at v2.6.23 939 lines 28 kB view raw
1/* 2 * include/asm-s390/pgtable.h 3 * 4 * S390 version 5 * Copyright (C) 1999,2000 IBM Deutschland Entwicklung GmbH, IBM Corporation 6 * Author(s): Hartmut Penner (hp@de.ibm.com) 7 * Ulrich Weigand (weigand@de.ibm.com) 8 * Martin Schwidefsky (schwidefsky@de.ibm.com) 9 * 10 * Derived from "include/asm-i386/pgtable.h" 11 */ 12 13#ifndef _ASM_S390_PGTABLE_H 14#define _ASM_S390_PGTABLE_H 15 16#include <asm-generic/4level-fixup.h> 17 18/* 19 * The Linux memory management assumes a three-level page table setup. For 20 * s390 31 bit we "fold" the mid level into the top-level page table, so 21 * that we physically have the same two-level page table as the s390 mmu 22 * expects in 31 bit mode. For s390 64 bit we use three of the five levels 23 * the hardware provides (region first and region second tables are not 24 * used). 25 * 26 * The "pgd_xxx()" functions are trivial for a folded two-level 27 * setup: the pgd is never bad, and a pmd always exists (as it's folded 28 * into the pgd entry) 29 * 30 * This file contains the functions and defines necessary to modify and use 31 * the S390 page table tree. 32 */ 33#ifndef __ASSEMBLY__ 34#include <linux/mm_types.h> 35#include <asm/bug.h> 36#include <asm/processor.h> 37 38struct vm_area_struct; /* forward declaration (include/linux/mm.h) */ 39struct mm_struct; 40 41extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096))); 42extern void paging_init(void); 43extern void vmem_map_init(void); 44 45/* 46 * The S390 doesn't have any external MMU info: the kernel page 47 * tables contain all the necessary information. 48 */ 49#define update_mmu_cache(vma, address, pte) do { } while (0) 50 51/* 52 * ZERO_PAGE is a global shared page that is always zero: used 53 * for zero-mapped memory areas etc.. 54 */ 55extern char empty_zero_page[PAGE_SIZE]; 56#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) 57#endif /* !__ASSEMBLY__ */ 58 59/* 60 * PMD_SHIFT determines the size of the area a second-level page 61 * table can map 62 * PGDIR_SHIFT determines what a third-level page table entry can map 63 */ 64#ifndef __s390x__ 65# define PMD_SHIFT 22 66# define PGDIR_SHIFT 22 67#else /* __s390x__ */ 68# define PMD_SHIFT 21 69# define PGDIR_SHIFT 31 70#endif /* __s390x__ */ 71 72#define PMD_SIZE (1UL << PMD_SHIFT) 73#define PMD_MASK (~(PMD_SIZE-1)) 74#define PGDIR_SIZE (1UL << PGDIR_SHIFT) 75#define PGDIR_MASK (~(PGDIR_SIZE-1)) 76 77/* 78 * entries per page directory level: the S390 is two-level, so 79 * we don't really have any PMD directory physically. 80 * for S390 segment-table entries are combined to one PGD 81 * that leads to 1024 pte per pgd 82 */ 83#ifndef __s390x__ 84# define PTRS_PER_PTE 1024 85# define PTRS_PER_PMD 1 86# define PTRS_PER_PGD 512 87#else /* __s390x__ */ 88# define PTRS_PER_PTE 512 89# define PTRS_PER_PMD 1024 90# define PTRS_PER_PGD 2048 91#endif /* __s390x__ */ 92 93#define FIRST_USER_ADDRESS 0 94 95#define pte_ERROR(e) \ 96 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e)) 97#define pmd_ERROR(e) \ 98 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e)) 99#define pgd_ERROR(e) \ 100 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e)) 101 102#ifndef __ASSEMBLY__ 103/* 104 * Just any arbitrary offset to the start of the vmalloc VM area: the 105 * current 8MB value just means that there will be a 8MB "hole" after the 106 * physical memory until the kernel virtual memory starts. That means that 107 * any out-of-bounds memory accesses will hopefully be caught. 