at v2.6.23-rc6 6206 lines 179 kB view raw
1/* SCTP kernel reference Implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * Copyright (c) 2001-2002 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel reference Implementation 10 * 11 * These functions interface with the sockets layer to implement the 12 * SCTP Extensions for the Sockets API. 13 * 14 * Note that the descriptions from the specification are USER level 15 * functions--this file is the functions which populate the struct proto 16 * for SCTP which is the BOTTOM of the sockets interface. 17 * 18 * The SCTP reference implementation is free software; 19 * you can redistribute it and/or modify it under the terms of 20 * the GNU General Public License as published by 21 * the Free Software Foundation; either version 2, or (at your option) 22 * any later version. 23 * 24 * The SCTP reference implementation is distributed in the hope that it 25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 26 * ************************ 27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 28 * See the GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with GNU CC; see the file COPYING. If not, write to 32 * the Free Software Foundation, 59 Temple Place - Suite 330, 33 * Boston, MA 02111-1307, USA. 34 * 35 * Please send any bug reports or fixes you make to the 36 * email address(es): 37 * lksctp developers <lksctp-developers@lists.sourceforge.net> 38 * 39 * Or submit a bug report through the following website: 40 * http://www.sf.net/projects/lksctp 41 * 42 * Written or modified by: 43 * La Monte H.P. Yarroll <piggy@acm.org> 44 * Narasimha Budihal <narsi@refcode.org> 45 * Karl Knutson <karl@athena.chicago.il.us> 46 * Jon Grimm <jgrimm@us.ibm.com> 47 * Xingang Guo <xingang.guo@intel.com> 48 * Daisy Chang <daisyc@us.ibm.com> 49 * Sridhar Samudrala <samudrala@us.ibm.com> 50 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 51 * Ardelle Fan <ardelle.fan@intel.com> 52 * Ryan Layer <rmlayer@us.ibm.com> 53 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 54 * Kevin Gao <kevin.gao@intel.com> 55 * 56 * Any bugs reported given to us we will try to fix... any fixes shared will 57 * be incorporated into the next SCTP release. 58 */ 59 60#include <linux/types.h> 61#include <linux/kernel.h> 62#include <linux/wait.h> 63#include <linux/time.h> 64#include <linux/ip.h> 65#include <linux/capability.h> 66#include <linux/fcntl.h> 67#include <linux/poll.h> 68#include <linux/init.h> 69#include <linux/crypto.h> 70 71#include <net/ip.h> 72#include <net/icmp.h> 73#include <net/route.h> 74#include <net/ipv6.h> 75#include <net/inet_common.h> 76 77#include <linux/socket.h> /* for sa_family_t */ 78#include <net/sock.h> 79#include <net/sctp/sctp.h> 80#include <net/sctp/sm.h> 81 82/* WARNING: Please do not remove the SCTP_STATIC attribute to 83 * any of the functions below as they are used to export functions 84 * used by a project regression testsuite. 85 */ 86 87/* Forward declarations for internal helper functions. */ 88static int sctp_writeable(struct sock *sk); 89static void sctp_wfree(struct sk_buff *skb); 90static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p, 91 size_t msg_len); 92static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p); 93static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 94static int sctp_wait_for_accept(struct sock *sk, long timeo); 95static void sctp_wait_for_close(struct sock *sk, long timeo); 96static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 97 union sctp_addr *addr, int len); 98static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 99static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 100static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 101static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 102static int sctp_send_asconf(struct sctp_association *asoc, 103 struct sctp_chunk *chunk); 104static int sctp_do_bind(struct sock *, union sctp_addr *, int); 105static int sctp_autobind(struct sock *sk); 106static void sctp_sock_migrate(struct sock *, struct sock *, 107 struct sctp_association *, sctp_socket_type_t); 108static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG; 109 110/* Get the sndbuf space available at the time on the association. */ 111static inline int sctp_wspace(struct sctp_association *asoc) 112{ 113 struct sock *sk = asoc->base.sk; 114 int amt = 0; 115 116 if (asoc->ep->sndbuf_policy) { 117 /* make sure that no association uses more than sk_sndbuf */ 118 amt = sk->sk_sndbuf - asoc->sndbuf_used; 119 } else { 120 /* do socket level accounting */ 121 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc); 122 } 123 124 if (amt < 0) 125 amt = 0; 126 127 return amt; 128} 129 130/* Increment the used sndbuf space count of the corresponding association by 131 * the size of the outgoing data chunk. 132 * Also, set the skb destructor for sndbuf accounting later. 133 * 134 * Since it is always 1-1 between chunk and skb, and also a new skb is always 135 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 136 * destructor in the data chunk skb for the purpose of the sndbuf space 137 * tracking. 138 */ 139static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 140{ 141 struct sctp_association *asoc = chunk->asoc; 142 struct sock *sk = asoc->base.sk; 143 144 /* The sndbuf space is tracked per association. */ 145 sctp_association_hold(asoc); 146 147 skb_set_owner_w(chunk->skb, sk); 148 149 chunk->skb->destructor = sctp_wfree; 150 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 151 *((struct sctp_chunk **)(chunk->skb->cb)) = chunk; 152 153 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) + 154 sizeof(struct sk_buff) + 155 sizeof(struct sctp_chunk); 156 157 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 158} 159 160/* Verify that this is a valid address. */ 161static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 162 int len) 163{ 164 struct sctp_af *af; 165 166 /* Verify basic sockaddr. */ 167 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 168 if (!af) 169 return -EINVAL; 170 171 /* Is this a valid SCTP address? */ 172 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 173 return -EINVAL; 174 175 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 176 return -EINVAL; 177 178 return 0; 179} 180 181/* Look up the association by its id. If this is not a UDP-style 182 * socket, the ID field is always ignored. 183 */ 184struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 185{ 186 struct sctp_association *asoc = NULL; 187 188 /* If this is not a UDP-style socket, assoc id should be ignored. */ 189 if (!sctp_style(sk, UDP)) { 190 /* Return NULL if the socket state is not ESTABLISHED. It 191 * could be a TCP-style listening socket or a socket which 192 * hasn't yet called connect() to establish an association. 193 */ 194 if (!sctp_sstate(sk, ESTABLISHED)) 195 return NULL; 196 197 /* Get the first and the only association from the list. */ 198 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 199 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 200 struct sctp_association, asocs); 201 return asoc; 202 } 203 204 /* Otherwise this is a UDP-style socket. */ 205 if (!id || (id == (sctp_assoc_t)-1)) 206 return NULL; 207 208 spin_lock_bh(&sctp_assocs_id_lock); 209 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 210 spin_unlock_bh(&sctp_assocs_id_lock); 211 212 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead) 213 return NULL; 214 215 return asoc; 216} 217 218/* Look up the transport from an address and an assoc id. If both address and 219 * id are specified, the associations matching the address and the id should be 220 * the same. 221 */ 222static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 223 struct sockaddr_storage *addr, 224 sctp_assoc_t id) 225{ 226 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 227 struct sctp_transport *transport; 228 union sctp_addr *laddr = (union sctp_addr *)addr; 229 230 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 231 laddr, 232 &transport); 233 234 if (!addr_asoc) 235 return NULL; 236 237 id_asoc = sctp_id2assoc(sk, id); 238 if (id_asoc && (id_asoc != addr_asoc)) 239 return NULL; 240 241 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 242 (union sctp_addr *)addr); 243 244 return transport; 245} 246 247/* API 3.1.2 bind() - UDP Style Syntax 248 * The syntax of bind() is, 249 * 250 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 251 * 252 * sd - the socket descriptor returned by socket(). 253 * addr - the address structure (struct sockaddr_in or struct 254 * sockaddr_in6 [RFC 2553]), 255 * addr_len - the size of the address structure. 256 */ 257SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 258{ 259 int retval = 0; 260 261 sctp_lock_sock(sk); 262 263 SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n", 264 sk, addr, addr_len); 265 266 /* Disallow binding twice. */ 267 if (!sctp_sk(sk)->ep->base.bind_addr.port) 268 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 269 addr_len); 270 else 271 retval = -EINVAL; 272 273 sctp_release_sock(sk); 274 275 return retval; 276} 277 278static long sctp_get_port_local(struct sock *, union sctp_addr *); 279 280/* Verify this is a valid sockaddr. */ 281static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 282 union sctp_addr *addr, int len) 283{ 284 struct sctp_af *af; 285 286 /* Check minimum size. */ 287 if (len < sizeof (struct sockaddr)) 288 return NULL; 289 290 /* Does this PF support this AF? */ 291 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 292 return NULL; 293 294 /* If we get this far, af is valid. */ 295 af = sctp_get_af_specific(addr->sa.sa_family); 296 297 if (len < af->sockaddr_len) 298 return NULL; 299 300 return af; 301} 302 303/* Bind a local address either to an endpoint or to an association. */ 304SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 305{ 306 struct sctp_sock *sp = sctp_sk(sk); 307 struct sctp_endpoint *ep = sp->ep; 308 struct sctp_bind_addr *bp = &ep->base.bind_addr; 309 struct sctp_af *af; 310 unsigned short snum; 311 int ret = 0; 312 313 /* Common sockaddr verification. */ 314 af = sctp_sockaddr_af(sp, addr, len); 315 if (!af) { 316 SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n", 317 sk, addr, len); 318 return -EINVAL; 319 } 320 321 snum = ntohs(addr->v4.sin_port); 322 323 SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ", 324 ", port: %d, new port: %d, len: %d)\n", 325 sk, 326 addr, 327 bp->port, snum, 328 len); 329 330 /* PF specific bind() address verification. */ 331 if (!sp->pf->bind_verify(sp, addr)) 332 return -EADDRNOTAVAIL; 333 334 /* We must either be unbound, or bind to the same port. 335 * It's OK to allow 0 ports if we are already bound. 336 * We'll just inhert an already bound port in this case 337 */ 338 if (bp->port) { 339 if (!snum) 340 snum = bp->port; 341 else if (snum != bp->port) { 342 SCTP_DEBUG_PRINTK("sctp_do_bind:" 343 " New port %d does not match existing port " 344 "%d.\n", snum, bp->port); 345 return -EINVAL; 346 } 347 } 348 349 if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE)) 350 return -EACCES; 351 352 /* Make sure we are allowed to bind here. 353 * The function sctp_get_port_local() does duplicate address 354 * detection. 355 */ 356 addr->v4.sin_port = htons(snum); 357 if ((ret = sctp_get_port_local(sk, addr))) { 358 if (ret == (long) sk) { 359 /* This endpoint has a conflicting address. */ 360 return -EINVAL; 361 } else { 362 return -EADDRINUSE; 363 } 364 } 365 366 /* Refresh ephemeral port. */ 367 if (!bp->port) 368 bp->port = inet_sk(sk)->num; 369 370 /* Add the address to the bind address list. */ 371 sctp_local_bh_disable(); 372 sctp_write_lock(&ep->base.addr_lock); 373 374 /* Use GFP_ATOMIC since BHs are disabled. */ 375 ret = sctp_add_bind_addr(bp, addr, 1, GFP_ATOMIC); 376 sctp_write_unlock(&ep->base.addr_lock); 377 sctp_local_bh_enable(); 378 379 /* Copy back into socket for getsockname() use. */ 380 if (!ret) { 381 inet_sk(sk)->sport = htons(inet_sk(sk)->num); 382 af->to_sk_saddr(addr, sk); 383 } 384 385 return ret; 386} 387 388 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 389 * 390 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 391 * at any one time. If a sender, after sending an ASCONF chunk, decides 392 * it needs to transfer another ASCONF Chunk, it MUST wait until the 393 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 394 * subsequent ASCONF. Note this restriction binds each side, so at any 395 * time two ASCONF may be in-transit on any given association (one sent 396 * from each endpoint). 397 */ 398static int sctp_send_asconf(struct sctp_association *asoc, 399 struct sctp_chunk *chunk) 400{ 401 int retval = 0; 402 403 /* If there is an outstanding ASCONF chunk, queue it for later 404 * transmission. 405 */ 406 if (asoc->addip_last_asconf) { 407 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 408 goto out; 409 } 410 411 /* Hold the chunk until an ASCONF_ACK is received. */ 412 sctp_chunk_hold(chunk); 413 retval = sctp_primitive_ASCONF(asoc, chunk); 414 if (retval) 415 sctp_chunk_free(chunk); 416 else 417 asoc->addip_last_asconf = chunk; 418 419out: 420 return retval; 421} 422 423/* Add a list of addresses as bind addresses to local endpoint or 424 * association. 425 * 426 * Basically run through each address specified in the addrs/addrcnt 427 * array/length pair, determine if it is IPv6 or IPv4 and call 428 * sctp_do_bind() on it. 429 * 430 * If any of them fails, then the operation will be reversed and the 431 * ones that were added will be removed. 432 * 433 * Only sctp_setsockopt_bindx() is supposed to call this function. 434 */ 435static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 436{ 437 int cnt; 438 int retval = 0; 439 void *addr_buf; 440 struct sockaddr *sa_addr; 441 struct sctp_af *af; 442 443 SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n", 444 sk, addrs, addrcnt); 445 446 addr_buf = addrs; 447 for (cnt = 0; cnt < addrcnt; cnt++) { 448 /* The list may contain either IPv4 or IPv6 address; 449 * determine the address length for walking thru the list. 450 */ 451 sa_addr = (struct sockaddr *)addr_buf; 452 af = sctp_get_af_specific(sa_addr->sa_family); 453 if (!af) { 454 retval = -EINVAL; 455 goto err_bindx_add; 456 } 457 458 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 459 af->sockaddr_len); 460 461 addr_buf += af->sockaddr_len; 462 463err_bindx_add: 464 if (retval < 0) { 465 /* Failed. Cleanup the ones that have been added */ 466 if (cnt > 0) 467 sctp_bindx_rem(sk, addrs, cnt); 468 return retval; 469 } 470 } 471 472 return retval; 473} 474 475/* Send an ASCONF chunk with Add IP address parameters to all the peers of the 476 * associations that are part of the endpoint indicating that a list of local 477 * addresses are added to the endpoint. 478 * 479 * If any of the addresses is already in the bind address list of the 480 * association, we do not send the chunk for that association. But it will not 481 * affect other associations. 482 * 483 * Only sctp_setsockopt_bindx() is supposed to call this function. 484 */ 485static int sctp_send_asconf_add_ip(struct sock *sk, 486 struct sockaddr *addrs, 487 int addrcnt) 488{ 489 struct sctp_sock *sp; 490 struct sctp_endpoint *ep; 491 struct sctp_association *asoc; 492 struct sctp_bind_addr *bp; 493 struct sctp_chunk *chunk; 494 struct sctp_sockaddr_entry *laddr; 495 union sctp_addr *addr; 496 union sctp_addr saveaddr; 497 void *addr_buf; 498 struct sctp_af *af; 499 struct list_head *pos; 500 struct list_head *p; 501 int i; 502 int retval = 0; 503 504 if (!sctp_addip_enable) 505 return retval; 506 507 sp = sctp_sk(sk); 508 ep = sp->ep; 509 510 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n", 511 __FUNCTION__, sk, addrs, addrcnt); 512 513 list_for_each(pos, &ep->asocs) { 514 asoc = list_entry(pos, struct sctp_association, asocs); 515 516 if (!asoc->peer.asconf_capable) 517 continue; 518 519 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 520 continue; 521 522 if (!sctp_state(asoc, ESTABLISHED)) 523 continue; 524 525 /* Check if any address in the packed array of addresses is 526 * in the bind address list of the association. If so, 527 * do not send the asconf chunk to its peer, but continue with 528 * other associations. 529 */ 530 addr_buf = addrs; 531 for (i = 0; i < addrcnt; i++) { 532 addr = (union sctp_addr *)addr_buf; 533 af = sctp_get_af_specific(addr->v4.sin_family); 534 if (!af) { 535 retval = -EINVAL; 536 goto out; 537 } 538 539 if (sctp_assoc_lookup_laddr(asoc, addr)) 540 break; 541 542 addr_buf += af->sockaddr_len; 543 } 544 if (i < addrcnt) 545 continue; 546 547 /* Use the first address in bind addr list of association as 548 * Address Parameter of ASCONF CHUNK. 549 */ 550 sctp_read_lock(&asoc->base.addr_lock); 551 bp = &asoc->base.bind_addr; 552 p = bp->address_list.next; 553 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 554 sctp_read_unlock(&asoc->base.addr_lock); 555 556 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 557 addrcnt, SCTP_PARAM_ADD_IP); 558 if (!chunk) { 559 retval = -ENOMEM; 560 goto out; 561 } 562 563 retval = sctp_send_asconf(asoc, chunk); 564 if (retval) 565 goto out; 566 567 /* Add the new addresses to the bind address list with 568 * use_as_src set to 0. 569 */ 570 sctp_local_bh_disable(); 571 sctp_write_lock(&asoc->base.addr_lock); 572 addr_buf = addrs; 573 for (i = 0; i < addrcnt; i++) { 574 addr = (union sctp_addr *)addr_buf; 575 af = sctp_get_af_specific(addr->v4.sin_family); 576 memcpy(&saveaddr, addr, af->sockaddr_len); 577 retval = sctp_add_bind_addr(bp, &saveaddr, 0, 578 GFP_ATOMIC); 579 addr_buf += af->sockaddr_len; 580 } 581 sctp_write_unlock(&asoc->base.addr_lock); 582 sctp_local_bh_enable(); 583 } 584 585out: 586 return retval; 587} 588 589/* Remove a list of addresses from bind addresses list. Do not remove the 590 * last address. 591 * 592 * Basically run through each address specified in the addrs/addrcnt 593 * array/length pair, determine if it is IPv6 or IPv4 and call 594 * sctp_del_bind() on it. 595 * 596 * If any of them fails, then the operation will be reversed and the 597 * ones that were removed will be added back. 598 * 599 * At least one address has to be left; if only one address is 600 * available, the operation will return -EBUSY. 601 * 602 * Only sctp_setsockopt_bindx() is supposed to call this function. 603 */ 604static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 605{ 606 struct sctp_sock *sp = sctp_sk(sk); 607 struct sctp_endpoint *ep = sp->ep; 608 int cnt; 609 struct sctp_bind_addr *bp = &ep->base.bind_addr; 610 int retval = 0; 611 void *addr_buf; 612 union sctp_addr *sa_addr; 613 struct sctp_af *af; 614 615 SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n", 616 sk, addrs, addrcnt); 617 618 addr_buf = addrs; 619 for (cnt = 0; cnt < addrcnt; cnt++) { 620 /* If the bind address list is empty or if there is only one 621 * bind address, there is nothing more to be removed (we need 622 * at least one address here). 623 */ 624 if (list_empty(&bp->address_list) || 625 (sctp_list_single_entry(&bp->address_list))) { 626 retval = -EBUSY; 627 goto err_bindx_rem; 628 } 629 630 sa_addr = (union sctp_addr *)addr_buf; 631 af = sctp_get_af_specific(sa_addr->sa.sa_family); 632 if (!af) { 633 retval = -EINVAL; 634 goto err_bindx_rem; 635 } 636 637 if (!af->addr_valid(sa_addr, sp, NULL)) { 638 retval = -EADDRNOTAVAIL; 639 goto err_bindx_rem; 640 } 641 642 if (sa_addr->v4.sin_port != htons(bp->port)) { 643 retval = -EINVAL; 644 goto err_bindx_rem; 645 } 646 647 /* FIXME - There is probably a need to check if sk->sk_saddr and 648 * sk->sk_rcv_addr are currently set to one of the addresses to 649 * be removed. This is something which needs to be looked into 650 * when we are fixing the outstanding issues with multi-homing 651 * socket routing and failover schemes. Refer to comments in 652 * sctp_do_bind(). -daisy 653 */ 654 sctp_local_bh_disable(); 655 sctp_write_lock(&ep->base.addr_lock); 656 657 retval = sctp_del_bind_addr(bp, sa_addr); 658 659 sctp_write_unlock(&ep->base.addr_lock); 660 sctp_local_bh_enable(); 661 662 addr_buf += af->sockaddr_len; 663err_bindx_rem: 664 if (retval < 0) { 665 /* Failed. Add the ones that has been removed back */ 666 if (cnt > 0) 667 sctp_bindx_add(sk, addrs, cnt); 668 return retval; 669 } 670 } 671 672 return retval; 673} 674 675/* Send an ASCONF chunk with Delete IP address parameters to all the peers of 676 * the associations that are part of the endpoint indicating that a list of 677 * local addresses are removed from the endpoint. 678 * 679 * If any of the addresses is already in the bind address list of the 680 * association, we do not send the chunk for that association. But it will not 681 * affect other associations. 682 * 683 * Only sctp_setsockopt_bindx() is supposed to call this function. 684 */ 685static int sctp_send_asconf_del_ip(struct sock *sk, 686 struct sockaddr *addrs, 687 int addrcnt) 688{ 689 struct sctp_sock *sp; 690 struct sctp_endpoint *ep; 691 struct sctp_association *asoc; 692 struct sctp_transport *transport; 693 struct sctp_bind_addr *bp; 694 struct sctp_chunk *chunk; 695 union sctp_addr *laddr; 696 void *addr_buf; 697 struct sctp_af *af; 698 struct list_head *pos, *pos1; 699 struct sctp_sockaddr_entry *saddr; 700 int i; 701 int retval = 0; 702 703 if (!sctp_addip_enable) 704 return retval; 705 706 sp = sctp_sk(sk); 707 ep = sp->ep; 708 709 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n", 710 __FUNCTION__, sk, addrs, addrcnt); 711 712 list_for_each(pos, &ep->asocs) { 713 asoc = list_entry(pos, struct sctp_association, asocs); 714 715 if (!asoc->peer.asconf_capable) 716 continue; 717 718 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 719 continue; 720 721 if (!sctp_state(asoc, ESTABLISHED)) 722 continue; 723 724 /* Check if any address in the packed array of addresses is 725 * not present in the bind address list of the association. 726 * If so, do not send the asconf chunk to its peer, but 727 * continue with other associations. 728 */ 729 addr_buf = addrs; 730 for (i = 0; i < addrcnt; i++) { 731 laddr = (union sctp_addr *)addr_buf; 732 af = sctp_get_af_specific(laddr->v4.sin_family); 733 if (!af) { 734 retval = -EINVAL; 735 goto out; 736 } 737 738 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 739 break; 740 741 addr_buf += af->sockaddr_len; 742 } 743 if (i < addrcnt) 744 continue; 745 746 /* Find one address in the association's bind address list 747 * that is not in the packed array of addresses. This is to 748 * make sure that we do not delete all the addresses in the 749 * association. 750 */ 751 sctp_read_lock(&asoc->base.addr_lock); 752 bp = &asoc->base.bind_addr; 753 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 754 addrcnt, sp); 755 sctp_read_unlock(&asoc->base.addr_lock); 756 if (!laddr) 757 continue; 758 759 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 760 SCTP_PARAM_DEL_IP); 761 if (!chunk) { 762 retval = -ENOMEM; 763 goto out; 764 } 765 766 /* Reset use_as_src flag for the addresses in the bind address 767 * list that are to be deleted. 768 */ 769 sctp_local_bh_disable(); 770 sctp_write_lock(&asoc->base.addr_lock); 771 addr_buf = addrs; 772 for (i = 0; i < addrcnt; i++) { 773 laddr = (union sctp_addr *)addr_buf; 774 af = sctp_get_af_specific(laddr->v4.sin_family); 775 list_for_each(pos1, &bp->address_list) { 776 saddr = list_entry(pos1, 777 struct sctp_sockaddr_entry, 778 list); 779 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 780 saddr->use_as_src = 0; 781 } 782 addr_buf += af->sockaddr_len; 783 } 784 sctp_write_unlock(&asoc->base.addr_lock); 785 sctp_local_bh_enable(); 786 787 /* Update the route and saddr entries for all the transports 788 * as some of the addresses in the bind address list are 789 * about to be deleted and cannot be used as source addresses. 