at v2.6.23 18 kB view raw
1#ifndef __ASM_SH64_PGTABLE_H 2#define __ASM_SH64_PGTABLE_H 3 4#include <asm-generic/4level-fixup.h> 5 6/* 7 * This file is subject to the terms and conditions of the GNU General Public 8 * License. See the file "COPYING" in the main directory of this archive 9 * for more details. 10 * 11 * include/asm-sh64/pgtable.h 12 * 13 * Copyright (C) 2000, 2001 Paolo Alberelli 14 * Copyright (C) 2003, 2004 Paul Mundt 15 * Copyright (C) 2003, 2004 Richard Curnow 16 * 17 * This file contains the functions and defines necessary to modify and use 18 * the SuperH page table tree. 19 */ 20 21#ifndef __ASSEMBLY__ 22#include <asm/processor.h> 23#include <asm/page.h> 24#include <linux/threads.h> 25 26struct vm_area_struct; 27 28extern void paging_init(void); 29 30/* We provide our own get_unmapped_area to avoid cache synonym issue */ 31#define HAVE_ARCH_UNMAPPED_AREA 32 33/* 34 * Basically we have the same two-level (which is the logical three level 35 * Linux page table layout folded) page tables as the i386. 36 */ 37 38/* 39 * ZERO_PAGE is a global shared page that is always zero: used 40 * for zero-mapped memory areas etc.. 41 */ 42extern unsigned char empty_zero_page[PAGE_SIZE]; 43#define ZERO_PAGE(vaddr) (mem_map + MAP_NR(empty_zero_page)) 44 45#endif /* !__ASSEMBLY__ */ 46 47/* 48 * NEFF and NPHYS related defines. 49 * FIXME : These need to be model-dependent. For now this is OK, SH5-101 and SH5-103 50 * implement 32 bits effective and 32 bits physical. But future implementations may 51 * extend beyond this. 52 */ 53#define NEFF 32 54#define NEFF_SIGN (1LL << (NEFF - 1)) 55#define NEFF_MASK (-1LL << NEFF) 56 57#define NPHYS 32 58#define NPHYS_SIGN (1LL << (NPHYS - 1)) 59#define NPHYS_MASK (-1LL << NPHYS) 60 61/* Typically 2-level is sufficient up to 32 bits of virtual address space, beyond 62 that 3-level would be appropriate. */ 63#if defined(CONFIG_SH64_PGTABLE_2_LEVEL) 64/* For 4k pages, this contains 512 entries, i.e. 9 bits worth of address. */ 65#define PTRS_PER_PTE ((1<<PAGE_SHIFT)/sizeof(unsigned long long)) 66#define PTE_MAGNITUDE 3 /* sizeof(unsigned long long) magnit. */ 67#define PTE_SHIFT PAGE_SHIFT 68#define PTE_BITS (PAGE_SHIFT - PTE_MAGNITUDE) 69 70/* top level: PMD. */ 71#define PGDIR_SHIFT (PTE_SHIFT + PTE_BITS) 72#define PGD_BITS (NEFF - PGDIR_SHIFT) 73#define PTRS_PER_PGD (1<<PGD_BITS) 74 75/* middle level: PMD. This doesn't do anything for the 2-level case. */ 76#define PTRS_PER_PMD (1) 77 78#define PGDIR_SIZE (1UL << PGDIR_SHIFT) 79#define PGDIR_MASK (~(PGDIR_SIZE-1)) 80#define PMD_SHIFT PGDIR_SHIFT 81#define PMD_SIZE PGDIR_SIZE 82#define PMD_MASK PGDIR_MASK 83 84#elif defined(CONFIG_SH64_PGTABLE_3_LEVEL) 85/* 86 * three-level asymmetric paging structure: PGD is top level. 