ 1000#define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */ 1001#define URB_ISO_ASAP 0x0002 /* iso-only, urb->start_frame 1002 * ignored */ 1003#define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */ 1004#define URB_NO_SETUP_DMA_MAP 0x0008 /* urb->setup_dma valid on submit */ 1005#define URB_NO_FSBR 0x0020 /* UHCI-specific */ 1006#define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */ 1007#define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt 1008 * needed */ 1009#define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */ 1010 1011struct usb_iso_packet_descriptor { 1012 unsigned int offset; 1013 unsigned int length; /* expected length */ 1014 unsigned int actual_length; 1015 int status; 1016}; 1017 1018struct urb; 1019 1020struct usb_anchor { 1021 struct list_head urb_list; 1022 wait_queue_head_t wait; 1023 spinlock_t lock; 1024}; 1025 1026static inline void init_usb_anchor(struct usb_anchor *anchor) 1027{ 1028 INIT_LIST_HEAD(&anchor->urb_list); 1029 init_waitqueue_head(&anchor->wait); 1030 spin_lock_init(&anchor->lock); 1031} 1032 1033typedef void (*usb_complete_t)(struct urb *); 1034 1035/** 1036 * struct urb - USB Request Block 1037 * @urb_list: For use by current owner of the URB. 1038 * @anchor_list: membership in the list of an anchor 1039 * @anchor: to anchor URBs to a common mooring 1040 * @pipe: Holds endpoint number, direction, type, and more. 1041 * Create these values with the eight macros available; 1042 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl" 1043 * (control), "bulk", "int" (interrupt), or "iso" (isochronous). 1044 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint 1045 * numbers range from zero to fifteen. Note that "in" endpoint two 1046 * is a different endpoint (and pipe) from "out" endpoint two. 1047 * The current configuration controls the existence, type, and 1048 * maximum packet size of any given endpoint. 1049 * @dev: Identifies the USB device to perform the request. 1050 * @status: This is read in non-iso completion functions to get the 1051 * status of the particular request. ISO requests only use it 1052 * to tell whether the URB was unlinked; detailed status for 1053 * each frame is in the fields of the iso_frame-desc. 1054 * @transfer_flags: A variety of flags may be used to affect how URB 1055 * submission, unlinking, or operation are handled. Different 1056 * kinds of URB can use different flags. 1057 * @transfer_buffer: This identifies the buffer to (or from) which 1058 * the I/O request will be performed (unless URB_NO_TRANSFER_DMA_MAP 1059 * is set). This buffer must be suitable for DMA; allocate it with 1060 * kmalloc() or equivalent. For transfers to "in" endpoints, contents 1061 * of this buffer will be modified. This buffer is used for the data 1062 * stage of control transfers. 1063 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP, 1064 * the device driver is saying that it provided this DMA address, 1065 * which the host controller driver should use in preference to the 1066 * transfer_buffer. 1067 * @transfer_buffer_length: How big is transfer_buffer. The transfer may 1068 * be broken up into chunks according to the current maximum packet 1069 * size for the endpoint, which is a function of the configuration 1070 * and is encoded in the pipe. When the length is zero, neither 1071 * transfer_buffer nor transfer_dma is used. 1072 * @actual_length: This is read in non-iso completion functions, and 1073 * it tells how many bytes (out of transfer_buffer_length) were 1074 * transferred. It will normally be the same as requested, unless 1075 * either an error was reported or a short read was performed. 1076 * The URB_SHORT_NOT_OK transfer flag may be used to make such 1077 * short reads be reported as errors. 1078 * @setup_packet: Only used for control transfers, this points to eight bytes 1079 * of setup data. Control transfers always start by sending this data 1080 * to the device. Then transfer_buffer is read or written, if needed. 1081 * @setup_dma: For control transfers with URB_NO_SETUP_DMA_MAP set, the 1082 * device driver has provided this DMA address for the setup packet. 1083 * The host controller driver should use this in preference to 1084 * setup_packet. 1085 * @start_frame: Returns the initial frame for isochronous transfers. 