790 */ 791 list_for_each(pos1, &asoc->peer.transport_addr_list) { 792 transport = list_entry(pos1, struct sctp_transport, 793 transports); 794 dst_release(transport->dst); 795 sctp_transport_route(transport, NULL, 796 sctp_sk(asoc->base.sk)); 797 } 798 799 retval = sctp_send_asconf(asoc, chunk); 800 } 801out: 802 return retval; 803} 804 805/* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 806 * 807 * API 8.1 808 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 809 * int flags); 810 * 811 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 812 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 813 * or IPv6 addresses. 814 * 815 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 816 * Section 3.1.2 for this usage. 817 * 818 * addrs is a pointer to an array of one or more socket addresses. Each 819 * address is contained in its appropriate structure (i.e. struct 820 * sockaddr_in or struct sockaddr_in6) the family of the address type 821 * must be used to distinguish the address length (note that this 822 * representation is termed a "packed array" of addresses). The caller 823 * specifies the number of addresses in the array with addrcnt. 824 * 825 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 826 * -1, and sets errno to the appropriate error code. 827 * 828 * For SCTP, the port given in each socket address must be the same, or 829 * sctp_bindx() will fail, setting errno to EINVAL. 830 * 831 * The flags parameter is formed from the bitwise OR of zero or more of 832 * the following currently defined flags: 833 * 834 * SCTP_BINDX_ADD_ADDR 835 * 836 * SCTP_BINDX_REM_ADDR 837 * 838 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 839 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 840 * addresses from the association. The two flags are mutually exclusive; 841 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 842 * not remove all addresses from an association; sctp_bindx() will 843 * reject such an attempt with EINVAL. 844 * 845 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 846 * additional addresses with an endpoint after calling bind(). Or use 847 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 848 * socket is associated with so that no new association accepted will be 849 * associated with those addresses. If the endpoint supports dynamic 850 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 851 * endpoint to send the appropriate message to the peer to change the 852 * peers address lists. 853 * 854 * Adding and removing addresses from a connected association is 855 * optional functionality. Implementations that do not support this 856 * functionality should return EOPNOTSUPP. 857 * 858 * Basically do nothing but copying the addresses from user to kernel 859 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 860 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 861 * from userspace. 862 * 863 * We don't use copy_from_user() for optimization: we first do the 864 * sanity checks (buffer size -fast- and access check-healthy 865 * pointer); if all of those succeed, then we can alloc the memory 866 * (expensive operation) needed to copy the data to kernel. Then we do 867 * the copying without checking the user space area 868 * (__copy_from_user()). 869 * 870 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 871 * it. 872 * 873 * sk The sk of the socket 874 * addrs The pointer to the addresses in user land 875 * addrssize Size of the addrs buffer 876 * op Operation to perform (add or remove, see the flags of 877 * sctp_bindx) 878 * 879 * Returns 0 if ok, <0 errno code on error. 880 */ 881SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk, 882 struct sockaddr __user *addrs, 883 int addrs_size, int op) 884{ 885 struct sockaddr *kaddrs; 886 int err; 887 int addrcnt = 0; 888 int walk_size = 0; 889 struct sockaddr *sa_addr; 890 void *addr_buf; 891 struct sctp_af *af; 892 893 SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p" 894 " addrs_size %d opt %d\n", sk, addrs, addrs_size, op); 895 896 if (unlikely(addrs_size <= 0)) 897 return -EINVAL; 898 899 /* Check the user passed a healthy pointer. */ 900 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 901 return -EFAULT; 902 903 /* Alloc space for the address array in kernel memory. */ 904 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 905 if (unlikely(!kaddrs)) 906 return -ENOMEM; 907 908 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 909 kfree(kaddrs); 910 return -EFAULT; 911 } 912 913 /* Walk through the addrs buffer and count the number of addresses. */ 914 addr_buf = kaddrs; 915 while (walk_size < addrs_size) { 916 sa_addr = (struct sockaddr *)addr_buf; 917 af = sctp_get_af_specific(sa_addr->sa_family); 918 919 /* If the address family is not supported or if this address 920 * causes the address buffer to overflow return EINVAL. 921 */ 922 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 923 kfree(kaddrs); 924 return -EINVAL; 925 } 926 addrcnt++; 927 addr_buf += af->sockaddr_len; 928 walk_size += af->sockaddr_len; 929 } 930 931 /* Do the work. */ 932 switch (op) { 933 case SCTP_BINDX_ADD_ADDR: 934 err = sctp_bindx_add(sk, kaddrs, addrcnt); 935 if (err) 936 goto out; 937 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 938 break; 939 940 case SCTP_BINDX_REM_ADDR: 941 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 942 if (err) 943 goto out; 944 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 945 break; 946 947 default: 948 err = -EINVAL; 949 break; 950 } 951 952out: 953 kfree(kaddrs); 954 955 return err; 956} 957 958/* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 959 * 960 * Common routine for handling connect() and sctp_connectx(). 961 * Connect will come in with just a single address. 962 */ 963static int __sctp_connect(struct sock* sk, 964 struct sockaddr *kaddrs, 965 int addrs_size) 966{ 967 struct sctp_sock *sp; 968 struct sctp_endpoint *ep; 969 struct sctp_association *asoc = NULL; 970 struct sctp_association *asoc2; 971 struct sctp_transport *transport; 972 union sctp_addr to; 973 struct sctp_af *af; 974 sctp_scope_t scope; 975 long timeo; 976 int err = 0; 977 int addrcnt = 0; 978 int walk_size = 0; 979 union sctp_addr *sa_addr = NULL; 980 void *addr_buf; 981 unsigned short port; 982 unsigned int f_flags = 0; 983 984 sp = sctp_sk(sk); 985 ep = sp->ep; 986 987 /* connect() cannot be done on a socket that is already in ESTABLISHED 988 * state - UDP-style peeled off socket or a TCP-style socket that 989 * is already connected. 990 * It cannot be done even on a TCP-style listening socket. 991 */ 992 if (sctp_sstate(sk, ESTABLISHED) || 993 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 994 err = -EISCONN; 995 goto out_free; 996 } 997 998 /* Walk through the addrs buffer and count the number of addresses. */ 999 addr_buf = kaddrs; 1000 while (walk_size < addrs_size) { 1001 sa_addr = (union sctp_addr *)addr_buf; 1002 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1003 port = ntohs(sa_addr->v4.sin_port); 1004 1005 /* If the address family is not supported or if this address 1006 * causes the address buffer to overflow return EINVAL. 1007 */ 1008 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1009 err = -EINVAL; 1010 goto out_free; 1011 } 1012 1013 /* Save current address so we can work with it */ 1014 memcpy(&to, sa_addr, af->sockaddr_len); 1015 1016 err = sctp_verify_addr(sk, &to, af->sockaddr_len); 1017 if (err) 1018 goto out_free; 1019 1020 /* Make sure the destination port is correctly set 1021 * in all addresses. 1022 */ 1023 if (asoc && asoc->peer.port && asoc->peer.port != port) 1024 goto out_free; 1025 1026 1027 /* Check if there already is a matching association on the 1028 * endpoint (other than the one created here). 1029 */ 1030 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1031 if (asoc2 && asoc2 != asoc) { 1032 if (asoc2->state >= SCTP_STATE_ESTABLISHED) 1033 err = -EISCONN; 1034 else 1035 err = -EALREADY; 1036 goto out_free; 1037 } 1038 1039 /* If we could not find a matching association on the endpoint, 1040 * make sure that there is no peeled-off association matching 1041 * the peer address even on another socket. 1042 */ 1043 if (sctp_endpoint_is_peeled_off(ep, &to)) { 1044 err = -EADDRNOTAVAIL; 1045 goto out_free; 1046 } 1047 1048 if (!asoc) { 1049 /* If a bind() or sctp_bindx() is not called prior to 1050 * an sctp_connectx() call, the system picks an 1051 * ephemeral port and will choose an address set 1052 * equivalent to binding with a wildcard address. 1053 */ 1054 if (!ep->base.bind_addr.port) { 1055 if (sctp_autobind(sk)) { 1056 err = -EAGAIN; 1057 goto out_free; 1058 } 1059 } else { 1060 /* 1061 * If an unprivileged user inherits a 1-many 1062 * style socket with open associations on a 1063 * privileged port, it MAY be permitted to 1064 * accept new associations, but it SHOULD NOT 1065 * be permitted to open new associations. 1066 */ 1067 if (ep->base.bind_addr.port < PROT_SOCK && 1068 !capable(CAP_NET_BIND_SERVICE)) { 1069 err = -EACCES; 1070 goto out_free; 1071 } 1072 } 1073 1074 scope = sctp_scope(&to); 1075 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1076 if (!asoc) { 1077 err = -ENOMEM; 1078 goto out_free; 1079 } 1080 } 1081 1082 /* Prime the peer's transport structures. */ 1083 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, 1084 SCTP_UNKNOWN); 1085 if (!transport) { 1086 err = -ENOMEM; 1087 goto out_free; 1088 } 1089 1090 addrcnt++; 1091 addr_buf += af->sockaddr_len; 1092 walk_size += af->sockaddr_len; 1093 } 1094 1095 err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL); 1096 if (err < 0) { 1097 goto out_free; 1098 } 1099 1100 err = sctp_primitive_ASSOCIATE(asoc, NULL); 1101 if (err < 0) { 1102 goto out_free; 1103 } 1104 1105 /* Initialize sk's dport and daddr for getpeername() */ 1106 inet_sk(sk)->dport = htons(asoc->peer.port); 1107 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1108 af->to_sk_daddr(sa_addr, sk); 1109 sk->sk_err = 0; 1110 1111 /* in-kernel sockets don't generally have a file allocated to them 1112 * if all they do is call sock_create_kern(). 1113 */ 1114 if (sk->sk_socket->file) 1115 f_flags = sk->sk_socket->file->f_flags; 1116 1117 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK); 1118 1119 err = sctp_wait_for_connect(asoc, &timeo); 1120 1121 /* Don't free association on exit. */ 1122 asoc = NULL; 1123 1124out_free: 1125 1126 SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p" 1127 " kaddrs: %p err: %d\n", 1128 asoc, kaddrs, err); 1129 if (asoc) 1130 sctp_association_free(asoc); 1131 return err; 1132} 1133 1134/* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1135 * 1136 * API 8.9 1137 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt); 1138 * 1139 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1140 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1141 * or IPv6 addresses. 1142 * 1143 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1144 * Section 3.1.2 for this usage. 1145 * 1146 * addrs is a pointer to an array of one or more socket addresses. Each 1147 * address is contained in its appropriate structure (i.e. struct 1148 * sockaddr_in or struct sockaddr_in6) the family of the address type 1149 * must be used to distengish the address length (note that this 1150 * representation is termed a "packed array" of addresses). The caller 1151 * specifies the number of addresses in the array with addrcnt. 1152 * 1153 * On success, sctp_connectx() returns 0. On failure, sctp_connectx() returns 1154 * -1, and sets errno to the appropriate error code. 1155 * 1156 * For SCTP, the port given in each socket address must be the same, or 1157 * sctp_connectx() will fail, setting errno to EINVAL. 1158 * 1159 * An application can use sctp_connectx to initiate an association with 1160 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1161 * allows a caller to specify multiple addresses at which a peer can be 1162 * reached. The way the SCTP stack uses the list of addresses to set up 1163 * the association is implementation dependant. This function only 1164 * specifies that the stack will try to make use of all the addresses in 1165 * the list when needed. 1166 * 1167 * Note that the list of addresses passed in is only used for setting up 1168 * the association. It does not necessarily equal the set of addresses 1169 * the peer uses for the resulting association. If the caller wants to 1170 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1171 * retrieve them after the association has been set up. 1172 * 1173 * Basically do nothing but copying the addresses from user to kernel 1174 * land and invoking either sctp_connectx(). This is used for tunneling 1175 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1176 * 1177 * We don't use copy_from_user() for optimization: we first do the 1178 * sanity checks (buffer size -fast- and access check-healthy 1179 * pointer); if all of those succeed, then we can alloc the memory 1180 * (expensive operation) needed to copy the data to kernel. Then we do 1181 * the copying without checking the user space area 1182 * (__copy_from_user()). 1183 * 1184 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1185 * it. 1186 * 1187 * sk The sk of the socket 1188 * addrs The pointer to the addresses in user land 1189 * addrssize Size of the addrs buffer 1190 * 1191 * Returns 0 if ok, <0 errno code on error. 1192 */ 1193SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk, 1194 struct sockaddr __user *addrs, 1195 int addrs_size) 1196{ 1197 int err = 0; 1198 struct sockaddr *kaddrs; 1199 1200 SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n", 1201 __FUNCTION__, sk, addrs, addrs_size); 1202 1203 if (unlikely(addrs_size <= 0)) 1204 return -EINVAL; 1205 1206 /* Check the user passed a healthy pointer. */ 1207 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 1208 return -EFAULT; 1209 1210 /* Alloc space for the address array in kernel memory. */ 1211 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 1212 if (unlikely(!kaddrs)) 1213 return -ENOMEM; 1214 1215 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 1216 err = -EFAULT; 1217 } else { 1218 err = __sctp_connect(sk, kaddrs, addrs_size); 1219 } 1220 1221 kfree(kaddrs); 1222 return err; 1223} 1224 1225/* API 3.1.4 close() - UDP Style Syntax 1226 * Applications use close() to perform graceful shutdown (as described in 1227 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1228 * by a UDP-style socket. 1229 * 1230 * The syntax is 1231 * 1232 * ret = close(int sd); 1233 * 1234 * sd - the socket descriptor of the associations to be closed. 1235 * 1236 * To gracefully shutdown a specific association represented by the 1237 * UDP-style socket, an application should use the sendmsg() call, 1238 * passing no user data, but including the appropriate flag in the 1239 * ancillary data (see Section xxxx). 1240 * 1241 * If sd in the close() call is a branched-off socket representing only 1242 * one association, the shutdown is performed on that association only. 1243 * 1244 * 4.1.6 close() - TCP Style Syntax 1245 * 1246 * Applications use close() to gracefully close down an association. 1247 * 1248 * The syntax is: 1249 * 1250 * int close(int sd); 1251 * 1252 * sd - the socket descriptor of the association to be closed. 1253 * 1254 * After an application calls close() on a socket descriptor, no further 1255 * socket operations will succeed on that descriptor. 1256 * 1257 * API 7.1.4 SO_LINGER 1258 * 1259 * An application using the TCP-style socket can use this option to 1260 * perform the SCTP ABORT primitive. The linger option structure is: 1261 * 1262 * struct linger { 1263 * int l_onoff; // option on/off 1264 * int l_linger; // linger time 1265 * }; 1266 * 1267 * To enable the option, set l_onoff to 1. If the l_linger value is set 1268 * to 0, calling close() is the same as the ABORT primitive. If the 1269 * value is set to a negative value, the setsockopt() call will return 1270 * an error. If the value is set to a positive value linger_time, the 1271 * close() can be blocked for at most linger_time ms. If the graceful 1272 * shutdown phase does not finish during this period, close() will 1273 * return but the graceful shutdown phase continues in the system. 1274 */ 1275SCTP_STATIC void sctp_close(struct sock *sk, long timeout) 1276{ 1277 struct sctp_endpoint *ep; 1278 struct sctp_association *asoc; 1279 struct list_head *pos, *temp; 1280 1281 SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout); 1282 1283 sctp_lock_sock(sk); 1284 sk->sk_shutdown = SHUTDOWN_MASK; 1285 1286 ep = sctp_sk(sk)->ep; 1287 1288 /* Walk all associations on an endpoint. */ 1289 list_for_each_safe(pos, temp, &ep->asocs) { 1290 asoc = list_entry(pos, struct sctp_association, asocs); 1291 1292 if (sctp_style(sk, TCP)) { 1293 /* A closed association can still be in the list if 1294 * it belongs to a TCP-style listening socket that is 1295 * not yet accepted. If so, free it. If not, send an 1296 * ABORT or SHUTDOWN based on the linger options. 1297 */ 1298 if (sctp_state(asoc, CLOSED)) { 1299 sctp_unhash_established(asoc); 1300 sctp_association_free(asoc); 1301 continue; 1302 } 1303 } 1304 1305 if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 1306 struct sctp_chunk *chunk; 1307 1308 chunk = sctp_make_abort_user(asoc, NULL, 0); 1309 if (chunk) 1310 sctp_primitive_ABORT(asoc, chunk); 1311 } else 1312 sctp_primitive_SHUTDOWN(asoc, NULL); 1313 } 1314 1315 /* Clean up any skbs sitting on the receive queue. */ 1316 sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1317 sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1318 1319 /* On a TCP-style socket, block for at most linger_time if set. */ 1320 if (sctp_style(sk, TCP) && timeout) 1321 sctp_wait_for_close(sk, timeout); 1322 1323 /* This will run the backlog queue. */ 1324 sctp_release_sock(sk); 1325 1326 /* Supposedly, no process has access to the socket, but 1327 * the net layers still may. 1328 */ 1329 sctp_local_bh_disable(); 1330 sctp_bh_lock_sock(sk); 1331 1332 /* Hold the sock, since sk_common_release() will put sock_put() 1333 * and we have just a little more cleanup. 1334 */ 1335 sock_hold(sk); 1336 sk_common_release(sk); 1337 1338 sctp_bh_unlock_sock(sk); 1339 sctp_local_bh_enable(); 1340 1341 sock_put(sk); 1342 1343 SCTP_DBG_OBJCNT_DEC(sock); 1344} 1345 1346/* Handle EPIPE error. */ 1347static int sctp_error(struct sock *sk, int flags, int err) 1348{ 1349 if (err == -EPIPE) 1350 err = sock_error(sk) ? : -EPIPE; 1351 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1352 send_sig(SIGPIPE, current, 0); 1353 return err; 1354} 1355 1356/* API 3.1.3 sendmsg() - UDP Style Syntax 1357 * 1358 * An application uses sendmsg() and recvmsg() calls to transmit data to 1359 * and receive data from its peer. 1360 * 1361 * ssize_t sendmsg(int socket, const struct msghdr *message, 1362 * int flags); 1363 * 1364 * socket - the socket descriptor of the endpoint. 1365 * message - pointer to the msghdr structure which contains a single 1366 * user message and possibly some ancillary data. 1367 * 1368 * See Section 5 for complete description of the data 1369 * structures. 1370 * 1371 * flags - flags sent or received with the user message, see Section 1372 * 5 for complete description of the flags. 1373 * 1374 * Note: This function could use a rewrite especially when explicit 1375 * connect support comes in. 1376 */ 1377/* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1378 1379SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *); 1380 1381SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk, 1382 struct msghdr *msg, size_t msg_len) 1383{ 1384 struct sctp_sock *sp; 1385 struct sctp_endpoint *ep; 1386 struct sctp_association *new_asoc=NULL, *asoc=NULL; 1387 struct sctp_transport *transport, *chunk_tp; 1388 struct sctp_chunk *chunk; 1389 union sctp_addr to; 1390 struct sockaddr *msg_name = NULL; 1391 struct sctp_sndrcvinfo default_sinfo = { 0 }; 1392 struct sctp_sndrcvinfo *sinfo; 1393 struct sctp_initmsg *sinit; 1394 sctp_assoc_t associd = 0; 1395 sctp_cmsgs_t cmsgs = { NULL }; 1396 int err; 1397 sctp_scope_t scope; 1398 long timeo; 1399 __u16 sinfo_flags = 0; 1400 struct sctp_datamsg *datamsg; 1401 struct list_head *pos; 1402 int msg_flags = msg->msg_flags; 1403 1404 SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n", 1405 sk, msg, msg_len); 1406 1407 err = 0; 1408 sp = sctp_sk(sk); 1409 ep = sp->ep; 1410 1411 SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep); 1412 1413 /* We cannot send a message over a TCP-style listening socket. */ 1414 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) { 1415 err = -EPIPE; 1416 goto out_nounlock; 1417 } 1418 1419 /* Parse out the SCTP CMSGs. */ 1420 err = sctp_msghdr_parse(msg, &cmsgs); 1421 1422 if (err) { 1423 SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err); 1424 goto out_nounlock; 1425 } 1426 1427 /* Fetch the destination address for this packet. This 1428 * address only selects the association--it is not necessarily 1429 * the address we will send to. 1430 * For a peeled-off socket, msg_name is ignored. 1431 */ 1432 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1433 int msg_namelen = msg->msg_namelen; 1434 1435 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name, 1436 msg_namelen); 1437 if (err) 1438 return err; 1439 1440 if (msg_namelen > sizeof(to)) 1441 msg_namelen = sizeof(to); 1442 memcpy(&to, msg->msg_name, msg_namelen); 1443 msg_name = msg->msg_name; 1444 } 1445 1446 sinfo = cmsgs.info; 1447 sinit = cmsgs.init; 1448 1449 /* Did the user specify SNDRCVINFO? */ 1450 if (sinfo) { 1451 sinfo_flags = sinfo->sinfo_flags; 1452 associd = sinfo->sinfo_assoc_id; 1453 } 1454 1455 SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n", 1456 msg_len, sinfo_flags); 1457 1458 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */ 1459 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) { 1460 err = -EINVAL; 1461 goto out_nounlock; 1462 } 1463 1464 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero 1465 * length messages when SCTP_EOF|SCTP_ABORT is not set. 1466 * If SCTP_ABORT is set, the message length could be non zero with 1467 * the msg_iov set to the user abort reason. 1468 */ 1469 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) || 1470 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) { 1471 err = -EINVAL; 1472 goto out_nounlock; 1473 } 1474 1475 /* If SCTP_ADDR_OVER is set, there must be an address 1476 * specified in msg_name. 1477 */ 1478 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) { 1479 err = -EINVAL; 1480 goto out_nounlock; 1481 } 1482 1483 transport = NULL; 1484 1485 SCTP_DEBUG_PRINTK("About to look up association.\n"); 1486 1487 sctp_lock_sock(sk); 1488 1489 /* If a msg_name has been specified, assume this is to be used. */ 1490 if (msg_name) { 1491 /* Look for a matching association on the endpoint. */ 1492 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1493 if (!asoc) { 1494 /* If we could not find a matching association on the 1495 * endpoint, make sure that it is not a TCP-style 1496 * socket that already has an association or there is 1497 * no peeled-off association on another socket. 1498 */ 1499 if ((sctp_style(sk, TCP) && 1500 sctp_sstate(sk, ESTABLISHED)) || 1501 sctp_endpoint_is_peeled_off(ep, &to)) { 1502 err = -EADDRNOTAVAIL; 1503 goto out_unlock; 1504 } 1505 } 1506 } else { 1507 asoc = sctp_id2assoc(sk, associd); 1508 if (!asoc) { 1509 err = -EPIPE; 1510 goto out_unlock; 1511 } 1512 } 1513 1514 if (asoc) { 1515 SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc); 1516 1517 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED 1518 * socket that has an association in CLOSED state. This can 1519 * happen when an accepted socket has an association that is 1520 * already CLOSED. 