87 * The asymmetry comes from 32-bit pointers and 64-bit PTEs. 88 */ 89/* bottom level: PTE. It's 9 bits = 512 pointers */ 90#define PTRS_PER_PTE ((1<<PAGE_SHIFT)/sizeof(unsigned long long)) 91#define PTE_MAGNITUDE 3 /* sizeof(unsigned long long) magnit. */ 92#define PTE_SHIFT PAGE_SHIFT 93#define PTE_BITS (PAGE_SHIFT - PTE_MAGNITUDE) 94 95/* middle level: PMD. It's 10 bits = 1024 pointers */ 96#define PTRS_PER_PMD ((1<<PAGE_SHIFT)/sizeof(unsigned long long *)) 97#define PMD_MAGNITUDE 2 /* sizeof(unsigned long long *) magnit. */ 98#define PMD_SHIFT (PTE_SHIFT + PTE_BITS) 99#define PMD_BITS (PAGE_SHIFT - PMD_MAGNITUDE) 100 101/* top level: PMD. It's 1 bit = 2 pointers */ 102#define PGDIR_SHIFT (PMD_SHIFT + PMD_BITS) 103#define PGD_BITS (NEFF - PGDIR_SHIFT) 104#define PTRS_PER_PGD (1<<PGD_BITS) 105 106#define PMD_SIZE (1UL << PMD_SHIFT) 107#define PMD_MASK (~(PMD_SIZE-1)) 108#define PGDIR_SIZE (1UL << PGDIR_SHIFT) 109#define PGDIR_MASK (~(PGDIR_SIZE-1)) 110 111#else 112#error "No defined number of page table levels" 113#endif 114 115/* 116 * Error outputs. 117 */ 118#define pte_ERROR(e) \ 119 printk("%s:%d: bad pte %016Lx.\n", __FILE__, __LINE__, pte_val(e)) 120#define pmd_ERROR(e) \ 121 printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e)) 122#define pgd_ERROR(e) \ 123 printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e)) 124 125/* 126 * Table setting routines. Used within arch/mm only. 127 */ 128#define set_pgd(pgdptr, pgdval) (*(pgdptr) = pgdval) 129#define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval) 130 131static __inline__ void set_pte(pte_t *pteptr, pte_t pteval) 132{ 133 unsigned long long x = ((unsigned long long) pteval.pte); 134 unsigned long long *xp = (unsigned long long *) pteptr; 135 /* 136 * Sign-extend based on NPHYS. 137 */ 138 *(xp) = (x & NPHYS_SIGN) ? (x | NPHYS_MASK) : x; 139} 140#define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval) 141 142static __inline__ void pmd_set(pmd_t *pmdp,pte_t *ptep) 143{ 144 pmd_val(*pmdp) = (unsigned long) ptep; 145} 146 147/* 148 * PGD defines. Top level. 149 */ 150 151/* To find an entry in a generic PGD. */ 152#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) 153#define __pgd_offset(address) pgd_index(address) 154#define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address)) 155 156/* To find an entry in a kernel PGD. */ 157#define pgd_offset_k(address) pgd_offset(&init_mm, address) 158 159/* 160 * PGD level access routines. 161 * 162 * Note1: 163 * There's no need to use physical addresses since the tree walk is all 164 * in performed in software, until the PTE translation. 165 * 166 * Note 2: 167 * A PGD entry can be uninitialized (_PGD_UNUSED), generically bad, 168 * clear (_PGD_EMPTY), present. When present, lower 3 nibbles contain 169 * _KERNPG_TABLE. Being a kernel virtual pointer also bit 31 must 170 * be 1. Assuming an arbitrary clear value of bit 31 set to 0 and 171 * lower 3 nibbles set to 0xFFF (_PGD_EMPTY) any other value is a 172 * bad pgd that must be notified via printk(). 173 * 174 */ 175#define _PGD_EMPTY 0x0 176 177#if defined(CONFIG_SH64_PGTABLE_2_LEVEL) 178static inline int pgd_none(pgd_t pgd) { return 0; } 179static inline int pgd_bad(pgd_t pgd) { return 0; } 180#define pgd_present(pgd) ((pgd_val(pgd) & _PAGE_PRESENT) ? 1 : 0) 181#define pgd_clear(xx) do { } while(0) 182 183#elif defined(CONFIG_SH64_PGTABLE_3_LEVEL) 184#define pgd_present(pgd_entry) (1) 185#define pgd_none(pgd_entry) (pgd_val((pgd_entry)) == _PGD_EMPTY) 186/* TODO: Think later about what a useful definition of 'bad' would be now. */ 187#define pgd_bad(pgd_entry) (0) 188#define pgd_clear(pgd_entry_p) (set_pgd((pgd_entry_p), __pgd(_PGD_EMPTY))) 189 190#endif 191 192 193#define pgd_page_vaddr(pgd_entry) ((unsigned long) (pgd_val(pgd_entry) & PAGE_MASK)) 194#define pgd_page(pgd) (virt_to_page(pgd_val(pgd))) 195 196 197/* 198 * PMD defines. Middle level. 