at v2.6.23 9.0 kB view raw
1/* 2 * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk). 3 * 4 * (C) SGI 2006, Christoph Lameter <clameter@sgi.com> 5 * Cleaned up and restructured to ease the addition of alternative 6 * implementations of SLAB allocators. 7 */ 8 9#ifndef _LINUX_SLAB_H 10#define _LINUX_SLAB_H 11 12#ifdef __KERNEL__ 13 14#include <linux/gfp.h> 15#include <linux/types.h> 16 17/* 18 * Flags to pass to kmem_cache_create(). 19 * The ones marked DEBUG are only valid if CONFIG_SLAB_DEBUG is set. 20 */ 21#define SLAB_DEBUG_FREE 0x00000100UL /* DEBUG: Perform (expensive) checks on free */ 22#define SLAB_RED_ZONE 0x00000400UL /* DEBUG: Red zone objs in a cache */ 23#define SLAB_POISON 0x00000800UL /* DEBUG: Poison objects */ 24#define SLAB_HWCACHE_ALIGN 0x00002000UL /* Align objs on cache lines */ 25#define SLAB_CACHE_DMA 0x00004000UL /* Use GFP_DMA memory */ 26#define SLAB_STORE_USER 0x00010000UL /* DEBUG: Store the last owner for bug hunting */ 27#define SLAB_RECLAIM_ACCOUNT 0x00020000UL /* Objects are reclaimable */ 28#define SLAB_PANIC 0x00040000UL /* Panic if kmem_cache_create() fails */ 29#define SLAB_DESTROY_BY_RCU 0x00080000UL /* Defer freeing slabs to RCU */ 30#define SLAB_MEM_SPREAD 0x00100000UL /* Spread some memory over cpuset */ 31#define SLAB_TRACE 0x00200000UL /* Trace allocations and frees */ 32 33/* 34 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests. 35 * 36 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault. 37 * 38 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can. 39 * Both make kfree a no-op. 40 */ 41#define ZERO_SIZE_PTR ((void *)16) 42 43#define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \ 44 (unsigned long)ZERO_SIZE_PTR) 45 46/* 47 * struct kmem_cache related prototypes 48 */ 49void __init kmem_cache_init(void); 50int slab_is_available(void); 51 52struct kmem_cache *kmem_cache_create(const char *, size_t, size_t, 53 unsigned long, 54 void (*)(void *, struct kmem_cache *, unsigned long)); 55void kmem_cache_destroy(struct kmem_cache *); 56int kmem_cache_shrink(struct kmem_cache *); 57void kmem_cache_free(struct kmem_cache *, void *); 58unsigned int kmem_cache_size(struct kmem_cache *); 59const char *kmem_cache_name(struct kmem_cache *); 60int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr); 61 62/* 63 * Please use this macro to create slab caches. Simply specify the 64 * name of the structure and maybe some flags that are listed above. 65 * 66 * The alignment of the struct determines object alignment. If you 67 * f.e. add ____cacheline_aligned_in_smp to the struct declaration 68 * then the objects will be properly aligned in SMP configurations. 69 */ 70#define KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\ 71 sizeof(struct __struct), __alignof__(struct __struct),\ 72 (__flags), NULL) 73 74/* 75 * The largest kmalloc size supported by the slab allocators is 76 * 32 megabyte (2^25) or the maximum allocatable page order if that is 77 * less than 32 MB. 78 * 79 * WARNING: Its not easy to increase this value since the allocators have 80 * to do various tricks to work around compiler limitations in order to 81 * ensure proper constant folding. 82 */ 83#define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \ 84 (MAX_ORDER + PAGE_SHIFT - 1) : 25) 85 86#define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_HIGH) 87#define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_HIGH - PAGE_SHIFT) 88 89/* 90 * Common kmalloc functions provided by all allocators 91 */ 92void * __must_check krealloc(const void *, size_t, gfp_t); 93void kfree(const void *); 94size_t ksize(const void *); 95 96/* 97 * Allocator specific definitions. These are mainly used to establish optimized 98 * ways to convert kmalloc() calls to kmem_cache_alloc() invocations by 99 * selecting the appropriate general cache at compile time. 100 * 101 * Allocators must define at least: 102 * 103 * kmem_cache_alloc() 104 * __kmalloc() 105 * kmalloc() 106 * 107 * Those wishing to support NUMA must also define: 108 * 109 * kmem_cache_alloc_node() 110 * kmalloc_node() 111 * 112 * See each allocator definition file for additional comments and 113 * implementation notes. 114 */ 115#ifdef CONFIG_SLUB 116#include <linux/slub_def.h> 117#elif defined(CONFIG_SLOB) 118#include <linux/slob_def.h> 119#else 120#include <linux/slab_def.h> 121#endif 122 123/** 124 * kcalloc - allocate memory for an array. The memory is set to zero. 125 * @n: number of elements. 126 * @size: element size. 127 * @flags: the type of memory to allocate. 128 * 129 * The @flags argument may be one of: 130 * 131 * %GFP_USER - Allocate memory on behalf of user. May sleep. 132 * 133 * %GFP_KERNEL - Allocate normal kernel ram. May sleep. 134 * 135 * %GFP_ATOMIC - Allocation will not sleep. May use emergency pools. 