1521 */ 1522 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) { 1523 err = -EPIPE; 1524 goto out_unlock; 1525 } 1526 1527 if (sinfo_flags & SCTP_EOF) { 1528 SCTP_DEBUG_PRINTK("Shutting down association: %p\n", 1529 asoc); 1530 sctp_primitive_SHUTDOWN(asoc, NULL); 1531 err = 0; 1532 goto out_unlock; 1533 } 1534 if (sinfo_flags & SCTP_ABORT) { 1535 1536 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1537 if (!chunk) { 1538 err = -ENOMEM; 1539 goto out_unlock; 1540 } 1541 1542 SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc); 1543 sctp_primitive_ABORT(asoc, chunk); 1544 err = 0; 1545 goto out_unlock; 1546 } 1547 } 1548 1549 /* Do we need to create the association? */ 1550 if (!asoc) { 1551 SCTP_DEBUG_PRINTK("There is no association yet.\n"); 1552 1553 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) { 1554 err = -EINVAL; 1555 goto out_unlock; 1556 } 1557 1558 /* Check for invalid stream against the stream counts, 1559 * either the default or the user specified stream counts. 1560 */ 1561 if (sinfo) { 1562 if (!sinit || (sinit && !sinit->sinit_num_ostreams)) { 1563 /* Check against the defaults. */ 1564 if (sinfo->sinfo_stream >= 1565 sp->initmsg.sinit_num_ostreams) { 1566 err = -EINVAL; 1567 goto out_unlock; 1568 } 1569 } else { 1570 /* Check against the requested. */ 1571 if (sinfo->sinfo_stream >= 1572 sinit->sinit_num_ostreams) { 1573 err = -EINVAL; 1574 goto out_unlock; 1575 } 1576 } 1577 } 1578 1579 /* 1580 * API 3.1.2 bind() - UDP Style Syntax 1581 * If a bind() or sctp_bindx() is not called prior to a 1582 * sendmsg() call that initiates a new association, the 1583 * system picks an ephemeral port and will choose an address 1584 * set equivalent to binding with a wildcard address. 1585 */ 1586 if (!ep->base.bind_addr.port) { 1587 if (sctp_autobind(sk)) { 1588 err = -EAGAIN; 1589 goto out_unlock; 1590 } 1591 } else { 1592 /* 1593 * If an unprivileged user inherits a one-to-many 1594 * style socket with open associations on a privileged 1595 * port, it MAY be permitted to accept new associations, 1596 * but it SHOULD NOT be permitted to open new 1597 * associations. 1598 */ 1599 if (ep->base.bind_addr.port < PROT_SOCK && 1600 !capable(CAP_NET_BIND_SERVICE)) { 1601 err = -EACCES; 1602 goto out_unlock; 1603 } 1604 } 1605 1606 scope = sctp_scope(&to); 1607 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1608 if (!new_asoc) { 1609 err = -ENOMEM; 1610 goto out_unlock; 1611 } 1612 asoc = new_asoc; 1613 1614 /* If the SCTP_INIT ancillary data is specified, set all 1615 * the association init values accordingly. 1616 */ 1617 if (sinit) { 1618 if (sinit->sinit_num_ostreams) { 1619 asoc->c.sinit_num_ostreams = 1620 sinit->sinit_num_ostreams; 1621 } 1622 if (sinit->sinit_max_instreams) { 1623 asoc->c.sinit_max_instreams = 1624 sinit->sinit_max_instreams; 1625 } 1626 if (sinit->sinit_max_attempts) { 1627 asoc->max_init_attempts 1628 = sinit->sinit_max_attempts; 1629 } 1630 if (sinit->sinit_max_init_timeo) { 1631 asoc->max_init_timeo = 1632 msecs_to_jiffies(sinit->sinit_max_init_timeo); 1633 } 1634 } 1635 1636 /* Prime the peer's transport structures. */ 1637 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN); 1638 if (!transport) { 1639 err = -ENOMEM; 1640 goto out_free; 1641 } 1642 err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL); 1643 if (err < 0) { 1644 err = -ENOMEM; 1645 goto out_free; 1646 } 1647 } 1648 1649 /* ASSERT: we have a valid association at this point. */ 1650 SCTP_DEBUG_PRINTK("We have a valid association.\n"); 1651 1652 if (!sinfo) { 1653 /* If the user didn't specify SNDRCVINFO, make up one with 1654 * some defaults. 1655 */ 1656 default_sinfo.sinfo_stream = asoc->default_stream; 1657 default_sinfo.sinfo_flags = asoc->default_flags; 1658 default_sinfo.sinfo_ppid = asoc->default_ppid; 1659 default_sinfo.sinfo_context = asoc->default_context; 1660 default_sinfo.sinfo_timetolive = asoc->default_timetolive; 1661 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc); 1662 sinfo = &default_sinfo; 1663 } 1664 1665 /* API 7.1.7, the sndbuf size per association bounds the 1666 * maximum size of data that can be sent in a single send call. 1667 */ 1668 if (msg_len > sk->sk_sndbuf) { 1669 err = -EMSGSIZE; 1670 goto out_free; 1671 } 1672 1673 if (asoc->pmtu_pending) 1674 sctp_assoc_pending_pmtu(asoc); 1675 1676 /* If fragmentation is disabled and the message length exceeds the 1677 * association fragmentation point, return EMSGSIZE. The I-D 1678 * does not specify what this error is, but this looks like 1679 * a great fit. 1680 */ 1681 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) { 1682 err = -EMSGSIZE; 1683 goto out_free; 1684 } 1685 1686 if (sinfo) { 1687 /* Check for invalid stream. */ 1688 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) { 1689 err = -EINVAL; 1690 goto out_free; 1691 } 1692 } 1693 1694 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1695 if (!sctp_wspace(asoc)) { 1696 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1697 if (err) 1698 goto out_free; 1699 } 1700 1701 /* If an address is passed with the sendto/sendmsg call, it is used 1702 * to override the primary destination address in the TCP model, or 1703 * when SCTP_ADDR_OVER flag is set in the UDP model. 1704 */ 1705 if ((sctp_style(sk, TCP) && msg_name) || 1706 (sinfo_flags & SCTP_ADDR_OVER)) { 1707 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to); 1708 if (!chunk_tp) { 1709 err = -EINVAL; 1710 goto out_free; 1711 } 1712 } else 1713 chunk_tp = NULL; 1714 1715 /* Auto-connect, if we aren't connected already. */ 1716 if (sctp_state(asoc, CLOSED)) { 1717 err = sctp_primitive_ASSOCIATE(asoc, NULL); 1718 if (err < 0) 1719 goto out_free; 1720 SCTP_DEBUG_PRINTK("We associated primitively.\n"); 1721 } 1722 1723 /* Break the message into multiple chunks of maximum size. */ 1724 datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len); 1725 if (!datamsg) { 1726 err = -ENOMEM; 1727 goto out_free; 1728 } 1729 1730 /* Now send the (possibly) fragmented message. */ 1731 list_for_each(pos, &datamsg->chunks) { 1732 chunk = list_entry(pos, struct sctp_chunk, frag_list); 1733 sctp_datamsg_track(chunk); 1734 1735 /* Do accounting for the write space. */ 1736 sctp_set_owner_w(chunk); 1737 1738 chunk->transport = chunk_tp; 1739 1740 /* Send it to the lower layers. Note: all chunks 1741 * must either fail or succeed. The lower layer 1742 * works that way today. Keep it that way or this 1743 * breaks. 1744 */ 1745 err = sctp_primitive_SEND(asoc, chunk); 1746 /* Did the lower layer accept the chunk? */ 1747 if (err) 1748 sctp_chunk_free(chunk); 1749 SCTP_DEBUG_PRINTK("We sent primitively.\n"); 1750 } 1751 1752 sctp_datamsg_free(datamsg); 1753 if (err) 1754 goto out_free; 1755 else 1756 err = msg_len; 1757 1758 /* If we are already past ASSOCIATE, the lower 1759 * layers are responsible for association cleanup. 1760 */ 1761 goto out_unlock; 1762 1763out_free: 1764 if (new_asoc) 1765 sctp_association_free(asoc); 1766out_unlock: 1767 sctp_release_sock(sk); 1768 1769out_nounlock: 1770 return sctp_error(sk, msg_flags, err); 1771 1772#if 0 1773do_sock_err: 1774 if (msg_len) 1775 err = msg_len; 1776 else 1777 err = sock_error(sk); 1778 goto out; 1779 1780do_interrupted: 1781 if (msg_len) 1782 err = msg_len; 1783 goto out; 1784#endif /* 0 */ 1785} 1786 1787/* This is an extended version of skb_pull() that removes the data from the 1788 * start of a skb even when data is spread across the list of skb's in the 1789 * frag_list. len specifies the total amount of data that needs to be removed. 1790 * when 'len' bytes could be removed from the skb, it returns 0. 1791 * If 'len' exceeds the total skb length, it returns the no. of bytes that 1792 * could not be removed. 1793 */ 1794static int sctp_skb_pull(struct sk_buff *skb, int len) 1795{ 1796 struct sk_buff *list; 1797 int skb_len = skb_headlen(skb); 1798 int rlen; 1799 1800 if (len <= skb_len) { 1801 __skb_pull(skb, len); 1802 return 0; 1803 } 1804 len -= skb_len; 1805 __skb_pull(skb, skb_len); 1806 1807 for (list = skb_shinfo(skb)->frag_list; list; list = list->next) { 1808 rlen = sctp_skb_pull(list, len); 1809 skb->len -= (len-rlen); 1810 skb->data_len -= (len-rlen); 1811 1812 if (!rlen) 1813 return 0; 1814 1815 len = rlen; 1816 } 1817 1818 return len; 1819} 1820 1821/* API 3.1.3 recvmsg() - UDP Style Syntax 1822 * 1823 * ssize_t recvmsg(int socket, struct msghdr *message, 1824 * int flags); 1825 * 1826 * socket - the socket descriptor of the endpoint. 1827 * message - pointer to the msghdr structure which contains a single 1828 * user message and possibly some ancillary data. 1829 * 1830 * See Section 5 for complete description of the data 1831 * structures. 1832 * 1833 * flags - flags sent or received with the user message, see Section 1834 * 5 for complete description of the flags. 1835 */ 1836static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *); 1837 1838SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk, 1839 struct msghdr *msg, size_t len, int noblock, 1840 int flags, int *addr_len) 1841{ 1842 struct sctp_ulpevent *event = NULL; 1843 struct sctp_sock *sp = sctp_sk(sk); 1844 struct sk_buff *skb; 1845 int copied; 1846 int err = 0; 1847 int skb_len; 1848 1849 SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: " 1850 "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg, 1851 "len", len, "knoblauch", noblock, 1852 "flags", flags, "addr_len", addr_len); 1853 1854 sctp_lock_sock(sk); 1855 1856 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) { 1857 err = -ENOTCONN; 1858 goto out; 1859 } 1860 1861 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 1862 if (!skb) 1863 goto out; 1864 1865 /* Get the total length of the skb including any skb's in the 1866 * frag_list. 1867 */ 1868 skb_len = skb->len; 1869 1870 copied = skb_len; 1871 if (copied > len) 1872 copied = len; 1873 1874 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied); 1875 1876 event = sctp_skb2event(skb); 1877 1878 if (err) 1879 goto out_free; 1880 1881 sock_recv_timestamp(msg, sk, skb); 1882 if (sctp_ulpevent_is_notification(event)) { 1883 msg->msg_flags |= MSG_NOTIFICATION; 1884 sp->pf->event_msgname(event, msg->msg_name, addr_len); 1885 } else { 1886 sp->pf->skb_msgname(skb, msg->msg_name, addr_len); 1887 } 1888 1889 /* Check if we allow SCTP_SNDRCVINFO. */ 1890 if (sp->subscribe.sctp_data_io_event) 1891 sctp_ulpevent_read_sndrcvinfo(event, msg); 1892#if 0 1893 /* FIXME: we should be calling IP/IPv6 layers. */ 1894 if (sk->sk_protinfo.af_inet.cmsg_flags) 1895 ip_cmsg_recv(msg, skb); 1896#endif 1897 1898 err = copied; 1899 1900 /* If skb's length exceeds the user's buffer, update the skb and 1901 * push it back to the receive_queue so that the next call to 1902 * recvmsg() will return the remaining data. Don't set MSG_EOR. 1903 */ 1904 if (skb_len > copied) { 1905 msg->msg_flags &= ~MSG_EOR; 1906 if (flags & MSG_PEEK) 1907 goto out_free; 1908 sctp_skb_pull(skb, copied); 1909 skb_queue_head(&sk->sk_receive_queue, skb); 1910 1911 /* When only partial message is copied to the user, increase 1912 * rwnd by that amount. If all the data in the skb is read, 1913 * rwnd is updated when the event is freed. 1914 */ 1915 sctp_assoc_rwnd_increase(event->asoc, copied); 1916 goto out; 1917 } else if ((event->msg_flags & MSG_NOTIFICATION) || 1918 (event->msg_flags & MSG_EOR)) 1919 msg->msg_flags |= MSG_EOR; 1920 else 1921 msg->msg_flags &= ~MSG_EOR; 1922 1923out_free: 1924 if (flags & MSG_PEEK) { 1925 /* Release the skb reference acquired after peeking the skb in 1926 * sctp_skb_recv_datagram(). 1927 */ 1928 kfree_skb(skb); 1929 } else { 1930 /* Free the event which includes releasing the reference to 1931 * the owner of the skb, freeing the skb and updating the 1932 * rwnd. 1933 */ 1934 sctp_ulpevent_free(event); 1935 } 1936out: 1937 sctp_release_sock(sk); 1938 return err; 1939} 1940 1941/* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 1942 * 1943 * This option is a on/off flag. If enabled no SCTP message 1944 * fragmentation will be performed. Instead if a message being sent 1945 * exceeds the current PMTU size, the message will NOT be sent and 1946 * instead a error will be indicated to the user. 1947 */ 1948static int sctp_setsockopt_disable_fragments(struct sock *sk, 1949 char __user *optval, int optlen) 1950{ 1951 int val; 1952 1953 if (optlen < sizeof(int)) 1954 return -EINVAL; 1955 1956 if (get_user(val, (int __user *)optval)) 1957 return -EFAULT; 1958 1959 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 1960 1961 return 0; 1962} 1963 1964static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 1965 int optlen) 1966{ 1967 if (optlen != sizeof(struct sctp_event_subscribe)) 1968 return -EINVAL; 1969 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen)) 1970 return -EFAULT; 1971 return 0; 1972} 1973 1974/* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 1975 * 1976 * This socket option is applicable to the UDP-style socket only. When 1977 * set it will cause associations that are idle for more than the 1978 * specified number of seconds to automatically close. An association 1979 * being idle is defined an association that has NOT sent or received 1980 * user data. The special value of '0' indicates that no automatic 1981 * close of any associations should be performed. The option expects an 1982 * integer defining the number of seconds of idle time before an 1983 * association is closed. 1984 */ 1985static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 1986 int optlen) 1987{ 1988 struct sctp_sock *sp = sctp_sk(sk); 1989 1990 /* Applicable to UDP-style socket only */ 1991 if (sctp_style(sk, TCP)) 1992 return -EOPNOTSUPP; 1993 if (optlen != sizeof(int)) 1994 return -EINVAL; 1995 if (copy_from_user(&sp->autoclose, optval, optlen)) 1996 return -EFAULT; 1997 1998 return 0; 1999} 2000 2001/* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2002 * 2003 * Applications can enable or disable heartbeats for any peer address of 2004 * an association, modify an address's heartbeat interval, force a 2005 * heartbeat to be sent immediately, and adjust the address's maximum 2006 * number of retransmissions sent before an address is considered 2007 * unreachable. The following structure is used to access and modify an 2008 * address's parameters: 2009 * 2010 * struct sctp_paddrparams { 2011 * sctp_assoc_t spp_assoc_id; 2012 * struct sockaddr_storage spp_address; 2013 * uint32_t spp_hbinterval; 2014 * uint16_t spp_pathmaxrxt; 2015 * uint32_t spp_pathmtu; 2016 * uint32_t spp_sackdelay; 2017 * uint32_t spp_flags; 2018 * }; 2019 * 2020 * spp_assoc_id - (one-to-many style socket) This is filled in the 2021 * application, and identifies the association for 2022 * this query. 2023 * spp_address - This specifies which address is of interest. 2024 * spp_hbinterval - This contains the value of the heartbeat interval, 2025 * in milliseconds. If a value of zero 2026 * is present in this field then no changes are to 2027 * be made to this parameter. 2028 * spp_pathmaxrxt - This contains the maximum number of 2029 * retransmissions before this address shall be 2030 * considered unreachable. If a value of zero 2031 * is present in this field then no changes are to 2032 * be made to this parameter. 2033 * spp_pathmtu - When Path MTU discovery is disabled the value 2034 * specified here will be the "fixed" path mtu. 2035 * Note that if the spp_address field is empty 2036 * then all associations on this address will 2037 * have this fixed path mtu set upon them. 2038 * 2039 * spp_sackdelay - When delayed sack is enabled, this value specifies 2040 * the number of milliseconds that sacks will be delayed 2041 * for. This value will apply to all addresses of an 2042 * association if the spp_address field is empty. Note 2043 * also, that if delayed sack is enabled and this 2044 * value is set to 0, no change is made to the last 2045 * recorded delayed sack timer value. 2046 * 2047 * spp_flags - These flags are used to control various features 2048 * on an association. The flag field may contain 2049 * zero or more of the following options. 2050 * 2051 * SPP_HB_ENABLE - Enable heartbeats on the 2052 * specified address. Note that if the address 2053 * field is empty all addresses for the association 2054 * have heartbeats enabled upon them. 2055 * 2056 * SPP_HB_DISABLE - Disable heartbeats on the 2057 * speicifed address. Note that if the address 2058 * field is empty all addresses for the association 2059 * will have their heartbeats disabled. Note also 2060 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2061 * mutually exclusive, only one of these two should 2062 * be specified. Enabling both fields will have 2063 * undetermined results. 2064 * 2065 * SPP_HB_DEMAND - Request a user initiated heartbeat 2066 * to be made immediately. 2067 * 2068 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2069 * heartbeat delayis to be set to the value of 0 2070 * milliseconds. 2071 * 2072 * SPP_PMTUD_ENABLE - This field will enable PMTU 2073 * discovery upon the specified address. Note that 2074 * if the address feild is empty then all addresses 2075 * on the association are effected. 2076 * 2077 * SPP_PMTUD_DISABLE - This field will disable PMTU 2078 * discovery upon the specified address. Note that 2079 * if the address feild is empty then all addresses 2080 * on the association are effected. Not also that 2081 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2082 * exclusive. Enabling both will have undetermined 2083 * results. 2084 * 2085 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2086 * on delayed sack. The time specified in spp_sackdelay 2087 * is used to specify the sack delay for this address. Note 2088 * that if spp_address is empty then all addresses will 2089 * enable delayed sack and take on the sack delay 2090 * value specified in spp_sackdelay. 2091 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2092 * off delayed sack. If the spp_address field is blank then 2093 * delayed sack is disabled for the entire association. Note 2094 * also that this field is mutually exclusive to 2095 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2096 * results. 2097 */ 2098static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2099 struct sctp_transport *trans, 2100 struct sctp_association *asoc, 2101 struct sctp_sock *sp, 2102 int hb_change, 2103 int pmtud_change, 2104 int sackdelay_change) 2105{ 2106 int error; 2107 2108 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2109 error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans); 2110 if (error) 2111 return error; 2112 } 2113 2114 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2115 * this field is ignored. Note also that a value of zero indicates 2116 * the current setting should be left unchanged. 2117 */ 2118 if (params->spp_flags & SPP_HB_ENABLE) { 2119 2120 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2121 * set. This lets us use 0 value when this flag 2122 * is set. 2123 */ 2124 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2125 params->spp_hbinterval = 0; 2126 2127 if (params->spp_hbinterval || 2128 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2129 if (trans) { 2130 trans->hbinterval = 2131 msecs_to_jiffies(params->spp_hbinterval); 2132 } else if (asoc) { 2133 asoc->hbinterval = 2134 msecs_to_jiffies(params->spp_hbinterval); 2135 } else { 2136 sp->hbinterval = params->spp_hbinterval; 2137 } 2138 } 2139 } 2140 2141 if (hb_change) { 2142 if (trans) { 2143 trans->param_flags = 2144 (trans->param_flags & ~SPP_HB) | hb_change; 2145 } else if (asoc) { 2146 asoc->param_flags = 2147 (asoc->param_flags & ~SPP_HB) | hb_change; 2148 } else { 2149 sp->param_flags = 2150 (sp->param_flags & ~SPP_HB) | hb_change; 2151 } 2152 } 2153 2154 /* When Path MTU discovery is disabled the value specified here will 2155 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2156 * include the flag SPP_PMTUD_DISABLE for this field to have any 2157 * effect). 2158 */ 2159 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2160 if (trans) { 2161 trans->pathmtu = params->spp_pathmtu; 2162 sctp_assoc_sync_pmtu(asoc); 2163 } else if (asoc) { 2164 asoc->pathmtu = params->spp_pathmtu; 2165 sctp_frag_point(sp, params->spp_pathmtu); 2166 } else { 2167 sp->pathmtu = params->spp_pathmtu; 2168 } 2169 } 2170 2171 if (pmtud_change) { 2172 if (trans) { 2173 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2174 (params->spp_flags & SPP_PMTUD_ENABLE); 2175 trans->param_flags = 2176 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2177 if (update) { 2178 sctp_transport_pmtu(trans); 2179 sctp_assoc_sync_pmtu(asoc); 2180 } 2181 } else if (asoc) { 2182 asoc->param_flags = 2183 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2184 } else { 2185 sp->param_flags = 2186 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2187 } 2188 } 2189 2190 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2191 * value of this field is ignored. Note also that a value of zero 2192 * indicates the current setting should be left unchanged. 2193 */ 2194 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2195 if (trans) { 2196 trans->sackdelay = 2197 msecs_to_jiffies(params->spp_sackdelay); 2198 } else if (asoc) { 2199 asoc->sackdelay = 2200 msecs_to_jiffies(params->spp_sackdelay); 2201 } else { 2202 sp->sackdelay = params->spp_sackdelay; 2203 } 2204 } 2205 2206 if (sackdelay_change) { 2207 if (trans) { 2208 trans->param_flags = 2209 (trans->param_flags & ~SPP_SACKDELAY) | 2210 sackdelay_change; 2211 } else if (asoc) { 2212 asoc->param_flags = 2213 (asoc->param_flags & ~SPP_SACKDELAY) | 2214 sackdelay_change; 2215 } else { 2216 sp->param_flags = 2217 (sp->param_flags & ~SPP_SACKDELAY) | 2218 sackdelay_change; 2219 } 2220 } 2221 2222 /* Note that unless the spp_flag is set to SPP_PMTUD_ENABLE the value 2223 * of this field is ignored. Note also that a value of zero 2224 * indicates the current setting should be left unchanged. 2225 */ 2226 if ((params->spp_flags & SPP_PMTUD_ENABLE) && params->spp_pathmaxrxt) { 2227 if (trans) { 2228 trans->pathmaxrxt = params->spp_pathmaxrxt; 2229 } else if (asoc) { 2230 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2231 } else { 2232 sp->pathmaxrxt = params->spp_pathmaxrxt; 2233 } 2234 } 2235 2236 return 0; 2237} 2238 2239static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2240 char __user *optval, int optlen) 2241{ 2242 struct sctp_paddrparams params; 2243 struct sctp_transport *trans = NULL; 2244 struct sctp_association *asoc = NULL; 2245 struct sctp_sock *sp = sctp_sk(sk); 2246 int error; 2247 int hb_change, pmtud_change, sackdelay_change; 2248 2249 if (optlen != sizeof(struct sctp_paddrparams)) 2250 return - EINVAL; 2251 2252 if (copy_from_user(&params, optval, optlen)) 2253 return -EFAULT; 2254 2255 /* Validate flags and value parameters. */ 2256 hb_change = params.spp_flags & SPP_HB; 2257 pmtud_change = params.spp_flags & SPP_PMTUD; 2258 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2259 2260 if (hb_change == SPP_HB || 2261 pmtud_change == SPP_PMTUD || 2262 sackdelay_change == SPP_SACKDELAY || 2263 params.spp_sackdelay > 500 || 2264 (params.spp_pathmtu 2265 && params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2266 return -EINVAL; 2267 2268 /* If an address other than INADDR_ANY is specified, and 2269 * no transport is found, then the request is invalid. 2270 */ 2271 if (!sctp_is_any(( union sctp_addr *)&params.spp_address)) { 2272 trans = sctp_addr_id2transport(sk, &params.spp_address, 2273 params.spp_assoc_id); 2274 if (!trans) 2275 return -EINVAL; 2276 } 2277 2278 /* Get association, if assoc_id != 0 and the socket is a one 2279 * to many style socket, and an association was not found, then 2280 * the id was invalid. 