199 */ 200 201/* PGD to PMD dereferencing */ 202#if defined(CONFIG_SH64_PGTABLE_2_LEVEL) 203static inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address) 204{ 205 return (pmd_t *) dir; 206} 207#elif defined(CONFIG_SH64_PGTABLE_3_LEVEL) 208#define __pmd_offset(address) \ 209 (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1)) 210#define pmd_offset(dir, addr) \ 211 ((pmd_t *) ((pgd_val(*(dir))) & PAGE_MASK) + __pmd_offset((addr))) 212#endif 213 214/* 215 * PMD level access routines. Same notes as above. 216 */ 217#define _PMD_EMPTY 0x0 218/* Either the PMD is empty or present, it's not paged out */ 219#define pmd_present(pmd_entry) (pmd_val(pmd_entry) & _PAGE_PRESENT) 220#define pmd_clear(pmd_entry_p) (set_pmd((pmd_entry_p), __pmd(_PMD_EMPTY))) 221#define pmd_none(pmd_entry) (pmd_val((pmd_entry)) == _PMD_EMPTY) 222#define pmd_bad(pmd_entry) ((pmd_val(pmd_entry) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE) 223 224#define pmd_page_vaddr(pmd_entry) \ 225 ((unsigned long) __va(pmd_val(pmd_entry) & PAGE_MASK)) 226 227#define pmd_page(pmd) \ 228 (virt_to_page(pmd_val(pmd))) 229 230/* PMD to PTE dereferencing */ 231#define pte_index(address) \ 232 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) 233 234#define pte_offset_kernel(dir, addr) \ 235 ((pte_t *) ((pmd_val(*(dir))) & PAGE_MASK) + pte_index((addr))) 236 237#define pte_offset_map(dir,addr) pte_offset_kernel(dir, addr) 238#define pte_offset_map_nested(dir,addr) pte_offset_kernel(dir, addr) 239#define pte_unmap(pte) do { } while (0) 240#define pte_unmap_nested(pte) do { } while (0) 241 242/* Round it up ! */ 243#define USER_PTRS_PER_PGD ((TASK_SIZE+PGDIR_SIZE-1)/PGDIR_SIZE) 244#define FIRST_USER_ADDRESS 0 245 246#ifndef __ASSEMBLY__ 247#define VMALLOC_END 0xff000000 248#define VMALLOC_START 0xf0000000 249#define VMALLOC_VMADDR(x) ((unsigned long)(x)) 250 251#define IOBASE_VADDR 0xff000000 252#define IOBASE_END 0xffffffff 253 254/* 255 * PTEL coherent flags. 256 * See Chapter 17 ST50 CPU Core Volume 1, Architecture. 257 */ 258/* The bits that are required in the SH-5 TLB are placed in the h/w-defined 259 positions, to avoid expensive bit shuffling on every refill. The remaining 260 bits are used for s/w purposes and masked out on each refill. 261 262 Note, the PTE slots are used to hold data of type swp_entry_t when a page is 263 swapped out. Only the _PAGE_PRESENT flag is significant when the page is 264 swapped out, and it must be placed so that it doesn't overlap either the 265 type or offset fields of swp_entry_t. For x86, offset is at [31:8] and type 266 at [6:1], with _PAGE_PRESENT at bit 0 for both pte_t and swp_entry_t. This 267 scheme doesn't map to SH-5 because bit [0] controls cacheability. So bit 268 [2] is used for _PAGE_PRESENT and the type field of swp_entry_t is split 269 into 2 pieces. That is handled by SWP_ENTRY and SWP_TYPE below. */ 270#define _PAGE_WT 0x001 /* CB0: if cacheable, 1->write-thru, 0->write-back */ 271#define _PAGE_DEVICE 