1086 * @number_of_packets: Lists the number of ISO transfer buffers. 1087 * @interval: Specifies the polling interval for interrupt or isochronous 1088 * transfers. The units are frames (milliseconds) for for full and low 1089 * speed devices, and microframes (1/8 millisecond) for highspeed ones. 1090 * @error_count: Returns the number of ISO transfers that reported errors. 1091 * @context: For use in completion functions. This normally points to 1092 * request-specific driver context. 1093 * @complete: Completion handler. This URB is passed as the parameter to the 1094 * completion function. The completion function may then do what 1095 * it likes with the URB, including resubmitting or freeing it. 1096 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to 1097 * collect the transfer status for each buffer. 1098 * 1099 * This structure identifies USB transfer requests. URBs must be allocated by 1100 * calling usb_alloc_urb() and freed with a call to usb_free_urb(). 1101 * Initialization may be done using various usb_fill_*_urb() functions. URBs 1102 * are submitted using usb_submit_urb(), and pending requests may be canceled 1103 * using usb_unlink_urb() or usb_kill_urb(). 1104 * 1105 * Data Transfer Buffers: 1106 * 1107 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise 1108 * taken from the general page pool. That is provided by transfer_buffer 1109 * (control requests also use setup_packet), and host controller drivers 1110 * perform a dma mapping (and unmapping) for each buffer transferred. Those 1111 * mapping operations can be expensive on some platforms (perhaps using a dma 1112 * bounce buffer or talking to an IOMMU), 1113 * although they're cheap on commodity x86 and ppc hardware. 1114 * 1115 * Alternatively, drivers may pass the URB_NO_xxx_DMA_MAP transfer flags, 1116 * which tell the host controller driver that no such mapping is needed since 1117 * the device driver is DMA-aware. For example, a device driver might 1118 * allocate a DMA buffer with usb_buffer_alloc() or call usb_buffer_map(). 1119 * When these transfer flags are provided, host controller drivers will 1120 * attempt to use the dma addresses found in the transfer_dma and/or 1121 * setup_dma fields rather than determining a dma address themselves. (Note 1122 * that transfer_buffer and setup_packet must still be set because not all 1123 * host controllers use DMA, nor do virtual root hubs). 1124 * 1125 * Initialization: 1126 * 1127 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be 1128 * zero), and complete fields. All URBs must also initialize 1129 * transfer_buffer and transfer_buffer_length. They may provide the 1130 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are 1131 * to be treated as errors; that flag is invalid for write requests. 1132 * 1133 * Bulk URBs may 1134 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers 1135 * should always terminate with a short packet, even if it means adding an 1136 * extra zero length packet. 1137 * 1138 * Control URBs must provide a setup_packet. The setup_packet and 1139 * transfer_buffer may each be mapped for DMA or not, independently of 1140 * the other. The transfer_flags bits URB_NO_TRANSFER_DMA_MAP and 1141 * URB_NO_SETUP_DMA_MAP indicate which buffers have already been mapped. 1142 * URB_NO_SETUP_DMA_MAP is ignored for non-control URBs. 1143 * 1144 * Interrupt URBs must provide an interval, saying how often (in milliseconds 1145 * or, for highspeed devices, 125 microsecond units) 1146 * to poll for transfers. After the URB has been submitted, the interval 1147 * field reflects how the transfer was actually scheduled. 1148 * The polling interval may be more frequent than requested. 1149 * For example, some controllers have a maximum interval of 32 milliseconds, 1150 * while others support intervals of up to 1024 milliseconds. 1151 * Isochronous URBs also have transfer intervals. (Note that for isochronous 1152 * endpoints, as well as high speed interrupt endpoints, the encoding of 1153 * the transfer interval in the endpoint descriptor is logarithmic. 1154 * Device drivers must convert that value to linear units themselves.) 