2281 */ 2282 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2283 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) 2284 return -EINVAL; 2285 2286 /* Heartbeat demand can only be sent on a transport or 2287 * association, but not a socket. 2288 */ 2289 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2290 return -EINVAL; 2291 2292 /* Process parameters. */ 2293 error = sctp_apply_peer_addr_params(&params, trans, asoc, sp, 2294 hb_change, pmtud_change, 2295 sackdelay_change); 2296 2297 if (error) 2298 return error; 2299 2300 /* If changes are for association, also apply parameters to each 2301 * transport. 2302 */ 2303 if (!trans && asoc) { 2304 struct list_head *pos; 2305 2306 list_for_each(pos, &asoc->peer.transport_addr_list) { 2307 trans = list_entry(pos, struct sctp_transport, 2308 transports); 2309 sctp_apply_peer_addr_params(&params, trans, asoc, sp, 2310 hb_change, pmtud_change, 2311 sackdelay_change); 2312 } 2313 } 2314 2315 return 0; 2316} 2317 2318/* 7.1.23. Delayed Ack Timer (SCTP_DELAYED_ACK_TIME) 2319 * 2320 * This options will get or set the delayed ack timer. The time is set 2321 * in milliseconds. If the assoc_id is 0, then this sets or gets the 2322 * endpoints default delayed ack timer value. If the assoc_id field is 2323 * non-zero, then the set or get effects the specified association. 2324 * 2325 * struct sctp_assoc_value { 2326 * sctp_assoc_t assoc_id; 2327 * uint32_t assoc_value; 2328 * }; 2329 * 2330 * assoc_id - This parameter, indicates which association the 2331 * user is preforming an action upon. Note that if 2332 * this field's value is zero then the endpoints 2333 * default value is changed (effecting future 2334 * associations only). 2335 * 2336 * assoc_value - This parameter contains the number of milliseconds 2337 * that the user is requesting the delayed ACK timer 2338 * be set to. Note that this value is defined in 2339 * the standard to be between 200 and 500 milliseconds. 2340 * 2341 * Note: a value of zero will leave the value alone, 2342 * but disable SACK delay. A non-zero value will also 2343 * enable SACK delay. 2344 */ 2345 2346static int sctp_setsockopt_delayed_ack_time(struct sock *sk, 2347 char __user *optval, int optlen) 2348{ 2349 struct sctp_assoc_value params; 2350 struct sctp_transport *trans = NULL; 2351 struct sctp_association *asoc = NULL; 2352 struct sctp_sock *sp = sctp_sk(sk); 2353 2354 if (optlen != sizeof(struct sctp_assoc_value)) 2355 return - EINVAL; 2356 2357 if (copy_from_user(&params, optval, optlen)) 2358 return -EFAULT; 2359 2360 /* Validate value parameter. */ 2361 if (params.assoc_value > 500) 2362 return -EINVAL; 2363 2364 /* Get association, if assoc_id != 0 and the socket is a one 2365 * to many style socket, and an association was not found, then 2366 * the id was invalid. 2367 */ 2368 asoc = sctp_id2assoc(sk, params.assoc_id); 2369 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 2370 return -EINVAL; 2371 2372 if (params.assoc_value) { 2373 if (asoc) { 2374 asoc->sackdelay = 2375 msecs_to_jiffies(params.assoc_value); 2376 asoc->param_flags = 2377 (asoc->param_flags & ~SPP_SACKDELAY) | 2378 SPP_SACKDELAY_ENABLE; 2379 } else { 2380 sp->sackdelay = params.assoc_value; 2381 sp->param_flags = 2382 (sp->param_flags & ~SPP_SACKDELAY) | 2383 SPP_SACKDELAY_ENABLE; 2384 } 2385 } else { 2386 if (asoc) { 2387 asoc->param_flags = 2388 (asoc->param_flags & ~SPP_SACKDELAY) | 2389 SPP_SACKDELAY_DISABLE; 2390 } else { 2391 sp->param_flags = 2392 (sp->param_flags & ~SPP_SACKDELAY) | 2393 SPP_SACKDELAY_DISABLE; 2394 } 2395 } 2396 2397 /* If change is for association, also apply to each transport. */ 2398 if (asoc) { 2399 struct list_head *pos; 2400 2401 list_for_each(pos, &asoc->peer.transport_addr_list) { 2402 trans = list_entry(pos, struct sctp_transport, 2403 transports); 2404 if (params.assoc_value) { 2405 trans->sackdelay = 2406 msecs_to_jiffies(params.assoc_value); 2407 trans->param_flags = 2408 (trans->param_flags & ~SPP_SACKDELAY) | 2409 SPP_SACKDELAY_ENABLE; 2410 } else { 2411 trans->param_flags = 2412 (trans->param_flags & ~SPP_SACKDELAY) | 2413 SPP_SACKDELAY_DISABLE; 2414 } 2415 } 2416 } 2417 2418 return 0; 2419} 2420 2421/* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2422 * 2423 * Applications can specify protocol parameters for the default association 2424 * initialization. The option name argument to setsockopt() and getsockopt() 2425 * is SCTP_INITMSG. 2426 * 2427 * Setting initialization parameters is effective only on an unconnected 2428 * socket (for UDP-style sockets only future associations are effected 2429 * by the change). With TCP-style sockets, this option is inherited by 2430 * sockets derived from a listener socket. 2431 */ 2432static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, int optlen) 2433{ 2434 struct sctp_initmsg sinit; 2435 struct sctp_sock *sp = sctp_sk(sk); 2436 2437 if (optlen != sizeof(struct sctp_initmsg)) 2438 return -EINVAL; 2439 if (copy_from_user(&sinit, optval, optlen)) 2440 return -EFAULT; 2441 2442 if (sinit.sinit_num_ostreams) 2443 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2444 if (sinit.sinit_max_instreams) 2445 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2446 if (sinit.sinit_max_attempts) 2447 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2448 if (sinit.sinit_max_init_timeo) 2449 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2450 2451 return 0; 2452} 2453 2454/* 2455 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2456 * 2457 * Applications that wish to use the sendto() system call may wish to 2458 * specify a default set of parameters that would normally be supplied 2459 * through the inclusion of ancillary data. This socket option allows 2460 * such an application to set the default sctp_sndrcvinfo structure. 2461 * The application that wishes to use this socket option simply passes 2462 * in to this call the sctp_sndrcvinfo structure defined in Section 2463 * 5.2.2) The input parameters accepted by this call include 2464 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2465 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2466 * to this call if the caller is using the UDP model. 2467 */ 2468static int sctp_setsockopt_default_send_param(struct sock *sk, 2469 char __user *optval, int optlen) 2470{ 2471 struct sctp_sndrcvinfo info; 2472 struct sctp_association *asoc; 2473 struct sctp_sock *sp = sctp_sk(sk); 2474 2475 if (optlen != sizeof(struct sctp_sndrcvinfo)) 2476 return -EINVAL; 2477 if (copy_from_user(&info, optval, optlen)) 2478 return -EFAULT; 2479 2480 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 2481 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 2482 return -EINVAL; 2483 2484 if (asoc) { 2485 asoc->default_stream = info.sinfo_stream; 2486 asoc->default_flags = info.sinfo_flags; 2487 asoc->default_ppid = info.sinfo_ppid; 2488 asoc->default_context = info.sinfo_context; 2489 asoc->default_timetolive = info.sinfo_timetolive; 2490 } else { 2491 sp->default_stream = info.sinfo_stream; 2492 sp->default_flags = info.sinfo_flags; 2493 sp->default_ppid = info.sinfo_ppid; 2494 sp->default_context = info.sinfo_context; 2495 sp->default_timetolive = info.sinfo_timetolive; 2496 } 2497 2498 return 0; 2499} 2500 2501/* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 2502 * 2503 * Requests that the local SCTP stack use the enclosed peer address as 2504 * the association primary. The enclosed address must be one of the 2505 * association peer's addresses. 2506 */ 2507static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 2508 int optlen) 2509{ 2510 struct sctp_prim prim; 2511 struct sctp_transport *trans; 2512 2513 if (optlen != sizeof(struct sctp_prim)) 2514 return -EINVAL; 2515 2516 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 2517 return -EFAULT; 2518 2519 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 2520 if (!trans) 2521 return -EINVAL; 2522 2523 sctp_assoc_set_primary(trans->asoc, trans); 2524 2525 return 0; 2526} 2527 2528/* 2529 * 7.1.5 SCTP_NODELAY 2530 * 2531 * Turn on/off any Nagle-like algorithm. This means that packets are 2532 * generally sent as soon as possible and no unnecessary delays are 2533 * introduced, at the cost of more packets in the network. Expects an 2534 * integer boolean flag. 2535 */ 2536static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 2537 int optlen) 2538{ 2539 int val; 2540 2541 if (optlen < sizeof(int)) 2542 return -EINVAL; 2543 if (get_user(val, (int __user *)optval)) 2544 return -EFAULT; 2545 2546 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 2547 return 0; 2548} 2549 2550/* 2551 * 2552 * 7.1.1 SCTP_RTOINFO 2553 * 2554 * The protocol parameters used to initialize and bound retransmission 2555 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 2556 * and modify these parameters. 2557 * All parameters are time values, in milliseconds. A value of 0, when 2558 * modifying the parameters, indicates that the current value should not 2559 * be changed. 2560 * 2561 */ 2562static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, int optlen) { 2563 struct sctp_rtoinfo rtoinfo; 2564 struct sctp_association *asoc; 2565 2566 if (optlen != sizeof (struct sctp_rtoinfo)) 2567 return -EINVAL; 2568 2569 if (copy_from_user(&rtoinfo, optval, optlen)) 2570 return -EFAULT; 2571 2572 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 2573 2574 /* Set the values to the specific association */ 2575 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 2576 return -EINVAL; 2577 2578 if (asoc) { 2579 if (rtoinfo.srto_initial != 0) 2580 asoc->rto_initial = 2581 msecs_to_jiffies(rtoinfo.srto_initial); 2582 if (rtoinfo.srto_max != 0) 2583 asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max); 2584 if (rtoinfo.srto_min != 0) 2585 asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min); 2586 } else { 2587 /* If there is no association or the association-id = 0 2588 * set the values to the endpoint. 2589 */ 2590 struct sctp_sock *sp = sctp_sk(sk); 2591 2592 if (rtoinfo.srto_initial != 0) 2593 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 2594 if (rtoinfo.srto_max != 0) 2595 sp->rtoinfo.srto_max = rtoinfo.srto_max; 2596 if (rtoinfo.srto_min != 0) 2597 sp->rtoinfo.srto_min = rtoinfo.srto_min; 2598 } 2599 2600 return 0; 2601} 2602 2603/* 2604 * 2605 * 7.1.2 SCTP_ASSOCINFO 2606 * 2607 * This option is used to tune the maximum retransmission attempts 2608 * of the association. 2609 * Returns an error if the new association retransmission value is 2610 * greater than the sum of the retransmission value of the peer. 2611 * See [SCTP] for more information. 2612 * 2613 */ 2614static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, int optlen) 2615{ 2616 2617 struct sctp_assocparams assocparams; 2618 struct sctp_association *asoc; 2619 2620 if (optlen != sizeof(struct sctp_assocparams)) 2621 return -EINVAL; 2622 if (copy_from_user(&assocparams, optval, optlen)) 2623 return -EFAULT; 2624 2625 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 2626 2627 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 2628 return -EINVAL; 2629 2630 /* Set the values to the specific association */ 2631 if (asoc) { 2632 if (assocparams.sasoc_asocmaxrxt != 0) { 2633 __u32 path_sum = 0; 2634 int paths = 0; 2635 struct list_head *pos; 2636 struct sctp_transport *peer_addr; 2637 2638 list_for_each(pos, &asoc->peer.transport_addr_list) { 2639 peer_addr = list_entry(pos, 2640 struct sctp_transport, 2641 transports); 2642 path_sum += peer_addr->pathmaxrxt; 2643 paths++; 2644 } 2645 2646 /* Only validate asocmaxrxt if we have more then 2647 * one path/transport. We do this because path 2648 * retransmissions are only counted when we have more 2649 * then one path. 2650 */ 2651 if (paths > 1 && 2652 assocparams.sasoc_asocmaxrxt > path_sum) 2653 return -EINVAL; 2654 2655 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 2656 } 2657 2658 if (assocparams.sasoc_cookie_life != 0) { 2659 asoc->cookie_life.tv_sec = 2660 assocparams.sasoc_cookie_life / 1000; 2661 asoc->cookie_life.tv_usec = 2662 (assocparams.sasoc_cookie_life % 1000) 2663 * 1000; 2664 } 2665 } else { 2666 /* Set the values to the endpoint */ 2667 struct sctp_sock *sp = sctp_sk(sk); 2668 2669 if (assocparams.sasoc_asocmaxrxt != 0) 2670 sp->assocparams.sasoc_asocmaxrxt = 2671 assocparams.sasoc_asocmaxrxt; 2672 if (assocparams.sasoc_cookie_life != 0) 2673 sp->assocparams.sasoc_cookie_life = 2674 assocparams.sasoc_cookie_life; 2675 } 2676 return 0; 2677} 2678 2679/* 2680 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 2681 * 2682 * This socket option is a boolean flag which turns on or off mapped V4 2683 * addresses. If this option is turned on and the socket is type 2684 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 2685 * If this option is turned off, then no mapping will be done of V4 2686 * addresses and a user will receive both PF_INET6 and PF_INET type 2687 * addresses on the socket. 2688 */ 2689static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, int optlen) 2690{ 2691 int val; 2692 struct sctp_sock *sp = sctp_sk(sk); 2693 2694 if (optlen < sizeof(int)) 2695 return -EINVAL; 2696 if (get_user(val, (int __user *)optval)) 2697 return -EFAULT; 2698 if (val) 2699 sp->v4mapped = 1; 2700 else 2701 sp->v4mapped = 0; 2702 2703 return 0; 2704} 2705 2706/* 2707 * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG) 2708 * 2709 * This socket option specifies the maximum size to put in any outgoing 2710 * SCTP chunk. If a message is larger than this size it will be 2711 * fragmented by SCTP into the specified size. Note that the underlying 2712 * SCTP implementation may fragment into smaller sized chunks when the 2713 * PMTU of the underlying association is smaller than the value set by 2714 * the user. 2715 */ 2716static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, int optlen) 2717{ 2718 struct sctp_association *asoc; 2719 struct list_head *pos; 2720 struct sctp_sock *sp = sctp_sk(sk); 2721 int val; 2722 2723 if (optlen < sizeof(int)) 2724 return -EINVAL; 2725 if (get_user(val, (int __user *)optval)) 2726 return -EFAULT; 2727 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN))) 2728 return -EINVAL; 2729 sp->user_frag = val; 2730 2731 /* Update the frag_point of the existing associations. */ 2732 list_for_each(pos, &(sp->ep->asocs)) { 2733 asoc = list_entry(pos, struct sctp_association, asocs); 2734 asoc->frag_point = sctp_frag_point(sp, asoc->pathmtu); 2735 } 2736 2737 return 0; 2738} 2739 2740 2741/* 2742 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 2743 * 2744 * Requests that the peer mark the enclosed address as the association 2745 * primary. The enclosed address must be one of the association's 2746 * locally bound addresses. The following structure is used to make a 2747 * set primary request: 2748 */ 2749static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 2750 int optlen) 2751{ 2752 struct sctp_sock *sp; 2753 struct sctp_endpoint *ep; 2754 struct sctp_association *asoc = NULL; 2755 struct sctp_setpeerprim prim; 2756 struct sctp_chunk *chunk; 2757 int err; 2758 2759 sp = sctp_sk(sk); 2760 ep = sp->ep; 2761 2762 if (!sctp_addip_enable) 2763 return -EPERM; 2764 2765 if (optlen != sizeof(struct sctp_setpeerprim)) 2766 return -EINVAL; 2767 2768 if (copy_from_user(&prim, optval, optlen)) 2769 return -EFAULT; 2770 2771 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 2772 if (!asoc) 2773 return -EINVAL; 2774 2775 if (!asoc->peer.asconf_capable) 2776 return -EPERM; 2777 2778 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 2779 return -EPERM; 2780 2781 if (!sctp_state(asoc, ESTABLISHED)) 2782 return -ENOTCONN; 2783 2784 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 2785 return -EADDRNOTAVAIL; 2786 2787 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 2788 chunk = sctp_make_asconf_set_prim(asoc, 2789 (union sctp_addr *)&prim.sspp_addr); 2790 if (!chunk) 2791 return -ENOMEM; 2792 2793 err = sctp_send_asconf(asoc, chunk); 2794 2795 SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n"); 2796 2797 return err; 2798} 2799 2800static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 2801 int optlen) 2802{ 2803 struct sctp_setadaptation adaptation; 2804 2805 if (optlen != sizeof(struct sctp_setadaptation)) 2806 return -EINVAL; 2807 if (copy_from_user(&adaptation, optval, optlen)) 2808 return -EFAULT; 2809 2810 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 2811 2812 return 0; 2813} 2814 2815/* 2816 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 2817 * 2818 * The context field in the sctp_sndrcvinfo structure is normally only 2819 * used when a failed message is retrieved holding the value that was 2820 * sent down on the actual send call. This option allows the setting of 2821 * a default context on an association basis that will be received on 2822 * reading messages from the peer. This is especially helpful in the 2823 * one-2-many model for an application to keep some reference to an 2824 * internal state machine that is processing messages on the 2825 * association. Note that the setting of this value only effects 2826 * received messages from the peer and does not effect the value that is 2827 * saved with outbound messages. 2828 */ 2829static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 2830 int optlen) 2831{ 2832 struct sctp_assoc_value params; 2833 struct sctp_sock *sp; 2834 struct sctp_association *asoc; 2835 2836 if (optlen != sizeof(struct sctp_assoc_value)) 2837 return -EINVAL; 2838 if (copy_from_user(&params, optval, optlen)) 2839 return -EFAULT; 2840 2841 sp = sctp_sk(sk); 2842 2843 if (params.assoc_id != 0) { 2844 asoc = sctp_id2assoc(sk, params.assoc_id); 2845 if (!asoc) 2846 return -EINVAL; 2847 asoc->default_rcv_context = params.assoc_value; 2848 } else { 2849 sp->default_rcv_context = params.assoc_value; 2850 } 2851 2852 return 0; 2853} 2854 2855/* 2856 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 2857 * 2858 * This options will at a minimum specify if the implementation is doing 2859 * fragmented interleave. Fragmented interleave, for a one to many 2860 * socket, is when subsequent calls to receive a message may return 2861 * parts of messages from different associations. Some implementations 2862 * may allow you to turn this value on or off. If so, when turned off, 2863 * no fragment interleave will occur (which will cause a head of line 2864 * blocking amongst multiple associations sharing the same one to many 2865 * socket). When this option is turned on, then each receive call may 2866 * come from a different association (thus the user must receive data 2867 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 2868 * association each receive belongs to. 2869 * 2870 * This option takes a boolean value. A non-zero value indicates that 2871 * fragmented interleave is on. A value of zero indicates that 2872 * fragmented interleave is off. 2873 * 2874 * Note that it is important that an implementation that allows this 2875 * option to be turned on, have it off by default. Otherwise an unaware 2876 * application using the one to many model may become confused and act 2877 * incorrectly. 2878 */ 2879static int sctp_setsockopt_fragment_interleave(struct sock *sk, 2880 char __user *optval, 2881 int optlen) 2882{ 2883 int val; 2884 2885 if (optlen != sizeof(int)) 2886 return -EINVAL; 2887 if (get_user(val, (int __user *)optval)) 2888 return -EFAULT; 2889 2890 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1; 2891 2892 return 0; 2893} 2894 2895/* 2896 * 7.1.25. Set or Get the sctp partial delivery point 2897 * (SCTP_PARTIAL_DELIVERY_POINT) 2898 * This option will set or get the SCTP partial delivery point. This 2899 * point is the size of a message where the partial delivery API will be 2900 * invoked to help free up rwnd space for the peer. Setting this to a 2901 * lower value will cause partial delivery's to happen more often. The 2902 * calls argument is an integer that sets or gets the partial delivery 2903 * point. 2904 */ 2905static int sctp_setsockopt_partial_delivery_point(struct sock *sk, 2906 char __user *optval, 2907 int optlen) 2908{ 2909 u32 val; 2910 2911 if (optlen != sizeof(u32)) 2912 return -EINVAL; 2913 if (get_user(val, (int __user *)optval)) 2914 return -EFAULT; 2915 2916 sctp_sk(sk)->pd_point = val; 2917 2918 return 0; /* is this the right error code? */ 2919} 2920 2921/* 2922 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 2923 * 2924 * This option will allow a user to change the maximum burst of packets 2925 * that can be emitted by this association. Note that the default value 2926 * is 4, and some implementations may restrict this setting so that it 2927 * can only be lowered. 2928 * 2929 * NOTE: This text doesn't seem right. Do this on a socket basis with 2930 * future associations inheriting the socket value. 2931 */ 2932static int sctp_setsockopt_maxburst(struct sock *sk, 2933 char __user *optval, 2934 int optlen) 2935{ 2936 int val; 2937 2938 if (optlen != sizeof(int)) 2939 return -EINVAL; 2940 if (get_user(val, (int __user *)optval)) 2941 return -EFAULT; 2942 2943 if (val < 0) 2944 return -EINVAL; 2945 2946 sctp_sk(sk)->max_burst = val; 2947 2948 return 0; 2949} 2950 2951/* API 6.2 setsockopt(), getsockopt() 2952 * 2953 * Applications use setsockopt() and getsockopt() to set or retrieve 2954 * socket options. Socket options are used to change the default 2955 * behavior of sockets calls. They are described in Section 7. 2956 * 2957 * The syntax is: 2958 * 2959 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 2960 * int __user *optlen); 2961 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 2962 * int optlen); 2963 * 2964 * sd - the socket descript. 2965 * level - set to IPPROTO_SCTP for all SCTP options. 2966 * optname - the option name. 2967 * optval - the buffer to store the value of the option. 2968 * optlen - the size of the buffer. 2969 */ 2970SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname, 2971 char __user *optval, int optlen) 2972{ 2973 int retval = 0; 2974 2975 SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n", 2976 sk, optname); 2977 2978 /* I can hardly begin to describe how wrong this is. This is 2979 * so broken as to be worse than useless. The API draft 2980 * REALLY is NOT helpful here... I am not convinced that the 2981 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 2982 * are at all well-founded. 