0x001 /* CB0: if uncacheable, 1->device (i.e. no write-combining or reordering at bus level) */ 272#define _PAGE_CACHABLE 0x002 /* CB1: uncachable/cachable */ 273#define _PAGE_PRESENT 0x004 /* software: page referenced */ 274#define _PAGE_FILE 0x004 /* software: only when !present */ 275#define _PAGE_SIZE0 0x008 /* SZ0-bit : size of page */ 276#define _PAGE_SIZE1 0x010 /* SZ1-bit : size of page */ 277#define _PAGE_SHARED 0x020 /* software: reflects PTEH's SH */ 278#define _PAGE_READ 0x040 /* PR0-bit : read access allowed */ 279#define _PAGE_EXECUTE 0x080 /* PR1-bit : execute access allowed */ 280#define _PAGE_WRITE 0x100 /* PR2-bit : write access allowed */ 281#define _PAGE_USER 0x200 /* PR3-bit : user space access allowed */ 282#define _PAGE_DIRTY 0x400 /* software: page accessed in write */ 283#define _PAGE_ACCESSED 0x800 /* software: page referenced */ 284 285/* Mask which drops software flags */ 286#define _PAGE_FLAGS_HARDWARE_MASK 0xfffffffffffff3dbLL 287 288/* 289 * HugeTLB support 290 */ 291#if defined(CONFIG_HUGETLB_PAGE_SIZE_64K) 292#define _PAGE_SZHUGE (_PAGE_SIZE0) 293#elif defined(CONFIG_HUGETLB_PAGE_SIZE_1MB) 294#define _PAGE_SZHUGE (_PAGE_SIZE1) 295#elif defined(CONFIG_HUGETLB_PAGE_SIZE_512MB) 296#define _PAGE_SZHUGE (_PAGE_SIZE0 | _PAGE_SIZE1) 297#endif 298 299/* 300 * Default flags for a Kernel page. 301 * This is fundametally also SHARED because the main use of this define 302 * (other than for PGD/PMD entries) is for the VMALLOC pool which is 303 * contextless. 304 * 305 * _PAGE_EXECUTE is required for modules 306 * 307 */ 308#define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 309 _PAGE_EXECUTE | \ 310 _PAGE_CACHABLE | _PAGE_ACCESSED | _PAGE_DIRTY | \ 311 _PAGE_SHARED) 312 313/* Default flags for a User page */ 314#define _PAGE_TABLE (_KERNPG_TABLE | _PAGE_USER) 315 316#define _PAGE_CHG_MASK (PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) 317 318#define PAGE_NONE __pgprot(_PAGE_CACHABLE | _PAGE_ACCESSED) 319#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 320 _PAGE_CACHABLE | _PAGE_ACCESSED | _PAGE_USER | \ 321 _PAGE_SHARED) 322/* We need to include PAGE_EXECUTE in PAGE_COPY because it is the default 323 * protection mode for the stack. */ 324#define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_CACHABLE | \ 325 _PAGE_ACCESSED | _PAGE_USER | _PAGE_EXECUTE) 326#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_CACHABLE | \ 327 _PAGE_ACCESSED | _PAGE_USER) 328#define PAGE_KERNEL __pgprot(_KERNPG_TABLE) 329 330 331/* 332 * In ST50 we have full permissions (Read/Write/Execute/Shared). 333 * Just match'em all. These are for mmap(), therefore all at least 334 * User/Cachable/Present/Accessed. No point in making Fault on Write. 335 */ 336#define __MMAP_COMMON (_PAGE_PRESENT | _PAGE_USER | _PAGE_CACHABLE | _PAGE_ACCESSED) 337 /* sxwr */ 338#define __P000 __pgprot(__MMAP_COMMON) 339#define __P001 __pgprot(__MMAP_COMMON | _PAGE_READ) 340#define __P010 __pgprot(__MMAP_COMMON) 341#define __P011 __pgprot(__MMAP_COMMON | _PAGE_READ) 342#define __P100 __pgprot(__MMAP_COMMON | _PAGE_EXECUTE) 343#define __P101 __pgprot(__MMAP_COMMON | _PAGE_EXECUTE | _PAGE_READ) 344#define __P110 __pgprot(__MMAP_COMMON | _PAGE_EXECUTE) 