1155 * 1156 * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling 1157 * the host controller to schedule the transfer as soon as bandwidth 1158 * utilization allows, and then set start_frame to reflect the actual frame 1159 * selected during submission. Otherwise drivers must specify the start_frame 1160 * and handle the case where the transfer can't begin then. However, drivers 1161 * won't know how bandwidth is currently allocated, and while they can 1162 * find the current frame using usb_get_current_frame_number () they can't 1163 * know the range for that frame number. (Ranges for frame counter values 1164 * are HC-specific, and can go from 256 to 65536 frames from "now".) 1165 * 1166 * Isochronous URBs have a different data transfer model, in part because 1167 * the quality of service is only "best effort". Callers provide specially 1168 * allocated URBs, with number_of_packets worth of iso_frame_desc structures 1169 * at the end. Each such packet is an individual ISO transfer. Isochronous 1170 * URBs are normally queued, submitted by drivers to arrange that 1171 * transfers are at least double buffered, and then explicitly resubmitted 1172 * in completion handlers, so 1173 * that data (such as audio or video) streams at as constant a rate as the 1174 * host controller scheduler can support. 1175 * 1176 * Completion Callbacks: 1177 * 1178 * The completion callback is made in_interrupt(), and one of the first 1179 * things that a completion handler should do is check the status field. 1180 * The status field is provided for all URBs. It is used to report 1181 * unlinked URBs, and status for all non-ISO transfers. It should not 1182 * be examined before the URB is returned to the completion handler. 1183 * 1184 * The context field is normally used to link URBs back to the relevant 1185 * driver or request state. 1186 * 1187 * When the completion callback is invoked for non-isochronous URBs, the 1188 * actual_length field tells how many bytes were transferred. This field 1189 * is updated even when the URB terminated with an error or was unlinked. 1190 * 1191 * ISO transfer status is reported in the status and actual_length fields 1192 * of the iso_frame_desc array, and the number of errors is reported in 1193 * error_count. Completion callbacks for ISO transfers will normally 1194 * (re)submit URBs to ensure a constant transfer rate. 1195 * 1196 * Note that even fields marked "public" should not be touched by the driver 1197 * when the urb is owned by the hcd, that is, since the call to 1198 * usb_submit_urb() till the entry into the completion routine. 1199 */ 1200struct urb 1201{ 1202 /* private: usb core and host controller only fields in the urb */ 1203 struct kref kref; /* reference count of the URB */ 1204 spinlock_t lock; /* lock for the URB */ 1205 void *hcpriv; /* private data for host controller */ 1206 atomic_t use_count; /* concurrent submissions counter */ 1207 u8 reject; /* submissions will fail */ 1208 1209 /* public: documented fields in the urb that can be used by drivers */ 1210 struct list_head urb_list; /* list head for use by the urb's 1211 * current owner */ 1212 struct list_head anchor_list; /* the URB may be anchored by the driver */ 1213 struct usb_anchor *anchor; 1214 struct usb_device *dev; /* (in) pointer to associated device */ 1215 unsigned int pipe; /* (in) pipe information */ 1216 int status; /* (return) non-ISO status */ 1217 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/ 1218 void *transfer_buffer; /* (in) associated data buffer */ 1219 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */ 1220 int transfer_buffer_length; /* (in) data buffer length */ 1221 int actual_length; /* (return) actual transfer length */ 1222 unsigned char *setup_packet; /* (in) setup packet (control only) */ 1223 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */ 1224 int start_frame; /* (modify) start frame (ISO) */ 1225 int number_of_packets; /* (in) number of ISO packets */ 1226 int interval; /* (modify) transfer interval 1227 * (INT/ISO) */ 1228 int error_count; /* (return) number of ISO errors */ 1229 void *context; /* (in) context for completion */ 1230 usb_complete_t complete; /* (in) completion routine */ 1231 struct usb_iso_packet_descriptor iso_frame_desc[0]; 1232 /* (in) ISO ONLY */ 1233}; 1234 1235/* ----------------------------------------------------------------------- */ 1236 1237/** 1238 * usb_fill_control_urb - initializes a control urb 1239 * @urb: pointer to the urb to initialize. 