2983 */ 2984 if (level != SOL_SCTP) { 2985 struct sctp_af *af = sctp_sk(sk)->pf->af; 2986 retval = af->setsockopt(sk, level, optname, optval, optlen); 2987 goto out_nounlock; 2988 } 2989 2990 sctp_lock_sock(sk); 2991 2992 switch (optname) { 2993 case SCTP_SOCKOPT_BINDX_ADD: 2994 /* 'optlen' is the size of the addresses buffer. */ 2995 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 2996 optlen, SCTP_BINDX_ADD_ADDR); 2997 break; 2998 2999 case SCTP_SOCKOPT_BINDX_REM: 3000 /* 'optlen' is the size of the addresses buffer. */ 3001 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3002 optlen, SCTP_BINDX_REM_ADDR); 3003 break; 3004 3005 case SCTP_SOCKOPT_CONNECTX: 3006 /* 'optlen' is the size of the addresses buffer. */ 3007 retval = sctp_setsockopt_connectx(sk, (struct sockaddr __user *)optval, 3008 optlen); 3009 break; 3010 3011 case SCTP_DISABLE_FRAGMENTS: 3012 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 3013 break; 3014 3015 case SCTP_EVENTS: 3016 retval = sctp_setsockopt_events(sk, optval, optlen); 3017 break; 3018 3019 case SCTP_AUTOCLOSE: 3020 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 3021 break; 3022 3023 case SCTP_PEER_ADDR_PARAMS: 3024 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 3025 break; 3026 3027 case SCTP_DELAYED_ACK_TIME: 3028 retval = sctp_setsockopt_delayed_ack_time(sk, optval, optlen); 3029 break; 3030 case SCTP_PARTIAL_DELIVERY_POINT: 3031 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); 3032 break; 3033 3034 case SCTP_INITMSG: 3035 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 3036 break; 3037 case SCTP_DEFAULT_SEND_PARAM: 3038 retval = sctp_setsockopt_default_send_param(sk, optval, 3039 optlen); 3040 break; 3041 case SCTP_PRIMARY_ADDR: 3042 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 3043 break; 3044 case SCTP_SET_PEER_PRIMARY_ADDR: 3045 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 3046 break; 3047 case SCTP_NODELAY: 3048 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 3049 break; 3050 case SCTP_RTOINFO: 3051 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 3052 break; 3053 case SCTP_ASSOCINFO: 3054 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 3055 break; 3056 case SCTP_I_WANT_MAPPED_V4_ADDR: 3057 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 3058 break; 3059 case SCTP_MAXSEG: 3060 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 3061 break; 3062 case SCTP_ADAPTATION_LAYER: 3063 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 3064 break; 3065 case SCTP_CONTEXT: 3066 retval = sctp_setsockopt_context(sk, optval, optlen); 3067 break; 3068 case SCTP_FRAGMENT_INTERLEAVE: 3069 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); 3070 break; 3071 case SCTP_MAX_BURST: 3072 retval = sctp_setsockopt_maxburst(sk, optval, optlen); 3073 break; 3074 default: 3075 retval = -ENOPROTOOPT; 3076 break; 3077 } 3078 3079 sctp_release_sock(sk); 3080 3081out_nounlock: 3082 return retval; 3083} 3084 3085/* API 3.1.6 connect() - UDP Style Syntax 3086 * 3087 * An application may use the connect() call in the UDP model to initiate an 3088 * association without sending data. 3089 * 3090 * The syntax is: 3091 * 3092 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 3093 * 3094 * sd: the socket descriptor to have a new association added to. 3095 * 3096 * nam: the address structure (either struct sockaddr_in or struct 3097 * sockaddr_in6 defined in RFC2553 [7]). 3098 * 3099 * len: the size of the address. 3100 */ 3101SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr, 3102 int addr_len) 3103{ 3104 int err = 0; 3105 struct sctp_af *af; 3106 3107 sctp_lock_sock(sk); 3108 3109 SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n", 3110 __FUNCTION__, sk, addr, addr_len); 3111 3112 /* Validate addr_len before calling common connect/connectx routine. */ 3113 af = sctp_get_af_specific(addr->sa_family); 3114 if (!af || addr_len < af->sockaddr_len) { 3115 err = -EINVAL; 3116 } else { 3117 /* Pass correct addr len to common routine (so it knows there 3118 * is only one address being passed. 3119 */ 3120 err = __sctp_connect(sk, addr, af->sockaddr_len); 3121 } 3122 3123 sctp_release_sock(sk); 3124 return err; 3125} 3126 3127/* FIXME: Write comments. */ 3128SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags) 3129{ 3130 return -EOPNOTSUPP; /* STUB */ 3131} 3132 3133/* 4.1.4 accept() - TCP Style Syntax 3134 * 3135 * Applications use accept() call to remove an established SCTP 3136 * association from the accept queue of the endpoint. A new socket 3137 * descriptor will be returned from accept() to represent the newly 3138 * formed association. 3139 */ 3140SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err) 3141{ 3142 struct sctp_sock *sp; 3143 struct sctp_endpoint *ep; 3144 struct sock *newsk = NULL; 3145 struct sctp_association *asoc; 3146 long timeo; 3147 int error = 0; 3148 3149 sctp_lock_sock(sk); 3150 3151 sp = sctp_sk(sk); 3152 ep = sp->ep; 3153 3154 if (!sctp_style(sk, TCP)) { 3155 error = -EOPNOTSUPP; 3156 goto out; 3157 } 3158 3159 if (!sctp_sstate(sk, LISTENING)) { 3160 error = -EINVAL; 3161 goto out; 3162 } 3163 3164 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 3165 3166 error = sctp_wait_for_accept(sk, timeo); 3167 if (error) 3168 goto out; 3169 3170 /* We treat the list of associations on the endpoint as the accept 3171 * queue and pick the first association on the list. 3172 */ 3173 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 3174 3175 newsk = sp->pf->create_accept_sk(sk, asoc); 3176 if (!newsk) { 3177 error = -ENOMEM; 3178 goto out; 3179 } 3180 3181 /* Populate the fields of the newsk from the oldsk and migrate the 3182 * asoc to the newsk. 3183 */ 3184 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 3185 3186out: 3187 sctp_release_sock(sk); 3188 *err = error; 3189 return newsk; 3190} 3191 3192/* The SCTP ioctl handler. */ 3193SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 3194{ 3195 return -ENOIOCTLCMD; 3196} 3197 3198/* This is the function which gets called during socket creation to 3199 * initialized the SCTP-specific portion of the sock. 3200 * The sock structure should already be zero-filled memory. 3201 */ 3202SCTP_STATIC int sctp_init_sock(struct sock *sk) 3203{ 3204 struct sctp_endpoint *ep; 3205 struct sctp_sock *sp; 3206 3207 SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk); 3208 3209 sp = sctp_sk(sk); 3210 3211 /* Initialize the SCTP per socket area. */ 3212 switch (sk->sk_type) { 3213 case SOCK_SEQPACKET: 3214 sp->type = SCTP_SOCKET_UDP; 3215 break; 3216 case SOCK_STREAM: 3217 sp->type = SCTP_SOCKET_TCP; 3218 break; 3219 default: 3220 return -ESOCKTNOSUPPORT; 3221 } 3222 3223 /* Initialize default send parameters. These parameters can be 3224 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 3225 */ 3226 sp->default_stream = 0; 3227 sp->default_ppid = 0; 3228 sp->default_flags = 0; 3229 sp->default_context = 0; 3230 sp->default_timetolive = 0; 3231 3232 sp->default_rcv_context = 0; 3233 sp->max_burst = sctp_max_burst; 3234 3235 /* Initialize default setup parameters. These parameters 3236 * can be modified with the SCTP_INITMSG socket option or 3237 * overridden by the SCTP_INIT CMSG. 3238 */ 3239 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 3240 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 3241 sp->initmsg.sinit_max_attempts = sctp_max_retrans_init; 3242 sp->initmsg.sinit_max_init_timeo = sctp_rto_max; 3243 3244 /* Initialize default RTO related parameters. These parameters can 3245 * be modified for with the SCTP_RTOINFO socket option. 3246 */ 3247 sp->rtoinfo.srto_initial = sctp_rto_initial; 3248 sp->rtoinfo.srto_max = sctp_rto_max; 3249 sp->rtoinfo.srto_min = sctp_rto_min; 3250 3251 /* Initialize default association related parameters. These parameters 3252 * can be modified with the SCTP_ASSOCINFO socket option. 3253 */ 3254 sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association; 3255 sp->assocparams.sasoc_number_peer_destinations = 0; 3256 sp->assocparams.sasoc_peer_rwnd = 0; 3257 sp->assocparams.sasoc_local_rwnd = 0; 3258 sp->assocparams.sasoc_cookie_life = sctp_valid_cookie_life; 3259 3260 /* Initialize default event subscriptions. By default, all the 3261 * options are off. 3262 */ 3263 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe)); 3264 3265 /* Default Peer Address Parameters. These defaults can 3266 * be modified via SCTP_PEER_ADDR_PARAMS 3267 */ 3268 sp->hbinterval = sctp_hb_interval; 3269 sp->pathmaxrxt = sctp_max_retrans_path; 3270 sp->pathmtu = 0; // allow default discovery 3271 sp->sackdelay = sctp_sack_timeout; 3272 sp->param_flags = SPP_HB_ENABLE | 3273 SPP_PMTUD_ENABLE | 3274 SPP_SACKDELAY_ENABLE; 3275 3276 /* If enabled no SCTP message fragmentation will be performed. 3277 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 3278 */ 3279 sp->disable_fragments = 0; 3280 3281 /* Enable Nagle algorithm by default. */ 3282 sp->nodelay = 0; 3283 3284 /* Enable by default. */ 3285 sp->v4mapped = 1; 3286 3287 /* Auto-close idle associations after the configured 3288 * number of seconds. A value of 0 disables this 3289 * feature. Configure through the SCTP_AUTOCLOSE socket option, 3290 * for UDP-style sockets only. 3291 */ 3292 sp->autoclose = 0; 3293 3294 /* User specified fragmentation limit. */ 3295 sp->user_frag = 0; 3296 3297 sp->adaptation_ind = 0; 3298 3299 sp->pf = sctp_get_pf_specific(sk->sk_family); 3300 3301 /* Control variables for partial data delivery. */ 3302 atomic_set(&sp->pd_mode, 0); 3303 skb_queue_head_init(&sp->pd_lobby); 3304 sp->frag_interleave = 0; 3305 3306 /* Create a per socket endpoint structure. Even if we 3307 * change the data structure relationships, this may still 3308 * be useful for storing pre-connect address information. 3309 */ 3310 ep = sctp_endpoint_new(sk, GFP_KERNEL); 3311 if (!ep) 3312 return -ENOMEM; 3313 3314 sp->ep = ep; 3315 sp->hmac = NULL; 3316 3317 SCTP_DBG_OBJCNT_INC(sock); 3318 return 0; 3319} 3320 3321/* Cleanup any SCTP per socket resources. */ 3322SCTP_STATIC int sctp_destroy_sock(struct sock *sk) 3323{ 3324 struct sctp_endpoint *ep; 3325 3326 SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk); 3327 3328 /* Release our hold on the endpoint. */ 3329 ep = sctp_sk(sk)->ep; 3330 sctp_endpoint_free(ep); 3331 3332 return 0; 3333} 3334 3335/* API 4.1.7 shutdown() - TCP Style Syntax 3336 * int shutdown(int socket, int how); 3337 * 3338 * sd - the socket descriptor of the association to be closed. 3339 * how - Specifies the type of shutdown. The values are 3340 * as follows: 3341 * SHUT_RD 3342 * Disables further receive operations. No SCTP 3343 * protocol action is taken. 3344 * SHUT_WR 3345 * Disables further send operations, and initiates 3346 * the SCTP shutdown sequence. 3347 * SHUT_RDWR 3348 * Disables further send and receive operations 3349 * and initiates the SCTP shutdown sequence. 3350 */ 3351SCTP_STATIC void sctp_shutdown(struct sock *sk, int how) 3352{ 3353 struct sctp_endpoint *ep; 3354 struct sctp_association *asoc; 3355 3356 if (!sctp_style(sk, TCP)) 3357 return; 3358 3359 if (how & SEND_SHUTDOWN) { 3360 ep = sctp_sk(sk)->ep; 3361 if (!list_empty(&ep->asocs)) { 3362 asoc = list_entry(ep->asocs.next, 3363 struct sctp_association, asocs); 3364 sctp_primitive_SHUTDOWN(asoc, NULL); 3365 } 3366 } 3367} 3368 3369/* 7.2.1 Association Status (SCTP_STATUS) 3370 3371 * Applications can retrieve current status information about an 3372 * association, including association state, peer receiver window size, 3373 * number of unacked data chunks, and number of data chunks pending 3374 * receipt. This information is read-only. 3375 */ 3376static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 3377 char __user *optval, 3378 int __user *optlen) 3379{ 3380 struct sctp_status status; 3381 struct sctp_association *asoc = NULL; 3382 struct sctp_transport *transport; 3383 sctp_assoc_t associd; 3384 int retval = 0; 3385 3386 if (len < sizeof(status)) { 3387 retval = -EINVAL; 3388 goto out; 3389 } 3390 3391 len = sizeof(status); 3392 if (copy_from_user(&status, optval, len)) { 3393 retval = -EFAULT; 3394 goto out; 3395 } 3396 3397 associd = status.sstat_assoc_id; 3398 asoc = sctp_id2assoc(sk, associd); 3399 if (!asoc) { 3400 retval = -EINVAL; 3401 goto out; 3402 } 3403 3404 transport = asoc->peer.primary_path; 3405 3406 status.sstat_assoc_id = sctp_assoc2id(asoc); 3407 status.sstat_state = asoc->state; 3408 status.sstat_rwnd = asoc->peer.rwnd; 3409 status.sstat_unackdata = asoc->unack_data; 3410 3411 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 3412 status.sstat_instrms = asoc->c.sinit_max_instreams; 3413 status.sstat_outstrms = asoc->c.sinit_num_ostreams; 3414 status.sstat_fragmentation_point = asoc->frag_point; 3415 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 3416 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 3417 transport->af_specific->sockaddr_len); 3418 /* Map ipv4 address into v4-mapped-on-v6 address. */ 3419 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 3420 (union sctp_addr *)&status.sstat_primary.spinfo_address); 3421 status.sstat_primary.spinfo_state = transport->state; 3422 status.sstat_primary.spinfo_cwnd = transport->cwnd; 3423 status.sstat_primary.spinfo_srtt = transport->srtt; 3424 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 3425 status.sstat_primary.spinfo_mtu = transport->pathmtu; 3426 3427 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 3428 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 3429 3430 if (put_user(len, optlen)) { 3431 retval = -EFAULT; 3432 goto out; 3433 } 3434 3435 SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n", 3436 len, status.sstat_state, status.sstat_rwnd, 3437 status.sstat_assoc_id); 3438 3439 if (copy_to_user(optval, &status, len)) { 3440 retval = -EFAULT; 3441 goto out; 3442 } 3443 3444out: 3445 return (retval); 3446} 3447 3448 3449/* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 3450 * 3451 * Applications can retrieve information about a specific peer address 3452 * of an association, including its reachability state, congestion 3453 * window, and retransmission timer values. This information is 3454 * read-only. 3455 */ 3456static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 3457 char __user *optval, 3458 int __user *optlen) 3459{ 3460 struct sctp_paddrinfo pinfo; 3461 struct sctp_transport *transport; 3462 int retval = 0; 3463 3464 if (len < sizeof(pinfo)) { 3465 retval = -EINVAL; 3466 goto out; 3467 } 3468 3469 len = sizeof(pinfo); 3470 if (copy_from_user(&pinfo, optval, len)) { 3471 retval = -EFAULT; 3472 goto out; 3473 } 3474 3475 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 3476 pinfo.spinfo_assoc_id); 3477 if (!transport) 3478 return -EINVAL; 3479 3480 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 3481 pinfo.spinfo_state = transport->state; 3482 pinfo.spinfo_cwnd = transport->cwnd; 3483 pinfo.spinfo_srtt = transport->srtt; 3484 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 3485 pinfo.spinfo_mtu = transport->pathmtu; 3486 3487 if (pinfo.spinfo_state == SCTP_UNKNOWN) 3488 pinfo.spinfo_state = SCTP_ACTIVE; 3489 3490 if (put_user(len, optlen)) { 3491 retval = -EFAULT; 3492 goto out; 3493 } 3494 3495 if (copy_to_user(optval, &pinfo, len)) { 3496 retval = -EFAULT; 3497 goto out; 3498 } 3499 3500out: 3501 return (retval); 3502} 3503 3504/* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 3505 * 3506 * This option is a on/off flag. If enabled no SCTP message 3507 * fragmentation will be performed. Instead if a message being sent 3508 * exceeds the current PMTU size, the message will NOT be sent and 3509 * instead a error will be indicated to the user. 3510 */ 3511static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 3512 char __user *optval, int __user *optlen) 3513{ 3514 int val; 3515 3516 if (len < sizeof(int)) 3517 return -EINVAL; 3518 3519 len = sizeof(int); 3520 val = (sctp_sk(sk)->disable_fragments == 1); 3521 if (put_user(len, optlen)) 3522 return -EFAULT; 3523 if (copy_to_user(optval, &val, len)) 3524 return -EFAULT; 3525 return 0; 3526} 3527 3528/* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 3529 * 3530 * This socket option is used to specify various notifications and 3531 * ancillary data the user wishes to receive. 3532 */ 3533static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 3534 int __user *optlen) 3535{ 3536 if (len < sizeof(struct sctp_event_subscribe)) 3537 return -EINVAL; 3538 len = sizeof(struct sctp_event_subscribe); 3539 if (put_user(len, optlen)) 3540 return -EFAULT; 3541 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len)) 3542 return -EFAULT; 3543 return 0; 3544} 3545 3546/* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 3547 * 3548 * This socket option is applicable to the UDP-style socket only. When 3549 * set it will cause associations that are idle for more than the 3550 * specified number of seconds to automatically close. An association 3551 * being idle is defined an association that has NOT sent or received 3552 * user data. The special value of '0' indicates that no automatic 3553 * close of any associations should be performed. The option expects an 3554 * integer defining the number of seconds of idle time before an 3555 * association is closed. 3556 */ 3557static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 3558{ 3559 /* Applicable to UDP-style socket only */ 3560 if (sctp_style(sk, TCP)) 3561 return -EOPNOTSUPP; 3562 if (len < sizeof(int)) 3563 return -EINVAL; 3564 len = sizeof(int); 3565 if (put_user(len, optlen)) 3566 return -EFAULT; 3567 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int))) 3568 return -EFAULT; 3569 return 0; 3570} 3571 3572/* Helper routine to branch off an association to a new socket. */ 3573SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc, 3574 struct socket **sockp) 3575{ 3576 struct sock *sk = asoc->base.sk; 3577 struct socket *sock; 3578 struct inet_sock *inetsk; 3579 struct sctp_af *af; 3580 int err = 0; 3581 3582 /* An association cannot be branched off from an already peeled-off 3583 * socket, nor is this supported for tcp style sockets. 3584 */ 3585 if (!sctp_style(sk, UDP)) 3586 return -EINVAL; 3587 3588 /* Create a new socket. */ 3589 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 3590 if (err < 0) 3591 return err; 3592 3593 /* Populate the fields of the newsk from the oldsk and migrate the 3594 * asoc to the newsk. 3595 */ 3596 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 3597 3598 /* Make peeled-off sockets more like 1-1 accepted sockets. 3599 * Set the daddr and initialize id to something more random 3600 */ 3601 af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family); 3602 af->to_sk_daddr(&asoc->peer.primary_addr, sk); 3603 inetsk = inet_sk(sock->sk); 3604 inetsk->id = asoc->next_tsn ^ jiffies; 3605 3606 *sockp = sock; 3607 3608 return err; 3609} 3610 3611static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 3612{ 3613 sctp_peeloff_arg_t peeloff; 3614 struct socket *newsock; 3615 int retval = 0; 3616 struct sctp_association *asoc; 3617 3618 if (len < sizeof(sctp_peeloff_arg_t)) 3619 return -EINVAL; 3620 len = sizeof(sctp_peeloff_arg_t); 3621 if (copy_from_user(&peeloff, optval, len)) 3622 return -EFAULT; 3623 3624 asoc = sctp_id2assoc(sk, peeloff.associd); 3625 if (!asoc) { 3626 retval = -EINVAL; 3627 goto out; 3628 } 3629 3630 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __FUNCTION__, sk, asoc); 3631 3632 retval = sctp_do_peeloff(asoc, &newsock); 3633 if (retval < 0) 3634 goto out; 3635 3636 /* Map the socket to an unused fd that can be returned to the user. */ 3637 retval = sock_map_fd(newsock); 3638 if (retval < 0) { 3639 sock_release(newsock); 3640 goto out; 3641 } 3642 3643 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n", 3644 __FUNCTION__, sk, asoc, newsock->sk, retval); 3645 3646 /* Return the fd mapped to the new socket. */ 3647 peeloff.sd = retval; 3648 if (put_user(len, optlen)) 3649 return -EFAULT; 3650 if (copy_to_user(optval, &peeloff, len)) 3651 retval = -EFAULT; 3652 3653out: 3654 return retval; 3655} 3656 3657/* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 3658 * 3659 * Applications can enable or disable heartbeats for any peer address of 3660 * an association, modify an address's heartbeat interval, force a 3661 * heartbeat to be sent immediately, and adjust the address's maximum 3662 * number of retransmissions sent before an address is considered 3663 * unreachable. The following structure is used to access and modify an 3664 * address's parameters: 3665 * 3666 * struct sctp_paddrparams { 3667 * sctp_assoc_t spp_assoc_id; 3668 * struct sockaddr_storage spp_address; 3669 * uint32_t spp_hbinterval; 3670 * uint16_t spp_pathmaxrxt; 3671 * uint32_t spp_pathmtu; 3672 * uint32_t spp_sackdelay; 3673 * uint32_t spp_flags; 3674 * }; 3675 * 3676 * spp_assoc_id - (one-to-many style socket) This is filled in the 3677 * application, and identifies the association for 3678 * this query. 3679 * spp_address - This specifies which address is of interest. 3680 * spp_hbinterval - This contains the value of the heartbeat interval, 3681 * in milliseconds. If a value of zero 3682 * is present in this field then no changes are to 3683 * be made to this parameter. 3684 * spp_pathmaxrxt - This contains the maximum number of 3685 * retransmissions before this address shall be 3686 * considered unreachable. If a value of zero 3687 * is present in this field then no changes are to 3688 * be made to this parameter. 3689 * spp_pathmtu - When Path MTU discovery is disabled the value 3690 * specified here will be the "fixed" path mtu. 3691 * Note that if the spp_address field is empty 3692 * then all associations on this address will 3693 * have this fixed path mtu set upon them. 3694 * 3695 * spp_sackdelay - When delayed sack is enabled, this value specifies 3696 * the number of milliseconds that sacks will be delayed 3697 * for. This value will apply to all addresses of an 3698 * association if the spp_address field is empty. Note 3699 * also, that if delayed sack is enabled and this 3700 * value is set to 0, no change is made to the last 3701 * recorded delayed sack timer value. 3702 * 3703 * spp_flags - These flags are used to control various features 3704 * on an association. The flag field may contain 3705 * zero or more of the following options. 3706 * 3707 * SPP_HB_ENABLE - Enable heartbeats on the 3708 * specified address. Note that if the address 3709 * field is empty all addresses for the association 3710 * have heartbeats enabled upon them. 3711 * 3712 * SPP_HB_DISABLE - Disable heartbeats on the 3713 * speicifed address. Note that if the address 3714 * field is empty all addresses for the association 3715 * will have their heartbeats disabled. Note also 3716 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 3717 * mutually exclusive, only one of these two should 3718 * be specified. Enabling both fields will have 3719 * undetermined results. 3720 * 3721 * SPP_HB_DEMAND - Request a user initiated heartbeat 3722 * to be made immediately. 3723 * 3724 * SPP_PMTUD_ENABLE - This field will enable PMTU 3725 * discovery upon the specified address. Note that 3726 * if the address feild is empty then all addresses 3727 * on the association are effected. 3728 * 3729 * SPP_PMTUD_DISABLE - This field will disable PMTU 3730 * discovery upon the specified address. Note that 3731 * if the address feild is empty then all addresses 3732 * on the association are effected. Not also that 3733 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 3734 * exclusive. Enabling both will have undetermined 3735 * results. 3736 * 3737 * SPP_SACKDELAY_ENABLE - Setting this flag turns 3738 * on delayed sack. The time specified in spp_sackdelay 3739 * is used to specify the sack delay for this address. Note 3740 * that if spp_address is empty then all addresses will 3741 * enable delayed sack and take on the sack delay 3742 * value specified in spp_sackdelay. 3743 * SPP_SACKDELAY_DISABLE - Setting this flag turns 3744 * off delayed sack. If the spp_address field is blank then 3745 * delayed sack is disabled for the entire association. Note 3746 * also that this field is mutually exclusive to 3747 * SPP_SACKDELAY_ENABLE, setting both will have undefined 3748 * results. 3749 */ 3750static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 3751 char __user *optval, int __user *optlen) 3752{ 3753 struct sctp_paddrparams params; 3754 struct sctp_transport *trans = NULL; 3755 struct sctp_association *asoc = NULL; 3756 struct sctp_sock *sp = sctp_sk(sk); 3757 3758 if (len < sizeof(struct sctp_paddrparams)) 3759 return -EINVAL; 3760 len = sizeof(struct sctp_paddrparams); 3761 if (copy_from_user(&params, optval, len)) 3762 return -EFAULT; 3763 3764 /* If an address other than INADDR_ANY is specified, and 3765 * no transport is found, then the request is invalid. 3766 */ 3767 if (!sctp_is_any(( union sctp_addr *)&params.spp_address)) { 3768 trans = sctp_addr_id2transport(sk, &params.spp_address, 3769 params.spp_assoc_id); 3770 if (!trans) { 3771 SCTP_DEBUG_PRINTK("Failed no transport\n"); 3772 return -EINVAL; 3773 } 3774 } 3775 3776 /* Get association, if assoc_id != 0 and the socket is a one 3777 * to many style socket, and an association was not found, then 3778 * the id was invalid. 