108 * The vmalloc() routines leaves a hole of 4kB between each vmalloced 109 * area for the same reason. ;) 110 */ 111extern unsigned long vmalloc_end; 112#define VMALLOC_OFFSET (8*1024*1024) 113#define VMALLOC_START (((unsigned long) high_memory + VMALLOC_OFFSET) \ 114 & ~(VMALLOC_OFFSET-1)) 115#define VMALLOC_END vmalloc_end 116 117/* 118 * We need some free virtual space to be able to do vmalloc. 119 * VMALLOC_MIN_SIZE defines the minimum size of the vmalloc 120 * area. On a machine with 2GB memory we make sure that we 121 * have at least 128MB free space for vmalloc. On a machine 122 * with 4TB we make sure we have at least 128GB. 123 */ 124#ifndef __s390x__ 125#define VMALLOC_MIN_SIZE 0x8000000UL 126#define VMALLOC_END_INIT 0x80000000UL 127#else /* __s390x__ */ 128#define VMALLOC_MIN_SIZE 0x2000000000UL 129#define VMALLOC_END_INIT 0x40000000000UL 130#endif /* __s390x__ */ 131 132/* 133 * A 31 bit pagetable entry of S390 has following format: 134 * | PFRA | | OS | 135 * 0 0IP0 136 * 00000000001111111111222222222233 137 * 01234567890123456789012345678901 138 * 139 * I Page-Invalid Bit: Page is not available for address-translation 140 * P Page-Protection Bit: Store access not possible for page 141 * 142 * A 31 bit segmenttable entry of S390 has following format: 143 * | P-table origin | |PTL 144 * 0 IC 145 * 00000000001111111111222222222233 146 * 01234567890123456789012345678901 147 * 148 * I Segment-Invalid Bit: Segment is not available for address-translation 149 * C Common-Segment Bit: Segment is not private (PoP 3-30) 150 * PTL Page-Table-Length: Page-table length (PTL+1*16 entries -> up to 256) 151 * 152 * The 31 bit segmenttable origin of S390 has following format: 153 * 154 * |S-table origin | | STL | 155 * X **GPS 156 * 00000000001111111111222222222233 157 * 01234567890123456789012345678901 158 * 159 * X Space-Switch event: 160 * G Segment-Invalid Bit: * 161 * P Private-Space Bit: Segment is not private (PoP 3-30) 162 * S Storage-Alteration: 163 * STL Segment-Table-Length: Segment-table length (STL+1*16 entries -> up to 2048) 164 * 165 * A 64 bit pagetable entry of S390 has following format: 166 * | PFRA |0IP0| OS | 167 * 0000000000111111111122222222223333333333444444444455555555556666 168 * 0123456789012345678901234567890123456789012345678901234567890123 169 * 170 * I Page-Invalid Bit: Page is not available for address-translation 171 * P Page-Protection Bit: Store access not possible for page 172 * 173 * A 64 bit segmenttable entry of S390 has following format: 174 * | P-table origin | TT 175 * 0000000000111111111122222222223333333333444444444455555555556666 176 * 0123456789012345678901234567890123456789012345678901234567890123 177 * 178 * I Segment-Invalid Bit: Segment is not available for address-translation 179 * C Common-Segment Bit: Segment is not private (PoP 3-30) 180 * P Page-Protection Bit: Store access not possible for page 181 * TT Type 00 182 * 183 * A 64 bit region table entry of S390 has following format: 184 * | S-table origin | TF TTTL 185 * 0000000000111111111122222222223333333333444444444455555555556666 186 * 0123456789012345678901234567890123456789012345678901234567890123 187 * 188 * I Segment-Invalid Bit: Segment is not available for address-translation 189 * TT Type 01 190 * TF 191 * TL Table lenght 192 * 193 * The 64 bit regiontable origin of S390 has following format: 194 * | region table origon | DTTL 195 * 0000000000111111111122222222223333333333444444444455555555556666 196 * 0123456789012345678901234567890123456789012345678901234567890123 197 * 198 * X Space-Switch event: 199 * G Segment-Invalid Bit: 200 * P Private-Space Bit: 201 * S Storage-Alteration: 202 * R Real space 203 * TL Table-Length: 204 * 205 * A storage key has the following format: 206 * | ACC |F|R|C|0| 207 * 0 3 4 5 6 7 208 * ACC: access key 209 * F : fetch protection bit 210 * R : referenced