1240 * @dev: pointer to the struct usb_device for this urb. 1241 * @pipe: the endpoint pipe 1242 * @setup_packet: pointer to the setup_packet buffer 1243 * @transfer_buffer: pointer to the transfer buffer 1244 * @buffer_length: length of the transfer buffer 1245 * @complete_fn: pointer to the usb_complete_t function 1246 * @context: what to set the urb context to. 1247 * 1248 * Initializes a control urb with the proper information needed to submit 1249 * it to a device. 1250 */ 1251static inline void usb_fill_control_urb (struct urb *urb, 1252 struct usb_device *dev, 1253 unsigned int pipe, 1254 unsigned char *setup_packet, 1255 void *transfer_buffer, 1256 int buffer_length, 1257 usb_complete_t complete_fn, 1258 void *context) 1259{ 1260 spin_lock_init(&urb->lock); 1261 urb->dev = dev; 1262 urb->pipe = pipe; 1263 urb->setup_packet = setup_packet; 1264 urb->transfer_buffer = transfer_buffer; 1265 urb->transfer_buffer_length = buffer_length; 1266 urb->complete = complete_fn; 1267 urb->context = context; 1268} 1269 1270/** 1271 * usb_fill_bulk_urb - macro to help initialize a bulk urb 1272 * @urb: pointer to the urb to initialize. 1273 * @dev: pointer to the struct usb_device for this urb. 1274 * @pipe: the endpoint pipe 1275 * @transfer_buffer: pointer to the transfer buffer 1276 * @buffer_length: length of the transfer buffer 1277 * @complete_fn: pointer to the usb_complete_t function 1278 * @context: what to set the urb context to. 1279 * 1280 * Initializes a bulk urb with the proper information needed to submit it 1281 * to a device. 1282 */ 1283static inline void usb_fill_bulk_urb (struct urb *urb, 1284 struct usb_device *dev, 1285 unsigned int pipe, 1286 void *transfer_buffer, 1287 int buffer_length, 1288 usb_complete_t complete_fn, 1289 void *context) 1290{ 1291 spin_lock_init(&urb->lock); 1292 urb->dev = dev; 1293 urb->pipe = pipe; 1294 urb->transfer_buffer = transfer_buffer; 1295 urb->transfer_buffer_length = buffer_length; 1296 urb->complete = complete_fn; 1297 urb->context = context; 1298} 1299 1300/** 1301 * usb_fill_int_urb - macro to help initialize a interrupt urb 1302 * @urb: pointer to the urb to initialize. 1303 * @dev: pointer to the struct usb_device for this urb. 1304 * @pipe: the endpoint pipe 1305 * @transfer_buffer: pointer to the transfer buffer 1306 * @buffer_length: length of the transfer buffer 1307 * @complete_fn: pointer to the usb_complete_t function 1308 * @context: what to set the urb context to. 1309 * @interval: what to set the urb interval to, encoded like 1310 * the endpoint descriptor's bInterval value. 1311 * 1312 * Initializes a interrupt urb with the proper information needed to submit 1313 * it to a device. 1314 * Note that high speed interrupt endpoints use a logarithmic encoding of 1315 * the endpoint interval, and express polling intervals in microframes 1316 * (eight per millisecond) rather than in frames (one per millisecond). 1317 */ 1318static inline void usb_fill_int_urb (struct urb *urb, 1319 struct usb_device *dev, 1320 unsigned int pipe, 1321 void *transfer_buffer, 1322 int buffer_length, 1323 usb_complete_t complete_fn, 1324 void *context, 1325 int interval) 1326{ 1327 spin_lock_init(&urb->lock); 1328 urb->dev = dev; 1329 urb->pipe = pipe; 1330 urb->transfer_buffer = transfer_buffer; 1331 urb->transfer_buffer_length = buffer_length; 1332 urb->complete = complete_fn; 1333 urb->context = context; 1334 if (dev->speed == USB_SPEED_HIGH) 1335 urb->interval = 1 << (interval - 1); 1336 else 1337 urb->interval = interval; 1338 urb->start_frame = -1; 1339} 1340 1341extern void usb_init_urb(struct urb *urb); 1342extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags); 1343extern void usb_free_urb(struct urb *urb); 1344#define usb_put_urb usb_free_urb 1345extern struct urb *usb_get_urb(struct urb *urb); 1346extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags); 1347extern int usb_unlink_urb(struct urb *urb); 1348extern void usb_kill_urb(struct urb *urb); 1349extern void usb_kill_anchored_urbs(struct usb_anchor *anchor); 1350extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor); 1351extern void usb_unanchor_urb(struct urb *urb); 1352extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor, 1353 unsigned int timeout); 1354 1355void *usb_buffer_alloc (struct usb_device *dev, size_t size, 1356 gfp_t mem_flags, dma_addr_t *dma); 1357void usb_buffer_free (struct usb_device *dev, size_t size, 1358 void *addr, dma_addr_t dma); 1359 1360#if 0 1361struct urb *usb_buffer_map (struct urb *urb); 1362void usb_buffer_dmasync (struct urb *urb); 1363void usb_buffer_unmap (struct urb *urb); 1364#endif 1365 1366struct scatterlist; 1367int usb_buffer_map_sg(const struct usb_device *dev, unsigned pipe, 1368 struct scatterlist *sg, int nents); 1369#if 0 1370void usb_buffer_dmasync_sg(const struct usb_device *dev, unsigned pipe, 1371 struct scatterlist *sg, int n_hw_ents); 1372#endif 1373void usb_buffer_unmap_sg(const struct usb_device *dev, unsigned pipe, 1374 struct scatterlist *sg, int n_hw_ents); 1375 1376/*-------------------------------------------------------------------* 1377 * SYNCHRONOUS CALL SUPPORT * 1378 *-------------------------------------------------------------------*/ 1379 1380extern int usb_control_msg(struct usb_device *dev, unsigned int pipe, 1381 __u8 request, __u8 requesttype, __u16 value, __u16 index, 1382 void *data, __u16 size, int timeout); 1383extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 1384 void *data, int len, int *actual_length, int timeout); 1385extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 1386 void *data, int len, int *actual_length, 1387 int timeout); 1388 1389/* wrappers around usb_control_msg() for the most common standard requests */ 1390extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype, 1391 unsigned char descindex, void *buf, int size); 1392extern int usb_get_status(struct usb_device *dev, 1393 int type, int target, void *data); 1394extern int usb_string(struct usb_device *dev, int index, 1395 char *buf, size_t size); 1396 1397/* wrappers that also update important state inside usbcore */ 1398extern int usb_clear_halt(struct usb_device *dev, int pipe); 1399extern int usb_reset_configuration(struct usb_device *dev); 1400extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate); 1401 1402/* this request isn't really synchronous, but it belongs with the others */ 1403extern int usb_driver_set_configuration(struct usb_device *udev, int config); 1404 1405/* 1406 * timeouts, in milliseconds, used for sending/receiving control messages 1407 * they typically complete within a few frames (msec) after they're issued 1408 * USB identifies 5 second timeouts, maybe more in a few cases, and a few 1409 * slow devices (like some MGE Ellipse UPSes) actually push that limit. 1410 */ 1411#define USB_CTRL_GET_TIMEOUT 5000 1412#define USB_CTRL_SET_TIMEOUT 5000 1413 1414 1415/** 1416 * struct usb_sg_request - support for scatter/gather I/O 1417 * @status: zero indicates success, else negative errno 1418 * @bytes: counts bytes transferred. 1419 * 1420 * These requests are initialized using usb_sg_init(), and then are used 1421 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most 1422 * members of the request object aren't for driver access. 1423 * 1424 * The status and bytecount values are valid only after usb_sg_wait() 1425 * returns. If the status is zero, then the bytecount matches the total 1426 * from the request. 1427 * 1428 * After an error completion, drivers may need to clear a halt condition 1429 * on the endpoint. 1430 */ 1431struct usb_sg_request { 1432 int status; 1433 size_t bytes; 1434 1435 /* 1436 * members below are private: to usbcore, 1437 * and are not provided for driver access! 1438 */ 1439 spinlock_t lock; 1440 1441 struct usb_device *dev; 1442 int pipe; 1443 struct scatterlist *sg; 1444 int nents; 1445 1446 int entries; 1447 struct urb **urbs; 1448 1449 int count; 1450 struct completion complete; 1451}; 1452 1453int usb_sg_init ( 1454 struct usb_sg_request *io, 1455 struct usb_device *dev, 1456 unsigned pipe, 1457 unsigned period, 1458 struct scatterlist *sg, 1459 int nents, 1460 size_t length, 1461 gfp_t mem_flags 1462); 1463void usb_sg_cancel (struct usb_sg_request *io); 1464void usb_sg_wait (struct usb_sg_request *io); 1465 1466 1467/* ----------------------------------------------------------------------- */ 1468 1469/* 1470 * For various legacy reasons, Linux has a small cookie that's paired with 1471 * a struct usb_device to identify an endpoint queue. Queue characteristics 1472 * are defined by the endpoint's descriptor. This cookie is called a "pipe", 1473 * an unsigned int encoded as: 1474 * 1475 * - direction: bit 7 (0 = Host-to-Device [Out], 1476 * 1 = Device-to-Host [In] ... 