345#define __P111 __pgprot(__MMAP_COMMON | _PAGE_EXECUTE | _PAGE_READ) 346 347#define __S000 __pgprot(__MMAP_COMMON | _PAGE_SHARED) 348#define __S001 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_READ) 349#define __S010 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_WRITE) 350#define __S011 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_READ | _PAGE_WRITE) 351#define __S100 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_EXECUTE) 352#define __S101 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_EXECUTE | _PAGE_READ) 353#define __S110 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_EXECUTE | _PAGE_WRITE) 354#define __S111 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_EXECUTE | _PAGE_READ | _PAGE_WRITE) 355 356/* Make it a device mapping for maximum safety (e.g. for mapping device 357 registers into user-space via /dev/map). */ 358#define pgprot_noncached(x) __pgprot(((x).pgprot & ~(_PAGE_CACHABLE)) | _PAGE_DEVICE) 359#define pgprot_writecombine(prot) __pgprot(pgprot_val(prot) & ~_PAGE_CACHABLE) 360 361/* 362 * Handling allocation failures during page table setup. 363 */ 364extern void __handle_bad_pmd_kernel(pmd_t * pmd); 365#define __handle_bad_pmd(x) __handle_bad_pmd_kernel(x) 366 367/* 368 * PTE level access routines. 369 * 370 * Note1: 371 * It's the tree walk leaf. This is physical address to be stored. 372 * 373 * Note 2: 374 * Regarding the choice of _PTE_EMPTY: 375 376 We must choose a bit pattern that cannot be valid, whether or not the page 377 is present. bit[2]==1 => present, bit[2]==0 => swapped out. If swapped 378 out, bits [31:8], [6:3], [1:0] are under swapper control, so only bit[7] is 379 left for us to select. If we force bit[7]==0 when swapped out, we could use 380 the combination bit[7,2]=2'b10 to indicate an empty PTE. Alternatively, if 381 we force bit[7]==1 when swapped out, we can use all zeroes to indicate 382 empty. This is convenient, because the page tables get cleared to zero 383 when they are allocated. 384 385 */ 386#define _PTE_EMPTY 0x0 387#define pte_present(x) (pte_val(x) & _PAGE_PRESENT) 388#define pte_clear(mm,addr,xp) (set_pte_at(mm, addr, xp, __pte(_PTE_EMPTY))) 389#define pte_none(x) (pte_val(x) == _PTE_EMPTY) 390 391/* 392 * Some definitions to translate between mem_map, PTEs, and page 393 * addresses: 394 */ 395 396/* 397 * Given a PTE, return the index of the mem_map[] entry corresponding 398 * to the page frame the PTE. Get the absolute physical address, make 399 * a relative physical address and translate it to an index. 400 */ 401#define pte_pagenr(x) (((unsigned long) (pte_val(x)) - \ 402 __MEMORY_START) >> PAGE_SHIFT) 403 404/* 405 * Given a PTE, return the "struct page *". 406 */ 407#define pte_page(x) (mem_map + pte_pagenr(x)) 408 409/* 410 * Return number of (down rounded) MB corresponding to x pages. 