bit 211 * C : changed bit 212 */ 213 214/* Hardware bits in the page table entry */ 215#define _PAGE_RO 0x200 /* HW read-only bit */ 216#define _PAGE_INVALID 0x400 /* HW invalid bit */ 217#define _PAGE_SWT 0x001 /* SW pte type bit t */ 218#define _PAGE_SWX 0x002 /* SW pte type bit x */ 219 220/* Six different types of pages. */ 221#define _PAGE_TYPE_EMPTY 0x400 222#define _PAGE_TYPE_NONE 0x401 223#define _PAGE_TYPE_SWAP 0x403 224#define _PAGE_TYPE_FILE 0x601 /* bit 0x002 is used for offset !! */ 225#define _PAGE_TYPE_RO 0x200 226#define _PAGE_TYPE_RW 0x000 227#define _PAGE_TYPE_EX_RO 0x202 228#define _PAGE_TYPE_EX_RW 0x002 229 230/* 231 * PTE type bits are rather complicated. handle_pte_fault uses pte_present, 232 * pte_none and pte_file to find out the pte type WITHOUT holding the page 233 * table lock. ptep_clear_flush on the other hand uses ptep_clear_flush to 234 * invalidate a given pte. ipte sets the hw invalid bit and clears all tlbs 235 * for the page. The page table entry is set to _PAGE_TYPE_EMPTY afterwards. 236 * This change is done while holding the lock, but the intermediate step 237 * of a previously valid pte with the hw invalid bit set can be observed by 238 * handle_pte_fault. That makes it necessary that all valid pte types with 239 * the hw invalid bit set must be distinguishable from the four pte types 240 * empty, none, swap and file. 241 * 242 * irxt ipte irxt 243 * _PAGE_TYPE_EMPTY 1000 -> 1000 244 * _PAGE_TYPE_NONE 1001 -> 1001 245 * _PAGE_TYPE_SWAP 1011 -> 1011 246 * _PAGE_TYPE_FILE 11?1 -> 11?1 247 * _PAGE_TYPE_RO 0100 -> 1100 248 * _PAGE_TYPE_RW 0000 -> 1000 249 * _PAGE_TYPE_EX_RO 0110 -> 1110 250 * _PAGE_TYPE_EX_RW 0010 -> 1010 251 * 252 * pte_none is true for bits combinations 1000, 1010, 1100, 1110 253 * pte_present is true for bits combinations 0000, 0010, 0100, 0110, 1001 254 * pte_file is true for bits combinations 1101, 1111 255 * swap pte is 1011 and 0001, 0011, 0101, 0111 are invalid. 256 */ 257 258#ifndef __s390x__ 259 260/* Bits in the segment table entry */ 261#define _PAGE_TABLE_LEN 0xf /* only full page-tables */ 262#define _PAGE_TABLE_COM 0x10 /* common page-table */ 263#define _PAGE_TABLE_INV 0x20 /* invalid page-table */ 264#define _SEG_PRESENT 0x001 /* Software (overlap with PTL) */ 265 266/* Bits int the storage key */ 267#define _PAGE_CHANGED 0x02 /* HW changed bit */ 268#define _PAGE_REFERENCED 0x04 /* HW referenced bit */ 269 270#define _USER_SEG_TABLE_LEN 0x7f /* user-segment-table up to 2 GB */ 271#define _KERNEL_SEG_TABLE_LEN 0x7f /* kernel-segment-table up to 2 GB */ 272 273/* 274 * User and Kernel pagetables are identical 275 */ 276#define _PAGE_TABLE _PAGE_TABLE_LEN 277#define _KERNPG_TABLE _PAGE_TABLE_LEN 278 279/* 280 * The Kernel segment-tables includes the User segment-table 281 */ 282 283#define _SEGMENT_TABLE (_USER_SEG_TABLE_LEN|0x80000000|0x100) 284#define _KERNSEG_TABLE _KERNEL_SEG_TABLE_LEN 285 286#define USER_STD_MASK 0x00000080UL 287 288#else /* __s390x__ */ 289 290/* Bits in the segment table entry */ 291#define _PMD_ENTRY_INV 0x20 /* invalid segment table entry */ 292#define _PMD_ENTRY 0x00 293 294/* Bits in the region third table entry */ 295#define _PGD_ENTRY_INV 0x20 /* invalid region table entry */ 296#define _PGD_ENTRY 0x07 297 298/* 299 * User and kernel page directory 300 */ 301#define _REGION_THIRD 0x4 302#define _REGION_THIRD_LEN 0x3 303#define _REGION_TABLE (_REGION_THIRD|_REGION_THIRD_LEN|0x40|0x100) 304#define _KERN_REGION_TABLE (_REGION_THIRD|_REGION_THIRD_LEN) 305 306#define USER_STD_MASK 0x0000000000000080UL 307 308/* Bits in the storage key */ 309#define _PAGE_CHANGED 0x02 /* HW changed bit */ 310#define _PAGE_REFERENCED 0x04 /* HW referenced bit */ 311 312#endif /* __s390x__ */ 313 314/* 315 * Page protection definitions. 