1477 * like endpoint bEndpointAddress) 1478 * - device address: bits 8-14 ... bit positions known to uhci-hcd 1479 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd 1480 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt, 1481 * 10 = control, 11 = bulk) 1482 * 1483 * Given the device address and endpoint descriptor, pipes are redundant. 1484 */ 1485 1486/* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */ 1487/* (yet ... they're the values used by usbfs) */ 1488#define PIPE_ISOCHRONOUS 0 1489#define PIPE_INTERRUPT 1 1490#define PIPE_CONTROL 2 1491#define PIPE_BULK 3 1492 1493#define usb_pipein(pipe) ((pipe) & USB_DIR_IN) 1494#define usb_pipeout(pipe) (!usb_pipein(pipe)) 1495 1496#define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f) 1497#define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf) 1498 1499#define usb_pipetype(pipe) (((pipe) >> 30) & 3) 1500#define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS) 1501#define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT) 1502#define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL) 1503#define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK) 1504 1505/* The D0/D1 toggle bits ... USE WITH CAUTION (they're almost hcd-internal) */ 1506#define usb_gettoggle(dev, ep, out) (((dev)->toggle[out] >> (ep)) & 1) 1507#define usb_dotoggle(dev, ep, out) ((dev)->toggle[out] ^= (1 << (ep))) 1508#define usb_settoggle(dev, ep, out, bit) \ 1509 ((dev)->toggle[out] = ((dev)->toggle[out] & ~(1 << (ep))) | \ 1510 ((bit) << (ep))) 1511 1512 1513static inline unsigned int __create_pipe(struct usb_device *dev, 1514 unsigned int endpoint) 1515{ 1516 return (dev->devnum << 8) | (endpoint << 15); 1517} 1518 1519/* Create various pipes... */ 1520#define usb_sndctrlpipe(dev,endpoint) \ 1521 ((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint)) 1522#define usb_rcvctrlpipe(dev,endpoint) \ 1523 ((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN) 1524#define usb_sndisocpipe(dev,endpoint) \ 1525 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint)) 1526#define usb_rcvisocpipe(dev,endpoint) \ 1527 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN) 1528#define usb_sndbulkpipe(dev,endpoint) \ 1529 ((PIPE_BULK << 30) | __create_pipe(dev,endpoint)) 1530#define usb_rcvbulkpipe(dev,endpoint) \ 1531 ((PIPE_BULK << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN) 1532#define usb_sndintpipe(dev,endpoint) \ 1533 ((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint)) 1534#define usb_rcvintpipe(dev,endpoint) \ 1535 ((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN) 1536 1537/*-------------------------------------------------------------------------*/ 1538 1539static inline __u16 1540usb_maxpacket(struct usb_device *udev, int pipe, int is_out) 1541{ 1542 struct usb_host_endpoint *ep; 1543 unsigned epnum = usb_pipeendpoint(pipe); 1544 1545 if (is_out) { 1546 WARN_ON(usb_pipein(pipe)); 1547 ep = udev->ep_out[epnum]; 1548 } else { 1549 WARN_ON(usb_pipeout(pipe)); 1550 ep = udev->ep_in[epnum]; 1551 } 1552 if (!ep) 1553 return 0; 1554 1555 /* NOTE: only 0x07ff bits are for packet size... */ 1556 return le16_to_cpu(ep->desc.wMaxPacketSize); 1557} 1558 1559/* ----------------------------------------------------------------------- */ 1560 1561/* Events from the usb core */ 1562#define USB_DEVICE_ADD 0x0001 1563#define USB_DEVICE_REMOVE 0x0002 1564#define USB_BUS_ADD 0x0003 1565#define USB_BUS_REMOVE 0x0004 1566extern void usb_register_notify(struct notifier_block *nb); 1567extern void usb_unregister_notify(struct notifier_block *nb); 1568 1569#ifdef DEBUG 1570#define dbg(format, arg...) printk(KERN_DEBUG "%s: " format "\n" , \ 1571 __FILE__ , ## arg) 1572#else 1573#define dbg(format, arg...) do {} while (0) 1574#endif 1575 1576#define err(format, arg...) printk(KERN_ERR "%s: " format "\n" , \ 1577 __FILE__ , ## arg) 1578#define info(format, arg...) printk(KERN_INFO "%s: " format "\n" , \ 1579 __FILE__ , ## arg) 1580#define warn(format, arg...) printk(KERN_WARNING "%s: " format "\n" , \ 1581 __FILE__ , ## arg) 1582 1583 1584#endif /* __KERNEL__ */ 1585 1586#endif