411 */ 412#define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT)) 413 414 415/* 416 * The following have defined behavior only work if pte_present() is true. 417 */ 418static inline int pte_dirty(pte_t pte){ return pte_val(pte) & _PAGE_DIRTY; } 419static inline int pte_young(pte_t pte){ return pte_val(pte) & _PAGE_ACCESSED; } 420static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; } 421static inline int pte_write(pte_t pte){ return pte_val(pte) & _PAGE_WRITE; } 422 423static inline pte_t pte_wrprotect(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_WRITE)); return pte; } 424static inline pte_t pte_mkclean(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_DIRTY)); return pte; } 425static inline pte_t pte_mkold(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_ACCESSED)); return pte; } 426static inline pte_t pte_mkwrite(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_WRITE)); return pte; } 427static inline pte_t pte_mkdirty(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_DIRTY)); return pte; } 428static inline pte_t pte_mkyoung(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_ACCESSED)); return pte; } 429static inline pte_t pte_mkhuge(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_SZHUGE)); return pte; } 430 431 432/* 433 * Conversion functions: convert a page and protection to a page entry. 434 * 435 * extern pte_t mk_pte(struct page *page, pgprot_t pgprot) 436 */ 437#define mk_pte(page,pgprot) \ 438({ \ 439 pte_t __pte; \ 440 \ 441 set_pte(&__pte, __pte((((page)-mem_map) << PAGE_SHIFT) | \ 442 __MEMORY_START | pgprot_val((pgprot)))); \ 443 __pte; \ 444}) 445 446/* 447 * This takes a (absolute) physical page address that is used 448 * by the remapping functions 449 */ 450#define mk_pte_phys(physpage, pgprot) \ 451({ pte_t __pte; set_pte(&__pte, __pte(physpage | pgprot_val(pgprot))); __pte; }) 452 453static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 454{ set_pte(&pte, __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot))); return pte; } 455 456typedef pte_t *pte_addr_t; 457#define pgtable_cache_init() do { } while (0) 458 459extern void update_mmu_cache(struct vm_area_struct * vma, 460 unsigned long address, pte_t pte); 461 462/* Encode and decode a swap entry */ 463#define __swp_type(x) (((x).val & 3) + (((x).val >> 1) & 0x3c)) 464#define __swp_offset(x) ((x).val >> 8) 465#define __swp_entry(type, offset) ((swp_entry_t) { ((offset << 8) + ((type & 0x3c) << 1) + (type & 3)) }) 466#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 467#define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 468 469/* Encode and decode a nonlinear file mapping entry */ 470#define PTE_FILE_MAX_BITS 29 471#define pte_to_pgoff(pte) (pte_val(pte)) 472#define pgoff_to_pte(off) ((pte_t) { (off) | _PAGE_FILE }) 473 474/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */ 475#define PageSkip(page) (0) 476#define kern_addr_valid(addr) (1) 477 478#define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \ 479 remap_pfn_range(vma, vaddr, pfn, size, prot) 480 481#endif /* !__ASSEMBLY__ */ 482 483/* 484 * No page table caches to initialise 485 */ 486#define pgtable_cache_init() do { } while (0) 487 488#define pte_pfn(x) (((unsigned long)((x).pte)) >> PAGE_SHIFT) 489#define pfn_pte(pfn, prot) __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot)) 490#define pfn_pmd(pfn, prot) __pmd(((pfn) << PAGE_SHIFT) | pgprot_val(prot)) 491 492extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; 493 494#include <asm-generic/pgtable.h> 495 496#endif /* __ASM_SH64_PGTABLE_H */