316 */ 317#define PAGE_NONE __pgprot(_PAGE_TYPE_NONE) 318#define PAGE_RO __pgprot(_PAGE_TYPE_RO) 319#define PAGE_RW __pgprot(_PAGE_TYPE_RW) 320#define PAGE_EX_RO __pgprot(_PAGE_TYPE_EX_RO) 321#define PAGE_EX_RW __pgprot(_PAGE_TYPE_EX_RW) 322 323#define PAGE_KERNEL PAGE_RW 324#define PAGE_COPY PAGE_RO 325 326/* 327 * Dependent on the EXEC_PROTECT option s390 can do execute protection. 328 * Write permission always implies read permission. In theory with a 329 * primary/secondary page table execute only can be implemented but 330 * it would cost an additional bit in the pte to distinguish all the 331 * different pte types. To avoid that execute permission currently 332 * implies read permission as well. 333 */ 334 /*xwr*/ 335#define __P000 PAGE_NONE 336#define __P001 PAGE_RO 337#define __P010 PAGE_RO 338#define __P011 PAGE_RO 339#define __P100 PAGE_EX_RO 340#define __P101 PAGE_EX_RO 341#define __P110 PAGE_EX_RO 342#define __P111 PAGE_EX_RO 343 344#define __S000 PAGE_NONE 345#define __S001 PAGE_RO 346#define __S010 PAGE_RW 347#define __S011 PAGE_RW 348#define __S100 PAGE_EX_RO 349#define __S101 PAGE_EX_RO 350#define __S110 PAGE_EX_RW 351#define __S111 PAGE_EX_RW 352 353#ifndef __s390x__ 354# define PMD_SHADOW_SHIFT 1 355# define PGD_SHADOW_SHIFT 1 356#else /* __s390x__ */ 357# define PMD_SHADOW_SHIFT 2 358# define PGD_SHADOW_SHIFT 2 359#endif /* __s390x__ */ 360 361static inline struct page *get_shadow_page(struct page *page) 362{ 363 if (s390_noexec && !list_empty(&page->lru)) 364 return virt_to_page(page->lru.next); 365 return NULL; 366} 367 368static inline pte_t *get_shadow_pte(pte_t *ptep) 369{ 370 unsigned long pteptr = (unsigned long) (ptep); 371 372 if (s390_noexec) { 373 unsigned long offset = pteptr & (PAGE_SIZE - 1); 374 void *addr = (void *) (pteptr ^ offset); 375 struct page *page = virt_to_page(addr); 376 if (!list_empty(&page->lru)) 377 return (pte_t *) ((unsigned long) page->lru.next | 378 offset); 379 } 380 return NULL; 381} 382 383static inline pmd_t *get_shadow_pmd(pmd_t *pmdp) 384{ 385 unsigned long pmdptr = (unsigned long) (pmdp); 386 387 if (s390_noexec) { 388 unsigned long offset = pmdptr & 389 ((PAGE_SIZE << PMD_SHADOW_SHIFT) - 1); 390 void *addr = (void *) (pmdptr ^ offset); 391 struct page *page = virt_to_page(addr); 392 if (!list_empty(&page->lru)) 393 return (pmd_t *) ((unsigned long) page->lru.next | 394 offset); 395 } 396 return NULL; 397} 398 399static inline pgd_t *get_shadow_pgd(pgd_t *pgdp) 400{ 401 unsigned long pgdptr = (unsigned long) (pgdp); 402 403 if (s390_noexec) { 404 unsigned long offset = pgdptr & 405 ((PAGE_SIZE << PGD_SHADOW_SHIFT) - 1); 406 void *addr = (void *) (pgdptr ^ offset); 407 struct page *page = virt_to_page(addr); 408 if (!list_empty(&page->lru)) 409 return (pgd_t *) ((unsigned long) page->lru.next | 410 offset); 411 } 412 return NULL; 413} 414 415/* 416 * Certain architectures need to do special things when PTEs 417 * within a page table are directly modified. Thus, the following 418 * hook is made available. 419 */ 420static inline void set_pte(pte_t *pteptr, pte_t pteval) 421{ 422 pte_t *shadow_pte = get_shadow_pte(pteptr); 423 424 *pteptr = pteval; 425 if (shadow_pte) { 426 if (!