136 * For example, use this inside interrupt handlers. 137 * 138 * %GFP_HIGHUSER - Allocate pages from high memory. 139 * 140 * %GFP_NOIO - Do not do any I/O at all while trying to get memory. 141 * 142 * %GFP_NOFS - Do not make any fs calls while trying to get memory. 143 * 144 * %GFP_NOWAIT - Allocation will not sleep. 145 * 146 * %GFP_THISNODE - Allocate node-local memory only. 147 * 148 * %GFP_DMA - Allocation suitable for DMA. 149 * Should only be used for kmalloc() caches. Otherwise, use a 150 * slab created with SLAB_DMA. 151 * 152 * Also it is possible to set different flags by OR'ing 153 * in one or more of the following additional @flags: 154 * 155 * %__GFP_COLD - Request cache-cold pages instead of 156 * trying to return cache-warm pages. 157 * 158 * %__GFP_HIGH - This allocation has high priority and may use emergency pools. 159 * 160 * %__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail 161 * (think twice before using). 162 * 163 * %__GFP_NORETRY - If memory is not immediately available, 164 * then give up at once. 165 * 166 * %__GFP_NOWARN - If allocation fails, don't issue any warnings. 167 * 168 * %__GFP_REPEAT - If allocation fails initially, try once more before failing. 169 * 170 * There are other flags available as well, but these are not intended 171 * for general use, and so are not documented here. For a full list of 172 * potential flags, always refer to linux/gfp.h. 173 */ 174static inline void *kcalloc(size_t n, size_t size, gfp_t flags) 175{ 176 if (n != 0 && size > ULONG_MAX / n) 177 return NULL; 178 return __kmalloc(n * size, flags | __GFP_ZERO); 179} 180 181#if !defined(CONFIG_NUMA) && !defined(CONFIG_SLOB) 182/** 183 * kmalloc_node - allocate memory from a specific node 184 * @size: how many bytes of memory are required. 185 * @flags: the type of memory to allocate (see kcalloc). 186 * @node: node to allocate from. 187 * 188 * kmalloc() for non-local nodes, used to allocate from a specific node 189 * if available. Equivalent to kmalloc() in the non-NUMA single-node 190 * case. 191 */ 192static inline void *kmalloc_node(size_t size, gfp_t flags, int node) 193{ 194 return kmalloc(size, flags); 195} 196 197static inline void *__kmalloc_node(size_t size, gfp_t flags, int node) 198{ 199 return __kmalloc(size, flags); 200} 201 202void *kmem_cache_alloc(struct kmem_cache *, gfp_t); 203 204static inline void *kmem_cache_alloc_node(struct kmem_cache *cachep, 205 gfp_t flags, int node) 206{ 207 return kmem_cache_alloc(cachep, flags); 208} 209#endif /* !CONFIG_NUMA && !CONFIG_SLOB */ 210 211/* 212 * kmalloc_track_caller is a special version of kmalloc that records the 213 * calling function of the routine calling it for slab leak tracking instead 214 * of just the calling function (confusing, eh?). 215 * It's useful when the call to kmalloc comes from a widely-used standard 216 * allocator where we care about the real place the memory allocation 217 * request comes from. 218 */ 219#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB) 220extern void *__kmalloc_track_caller(size_t, gfp_t, void*); 221#define kmalloc_track_caller(size, flags) \ 222 __kmalloc_track_caller(size, flags, __builtin_return_address(0)) 223#else 224#define kmalloc_track_caller(size, flags) \ 225 __kmalloc(size, flags) 226#endif /* DEBUG_SLAB */ 227 228#ifdef CONFIG_NUMA 229/* 230 * kmalloc_node_track_caller is a special version of kmalloc_node that 231 * records the calling function of the routine calling it for slab leak 232 * tracking instead of just the calling function (confusing, eh?). 233 * It's useful when the call to kmalloc_node comes from a widely-used 234 * standard allocator where we care about the real place the memory 235 * allocation request comes from. 236 */ 237#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB) 238extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, void *); 239#define kmalloc_node_track_caller(size, flags, node) \ 240 __kmalloc_node_track_caller(size, flags, node, \ 241 __builtin_return_address(0)) 242#else 243#define kmalloc_node_track_caller(size, flags, node) \ 244 __kmalloc_node(size, flags, node) 245#endif 246 247#else /* CONFIG_NUMA */ 248 249#define kmalloc_node_track_caller(size, flags, node) \ 250 kmalloc_track_caller(size, flags) 251 252#endif /* DEBUG_SLAB */ 253 254/* 255 * Shortcuts 256 */ 257static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags) 258{ 259 return kmem_cache_alloc(k, flags | __GFP_ZERO); 260} 261 262/** 263 * kzalloc - allocate memory. The memory is set to zero. 264 * @size: how many bytes of memory are required. 265 * @flags: the type of memory to allocate (see kmalloc). 266 */ 267static inline void *kzalloc(size_t size, gfp_t flags) 268{ 269 return kmalloc(size, flags | __GFP_ZERO); 270} 271 272#endif /* __KERNEL__ */ 273#endif /* _LINUX_SLAB_H */