3779 */ 3780 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 3781 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) { 3782 SCTP_DEBUG_PRINTK("Failed no association\n"); 3783 return -EINVAL; 3784 } 3785 3786 if (trans) { 3787 /* Fetch transport values. */ 3788 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 3789 params.spp_pathmtu = trans->pathmtu; 3790 params.spp_pathmaxrxt = trans->pathmaxrxt; 3791 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 3792 3793 /*draft-11 doesn't say what to return in spp_flags*/ 3794 params.spp_flags = trans->param_flags; 3795 } else if (asoc) { 3796 /* Fetch association values. */ 3797 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 3798 params.spp_pathmtu = asoc->pathmtu; 3799 params.spp_pathmaxrxt = asoc->pathmaxrxt; 3800 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 3801 3802 /*draft-11 doesn't say what to return in spp_flags*/ 3803 params.spp_flags = asoc->param_flags; 3804 } else { 3805 /* Fetch socket values. */ 3806 params.spp_hbinterval = sp->hbinterval; 3807 params.spp_pathmtu = sp->pathmtu; 3808 params.spp_sackdelay = sp->sackdelay; 3809 params.spp_pathmaxrxt = sp->pathmaxrxt; 3810 3811 /*draft-11 doesn't say what to return in spp_flags*/ 3812 params.spp_flags = sp->param_flags; 3813 } 3814 3815 if (copy_to_user(optval, &params, len)) 3816 return -EFAULT; 3817 3818 if (put_user(len, optlen)) 3819 return -EFAULT; 3820 3821 return 0; 3822} 3823 3824/* 7.1.23. Delayed Ack Timer (SCTP_DELAYED_ACK_TIME) 3825 * 3826 * This options will get or set the delayed ack timer. The time is set 3827 * in milliseconds. If the assoc_id is 0, then this sets or gets the 3828 * endpoints default delayed ack timer value. If the assoc_id field is 3829 * non-zero, then the set or get effects the specified association. 3830 * 3831 * struct sctp_assoc_value { 3832 * sctp_assoc_t assoc_id; 3833 * uint32_t assoc_value; 3834 * }; 3835 * 3836 * assoc_id - This parameter, indicates which association the 3837 * user is preforming an action upon. Note that if 3838 * this field's value is zero then the endpoints 3839 * default value is changed (effecting future 3840 * associations only). 3841 * 3842 * assoc_value - This parameter contains the number of milliseconds 3843 * that the user is requesting the delayed ACK timer 3844 * be set to. Note that this value is defined in 3845 * the standard to be between 200 and 500 milliseconds. 3846 * 3847 * Note: a value of zero will leave the value alone, 3848 * but disable SACK delay. A non-zero value will also 3849 * enable SACK delay. 3850 */ 3851static int sctp_getsockopt_delayed_ack_time(struct sock *sk, int len, 3852 char __user *optval, 3853 int __user *optlen) 3854{ 3855 struct sctp_assoc_value params; 3856 struct sctp_association *asoc = NULL; 3857 struct sctp_sock *sp = sctp_sk(sk); 3858 3859 if (len < sizeof(struct sctp_assoc_value)) 3860 return - EINVAL; 3861 3862 len = sizeof(struct sctp_assoc_value); 3863 3864 if (copy_from_user(&params, optval, len)) 3865 return -EFAULT; 3866 3867 /* Get association, if assoc_id != 0 and the socket is a one 3868 * to many style socket, and an association was not found, then 3869 * the id was invalid. 3870 */ 3871 asoc = sctp_id2assoc(sk, params.assoc_id); 3872 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 3873 return -EINVAL; 3874 3875 if (asoc) { 3876 /* Fetch association values. */ 3877 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) 3878 params.assoc_value = jiffies_to_msecs( 3879 asoc->sackdelay); 3880 else 3881 params.assoc_value = 0; 3882 } else { 3883 /* Fetch socket values. */ 3884 if (sp->param_flags & SPP_SACKDELAY_ENABLE) 3885 params.assoc_value = sp->sackdelay; 3886 else 3887 params.assoc_value = 0; 3888 } 3889 3890 if (copy_to_user(optval, &params, len)) 3891 return -EFAULT; 3892 3893 if (put_user(len, optlen)) 3894 return -EFAULT; 3895 3896 return 0; 3897} 3898 3899/* 7.1.3 Initialization Parameters (SCTP_INITMSG) 3900 * 3901 * Applications can specify protocol parameters for the default association 3902 * initialization. The option name argument to setsockopt() and getsockopt() 3903 * is SCTP_INITMSG. 3904 * 3905 * Setting initialization parameters is effective only on an unconnected 3906 * socket (for UDP-style sockets only future associations are effected 3907 * by the change). With TCP-style sockets, this option is inherited by 3908 * sockets derived from a listener socket. 3909 */ 3910static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 3911{ 3912 if (len < sizeof(struct sctp_initmsg)) 3913 return -EINVAL; 3914 len = sizeof(struct sctp_initmsg); 3915 if (put_user(len, optlen)) 3916 return -EFAULT; 3917 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 3918 return -EFAULT; 3919 return 0; 3920} 3921 3922static int sctp_getsockopt_peer_addrs_num_old(struct sock *sk, int len, 3923 char __user *optval, 3924 int __user *optlen) 3925{ 3926 sctp_assoc_t id; 3927 struct sctp_association *asoc; 3928 struct list_head *pos; 3929 int cnt = 0; 3930 3931 if (len < sizeof(sctp_assoc_t)) 3932 return -EINVAL; 3933 3934 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t))) 3935 return -EFAULT; 3936 3937 /* For UDP-style sockets, id specifies the association to query. */ 3938 asoc = sctp_id2assoc(sk, id); 3939 if (!asoc) 3940 return -EINVAL; 3941 3942 list_for_each(pos, &asoc->peer.transport_addr_list) { 3943 cnt ++; 3944 } 3945 3946 return cnt; 3947} 3948 3949/* 3950 * Old API for getting list of peer addresses. Does not work for 32-bit 3951 * programs running on a 64-bit kernel 3952 */ 3953static int sctp_getsockopt_peer_addrs_old(struct sock *sk, int len, 3954 char __user *optval, 3955 int __user *optlen) 3956{ 3957 struct sctp_association *asoc; 3958 struct list_head *pos; 3959 int cnt = 0; 3960 struct sctp_getaddrs_old getaddrs; 3961 struct sctp_transport *from; 3962 void __user *to; 3963 union sctp_addr temp; 3964 struct sctp_sock *sp = sctp_sk(sk); 3965 int addrlen; 3966 3967 if (len < sizeof(struct sctp_getaddrs_old)) 3968 return -EINVAL; 3969 3970 len = sizeof(struct sctp_getaddrs_old); 3971 3972 if (copy_from_user(&getaddrs, optval, len)) 3973 return -EFAULT; 3974 3975 if (getaddrs.addr_num <= 0) return -EINVAL; 3976 3977 /* For UDP-style sockets, id specifies the association to query. */ 3978 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 3979 if (!asoc) 3980 return -EINVAL; 3981 3982 to = (void __user *)getaddrs.addrs; 3983 list_for_each(pos, &asoc->peer.transport_addr_list) { 3984 from = list_entry(pos, struct sctp_transport, transports); 3985 memcpy(&temp, &from->ipaddr, sizeof(temp)); 3986 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 3987 addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len; 3988 if (copy_to_user(to, &temp, addrlen)) 3989 return -EFAULT; 3990 to += addrlen ; 3991 cnt ++; 3992 if (cnt >= getaddrs.addr_num) break; 3993 } 3994 getaddrs.addr_num = cnt; 3995 if (put_user(len, optlen)) 3996 return -EFAULT; 3997 if (copy_to_user(optval, &getaddrs, len)) 3998 return -EFAULT; 3999 4000 return 0; 4001} 4002 4003static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 4004 char __user *optval, int __user *optlen) 4005{ 4006 struct sctp_association *asoc; 4007 struct list_head *pos; 4008 int cnt = 0; 4009 struct sctp_getaddrs getaddrs; 4010 struct sctp_transport *from; 4011 void __user *to; 4012 union sctp_addr temp; 4013 struct sctp_sock *sp = sctp_sk(sk); 4014 int addrlen; 4015 size_t space_left; 4016 int bytes_copied; 4017 4018 if (len < sizeof(struct sctp_getaddrs)) 4019 return -EINVAL; 4020 4021 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 4022 return -EFAULT; 4023 4024 /* For UDP-style sockets, id specifies the association to query. */ 4025 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4026 if (!asoc) 4027 return -EINVAL; 4028 4029 to = optval + offsetof(struct sctp_getaddrs,addrs); 4030 space_left = len - offsetof(struct sctp_getaddrs,addrs); 4031 4032 list_for_each(pos, &asoc->peer.transport_addr_list) { 4033 from = list_entry(pos, struct sctp_transport, transports); 4034 memcpy(&temp, &from->ipaddr, sizeof(temp)); 4035 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4036 addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len; 4037 if (space_left < addrlen) 4038 return -ENOMEM; 4039 if (copy_to_user(to, &temp, addrlen)) 4040 return -EFAULT; 4041 to += addrlen; 4042 cnt++; 4043 space_left -= addrlen; 4044 } 4045 4046 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 4047 return -EFAULT; 4048 bytes_copied = ((char __user *)to) - optval; 4049 if (put_user(bytes_copied, optlen)) 4050 return -EFAULT; 4051 4052 return 0; 4053} 4054 4055static int sctp_getsockopt_local_addrs_num_old(struct sock *sk, int len, 4056 char __user *optval, 4057 int __user *optlen) 4058{ 4059 sctp_assoc_t id; 4060 struct sctp_bind_addr *bp; 4061 struct sctp_association *asoc; 4062 struct list_head *pos, *temp; 4063 struct sctp_sockaddr_entry *addr; 4064 rwlock_t *addr_lock; 4065 int cnt = 0; 4066 4067 if (len < sizeof(sctp_assoc_t)) 4068 return -EINVAL; 4069 4070 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t))) 4071 return -EFAULT; 4072 4073 /* 4074 * For UDP-style sockets, id specifies the association to query. 4075 * If the id field is set to the value '0' then the locally bound 4076 * addresses are returned without regard to any particular 4077 * association. 4078 */ 4079 if (0 == id) { 4080 bp = &sctp_sk(sk)->ep->base.bind_addr; 4081 addr_lock = &sctp_sk(sk)->ep->base.addr_lock; 4082 } else { 4083 asoc = sctp_id2assoc(sk, id); 4084 if (!asoc) 4085 return -EINVAL; 4086 bp = &asoc->base.bind_addr; 4087 addr_lock = &asoc->base.addr_lock; 4088 } 4089 4090 sctp_read_lock(addr_lock); 4091 4092 /* If the endpoint is bound to 0.0.0.0 or ::0, count the valid 4093 * addresses from the global local address list. 4094 */ 4095 if (sctp_list_single_entry(&bp->address_list)) { 4096 addr = list_entry(bp->address_list.next, 4097 struct sctp_sockaddr_entry, list); 4098 if (sctp_is_any(&addr->a)) { 4099 list_for_each_safe(pos, temp, &sctp_local_addr_list) { 4100 addr = list_entry(pos, 4101 struct sctp_sockaddr_entry, 4102 list); 4103 if ((PF_INET == sk->sk_family) && 4104 (AF_INET6 == addr->a.sa.sa_family)) 4105 continue; 4106 cnt++; 4107 } 4108 } else { 4109 cnt = 1; 4110 } 4111 goto done; 4112 } 4113 4114 list_for_each(pos, &bp->address_list) { 4115 cnt ++; 4116 } 4117 4118done: 4119 sctp_read_unlock(addr_lock); 4120 return cnt; 4121} 4122 4123/* Helper function that copies local addresses to user and returns the number 4124 * of addresses copied. 4125 */ 4126static int sctp_copy_laddrs_old(struct sock *sk, __u16 port, 4127 int max_addrs, void *to, 4128 int *bytes_copied) 4129{ 4130 struct list_head *pos, *next; 4131 struct sctp_sockaddr_entry *addr; 4132 union sctp_addr temp; 4133 int cnt = 0; 4134 int addrlen; 4135 4136 list_for_each_safe(pos, next, &sctp_local_addr_list) { 4137 addr = list_entry(pos, struct sctp_sockaddr_entry, list); 4138 if ((PF_INET == sk->sk_family) && 4139 (AF_INET6 == addr->a.sa.sa_family)) 4140 continue; 4141 memcpy(&temp, &addr->a, sizeof(temp)); 4142 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 4143 &temp); 4144 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4145 memcpy(to, &temp, addrlen); 4146 4147 to += addrlen; 4148 *bytes_copied += addrlen; 4149 cnt ++; 4150 if (cnt >= max_addrs) break; 4151 } 4152 4153 return cnt; 4154} 4155 4156static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 4157 size_t space_left, int *bytes_copied) 4158{ 4159 struct list_head *pos, *next; 4160 struct sctp_sockaddr_entry *addr; 4161 union sctp_addr temp; 4162 int cnt = 0; 4163 int addrlen; 4164 4165 list_for_each_safe(pos, next, &sctp_local_addr_list) { 4166 addr = list_entry(pos, struct sctp_sockaddr_entry, list); 4167 if ((PF_INET == sk->sk_family) && 4168 (AF_INET6 == addr->a.sa.sa_family)) 4169 continue; 4170 memcpy(&temp, &addr->a, sizeof(temp)); 4171 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 4172 &temp); 4173 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4174 if (space_left < addrlen) 4175 return -ENOMEM; 4176 memcpy(to, &temp, addrlen); 4177 4178 to += addrlen; 4179 cnt ++; 4180 space_left -= addrlen; 4181 *bytes_copied += addrlen; 4182 } 4183 4184 return cnt; 4185} 4186 4187/* Old API for getting list of local addresses. Does not work for 32-bit 4188 * programs running on a 64-bit kernel 4189 */ 4190static int sctp_getsockopt_local_addrs_old(struct sock *sk, int len, 4191 char __user *optval, int __user *optlen) 4192{ 4193 struct sctp_bind_addr *bp; 4194 struct sctp_association *asoc; 4195 struct list_head *pos; 4196 int cnt = 0; 4197 struct sctp_getaddrs_old getaddrs; 4198 struct sctp_sockaddr_entry *addr; 4199 void __user *to; 4200 union sctp_addr temp; 4201 struct sctp_sock *sp = sctp_sk(sk); 4202 int addrlen; 4203 rwlock_t *addr_lock; 4204 int err = 0; 4205 void *addrs; 4206 void *buf; 4207 int bytes_copied = 0; 4208 4209 if (len < sizeof(struct sctp_getaddrs_old)) 4210 return -EINVAL; 4211 4212 len = sizeof(struct sctp_getaddrs_old); 4213 if (copy_from_user(&getaddrs, optval, len)) 4214 return -EFAULT; 4215 4216 if (getaddrs.addr_num <= 0) return -EINVAL; 4217 /* 4218 * For UDP-style sockets, id specifies the association to query. 4219 * If the id field is set to the value '0' then the locally bound 4220 * addresses are returned without regard to any particular 4221 * association. 4222 */ 4223 if (0 == getaddrs.assoc_id) { 4224 bp = &sctp_sk(sk)->ep->base.bind_addr; 4225 addr_lock = &sctp_sk(sk)->ep->base.addr_lock; 4226 } else { 4227 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4228 if (!asoc) 4229 return -EINVAL; 4230 bp = &asoc->base.bind_addr; 4231 addr_lock = &asoc->base.addr_lock; 4232 } 4233 4234 to = getaddrs.addrs; 4235 4236 /* Allocate space for a local instance of packed array to hold all 4237 * the data. We store addresses here first and then put write them 4238 * to the user in one shot. 4239 */ 4240 addrs = kmalloc(sizeof(union sctp_addr) * getaddrs.addr_num, 4241 GFP_KERNEL); 4242 if (!addrs) 4243 return -ENOMEM; 4244 4245 sctp_read_lock(addr_lock); 4246 4247 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 4248 * addresses from the global local address list. 4249 */ 4250 if (sctp_list_single_entry(&bp->address_list)) { 4251 addr = list_entry(bp->address_list.next, 4252 struct sctp_sockaddr_entry, list); 4253 if (sctp_is_any(&addr->a)) { 4254 cnt = sctp_copy_laddrs_old(sk, bp->port, 4255 getaddrs.addr_num, 4256 addrs, &bytes_copied); 4257 goto copy_getaddrs; 4258 } 4259 } 4260 4261 buf = addrs; 4262 list_for_each(pos, &bp->address_list) { 4263 addr = list_entry(pos, struct sctp_sockaddr_entry, list); 4264 memcpy(&temp, &addr->a, sizeof(temp)); 4265 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4266 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4267 memcpy(buf, &temp, addrlen); 4268 buf += addrlen; 4269 bytes_copied += addrlen; 4270 cnt ++; 4271 if (cnt >= getaddrs.addr_num) break; 4272 } 4273 4274copy_getaddrs: 4275 sctp_read_unlock(addr_lock); 4276 4277 /* copy the entire address list into the user provided space */ 4278 if (copy_to_user(to, addrs, bytes_copied)) { 4279 err = -EFAULT; 4280 goto error; 4281 } 4282 4283 /* copy the leading structure back to user */ 4284 getaddrs.addr_num = cnt; 4285 if (copy_to_user(optval, &getaddrs, len)) 4286 err = -EFAULT; 4287 4288error: 4289 kfree(addrs); 4290 return err; 4291} 4292 4293static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 4294 char __user *optval, int __user *optlen) 4295{ 4296 struct sctp_bind_addr *bp; 4297 struct sctp_association *asoc; 4298 struct list_head *pos; 4299 int cnt = 0; 4300 struct sctp_getaddrs getaddrs; 4301 struct sctp_sockaddr_entry *addr; 4302 void __user *to; 4303 union sctp_addr temp; 4304 struct sctp_sock *sp = sctp_sk(sk); 4305 int addrlen; 4306 rwlock_t *addr_lock; 4307 int err = 0; 4308 size_t space_left; 4309 int bytes_copied = 0; 4310 void *addrs; 4311 void *buf; 4312 4313 if (len < sizeof(struct sctp_getaddrs)) 4314 return -EINVAL; 4315 4316 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 4317 return -EFAULT; 4318 4319 /* 4320 * For UDP-style sockets, id specifies the association to query. 4321 * If the id field is set to the value '0' then the locally bound 4322 * addresses are returned without regard to any particular 4323 * association. 4324 */ 4325 if (0 == getaddrs.assoc_id) { 4326 bp = &sctp_sk(sk)->ep->base.bind_addr; 4327 addr_lock = &sctp_sk(sk)->ep->base.addr_lock; 4328 } else { 4329 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4330 if (!asoc) 4331 return -EINVAL; 4332 bp = &asoc->base.bind_addr; 4333 addr_lock = &asoc->base.addr_lock; 4334 } 4335 4336 to = optval + offsetof(struct sctp_getaddrs,addrs); 4337 space_left = len - offsetof(struct sctp_getaddrs,addrs); 4338 4339 addrs = kmalloc(space_left, GFP_KERNEL); 4340 if (!addrs) 4341 return -ENOMEM; 4342 4343 sctp_read_lock(addr_lock); 4344 4345 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 4346 * addresses from the global local address list. 4347 */ 4348 if (sctp_list_single_entry(&bp->address_list)) { 4349 addr = list_entry(bp->address_list.next, 4350 struct sctp_sockaddr_entry, list); 4351 if (sctp_is_any(&addr->a)) { 4352 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 4353 space_left, &bytes_copied); 4354 if (cnt < 0) { 4355 err = cnt; 4356 goto error_lock; 4357 } 4358 goto copy_getaddrs; 4359 } 4360 } 4361 4362 buf = addrs; 4363 list_for_each(pos, &bp->address_list) { 4364 addr = list_entry(pos, struct sctp_sockaddr_entry, list); 4365 memcpy(&temp, &addr->a, sizeof(temp)); 4366 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4367 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4368 if (space_left < addrlen) { 4369 err = -ENOMEM; /*fixme: right error?*/ 4370 goto error_lock; 4371 } 4372 memcpy(buf, &temp, addrlen); 4373 buf += addrlen; 4374 bytes_copied += addrlen; 4375 cnt ++; 4376 space_left -= addrlen; 4377 } 4378 4379copy_getaddrs: 4380 sctp_read_unlock(addr_lock); 4381 4382 if (copy_to_user(to, addrs, bytes_copied)) { 4383 err = -EFAULT; 4384 goto out; 4385 } 4386 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 4387 err = -EFAULT; 4388 goto out; 4389 } 4390 if (put_user(bytes_copied, optlen)) 4391 err = -EFAULT; 4392 4393 goto out; 4394 4395error_lock: 4396 sctp_read_unlock(addr_lock); 4397 4398out: 4399 kfree(addrs); 4400 return err; 4401} 4402 4403/* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 4404 * 4405 * Requests that the local SCTP stack use the enclosed peer address as 4406 * the association primary. The enclosed address must be one of the 4407 * association peer's addresses. 4408 */ 4409static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 4410 char __user *optval, int __user *optlen) 4411{ 4412 struct sctp_prim prim; 4413 struct sctp_association *asoc; 4414 struct sctp_sock *sp = sctp_sk(sk); 4415 4416 if (len < sizeof(struct sctp_prim)) 4417 return -EINVAL; 4418 4419 len = sizeof(struct sctp_prim); 4420 4421 if (copy_from_user(&prim, optval, len)) 4422 return -EFAULT; 4423 4424 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 4425 if (!asoc) 4426 return -EINVAL; 4427 4428 if (!asoc->peer.primary_path) 4429 return -ENOTCONN; 4430 4431 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 4432 asoc->peer.primary_path->af_specific->sockaddr_len); 4433 4434 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, 4435 (union sctp_addr *)&prim.ssp_addr); 4436 4437 if (put_user(len, optlen)) 4438 return -EFAULT; 4439 if (copy_to_user(optval, &prim, len)) 4440 return -EFAULT; 4441 4442 return 0; 4443} 4444 4445/* 4446 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 4447 * 4448 * Requests that the local endpoint set the specified Adaptation Layer 4449 * Indication parameter for all future INIT and INIT-ACK exchanges. 4450 */ 4451static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 4452 char __user *optval, int __user *optlen) 4453{ 4454 struct sctp_setadaptation adaptation; 4455 4456 if (len < sizeof(struct sctp_setadaptation)) 4457 return -EINVAL; 4458 4459 len = sizeof(struct sctp_setadaptation); 4460 4461 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 4462 4463 if (put_user(len, optlen)) 4464 return -EFAULT; 4465 if (copy_to_user(optval, &adaptation, len)) 4466 return -EFAULT; 4467 4468 return 0; 4469} 4470 4471/* 4472 * 4473 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 4474 * 4475 * Applications that wish to use the sendto() system call may wish to 4476 * specify a default set of parameters that would normally be supplied 4477 * through the inclusion of ancillary data. This socket option allows 4478 * such an application to set the default sctp_sndrcvinfo structure. 4479 4480 4481 * The application that wishes to use this socket option simply passes 4482 * in to this call the sctp_sndrcvinfo structure defined in Section 4483 * 5.2.2) The input parameters accepted by this call include 4484 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 4485 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 4486 * to this call if the caller is using the UDP model. 4487 * 4488 * For getsockopt, it get the default sctp_sndrcvinfo structure. 4489 */ 4490static int sctp_getsockopt_default_send_param(struct sock *sk, 4491 int len, char __user *optval, 4492 int __user *optlen) 4493{ 4494 struct sctp_sndrcvinfo info; 4495 struct sctp_association *asoc; 4496 struct sctp_sock *sp = sctp_sk(sk); 4497 4498 if (len < sizeof(struct sctp_sndrcvinfo)) 4499 return -EINVAL; 4500 4501 len = sizeof(struct sctp_sndrcvinfo); 4502 4503 if (copy_from_user(&info, optval, len)) 4504 return -EFAULT; 4505 4506 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 4507 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 4508 return -EINVAL; 4509 4510 if (asoc) { 4511 info.sinfo_stream = asoc->default_stream; 4512 info.sinfo_flags = asoc->default_flags; 4513 info.sinfo_ppid = asoc->default_ppid; 4514 info.sinfo_context = asoc->default_context; 4515 info.sinfo_timetolive = asoc->default_timetolive; 4516 } else { 4517 info.sinfo_stream = sp->default_stream; 4518 info.sinfo_flags = sp->default_flags; 4519 info.sinfo_ppid = sp->default_ppid; 4520 info.sinfo_context = sp->default_context; 4521 info.sinfo_timetolive = sp->default_timetolive; 4522 } 4523 4524 if (put_user(len, optlen)) 4525 return -EFAULT; 4526 if (copy_to_user(optval, &info, len)) 4527 return -EFAULT; 4528 4529 return 0; 4530} 4531 4532/* 4533 * 4534 * 7.1.5 SCTP_NODELAY 4535 * 4536 * Turn on/off any Nagle-like algorithm. This means that packets are 4537 * generally sent as soon as possible and no unnecessary delays are 4538 * introduced, at the cost of more packets in the network. Expects an 4539 * integer boolean flag. 4540 */ 4541 4542static int sctp_getsockopt_nodelay(struct sock *sk, int len, 4543 char __user *optval, int __user *optlen) 4544{ 4545 int val; 4546 4547 if (len < sizeof(int)) 4548 return -EINVAL; 4549 4550 len = sizeof(int); 4551 val = (sctp_sk(sk)->nodelay == 1); 4552 if (put_user(len, optlen)) 4553 return -EFAULT; 4554 if (copy_to_user(optval, &val, len)) 4555 return -EFAULT; 4556 return 0; 4557} 4558 4559/* 4560 * 4561 * 7.1.1 SCTP_RTOINFO 4562 * 4563 * The protocol parameters used to initialize and bound retransmission 4564 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 4565 * and modify these parameters. 4566 * All parameters are time values, in milliseconds. A value of 0, when 4567 * modifying the parameters, indicates that the current value should not 4568 * be changed. 