(pte_val(pteval) & _PAGE_INVALID) && 427 (pte_val(pteval) & _PAGE_SWX)) 428 pte_val(*shadow_pte) = pte_val(pteval) | _PAGE_RO; 429 else 430 pte_val(*shadow_pte) = _PAGE_TYPE_EMPTY; 431 } 432} 433#define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval) 434 435/* 436 * pgd/pmd/pte query functions 437 */ 438#ifndef __s390x__ 439 440static inline int pgd_present(pgd_t pgd) { return 1; } 441static inline int pgd_none(pgd_t pgd) { return 0; } 442static inline int pgd_bad(pgd_t pgd) { return 0; } 443 444static inline int pmd_present(pmd_t pmd) { return pmd_val(pmd) & _SEG_PRESENT; } 445static inline int pmd_none(pmd_t pmd) { return pmd_val(pmd) & _PAGE_TABLE_INV; } 446static inline int pmd_bad(pmd_t pmd) 447{ 448 return (pmd_val(pmd) & (~PAGE_MASK & ~_PAGE_TABLE_INV)) != _PAGE_TABLE; 449} 450 451#else /* __s390x__ */ 452 453static inline int pgd_present(pgd_t pgd) 454{ 455 return (pgd_val(pgd) & ~PAGE_MASK) == _PGD_ENTRY; 456} 457 458static inline int pgd_none(pgd_t pgd) 459{ 460 return pgd_val(pgd) & _PGD_ENTRY_INV; 461} 462 463static inline int pgd_bad(pgd_t pgd) 464{ 465 return (pgd_val(pgd) & (~PAGE_MASK & ~_PGD_ENTRY_INV)) != _PGD_ENTRY; 466} 467 468static inline int pmd_present(pmd_t pmd) 469{ 470 return (pmd_val(pmd) & ~PAGE_MASK) == _PMD_ENTRY; 471} 472 473static inline int pmd_none(pmd_t pmd) 474{ 475 return pmd_val(pmd) & _PMD_ENTRY_INV; 476} 477 478static inline int pmd_bad(pmd_t pmd) 479{ 480 return (pmd_val(pmd) & (~PAGE_MASK & ~_PMD_ENTRY_INV)) != _PMD_ENTRY; 481} 482 483#endif /* __s390x__ */ 484 485static inline int pte_none(pte_t pte) 486{ 487 return (pte_val(pte) & _PAGE_INVALID) && !(pte_val(pte) & _PAGE_SWT); 488} 489 490static inline int pte_present(pte_t pte) 491{ 492 unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT | _PAGE_SWX; 493 return (pte_val(pte) & mask) == _PAGE_TYPE_NONE || 494 (!(pte_val(pte) & _PAGE_INVALID) && 495 !(pte_val(pte) & _PAGE_SWT)); 496} 497 498static inline int pte_file(pte_t pte) 499{ 500 unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT; 501 return (pte_val(pte) & mask) == _PAGE_TYPE_FILE; 502} 503 504#define pte_same(a,b) (pte_val(a) == pte_val(b)) 505 506/* 507 * query functions pte_write/pte_dirty/pte_young only work if 508 * pte_present() is true. Undefined behaviour if not.. 509 */ 510static inline int pte_write(pte_t pte) 511{ 512 return (pte_val(pte) & _PAGE_RO) == 0; 513} 514 515static inline int pte_dirty(pte_t pte) 516{ 517 /* A pte is neither clean nor dirty on s/390. The dirty bit 518 * is in the storage key. See page_test_and_clear_dirty for 519 * details. 520 */ 521 return 0; 522} 523 524static inline int pte_young(pte_t pte) 525{ 526 /* A pte is neither young nor old on s/390. The young bit 527 * is in the storage key. See page_test_and_clear_young for 528 * details. 529 */ 530 return 0; 531} 532 533/* 534 * pgd/pmd/pte modification functions 535 */ 536 537#ifndef __s390x__ 538 539static inline void pgd_clear(pgd_t * pgdp) { } 540 541static inline void pmd_clear_kernel(pmd_t * pmdp) 542{ 543 pmd_val(pmdp[0]) = _PAGE_TABLE_INV; 544 pmd_val(pmdp[1]) = _PAGE_TABLE_INV; 545 pmd_val(pmdp[2]) = _PAGE_TABLE_INV; 546 pmd_val(pmdp[3]) = _PAGE_TABLE_INV; 547} 548 549static inline void pmd_clear(pmd_t * pmdp) 550{ 551 pmd_t *shadow_pmd = get_shadow_pmd(pmdp); 552 553 pmd_clear_kernel(pmdp); 554 if (shadow_pmd) 555 pmd_clear_kernel(shadow_pmd); 556} 557 558#else /* __s390x__ */ 559 560static inline void pgd_clear_kernel(pgd_t * pgdp) 561{ 562 pgd_val(*pgdp) = _PGD_ENTRY_INV | _PGD_ENTRY; 563} 564 565static inline void pgd_clear(pgd_t * pgdp) 566{ 567 pgd_t *shadow_pgd = get_shadow_pgd(pgdp); 568 569 pgd_clear_kernel(pgdp); 570 if (shadow_pgd) 571 pgd_clear_kernel(shadow_pgd); 572} 573 574static inline void pmd_clear_kernel(pmd_t * pmdp) 575{ 576 pmd_val(*pmdp) = _PMD_ENTRY_INV | _PMD_ENTRY; 577 pmd_val1(*pmdp) = _PMD_ENTRY_INV | _PMD_ENTRY; 578} 579 580static inline void pmd_clear(pmd_t * pmdp) 581{ 582 pmd_t *shadow_pmd = get_shadow_pmd(pmdp); 583 584 pmd_clear_kernel(pmdp); 585 if (shadow_pmd) 586 pmd_clear_kernel(shadow_pmd); 587} 588 589#endif /* __s390x__ */ 590 591static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 592{ 593 pte_t *shadow_pte = get_shadow_pte(ptep); 594 595 pte_val(*ptep) = _PAGE_TYPE_EMPTY; 596 if (shadow_pte) 597 pte_val(*shadow_pte) = _PAGE_TYPE_EMPTY; 598} 599 600/* 601 * The following pte modification functions only work if 602 * pte_present() is true. Undefined behaviour if not.. 603 */ 604static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 605{ 606 pte_val(pte) &= PAGE_MASK; 607 pte_val(pte) |= pgprot_val(newprot); 608 return pte; 609} 610 611static inline pte_t pte_wrprotect(pte_t pte) 612{ 613 /* Do not clobber _PAGE_TYPE_NONE pages! */ 614 if (!(pte_val(pte) & _PAGE_INVALID)) 615 pte_val(pte) |= _PAGE_RO; 616 return pte; 617} 618 619static inline pte_t pte_mkwrite(pte_t pte) 620{ 621 pte_val(pte) &= ~_PAGE_RO; 622 return pte; 623} 624 625static inline pte_t pte_mkclean(pte_t pte) 626{ 627 /* The only user of pte_mkclean is the fork() code. 628 We must *not* clear the *physical* page dirty bit 629 just because fork() wants to clear the dirty bit in 630 *one* of the page's mappings. So we just do nothing. */ 631 return pte; 632} 633 634static inline pte_t pte_mkdirty(pte_t pte) 635{ 636 /* We do not explicitly set the dirty bit because the 637 * sske instruction is slow. It is faster to let the 638 * next instruction set the dirty bit. 639 */ 640 return pte; 641} 642 643static inline pte_t pte_mkold(pte_t pte) 644{ 645 /* S/390 doesn't keep its dirty/referenced bit in the pte. 646 * There is no point in clearing the real referenced bit. 647 */ 648 return pte; 649} 650 651static inline pte_t pte_mkyoung(pte_t pte) 652{ 653 /* S/390 doesn't keep its dirty/referenced bit in the pte. 654 * There is no point in setting the real referenced bit. 655 */ 656 return pte; 657} 658 659static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) 660{ 661 return 0; 662} 663 664static inline int 665ptep_clear_flush_young(struct vm_area_struct *vma, 666 unsigned long address, pte_t *ptep) 667{ 668 /* No need to flush TLB; bits are in storage key */ 669 return ptep_test_and_clear_young(vma, address, ptep); 670} 671 672static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 673{ 674 pte_t pte = *ptep; 675 pte_clear(mm, addr, ptep); 676 return pte; 677} 678 679static inline void __ptep_ipte(unsigned long address, pte_t *ptep) 680{ 681 if (!(pte_val(*ptep) & _PAGE_INVALID)) { 682#ifndef __s390x__ 683 /* S390 has 1mb segments, we are emulating 4MB segments */ 684 pte_t *pto = (pte_t *) (((unsigned long) ptep) & 0x7ffffc00); 685#else 686 /* ipte in zarch mode can do the math */ 687 pte_t *pto = ptep; 688#endif 689 asm volatile( 690 " ipte %2,%3" 691 : "=m" (*ptep) : "m" (*ptep), 692 "a" (pto), "a" (address)); 693 } 694 pte_val(*ptep) = _PAGE_TYPE_EMPTY; 695} 696 697static inline void ptep_invalidate(unsigned long address, pte_t *ptep) 698{ 699 __ptep_ipte(address, ptep); 700 ptep = get_shadow_pte(ptep); 701 if (ptep) 702 __ptep_ipte(address, ptep); 703} 704 705static inline pte_t ptep_clear_flush(struct vm_area_struct *vma, 706 unsigned long address, pte_t *ptep) 707{ 708 pte_t pte = *ptep; 709 ptep_invalidate(address, ptep); 710 return pte; 711} 712 713static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 714{ 715 pte_t old_pte = *ptep; 716 set_pte_at(mm, addr, ptep, pte_wrprotect(old_pte)); 717} 718 719#define ptep_set_access_flags(__vma, __addr, __ptep, __entry, __dirty) \ 720({ \ 721 int __changed = !pte_same(*(__ptep), __entry); \ 722 if (__changed) { \ 723 ptep_invalidate(__addr, __ptep); \ 724 set_pte_at((__vma)->vm_mm, __addr, __ptep, __entry); \ 725 } \ 726 __changed; \ 727}) 728 729/* 730 * Test and clear dirty bit in storage key. 731 * We can't clear the changed bit atomically. This is a potential 732 * race against modification of the referenced bit. This function 733 * should therefore only be called if it is not mapped in any 734 * address space. 