4569 * 4570 */ 4571static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 4572 char __user *optval, 4573 int __user *optlen) { 4574 struct sctp_rtoinfo rtoinfo; 4575 struct sctp_association *asoc; 4576 4577 if (len < sizeof (struct sctp_rtoinfo)) 4578 return -EINVAL; 4579 4580 len = sizeof(struct sctp_rtoinfo); 4581 4582 if (copy_from_user(&rtoinfo, optval, len)) 4583 return -EFAULT; 4584 4585 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 4586 4587 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 4588 return -EINVAL; 4589 4590 /* Values corresponding to the specific association. */ 4591 if (asoc) { 4592 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 4593 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 4594 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 4595 } else { 4596 /* Values corresponding to the endpoint. */ 4597 struct sctp_sock *sp = sctp_sk(sk); 4598 4599 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 4600 rtoinfo.srto_max = sp->rtoinfo.srto_max; 4601 rtoinfo.srto_min = sp->rtoinfo.srto_min; 4602 } 4603 4604 if (put_user(len, optlen)) 4605 return -EFAULT; 4606 4607 if (copy_to_user(optval, &rtoinfo, len)) 4608 return -EFAULT; 4609 4610 return 0; 4611} 4612 4613/* 4614 * 4615 * 7.1.2 SCTP_ASSOCINFO 4616 * 4617 * This option is used to tune the maximum retransmission attempts 4618 * of the association. 4619 * Returns an error if the new association retransmission value is 4620 * greater than the sum of the retransmission value of the peer. 4621 * See [SCTP] for more information. 4622 * 4623 */ 4624static int sctp_getsockopt_associnfo(struct sock *sk, int len, 4625 char __user *optval, 4626 int __user *optlen) 4627{ 4628 4629 struct sctp_assocparams assocparams; 4630 struct sctp_association *asoc; 4631 struct list_head *pos; 4632 int cnt = 0; 4633 4634 if (len < sizeof (struct sctp_assocparams)) 4635 return -EINVAL; 4636 4637 len = sizeof(struct sctp_assocparams); 4638 4639 if (copy_from_user(&assocparams, optval, len)) 4640 return -EFAULT; 4641 4642 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 4643 4644 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 4645 return -EINVAL; 4646 4647 /* Values correspoinding to the specific association */ 4648 if (asoc) { 4649 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 4650 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 4651 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 4652 assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec 4653 * 1000) + 4654 (asoc->cookie_life.tv_usec 4655 / 1000); 4656 4657 list_for_each(pos, &asoc->peer.transport_addr_list) { 4658 cnt ++; 4659 } 4660 4661 assocparams.sasoc_number_peer_destinations = cnt; 4662 } else { 4663 /* Values corresponding to the endpoint */ 4664 struct sctp_sock *sp = sctp_sk(sk); 4665 4666 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 4667 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 4668 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 4669 assocparams.sasoc_cookie_life = 4670 sp->assocparams.sasoc_cookie_life; 4671 assocparams.sasoc_number_peer_destinations = 4672 sp->assocparams. 4673 sasoc_number_peer_destinations; 4674 } 4675 4676 if (put_user(len, optlen)) 4677 return -EFAULT; 4678 4679 if (copy_to_user(optval, &assocparams, len)) 4680 return -EFAULT; 4681 4682 return 0; 4683} 4684 4685/* 4686 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 4687 * 4688 * This socket option is a boolean flag which turns on or off mapped V4 4689 * addresses. If this option is turned on and the socket is type 4690 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 4691 * If this option is turned off, then no mapping will be done of V4 4692 * addresses and a user will receive both PF_INET6 and PF_INET type 4693 * addresses on the socket. 4694 */ 4695static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 4696 char __user *optval, int __user *optlen) 4697{ 4698 int val; 4699 struct sctp_sock *sp = sctp_sk(sk); 4700 4701 if (len < sizeof(int)) 4702 return -EINVAL; 4703 4704 len = sizeof(int); 4705 val = sp->v4mapped; 4706 if (put_user(len, optlen)) 4707 return -EFAULT; 4708 if (copy_to_user(optval, &val, len)) 4709 return -EFAULT; 4710 4711 return 0; 4712} 4713 4714/* 4715 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 4716 * (chapter and verse is quoted at sctp_setsockopt_context()) 4717 */ 4718static int sctp_getsockopt_context(struct sock *sk, int len, 4719 char __user *optval, int __user *optlen) 4720{ 4721 struct sctp_assoc_value params; 4722 struct sctp_sock *sp; 4723 struct sctp_association *asoc; 4724 4725 if (len < sizeof(struct sctp_assoc_value)) 4726 return -EINVAL; 4727 4728 len = sizeof(struct sctp_assoc_value); 4729 4730 if (copy_from_user(&params, optval, len)) 4731 return -EFAULT; 4732 4733 sp = sctp_sk(sk); 4734 4735 if (params.assoc_id != 0) { 4736 asoc = sctp_id2assoc(sk, params.assoc_id); 4737 if (!asoc) 4738 return -EINVAL; 4739 params.assoc_value = asoc->default_rcv_context; 4740 } else { 4741 params.assoc_value = sp->default_rcv_context; 4742 } 4743 4744 if (put_user(len, optlen)) 4745 return -EFAULT; 4746 if (copy_to_user(optval, &params, len)) 4747 return -EFAULT; 4748 4749 return 0; 4750} 4751 4752/* 4753 * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG) 4754 * 4755 * This socket option specifies the maximum size to put in any outgoing 4756 * SCTP chunk. If a message is larger than this size it will be 4757 * fragmented by SCTP into the specified size. Note that the underlying 4758 * SCTP implementation may fragment into smaller sized chunks when the 4759 * PMTU of the underlying association is smaller than the value set by 4760 * the user. 4761 */ 4762static int sctp_getsockopt_maxseg(struct sock *sk, int len, 4763 char __user *optval, int __user *optlen) 4764{ 4765 int val; 4766 4767 if (len < sizeof(int)) 4768 return -EINVAL; 4769 4770 len = sizeof(int); 4771 4772 val = sctp_sk(sk)->user_frag; 4773 if (put_user(len, optlen)) 4774 return -EFAULT; 4775 if (copy_to_user(optval, &val, len)) 4776 return -EFAULT; 4777 4778 return 0; 4779} 4780 4781/* 4782 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 4783 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 4784 */ 4785static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 4786 char __user *optval, int __user *optlen) 4787{ 4788 int val; 4789 4790 if (len < sizeof(int)) 4791 return -EINVAL; 4792 4793 len = sizeof(int); 4794 4795 val = sctp_sk(sk)->frag_interleave; 4796 if (put_user(len, optlen)) 4797 return -EFAULT; 4798 if (copy_to_user(optval, &val, len)) 4799 return -EFAULT; 4800 4801 return 0; 4802} 4803 4804/* 4805 * 7.1.25. Set or Get the sctp partial delivery point 4806 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 4807 */ 4808static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 4809 char __user *optval, 4810 int __user *optlen) 4811{ 4812 u32 val; 4813 4814 if (len < sizeof(u32)) 4815 return -EINVAL; 4816 4817 len = sizeof(u32); 4818 4819 val = sctp_sk(sk)->pd_point; 4820 if (put_user(len, optlen)) 4821 return -EFAULT; 4822 if (copy_to_user(optval, &val, len)) 4823 return -EFAULT; 4824 4825 return -ENOTSUPP; 4826} 4827 4828/* 4829 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 4830 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 4831 */ 4832static int sctp_getsockopt_maxburst(struct sock *sk, int len, 4833 char __user *optval, 4834 int __user *optlen) 4835{ 4836 int val; 4837 4838 if (len < sizeof(int)) 4839 return -EINVAL; 4840 4841 len = sizeof(int); 4842 4843 val = sctp_sk(sk)->max_burst; 4844 if (put_user(len, optlen)) 4845 return -EFAULT; 4846 if (copy_to_user(optval, &val, len)) 4847 return -EFAULT; 4848 4849 return -ENOTSUPP; 4850} 4851 4852SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname, 4853 char __user *optval, int __user *optlen) 4854{ 4855 int retval = 0; 4856 int len; 4857 4858 SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n", 4859 sk, optname); 4860 4861 /* I can hardly begin to describe how wrong this is. This is 4862 * so broken as to be worse than useless. The API draft 4863 * REALLY is NOT helpful here... I am not convinced that the 4864 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 4865 * are at all well-founded. 4866 */ 4867 if (level != SOL_SCTP) { 4868 struct sctp_af *af = sctp_sk(sk)->pf->af; 4869 4870 retval = af->getsockopt(sk, level, optname, optval, optlen); 4871 return retval; 4872 } 4873 4874 if (get_user(len, optlen)) 4875 return -EFAULT; 4876 4877 sctp_lock_sock(sk); 4878 4879 switch (optname) { 4880 case SCTP_STATUS: 4881 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 4882 break; 4883 case SCTP_DISABLE_FRAGMENTS: 4884 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 4885 optlen); 4886 break; 4887 case SCTP_EVENTS: 4888 retval = sctp_getsockopt_events(sk, len, optval, optlen); 4889 break; 4890 case SCTP_AUTOCLOSE: 4891 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 4892 break; 4893 case SCTP_SOCKOPT_PEELOFF: 4894 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 4895 break; 4896 case SCTP_PEER_ADDR_PARAMS: 4897 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 4898 optlen); 4899 break; 4900 case SCTP_DELAYED_ACK_TIME: 4901 retval = sctp_getsockopt_delayed_ack_time(sk, len, optval, 4902 optlen); 4903 break; 4904 case SCTP_INITMSG: 4905 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 4906 break; 4907 case SCTP_GET_PEER_ADDRS_NUM_OLD: 4908 retval = sctp_getsockopt_peer_addrs_num_old(sk, len, optval, 4909 optlen); 4910 break; 4911 case SCTP_GET_LOCAL_ADDRS_NUM_OLD: 4912 retval = sctp_getsockopt_local_addrs_num_old(sk, len, optval, 4913 optlen); 4914 break; 4915 case SCTP_GET_PEER_ADDRS_OLD: 4916 retval = sctp_getsockopt_peer_addrs_old(sk, len, optval, 4917 optlen); 4918 break; 4919 case SCTP_GET_LOCAL_ADDRS_OLD: 4920 retval = sctp_getsockopt_local_addrs_old(sk, len, optval, 4921 optlen); 4922 break; 4923 case SCTP_GET_PEER_ADDRS: 4924 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 4925 optlen); 4926 break; 4927 case SCTP_GET_LOCAL_ADDRS: 4928 retval = sctp_getsockopt_local_addrs(sk, len, optval, 4929 optlen); 4930 break; 4931 case SCTP_DEFAULT_SEND_PARAM: 4932 retval = sctp_getsockopt_default_send_param(sk, len, 4933 optval, optlen); 4934 break; 4935 case SCTP_PRIMARY_ADDR: 4936 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 4937 break; 4938 case SCTP_NODELAY: 4939 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 4940 break; 4941 case SCTP_RTOINFO: 4942 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 4943 break; 4944 case SCTP_ASSOCINFO: 4945 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 4946 break; 4947 case SCTP_I_WANT_MAPPED_V4_ADDR: 4948 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 4949 break; 4950 case SCTP_MAXSEG: 4951 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 4952 break; 4953 case SCTP_GET_PEER_ADDR_INFO: 4954 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 4955 optlen); 4956 break; 4957 case SCTP_ADAPTATION_LAYER: 4958 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 4959 optlen); 4960 break; 4961 case SCTP_CONTEXT: 4962 retval = sctp_getsockopt_context(sk, len, optval, optlen); 4963 break; 4964 case SCTP_FRAGMENT_INTERLEAVE: 4965 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 4966 optlen); 4967 break; 4968 case SCTP_PARTIAL_DELIVERY_POINT: 4969 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 4970 optlen); 4971 break; 4972 case SCTP_MAX_BURST: 4973 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 4974 break; 4975 default: 4976 retval = -ENOPROTOOPT; 4977 break; 4978 } 4979 4980 sctp_release_sock(sk); 4981 return retval; 4982} 4983 4984static void sctp_hash(struct sock *sk) 4985{ 4986 /* STUB */ 4987} 4988 4989static void sctp_unhash(struct sock *sk) 4990{ 4991 /* STUB */ 4992} 4993 4994/* Check if port is acceptable. Possibly find first available port. 4995 * 4996 * The port hash table (contained in the 'global' SCTP protocol storage 4997 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 4998 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 4999 * list (the list number is the port number hashed out, so as you 5000 * would expect from a hash function, all the ports in a given list have 5001 * such a number that hashes out to the same list number; you were 5002 * expecting that, right?); so each list has a set of ports, with a 5003 * link to the socket (struct sock) that uses it, the port number and 5004 * a fastreuse flag (FIXME: NPI ipg). 5005 */ 5006static struct sctp_bind_bucket *sctp_bucket_create( 5007 struct sctp_bind_hashbucket *head, unsigned short snum); 5008 5009static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 5010{ 5011 struct sctp_bind_hashbucket *head; /* hash list */ 5012 struct sctp_bind_bucket *pp; /* hash list port iterator */ 5013 unsigned short snum; 5014 int ret; 5015 5016 snum = ntohs(addr->v4.sin_port); 5017 5018 SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum); 5019 sctp_local_bh_disable(); 5020 5021 if (snum == 0) { 5022 /* Search for an available port. 5023 * 5024 * 'sctp_port_rover' was the last port assigned, so 5025 * we start to search from 'sctp_port_rover + 5026 * 1'. What we do is first check if port 'rover' is 5027 * already in the hash table; if not, we use that; if 5028 * it is, we try next. 5029 */ 5030 int low = sysctl_local_port_range[0]; 5031 int high = sysctl_local_port_range[1]; 5032 int remaining = (high - low) + 1; 5033 int rover; 5034 int index; 5035 5036 sctp_spin_lock(&sctp_port_alloc_lock); 5037 rover = sctp_port_rover; 5038 do { 5039 rover++; 5040 if ((rover < low) || (rover > high)) 5041 rover = low; 5042 index = sctp_phashfn(rover); 5043 head = &sctp_port_hashtable[index]; 5044 sctp_spin_lock(&head->lock); 5045 for (pp = head->chain; pp; pp = pp->next) 5046 if (pp->port == rover) 5047 goto next; 5048 break; 5049 next: 5050 sctp_spin_unlock(&head->lock); 5051 } while (--remaining > 0); 5052 sctp_port_rover = rover; 5053 sctp_spin_unlock(&sctp_port_alloc_lock); 5054 5055 /* Exhausted local port range during search? */ 5056 ret = 1; 5057 if (remaining <= 0) 5058 goto fail; 5059 5060 /* OK, here is the one we will use. HEAD (the port 5061 * hash table list entry) is non-NULL and we hold it's 5062 * mutex. 5063 */ 5064 snum = rover; 5065 } else { 5066 /* We are given an specific port number; we verify 5067 * that it is not being used. If it is used, we will 5068 * exahust the search in the hash list corresponding 5069 * to the port number (snum) - we detect that with the 5070 * port iterator, pp being NULL. 5071 */ 5072 head = &sctp_port_hashtable[sctp_phashfn(snum)]; 5073 sctp_spin_lock(&head->lock); 5074 for (pp = head->chain; pp; pp = pp->next) { 5075 if (pp->port == snum) 5076 goto pp_found; 5077 } 5078 } 5079 pp = NULL; 5080 goto pp_not_found; 5081pp_found: 5082 if (!hlist_empty(&pp->owner)) { 5083 /* We had a port hash table hit - there is an 5084 * available port (pp != NULL) and it is being 5085 * used by other socket (pp->owner not empty); that other 5086 * socket is going to be sk2. 5087 */ 5088 int reuse = sk->sk_reuse; 5089 struct sock *sk2; 5090 struct hlist_node *node; 5091 5092 SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n"); 5093 if (pp->fastreuse && sk->sk_reuse && 5094 sk->sk_state != SCTP_SS_LISTENING) 5095 goto success; 5096 5097 /* Run through the list of sockets bound to the port 5098 * (pp->port) [via the pointers bind_next and 5099 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 5100 * we get the endpoint they describe and run through 5101 * the endpoint's list of IP (v4 or v6) addresses, 5102 * comparing each of the addresses with the address of 5103 * the socket sk. If we find a match, then that means 5104 * that this port/socket (sk) combination are already 5105 * in an endpoint. 5106 */ 5107 sk_for_each_bound(sk2, node, &pp->owner) { 5108 struct sctp_endpoint *ep2; 5109 ep2 = sctp_sk(sk2)->ep; 5110 5111 if (reuse && sk2->sk_reuse && 5112 sk2->sk_state != SCTP_SS_LISTENING) 5113 continue; 5114 5115 if (sctp_bind_addr_match(&ep2->base.bind_addr, addr, 5116 sctp_sk(sk))) { 5117 ret = (long)sk2; 5118 goto fail_unlock; 5119 } 5120 } 5121 SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n"); 5122 } 5123pp_not_found: 5124 /* If there was a hash table miss, create a new port. */ 5125 ret = 1; 5126 if (!pp && !(pp = sctp_bucket_create(head, snum))) 5127 goto fail_unlock; 5128 5129 /* In either case (hit or miss), make sure fastreuse is 1 only 5130 * if sk->sk_reuse is too (that is, if the caller requested 5131 * SO_REUSEADDR on this socket -sk-). 5132 */ 5133 if (hlist_empty(&pp->owner)) { 5134 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING) 5135 pp->fastreuse = 1; 5136 else 5137 pp->fastreuse = 0; 5138 } else if (pp->fastreuse && 5139 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING)) 5140 pp->fastreuse = 0; 5141 5142 /* We are set, so fill up all the data in the hash table 5143 * entry, tie the socket list information with the rest of the 5144 * sockets FIXME: Blurry, NPI (ipg). 5145 */ 5146success: 5147 if (!sctp_sk(sk)->bind_hash) { 5148 inet_sk(sk)->num = snum; 5149 sk_add_bind_node(sk, &pp->owner); 5150 sctp_sk(sk)->bind_hash = pp; 5151 } 5152 ret = 0; 5153 5154fail_unlock: 5155 sctp_spin_unlock(&head->lock); 5156 5157fail: 5158 sctp_local_bh_enable(); 5159 return ret; 5160} 5161 5162/* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 5163 * port is requested. 5164 */ 5165static int sctp_get_port(struct sock *sk, unsigned short snum) 5166{ 5167 long ret; 5168 union sctp_addr addr; 5169 struct sctp_af *af = sctp_sk(sk)->pf->af; 5170 5171 /* Set up a dummy address struct from the sk. */ 5172 af->from_sk(&addr, sk); 5173 addr.v4.sin_port = htons(snum); 5174 5175 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 5176 ret = sctp_get_port_local(sk, &addr); 5177 5178 return (ret ? 1 : 0); 5179} 5180 5181/* 5182 * 3.1.3 listen() - UDP Style Syntax 5183 * 5184 * By default, new associations are not accepted for UDP style sockets. 5185 * An application uses listen() to mark a socket as being able to 5186 * accept new associations. 5187 */ 5188SCTP_STATIC int sctp_seqpacket_listen(struct sock *sk, int backlog) 5189{ 5190 struct sctp_sock *sp = sctp_sk(sk); 5191 struct sctp_endpoint *ep = sp->ep; 5192 5193 /* Only UDP style sockets that are not peeled off are allowed to 5194 * listen(). 5195 */ 5196 if (!sctp_style(sk, UDP)) 5197 return -EINVAL; 5198 5199 /* If backlog is zero, disable listening. */ 5200 if (!backlog) { 5201 if (sctp_sstate(sk, CLOSED)) 5202 return 0; 5203 5204 sctp_unhash_endpoint(ep); 5205 sk->sk_state = SCTP_SS_CLOSED; 5206 return 0; 5207 } 5208 5209 /* Return if we are already listening. */ 5210 if (sctp_sstate(sk, LISTENING)) 5211 return 0; 5212 5213 /* 5214 * If a bind() or sctp_bindx() is not called prior to a listen() 5215 * call that allows new associations to be accepted, the system 5216 * picks an ephemeral port and will choose an address set equivalent 5217 * to binding with a wildcard address. 5218 * 5219 * This is not currently spelled out in the SCTP sockets 5220 * extensions draft, but follows the practice as seen in TCP 5221 * sockets. 5222 * 5223 * Additionally, turn off fastreuse flag since we are not listening 5224 */ 5225 sk->sk_state = SCTP_SS_LISTENING; 5226 if (!ep->base.bind_addr.port) { 5227 if (sctp_autobind(sk)) 5228 return -EAGAIN; 5229 } else 5230 sctp_sk(sk)->bind_hash->fastreuse = 0; 5231 5232 sctp_hash_endpoint(ep); 5233 return 0; 5234} 5235 5236/* 5237 * 4.1.3 listen() - TCP Style Syntax 5238 * 5239 * Applications uses listen() to ready the SCTP endpoint for accepting 5240 * inbound associations. 5241 */ 5242SCTP_STATIC int sctp_stream_listen(struct sock *sk, int backlog) 5243{ 5244 struct sctp_sock *sp = sctp_sk(sk); 5245 struct sctp_endpoint *ep = sp->ep; 5246 5247 /* If backlog is zero, disable listening. */ 5248 if (!backlog) { 5249 if (sctp_sstate(sk, CLOSED)) 5250 return 0; 5251 5252 sctp_unhash_endpoint(ep); 5253 sk->sk_state = SCTP_SS_CLOSED; 5254 return 0; 5255 } 5256 5257 if (sctp_sstate(sk, LISTENING)) 5258 return 0; 5259 5260 /* 5261 * If a bind() or sctp_bindx() is not called prior to a listen() 5262 * call that allows new associations to be accepted, the system 5263 * picks an ephemeral port and will choose an address set equivalent 5264 * to binding with a wildcard address. 5265 * 5266 * This is not currently spelled out in the SCTP sockets 5267 * extensions draft, but follows the practice as seen in TCP 5268 * sockets. 5269 */ 5270 sk->sk_state = SCTP_SS_LISTENING; 5271 if (!ep->base.bind_addr.port) { 5272 if (sctp_autobind(sk)) 5273 return -EAGAIN; 5274 } else 5275 sctp_sk(sk)->bind_hash->fastreuse = 0; 5276 5277 sk->sk_max_ack_backlog = backlog; 5278 sctp_hash_endpoint(ep); 5279 return 0; 5280} 5281 5282/* 5283 * Move a socket to LISTENING state. 5284 */ 5285int sctp_inet_listen(struct socket *sock, int backlog) 5286{ 5287 struct sock *sk = sock->sk; 5288 struct crypto_hash *tfm = NULL; 5289 int err = -EINVAL; 5290 5291 if (unlikely(backlog < 0)) 5292 goto out; 5293 5294 sctp_lock_sock(sk); 5295 5296 if (sock->state != SS_UNCONNECTED) 5297 goto out; 5298 5299 /* Allocate HMAC for generating cookie. */ 5300 if (sctp_hmac_alg) { 5301 tfm = crypto_alloc_hash(sctp_hmac_alg, 0, CRYPTO_ALG_ASYNC); 5302 if (IS_ERR(tfm)) { 5303 if (net_ratelimit()) { 5304 printk(KERN_INFO 5305 "SCTP: failed to load transform for %s: %ld\n", 5306 sctp_hmac_alg, PTR_ERR(tfm)); 5307 } 5308 err = -ENOSYS; 5309 goto out; 5310 } 5311 } 5312 5313 switch (sock->type) { 5314 case SOCK_SEQPACKET: 5315 err = sctp_seqpacket_listen(sk, backlog); 5316 break; 5317 case SOCK_STREAM: 5318 err = sctp_stream_listen(sk, backlog); 5319 break; 5320 default: 5321 break; 5322 } 5323 5324 if (err) 5325 goto cleanup; 5326 5327 /* Store away the transform reference. */ 5328 sctp_sk(sk)->hmac = tfm; 5329out: 5330 sctp_release_sock(sk); 5331 return err; 5332cleanup: 5333 crypto_free_hash(tfm); 5334 goto out; 5335} 5336 5337/* 5338 * This function is done by modeling the current datagram_poll() and the 5339 * tcp_poll(). Note that, based on these implementations, we don't 5340 * lock the socket in this function, even though it seems that, 5341 * ideally, locking or some other mechanisms can be used to ensure 5342 * the integrity of the counters (sndbuf and wmem_alloc) used 5343 * in this place. We assume that we don't need locks either until proven 5344 * otherwise. 5345 * 5346 * Another thing to note is that we include the Async I/O support 5347 * here, again, by modeling the current TCP/UDP code. We don't have 5348 * a good way to test with it yet. 5349 */ 5350unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 5351{ 5352 struct sock *sk = sock->sk; 5353 struct sctp_sock *sp = sctp_sk(sk); 5354 unsigned int mask; 5355 5356 poll_wait(file, sk->sk_sleep, wait); 5357 5358 /* A TCP-style listening socket becomes readable when the accept queue 5359 * is not empty. 5360 */ 5361 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 5362 return (!list_empty(&sp->ep->asocs)) ? 