735 */ 736static inline int page_test_dirty(struct page *page) 737{ 738 return (page_get_storage_key(page_to_phys(page)) & _PAGE_CHANGED) != 0; 739} 740 741static inline void page_clear_dirty(struct page *page) 742{ 743 page_set_storage_key(page_to_phys(page), PAGE_DEFAULT_KEY); 744} 745 746/* 747 * Test and clear referenced bit in storage key. 748 */ 749static inline int page_test_and_clear_young(struct page *page) 750{ 751 unsigned long physpage = page_to_phys(page); 752 int ccode; 753 754 asm volatile( 755 " rrbe 0,%1\n" 756 " ipm %0\n" 757 " srl %0,28\n" 758 : "=d" (ccode) : "a" (physpage) : "cc" ); 759 return ccode & 2; 760} 761 762/* 763 * Conversion functions: convert a page and protection to a page entry, 764 * and a page entry and page directory to the page they refer to. 765 */ 766static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot) 767{ 768 pte_t __pte; 769 pte_val(__pte) = physpage + pgprot_val(pgprot); 770 return __pte; 771} 772 773static inline pte_t mk_pte(struct page *page, pgprot_t pgprot) 774{ 775 unsigned long physpage = page_to_phys(page); 776 777 return mk_pte_phys(physpage, pgprot); 778} 779 780static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) 781{ 782 unsigned long physpage = __pa((pfn) << PAGE_SHIFT); 783 784 return mk_pte_phys(physpage, pgprot); 785} 786 787#ifdef __s390x__ 788 789static inline pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot) 790{ 791 unsigned long physpage = __pa((pfn) << PAGE_SHIFT); 792 793 return __pmd(physpage + pgprot_val(pgprot)); 794} 795 796#endif /* __s390x__ */ 797 798#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT) 799#define pte_page(x) pfn_to_page(pte_pfn(x)) 800 801#define pmd_page_vaddr(pmd) (pmd_val(pmd) & PAGE_MASK) 802 803#define pmd_page(pmd) pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT) 804 805#define pgd_page_vaddr(pgd) (pgd_val(pgd) & PAGE_MASK) 806 807#define pgd_page(pgd) pfn_to_page(pgd_val(pgd) >> PAGE_SHIFT) 808 809/* to find an entry in a page-table-directory */ 810#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) 811#define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address)) 812 813/* to find an entry in a kernel page-table-directory */ 814#define pgd_offset_k(address) pgd_offset(&init_mm, address) 815 816#ifndef __s390x__ 817 818/* Find an entry in the second-level page table.. */ 819static inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address) 820{ 821 return (pmd_t *) dir; 822} 823 824#else /* __s390x__ */ 825 826/* Find an entry in the second-level page table.. */ 827#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1)) 828#define pmd_offset(dir,addr) \ 829 ((pmd_t *) pgd_page_vaddr(*(dir)) + pmd_index(addr)) 830 831#endif /* __s390x__ */ 832 833/* Find an entry in the third-level page table.. */ 834#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1)) 835#define pte_offset_kernel(pmd, address) \ 836 ((pte_t *) pmd_page_vaddr(*(pmd)) + pte_index(address)) 837#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address) 838#define pte_offset_map_nested(pmd, address) pte_offset_kernel(pmd, address) 839#define pte_unmap(pte) do { } while (0) 840#define pte_unmap_nested(pte) do { } while (0) 841 842/* 843 * 31 bit swap entry format: 844 * A page-table entry has some bits we have to treat in a special way. 845 * Bits 0, 20 and bit 23 have to be zero, otherwise an specification 846 * exception will occur instead of a page translation exception. The 847 * specifiation exception has the bad habit not to store necessary 848 * information in the lowcore. 849 * Bit 21 and bit 22 are the page invalid bit and the page protection 850 * bit. We set both to indicate a swapped page. 851 * Bit 30 and 31 are used to distinguish the different page types. For 852 * a swapped page these bits need to be zero. 853 * This leaves the bits 1-19 and bits 24-29 to store type and offset. 854 * We use the 5 bits from 25-29 for the type and the 20 bits from 1-19 855 * plus 24 for the offset. 856 * 0| offset |0110|o|type |00| 857 * 0 0000000001111111111 2222 2 22222 33 858 * 0 1234567890123456789 0123 4 56789 01 859 * 860 * 64 bit swap entry format: 861 * A page-table entry has some bits we have to treat in a special way. 862 * Bits 52 and bit 55 have to be zero, otherwise an specification 863 * exception will occur instead of a page translation exception. The 864 * specifiation exception has the bad habit not to store necessary 865 * information in the lowcore. 866 * Bit 53 and bit 54 are the page invalid bit and the page protection 867 * bit. We set both to indicate a swapped page. 868 * Bit 62 and 63 are used to distinguish the different page types. For 869 * a swapped page these bits need to be zero. 870 * This leaves the bits 0-51 and bits 56-61 to store type and offset. 871 * We use the 5 bits from 57-61 for the type and the 53 bits from 0-51 872 * plus 56 for the offset. 873 * | offset |0110|o|type |00| 874 * 0000000000111111111122222222223333333333444444444455 5555 5 55566 66 875 * 0123456789012345678901234567890123456789012345678901 2345 6 78901 23 876 */ 877#ifndef __s390x__ 878#define __SWP_OFFSET_MASK (~0UL >> 12) 879#else 880#define __SWP_OFFSET_MASK (~0UL >> 11) 881#endif 882static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset) 883{ 884 pte_t pte; 885 offset &= __SWP_OFFSET_MASK; 886 pte_val(pte) = _PAGE_TYPE_SWAP | ((type & 0x1f) << 2) | 887 ((offset & 1UL) << 7) | ((offset & ~1UL) << 11); 888 return pte; 889} 890 891#define __swp_type(entry) (((entry).val >> 2) & 0x1f) 892#define __swp_offset(entry) (((entry).val >> 11) | (((entry).val >> 7) & 1)) 893#define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) }) 894 895#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 896#define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 897 898#ifndef __s390x__ 899# define PTE_FILE_MAX_BITS 26 900#else /* __s390x__ */ 901# define PTE_FILE_MAX_BITS 59 902#endif /* __s390x__ */ 903 904#define pte_to_pgoff(__pte) \ 905 ((((__pte).pte >> 12) << 7) + (((__pte).pte >> 1) & 0x7f)) 906 907#define pgoff_to_pte(__off) \ 908 ((pte_t) { ((((__off) & 0x7f) << 1) + (((__off) >> 7) << 12)) \ 909 | _PAGE_TYPE_FILE }) 910 911#endif /* !__ASSEMBLY__ */ 912 913#define kern_addr_valid(addr) (1) 914 915extern int add_shared_memory(unsigned long start, unsigned long size); 916extern int remove_shared_memory(unsigned long start, unsigned long size); 917 918/* 919 * No page table caches to initialise 920 */ 921#define pgtable_cache_init() do { } while (0) 922 923#define __HAVE_ARCH_MEMMAP_INIT 924extern void memmap_init(unsigned long, int, unsigned long, unsigned long); 925 926#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 927#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 928#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 929#define __HAVE_ARCH_PTEP_GET_AND_CLEAR 930#define __HAVE_ARCH_PTEP_CLEAR_FLUSH 931#define __HAVE_ARCH_PTEP_SET_WRPROTECT 932#define __HAVE_ARCH_PTE_SAME 933#define __HAVE_ARCH_PAGE_TEST_DIRTY 934#define __HAVE_ARCH_PAGE_CLEAR_DIRTY 935#define __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG 936#include <asm-generic/pgtable.h> 937 938#endif /* _S390_PAGE_H */ 939