5363 (POLLIN | POLLRDNORM) : 0; 5364 5365 mask = 0; 5366 5367 /* Is there any exceptional events? */ 5368 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 5369 mask |= POLLERR; 5370 if (sk->sk_shutdown & RCV_SHUTDOWN) 5371 mask |= POLLRDHUP; 5372 if (sk->sk_shutdown == SHUTDOWN_MASK) 5373 mask |= POLLHUP; 5374 5375 /* Is it readable? Reconsider this code with TCP-style support. */ 5376 if (!skb_queue_empty(&sk->sk_receive_queue) || 5377 (sk->sk_shutdown & RCV_SHUTDOWN)) 5378 mask |= POLLIN | POLLRDNORM; 5379 5380 /* The association is either gone or not ready. */ 5381 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 5382 return mask; 5383 5384 /* Is it writable? */ 5385 if (sctp_writeable(sk)) { 5386 mask |= POLLOUT | POLLWRNORM; 5387 } else { 5388 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 5389 /* 5390 * Since the socket is not locked, the buffer 5391 * might be made available after the writeable check and 5392 * before the bit is set. This could cause a lost I/O 5393 * signal. tcp_poll() has a race breaker for this race 5394 * condition. Based on their implementation, we put 5395 * in the following code to cover it as well. 5396 */ 5397 if (sctp_writeable(sk)) 5398 mask |= POLLOUT | POLLWRNORM; 5399 } 5400 return mask; 5401} 5402 5403/******************************************************************** 5404 * 2nd Level Abstractions 5405 ********************************************************************/ 5406 5407static struct sctp_bind_bucket *sctp_bucket_create( 5408 struct sctp_bind_hashbucket *head, unsigned short snum) 5409{ 5410 struct sctp_bind_bucket *pp; 5411 5412 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 5413 SCTP_DBG_OBJCNT_INC(bind_bucket); 5414 if (pp) { 5415 pp->port = snum; 5416 pp->fastreuse = 0; 5417 INIT_HLIST_HEAD(&pp->owner); 5418 if ((pp->next = head->chain) != NULL) 5419 pp->next->pprev = &pp->next; 5420 head->chain = pp; 5421 pp->pprev = &head->chain; 5422 } 5423 return pp; 5424} 5425 5426/* Caller must hold hashbucket lock for this tb with local BH disabled */ 5427static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 5428{ 5429 if (pp && hlist_empty(&pp->owner)) { 5430 if (pp->next) 5431 pp->next->pprev = pp->pprev; 5432 *(pp->pprev) = pp->next; 5433 kmem_cache_free(sctp_bucket_cachep, pp); 5434 SCTP_DBG_OBJCNT_DEC(bind_bucket); 5435 } 5436} 5437 5438/* Release this socket's reference to a local port. */ 5439static inline void __sctp_put_port(struct sock *sk) 5440{ 5441 struct sctp_bind_hashbucket *head = 5442 &sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->num)]; 5443 struct sctp_bind_bucket *pp; 5444 5445 sctp_spin_lock(&head->lock); 5446 pp = sctp_sk(sk)->bind_hash; 5447 __sk_del_bind_node(sk); 5448 sctp_sk(sk)->bind_hash = NULL; 5449 inet_sk(sk)->num = 0; 5450 sctp_bucket_destroy(pp); 5451 sctp_spin_unlock(&head->lock); 5452} 5453 5454void sctp_put_port(struct sock *sk) 5455{ 5456 sctp_local_bh_disable(); 5457 __sctp_put_port(sk); 5458 sctp_local_bh_enable(); 5459} 5460 5461/* 5462 * The system picks an ephemeral port and choose an address set equivalent 5463 * to binding with a wildcard address. 5464 * One of those addresses will be the primary address for the association. 5465 * This automatically enables the multihoming capability of SCTP. 5466 */ 5467static int sctp_autobind(struct sock *sk) 5468{ 5469 union sctp_addr autoaddr; 5470 struct sctp_af *af; 5471 __be16 port; 5472 5473 /* Initialize a local sockaddr structure to INADDR_ANY. */ 5474 af = sctp_sk(sk)->pf->af; 5475 5476 port = htons(inet_sk(sk)->num); 5477 af->inaddr_any(&autoaddr, port); 5478 5479 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 5480} 5481 5482/* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 5483 * 5484 * From RFC 2292 5485 * 4.2 The cmsghdr Structure * 5486 * 5487 * When ancillary data is sent or received, any number of ancillary data 5488 * objects can be specified by the msg_control and msg_controllen members of 5489 * the msghdr structure, because each object is preceded by 5490 * a cmsghdr structure defining the object's length (the cmsg_len member). 5491 * Historically Berkeley-derived implementations have passed only one object 5492 * at a time, but this API allows multiple objects to be 5493 * passed in a single call to sendmsg() or recvmsg(). The following example 5494 * shows two ancillary data objects in a control buffer. 5495 * 5496 * |<--------------------------- msg_controllen -------------------------->| 5497 * | | 5498 * 5499 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 5500 * 5501 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 5502 * | | | 5503 * 5504 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 5505 * 5506 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 5507 * | | | | | 5508 * 5509 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 5510 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 5511 * 5512 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 5513 * 5514 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 5515 * ^ 5516 * | 5517 * 5518 * msg_control 5519 * points here 5520 */ 5521SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg, 5522 sctp_cmsgs_t *cmsgs) 5523{ 5524 struct cmsghdr *cmsg; 5525 5526 for (cmsg = CMSG_FIRSTHDR(msg); 5527 cmsg != NULL; 5528 cmsg = CMSG_NXTHDR((struct msghdr*)msg, cmsg)) { 5529 if (!CMSG_OK(msg, cmsg)) 5530 return -EINVAL; 5531 5532 /* Should we parse this header or ignore? */ 5533 if (cmsg->cmsg_level != IPPROTO_SCTP) 5534 continue; 5535 5536 /* Strictly check lengths following example in SCM code. */ 5537 switch (cmsg->cmsg_type) { 5538 case SCTP_INIT: 5539 /* SCTP Socket API Extension 5540 * 5.2.1 SCTP Initiation Structure (SCTP_INIT) 5541 * 5542 * This cmsghdr structure provides information for 5543 * initializing new SCTP associations with sendmsg(). 5544 * The SCTP_INITMSG socket option uses this same data 5545 * structure. This structure is not used for 5546 * recvmsg(). 5547 * 5548 * cmsg_level cmsg_type cmsg_data[] 5549 * ------------ ------------ ---------------------- 5550 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 5551 */ 5552 if (cmsg->cmsg_len != 5553 CMSG_LEN(sizeof(struct sctp_initmsg))) 5554 return -EINVAL; 5555 cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg); 5556 break; 5557 5558 case SCTP_SNDRCV: 5559 /* SCTP Socket API Extension 5560 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV) 5561 * 5562 * This cmsghdr structure specifies SCTP options for 5563 * sendmsg() and describes SCTP header information 5564 * about a received message through recvmsg(). 5565 * 5566 * cmsg_level cmsg_type cmsg_data[] 5567 * ------------ ------------ ---------------------- 5568 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 5569 */ 5570 if (cmsg->cmsg_len != 5571 CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 5572 return -EINVAL; 5573 5574 cmsgs->info = 5575 (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg); 5576 5577 /* Minimally, validate the sinfo_flags. */ 5578 if (cmsgs->info->sinfo_flags & 5579 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 5580 SCTP_ABORT | SCTP_EOF)) 5581 return -EINVAL; 5582 break; 5583 5584 default: 5585 return -EINVAL; 5586 } 5587 } 5588 return 0; 5589} 5590 5591/* 5592 * Wait for a packet.. 5593 * Note: This function is the same function as in core/datagram.c 5594 * with a few modifications to make lksctp work. 5595 */ 5596static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p) 5597{ 5598 int error; 5599 DEFINE_WAIT(wait); 5600 5601 prepare_to_wait_exclusive(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE); 5602 5603 /* Socket errors? */ 5604 error = sock_error(sk); 5605 if (error) 5606 goto out; 5607 5608 if (!skb_queue_empty(&sk->sk_receive_queue)) 5609 goto ready; 5610 5611 /* Socket shut down? */ 5612 if (sk->sk_shutdown & RCV_SHUTDOWN) 5613 goto out; 5614 5615 /* Sequenced packets can come disconnected. If so we report the 5616 * problem. 5617 */ 5618 error = -ENOTCONN; 5619 5620 /* Is there a good reason to think that we may receive some data? */ 5621 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 5622 goto out; 5623 5624 /* Handle signals. */ 5625 if (signal_pending(current)) 5626 goto interrupted; 5627 5628 /* Let another process have a go. Since we are going to sleep 5629 * anyway. Note: This may cause odd behaviors if the message 5630 * does not fit in the user's buffer, but this seems to be the 5631 * only way to honor MSG_DONTWAIT realistically. 5632 */ 5633 sctp_release_sock(sk); 5634 *timeo_p = schedule_timeout(*timeo_p); 5635 sctp_lock_sock(sk); 5636 5637ready: 5638 finish_wait(sk->sk_sleep, &wait); 5639 return 0; 5640 5641interrupted: 5642 error = sock_intr_errno(*timeo_p); 5643 5644out: 5645 finish_wait(sk->sk_sleep, &wait); 5646 *err = error; 5647 return error; 5648} 5649 5650/* Receive a datagram. 5651 * Note: This is pretty much the same routine as in core/datagram.c 5652 * with a few changes to make lksctp work. 5653 */ 5654static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 5655 int noblock, int *err) 5656{ 5657 int error; 5658 struct sk_buff *skb; 5659 long timeo; 5660 5661 timeo = sock_rcvtimeo(sk, noblock); 5662 5663 SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n", 5664 timeo, MAX_SCHEDULE_TIMEOUT); 5665 5666 do { 5667 /* Again only user level code calls this function, 5668 * so nothing interrupt level 5669 * will suddenly eat the receive_queue. 5670 * 5671 * Look at current nfs client by the way... 5672 * However, this function was corrent in any case. 8) 5673 */ 5674 if (flags & MSG_PEEK) { 5675 spin_lock_bh(&sk->sk_receive_queue.lock); 5676 skb = skb_peek(&sk->sk_receive_queue); 5677 if (skb) 5678 atomic_inc(&skb->users); 5679 spin_unlock_bh(&sk->sk_receive_queue.lock); 5680 } else { 5681 skb = skb_dequeue(&sk->sk_receive_queue); 5682 } 5683 5684 if (skb) 5685 return skb; 5686 5687 /* Caller is allowed not to check sk->sk_err before calling. */ 5688 error = sock_error(sk); 5689 if (error) 5690 goto no_packet; 5691 5692 if (sk->sk_shutdown & RCV_SHUTDOWN) 5693 break; 5694 5695 /* User doesn't want to wait. */ 5696 error = -EAGAIN; 5697 if (!timeo) 5698 goto no_packet; 5699 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 5700 5701 return NULL; 5702 5703no_packet: 5704 *err = error; 5705 return NULL; 5706} 5707 5708/* If sndbuf has changed, wake up per association sndbuf waiters. */ 5709static void __sctp_write_space(struct sctp_association *asoc) 5710{ 5711 struct sock *sk = asoc->base.sk; 5712 struct socket *sock = sk->sk_socket; 5713 5714 if ((sctp_wspace(asoc) > 0) && sock) { 5715 if (waitqueue_active(&asoc->wait)) 5716 wake_up_interruptible(&asoc->wait); 5717 5718 if (sctp_writeable(sk)) { 5719 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) 5720 wake_up_interruptible(sk->sk_sleep); 5721 5722 /* Note that we try to include the Async I/O support 5723 * here by modeling from the current TCP/UDP code. 5724 * We have not tested with it yet. 5725 */ 5726 if (sock->fasync_list && 5727 !(sk->sk_shutdown & SEND_SHUTDOWN)) 5728 sock_wake_async(sock, 2, POLL_OUT); 5729 } 5730 } 5731} 5732 5733/* Do accounting for the sndbuf space. 5734 * Decrement the used sndbuf space of the corresponding association by the 5735 * data size which was just transmitted(freed). 5736 */ 5737static void sctp_wfree(struct sk_buff *skb) 5738{ 5739 struct sctp_association *asoc; 5740 struct sctp_chunk *chunk; 5741 struct sock *sk; 5742 5743 /* Get the saved chunk pointer. */ 5744 chunk = *((struct sctp_chunk **)(skb->cb)); 5745 asoc = chunk->asoc; 5746 sk = asoc->base.sk; 5747 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) + 5748 sizeof(struct sk_buff) + 5749 sizeof(struct sctp_chunk); 5750 5751 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 5752 5753 sock_wfree(skb); 5754 __sctp_write_space(asoc); 5755 5756 sctp_association_put(asoc); 5757} 5758 5759/* Do accounting for the receive space on the socket. 5760 * Accounting for the association is done in ulpevent.c 5761 * We set this as a destructor for the cloned data skbs so that 5762 * accounting is done at the correct time. 5763 */ 5764void sctp_sock_rfree(struct sk_buff *skb) 5765{ 5766 struct sock *sk = skb->sk; 5767 struct sctp_ulpevent *event = sctp_skb2event(skb); 5768 5769 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 5770} 5771 5772 5773/* Helper function to wait for space in the sndbuf. */ 5774static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 5775 size_t msg_len) 5776{ 5777 struct sock *sk = asoc->base.sk; 5778 int err = 0; 5779 long current_timeo = *timeo_p; 5780 DEFINE_WAIT(wait); 5781 5782 SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n", 5783 asoc, (long)(*timeo_p), msg_len); 5784 5785 /* Increment the association's refcnt. */ 5786 sctp_association_hold(asoc); 5787 5788 /* Wait on the association specific sndbuf space. */ 5789 for (;;) { 5790 prepare_to_wait_exclusive(&asoc->wait, &wait, 5791 TASK_INTERRUPTIBLE); 5792 if (!*timeo_p) 5793 goto do_nonblock; 5794 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 5795 asoc->base.dead) 5796 goto do_error; 5797 if (signal_pending(current)) 5798 goto do_interrupted; 5799 if (msg_len <= sctp_wspace(asoc)) 5800 break; 5801 5802 /* Let another process have a go. Since we are going 5803 * to sleep anyway. 5804 */ 5805 sctp_release_sock(sk); 5806 current_timeo = schedule_timeout(current_timeo); 5807 BUG_ON(sk != asoc->base.sk); 5808 sctp_lock_sock(sk); 5809 5810 *timeo_p = current_timeo; 5811 } 5812 5813out: 5814 finish_wait(&asoc->wait, &wait); 5815 5816 /* Release the association's refcnt. */ 5817 sctp_association_put(asoc); 5818 5819 return err; 5820 5821do_error: 5822 err = -EPIPE; 5823 goto out; 5824 5825do_interrupted: 5826 err = sock_intr_errno(*timeo_p); 5827 goto out; 5828 5829do_nonblock: 5830 err = -EAGAIN; 5831 goto out; 5832} 5833 5834/* If socket sndbuf has changed, wake up all per association waiters. */ 5835void sctp_write_space(struct sock *sk) 5836{ 5837 struct sctp_association *asoc; 5838 struct list_head *pos; 5839 5840 /* Wake up the tasks in each wait queue. */ 5841 list_for_each(pos, &((sctp_sk(sk))->ep->asocs)) { 5842 asoc = list_entry(pos, struct sctp_association, asocs); 5843 __sctp_write_space(asoc); 5844 } 5845} 5846 5847/* Is there any sndbuf space available on the socket? 5848 * 5849 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 5850 * associations on the same socket. For a UDP-style socket with 5851 * multiple associations, it is possible for it to be "unwriteable" 5852 * prematurely. I assume that this is acceptable because 5853 * a premature "unwriteable" is better than an accidental "writeable" which 5854 * would cause an unwanted block under certain circumstances. For the 1-1 5855 * UDP-style sockets or TCP-style sockets, this code should work. 5856 * - Daisy 5857 */ 5858static int sctp_writeable(struct sock *sk) 5859{ 5860 int amt = 0; 5861 5862 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc); 5863 if (amt < 0) 5864 amt = 0; 5865 return amt; 5866} 5867 5868/* Wait for an association to go into ESTABLISHED state. If timeout is 0, 5869 * returns immediately with EINPROGRESS. 5870 */ 5871static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 5872{ 5873 struct sock *sk = asoc->base.sk; 5874 int err = 0; 5875 long current_timeo = *timeo_p; 5876 DEFINE_WAIT(wait); 5877 5878 SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __FUNCTION__, asoc, 5879 (long)(*timeo_p)); 5880 5881 /* Increment the association's refcnt. */ 5882 sctp_association_hold(asoc); 5883 5884 for (;;) { 5885 prepare_to_wait_exclusive(&asoc->wait, &wait, 5886 TASK_INTERRUPTIBLE); 5887 if (!*timeo_p) 5888 goto do_nonblock; 5889 if (sk->sk_shutdown & RCV_SHUTDOWN) 5890 break; 5891 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 5892 asoc->base.dead) 5893 goto do_error; 5894 if (signal_pending(current)) 5895 goto do_interrupted; 5896 5897 if (sctp_state(asoc, ESTABLISHED)) 5898 break; 5899 5900 /* Let another process have a go. Since we are going 5901 * to sleep anyway. 5902 */ 5903 sctp_release_sock(sk); 5904 current_timeo = schedule_timeout(current_timeo); 5905 sctp_lock_sock(sk); 5906 5907 *timeo_p = current_timeo; 5908 } 5909 5910out: 5911 finish_wait(&asoc->wait, &wait); 5912 5913 /* Release the association's refcnt. */ 5914 sctp_association_put(asoc); 5915 5916 return err; 5917 5918do_error: 5919 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 5920 err = -ETIMEDOUT; 5921 else 5922 err = -ECONNREFUSED; 5923 goto out; 5924 5925do_interrupted: 5926 err = sock_intr_errno(*timeo_p); 5927 goto out; 5928 5929do_nonblock: 5930 err = -EINPROGRESS; 5931 goto out; 5932} 5933 5934static int sctp_wait_for_accept(struct sock *sk, long timeo) 5935{ 5936 struct sctp_endpoint *ep; 5937 int err = 0; 5938 DEFINE_WAIT(wait); 5939 5940 ep = sctp_sk(sk)->ep; 5941 5942 5943 for (;;) { 5944 prepare_to_wait_exclusive(sk->sk_sleep, &wait, 5945 TASK_INTERRUPTIBLE); 5946 5947 if (list_empty(&ep->asocs)) { 5948 sctp_release_sock(sk); 5949 timeo = schedule_timeout(timeo); 5950 sctp_lock_sock(sk); 5951 } 5952 5953 err = -EINVAL; 5954 if (!sctp_sstate(sk, LISTENING)) 5955 break; 5956 5957 err = 0; 5958 if (!list_empty(&ep->asocs)) 5959 break; 5960 5961 err = sock_intr_errno(timeo); 5962 if (signal_pending(current)) 5963 break; 5964 5965 err = -EAGAIN; 5966 if (!timeo) 5967 break; 5968 } 5969 5970 finish_wait(sk->sk_sleep, &wait); 5971 5972 return err; 5973} 5974 5975static void sctp_wait_for_close(struct sock *sk, long timeout) 5976{ 5977 DEFINE_WAIT(wait); 5978 5979 do { 5980 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE); 5981 if (list_empty(&sctp_sk(sk)->ep->asocs)) 5982 break; 5983 sctp_release_sock(sk); 5984 timeout = schedule_timeout(timeout); 5985 sctp_lock_sock(sk); 5986 } while (!signal_pending(current) && timeout); 5987 5988 finish_wait(sk->sk_sleep, &wait); 5989} 5990 5991static void sctp_sock_rfree_frag(struct sk_buff *skb) 5992{ 5993 struct sk_buff *frag; 5994 5995 if (!skb->data_len) 5996 goto done; 5997 5998 /* Don't forget the fragments. */ 5999 for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next) 6000 sctp_sock_rfree_frag(frag); 6001 6002done: 6003 sctp_sock_rfree(skb); 6004} 6005 6006static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 6007{ 6008 struct sk_buff *frag; 6009 6010 if (!skb->data_len) 6011 goto done; 6012 6013 /* Don't forget the fragments. */ 6014 for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next) 6015 sctp_skb_set_owner_r_frag(frag, sk); 6016 6017done: 6018 sctp_skb_set_owner_r(skb, sk); 6019} 6020 6021/* Populate the fields of the newsk from the oldsk and migrate the assoc 6022 * and its messages to the newsk. 6023 */ 6024static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 6025 struct sctp_association *assoc, 6026 sctp_socket_type_t type) 6027{ 6028 struct sctp_sock *oldsp = sctp_sk(oldsk); 6029 struct sctp_sock *newsp = sctp_sk(newsk); 6030 struct sctp_bind_bucket *pp; /* hash list port iterator */ 6031 struct sctp_endpoint *newep = newsp->ep; 6032 struct sk_buff *skb, *tmp; 6033 struct sctp_ulpevent *event; 6034 int flags = 0; 6035 6036 /* Migrate socket buffer sizes and all the socket level options to the 6037 * new socket. 6038 */ 6039 newsk->sk_sndbuf = oldsk->sk_sndbuf; 6040 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 6041 /* Brute force copy old sctp opt. */ 6042 inet_sk_copy_descendant(newsk, oldsk); 6043 6044 /* Restore the ep value that was overwritten with the above structure 6045 * copy. 6046 */ 6047 newsp->ep = newep; 6048 newsp->hmac = NULL; 6049 6050 /* Hook this new socket in to the bind_hash list. */ 6051 pp = sctp_sk(oldsk)->bind_hash; 6052 sk_add_bind_node(newsk, &pp->owner); 6053 sctp_sk(newsk)->bind_hash = pp; 6054 inet_sk(newsk)->num = inet_sk(oldsk)->num; 6055 6056 /* Copy the bind_addr list from the original endpoint to the new 6057 * endpoint so that we can handle restarts properly 6058 */ 6059 if (PF_INET6 == assoc->base.sk->sk_family) 6060 flags = SCTP_ADDR6_ALLOWED; 6061 if (assoc->peer.ipv4_address) 6062 flags |= SCTP_ADDR4_PEERSUPP; 6063 if (assoc->peer.ipv6_address) 6064 flags |= SCTP_ADDR6_PEERSUPP; 6065 sctp_bind_addr_copy(&newsp->ep->base.bind_addr, 6066 &oldsp->ep->base.bind_addr, 6067 SCTP_SCOPE_GLOBAL, GFP_KERNEL, flags); 6068 6069 /* Move any messages in the old socket's receive queue that are for the 6070 * peeled off association to the new socket's receive queue. 6071 */ 6072 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 6073 event = sctp_skb2event(skb); 6074 if (event->asoc == assoc) { 6075 sctp_sock_rfree_frag(skb); 6076 __skb_unlink(skb, &oldsk->sk_receive_queue); 6077 __skb_queue_tail(&newsk->sk_receive_queue, skb); 6078 sctp_skb_set_owner_r_frag(skb, newsk); 6079 } 6080 } 6081 6082 /* Clean up any messages pending delivery due to partial 6083 * delivery. Three cases: 6084 * 1) No partial deliver; no work. 6085 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 6086 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 6087 */ 6088 skb_queue_head_init(&newsp->pd_lobby); 6089 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 6090 6091 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 6092 struct sk_buff_head *queue; 6093 6094 /* Decide which queue to move pd_lobby skbs to. */ 6095 if (assoc->ulpq.pd_mode) { 6096 queue = &newsp->pd_lobby; 6097 } else 6098 queue = &newsk->sk_receive_queue; 6099 6100 /* Walk through the pd_lobby, looking for skbs that 6101 * need moved to the new socket. 6102 */ 6103 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 6104 event = sctp_skb2event(skb); 6105 if (event->asoc == assoc) { 6106 sctp_sock_rfree_frag(skb); 6107 __skb_unlink(skb, &oldsp->pd_lobby); 6108 __skb_queue_tail(queue, skb); 6109 sctp_skb_set_owner_r_frag(skb, newsk); 6110 } 6111 } 6112 6113 /* Clear up any skbs waiting for the partial 6114 * delivery to finish. 6115 */ 6116 if (assoc->ulpq.pd_mode) 6117 sctp_clear_pd(oldsk, NULL); 6118 6119 } 6120 6121 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp) { 6122 sctp_sock_rfree_frag(skb); 6123 sctp_skb_set_owner_r_frag(skb, newsk); 6124 } 6125 6126 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp) { 6127 sctp_sock_rfree_frag(skb); 6128 sctp_skb_set_owner_r_frag(skb, newsk); 6129 } 6130 6131 /* Set the type of socket to indicate that it is peeled off from the 6132 * original UDP-style socket or created with the accept() call on a 6133 * TCP-style socket.. 6134 */ 6135 newsp->type = type; 6136 6137 /* Mark the new socket "in-use" by the user so that any packets 6138 * that may arrive on the association after we've moved it are 6139 * queued to the backlog. This prevents a potential race between 6140 * backlog processing on the old socket and new-packet processing 6141 * on the new socket. 6142 * 6143 * The caller has just allocated newsk so we can guarantee that other 6144 * paths won't try to lock it and then oldsk. 6145 */ 6146 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 6147 sctp_assoc_migrate(assoc, newsk); 6148 6149 /* If the association on the newsk is already closed before accept() 6150 * is called, set RCV_SHUTDOWN flag. 6151 */ 6152 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) 6153 newsk->sk_shutdown |= RCV_SHUTDOWN; 6154 6155 newsk->sk_state = SCTP_SS_ESTABLISHED; 6156 sctp_release_sock(newsk); 6157} 6158 6159/* This proto struct describes the ULP interface for SCTP. */ 6160struct proto sctp_prot = { 6161 .name = "SCTP", 6162 .owner = THIS_MODULE, 6163 .close = sctp_close, 6164 .connect = sctp_connect, 6165 .disconnect = sctp_disconnect, 6166 .accept = sctp_accept, 6167 .ioctl = sctp_ioctl, 6168 .init = sctp_init_sock, 6169 .destroy = sctp_destroy_sock, 6170 .shutdown = sctp_shutdown, 6171 .setsockopt = sctp_setsockopt, 6172 .getsockopt = sctp_getsockopt, 6173 .sendmsg = sctp_sendmsg, 6174 .recvmsg = sctp_recvmsg, 6175 .bind = sctp_bind, 6176 .backlog_rcv = sctp_backlog_rcv, 6177 .hash = sctp_hash, 6178 .unhash = sctp_unhash, 6179 .get_port = sctp_get_port, 6180 .obj_size = sizeof(struct sctp_sock), 6181}; 6182 6183#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 6184struct proto sctpv6_prot = { 6185 .name = "SCTPv6", 6186 .owner = THIS_MODULE, 6187 .close = sctp_close, 6188 .connect = sctp_connect, 6189 .disconnect = sctp_disconnect, 6190 .accept = sctp_accept, 6191 .ioctl = sctp_ioctl, 6192 .init = sctp_init_sock, 6193 .destroy = sctp_destroy_sock, 6194 .shutdown = sctp_shutdown, 6195 .setsockopt = sctp_setsockopt, 6196 .getsockopt = sctp_getsockopt, 6197 .sendmsg = sctp_sendmsg, 6198 .recvmsg = sctp_recvmsg, 6199 .bind = sctp_bind, 6200 .backlog_rcv = sctp_backlog_rcv, 6201 .hash = sctp_hash, 6202 .unhash = sctp_unhash, 6203 .get_port = sctp_get_port, 6204 .obj_size = sizeof(struct sctp6_sock), 6205}; 6206#endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */