at v2.6.23-rc2 655 lines 17 kB view raw
1/* 2 * linux/kernel/time.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * This file contains the interface functions for the various 7 * time related system calls: time, stime, gettimeofday, settimeofday, 8 * adjtime 9 */ 10/* 11 * Modification history kernel/time.c 12 * 13 * 1993-09-02 Philip Gladstone 14 * Created file with time related functions from sched.c and adjtimex() 15 * 1993-10-08 Torsten Duwe 16 * adjtime interface update and CMOS clock write code 17 * 1995-08-13 Torsten Duwe 18 * kernel PLL updated to 1994-12-13 specs (rfc-1589) 19 * 1999-01-16 Ulrich Windl 20 * Introduced error checking for many cases in adjtimex(). 21 * Updated NTP code according to technical memorandum Jan '96 22 * "A Kernel Model for Precision Timekeeping" by Dave Mills 23 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10) 24 * (Even though the technical memorandum forbids it) 25 * 2004-07-14 Christoph Lameter 26 * Added getnstimeofday to allow the posix timer functions to return 27 * with nanosecond accuracy 28 */ 29 30#include <linux/module.h> 31#include <linux/timex.h> 32#include <linux/capability.h> 33#include <linux/errno.h> 34#include <linux/syscalls.h> 35#include <linux/security.h> 36#include <linux/fs.h> 37#include <linux/module.h> 38 39#include <asm/uaccess.h> 40#include <asm/unistd.h> 41 42/* 43 * The timezone where the local system is located. Used as a default by some 44 * programs who obtain this value by using gettimeofday. 45 */ 46struct timezone sys_tz; 47 48EXPORT_SYMBOL(sys_tz); 49 50#ifdef __ARCH_WANT_SYS_TIME 51 52/* 53 * sys_time() can be implemented in user-level using 54 * sys_gettimeofday(). Is this for backwards compatibility? If so, 55 * why not move it into the appropriate arch directory (for those 56 * architectures that need it). 57 */ 58asmlinkage long sys_time(time_t __user * tloc) 59{ 60 time_t i; 61 struct timespec tv; 62 63 getnstimeofday(&tv); 64 i = tv.tv_sec; 65 66 if (tloc) { 67 if (put_user(i,tloc)) 68 i = -EFAULT; 69 } 70 return i; 71} 72 73/* 74 * sys_stime() can be implemented in user-level using 75 * sys_settimeofday(). Is this for backwards compatibility? If so, 76 * why not move it into the appropriate arch directory (for those 77 * architectures that need it). 78 */ 79 80asmlinkage long sys_stime(time_t __user *tptr) 81{ 82 struct timespec tv; 83 int err; 84 85 if (get_user(tv.tv_sec, tptr)) 86 return -EFAULT; 87 88 tv.tv_nsec = 0; 89 90 err = security_settime(&tv, NULL); 91 if (err) 92 return err; 93 94 do_settimeofday(&tv); 95 return 0; 96} 97 98#endif /* __ARCH_WANT_SYS_TIME */ 99 100asmlinkage long sys_gettimeofday(struct timeval __user *tv, struct timezone __user *tz) 101{ 102 if (likely(tv != NULL)) { 103 struct timeval ktv; 104 do_gettimeofday(&ktv); 105 if (copy_to_user(tv, &ktv, sizeof(ktv))) 106 return -EFAULT; 107 } 108 if (unlikely(tz != NULL)) { 109 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz))) 110 return -EFAULT; 111 } 112 return 0; 113} 114 115/* 116 * Adjust the time obtained from the CMOS to be UTC time instead of 117 * local time. 118 * 119 * This is ugly, but preferable to the alternatives. Otherwise we 120 * would either need to write a program to do it in /etc/rc (and risk 121 * confusion if the program gets run more than once; it would also be 122 * hard to make the program warp the clock precisely n hours) or 123 * compile in the timezone information into the kernel. Bad, bad.... 124 * 125 * - TYT, 1992-01-01 126 * 127 * The best thing to do is to keep the CMOS clock in universal time (UTC) 128 * as real UNIX machines always do it. This avoids all headaches about 129 * daylight saving times and warping kernel clocks. 130 */ 131static inline void warp_clock(void) 132{ 133 write_seqlock_irq(&xtime_lock); 134 wall_to_monotonic.tv_sec -= sys_tz.tz_minuteswest * 60; 135 xtime.tv_sec += sys_tz.tz_minuteswest * 60; 136 write_sequnlock_irq(&xtime_lock); 137 clock_was_set(); 138} 139 140/* 141 * In case for some reason the CMOS clock has not already been running 142 * in UTC, but in some local time: The first time we set the timezone, 143 * we will warp the clock so that it is ticking UTC time instead of 144 * local time. Presumably, if someone is setting the timezone then we 145 * are running in an environment where the programs understand about 146 * timezones. This should be done at boot time in the /etc/rc script, 147 * as soon as possible, so that the clock can be set right. Otherwise, 148 * various programs will get confused when the clock gets warped. 149 */ 150 151int do_sys_settimeofday(struct timespec *tv, struct timezone *tz) 152{ 153 static int firsttime = 1; 154 int error = 0; 155 156 if (tv && !timespec_valid(tv)) 157 return -EINVAL; 158 159 error = security_settime(tv, tz); 160 if (error) 161 return error; 162 163 if (tz) { 164 /* SMP safe, global irq locking makes it work. */ 165 sys_tz = *tz; 166 if (firsttime) { 167 firsttime = 0; 168 if (!tv) 169 warp_clock(); 170 } 171 } 172 if (tv) 173 { 174 /* SMP safe, again the code in arch/foo/time.c should 175 * globally block out interrupts when it runs. 176 */ 177 return do_settimeofday(tv); 178 } 179 return 0; 180} 181 182asmlinkage long sys_settimeofday(struct timeval __user *tv, 183 struct timezone __user *tz) 184{ 185 struct timeval user_tv; 186 struct timespec new_ts; 187 struct timezone new_tz; 188 189 if (tv) { 190 if (copy_from_user(&user_tv, tv, sizeof(*tv))) 191 return -EFAULT; 192 new_ts.tv_sec = user_tv.tv_sec; 193 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC; 194 } 195 if (tz) { 196 if (copy_from_user(&new_tz, tz, sizeof(*tz))) 197 return -EFAULT; 198 } 199 200 return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL); 201} 202 203asmlinkage long sys_adjtimex(struct timex __user *txc_p) 204{ 205 struct timex txc; /* Local copy of parameter */ 206 int ret; 207 208 /* Copy the user data space into the kernel copy 209 * structure. But bear in mind that the structures 210 * may change 211 */ 212 if(copy_from_user(&txc, txc_p, sizeof(struct timex))) 213 return -EFAULT; 214 ret = do_adjtimex(&txc); 215 return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret; 216} 217 218/** 219 * current_fs_time - Return FS time 220 * @sb: Superblock. 221 * 222 * Return the current time truncated to the time granularity supported by 223 * the fs. 224 */ 225struct timespec current_fs_time(struct super_block *sb) 226{ 227 struct timespec now = current_kernel_time(); 228 return timespec_trunc(now, sb->s_time_gran); 229} 230EXPORT_SYMBOL(current_fs_time); 231 232/* 233 * Convert jiffies to milliseconds and back. 234 * 235 * Avoid unnecessary multiplications/divisions in the 236 * two most common HZ cases: 237 */ 238unsigned int inline jiffies_to_msecs(const unsigned long j) 239{ 240#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ) 241 return (MSEC_PER_SEC / HZ) * j; 242#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC) 243 return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC); 244#else 245 return (j * MSEC_PER_SEC) / HZ; 246#endif 247} 248EXPORT_SYMBOL(jiffies_to_msecs); 249 250unsigned int inline jiffies_to_usecs(const unsigned long j) 251{ 252#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ) 253 return (USEC_PER_SEC / HZ) * j; 254#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC) 255 return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC); 256#else 257 return (j * USEC_PER_SEC) / HZ; 258#endif 259} 260EXPORT_SYMBOL(jiffies_to_usecs); 261 262/** 263 * timespec_trunc - Truncate timespec to a granularity 264 * @t: Timespec 265 * @gran: Granularity in ns. 266 * 267 * Truncate a timespec to a granularity. gran must be smaller than a second. 268 * Always rounds down. 269 * 270 * This function should be only used for timestamps returned by 271 * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because 272 * it doesn't handle the better resolution of the later. 273 */ 274struct timespec timespec_trunc(struct timespec t, unsigned gran) 275{ 276 /* 277 * Division is pretty slow so avoid it for common cases. 278 * Currently current_kernel_time() never returns better than 279 * jiffies resolution. Exploit that. 280 */ 281 if (gran <= jiffies_to_usecs(1) * 1000) { 282 /* nothing */ 283 } else if (gran == 1000000000) { 284 t.tv_nsec = 0; 285 } else { 286 t.tv_nsec -= t.tv_nsec % gran; 287 } 288 return t; 289} 290EXPORT_SYMBOL(timespec_trunc); 291 292#ifndef CONFIG_GENERIC_TIME 293/* 294 * Simulate gettimeofday using do_gettimeofday which only allows a timeval 295 * and therefore only yields usec accuracy 296 */ 297void getnstimeofday(struct timespec *tv) 298{ 299 struct timeval x; 300 301 do_gettimeofday(&x); 302 tv->tv_sec = x.tv_sec; 303 tv->tv_nsec = x.tv_usec * NSEC_PER_USEC; 304} 305EXPORT_SYMBOL_GPL(getnstimeofday); 306#endif 307 308/* Converts Gregorian date to seconds since 1970-01-01 00:00:00. 309 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59 310 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59. 311 * 312 * [For the Julian calendar (which was used in Russia before 1917, 313 * Britain & colonies before 1752, anywhere else before 1582, 314 * and is still in use by some communities) leave out the 315 * -year/100+year/400 terms, and add 10.] 316 * 317 * This algorithm was first published by Gauss (I think). 318 * 319 * WARNING: this function will overflow on 2106-02-07 06:28:16 on 320 * machines were long is 32-bit! (However, as time_t is signed, we 321 * will already get problems at other places on 2038-01-19 03:14:08) 322 */ 323unsigned long 324mktime(const unsigned int year0, const unsigned int mon0, 325 const unsigned int day, const unsigned int hour, 326 const unsigned int min, const unsigned int sec) 327{ 328 unsigned int mon = mon0, year = year0; 329 330 /* 1..12 -> 11,12,1..10 */ 331 if (0 >= (int) (mon -= 2)) { 332 mon += 12; /* Puts Feb last since it has leap day */ 333 year -= 1; 334 } 335 336 return ((((unsigned long) 337 (year/4 - year/100 + year/400 + 367*mon/12 + day) + 338 year*365 - 719499 339 )*24 + hour /* now have hours */ 340 )*60 + min /* now have minutes */ 341 )*60 + sec; /* finally seconds */ 342} 343 344EXPORT_SYMBOL(mktime); 345 346/** 347 * set_normalized_timespec - set timespec sec and nsec parts and normalize 348 * 349 * @ts: pointer to timespec variable to be set 350 * @sec: seconds to set 351 * @nsec: nanoseconds to set 352 * 353 * Set seconds and nanoseconds field of a timespec variable and 354 * normalize to the timespec storage format 355 * 356 * Note: The tv_nsec part is always in the range of 357 * 0 <= tv_nsec < NSEC_PER_SEC 358 * For negative values only the tv_sec field is negative ! 359 */ 360void set_normalized_timespec(struct timespec *ts, time_t sec, long nsec) 361{ 362 while (nsec >= NSEC_PER_SEC) { 363 nsec -= NSEC_PER_SEC; 364 ++sec; 365 } 366 while (nsec < 0) { 367 nsec += NSEC_PER_SEC; 368 --sec; 369 } 370 ts->tv_sec = sec; 371 ts->tv_nsec = nsec; 372} 373 374/** 375 * ns_to_timespec - Convert nanoseconds to timespec 376 * @nsec: the nanoseconds value to be converted 377 * 378 * Returns the timespec representation of the nsec parameter. 379 */ 380struct timespec ns_to_timespec(const s64 nsec) 381{ 382 struct timespec ts; 383 384 if (!nsec) 385 return (struct timespec) {0, 0}; 386 387 ts.tv_sec = div_long_long_rem_signed(nsec, NSEC_PER_SEC, &ts.tv_nsec); 388 if (unlikely(nsec < 0)) 389 set_normalized_timespec(&ts, ts.tv_sec, ts.tv_nsec); 390 391 return ts; 392} 393EXPORT_SYMBOL(ns_to_timespec); 394 395/** 396 * ns_to_timeval - Convert nanoseconds to timeval 397 * @nsec: the nanoseconds value to be converted 398 * 399 * Returns the timeval representation of the nsec parameter. 400 */ 401struct timeval ns_to_timeval(const s64 nsec) 402{ 403 struct timespec ts = ns_to_timespec(nsec); 404 struct timeval tv; 405 406 tv.tv_sec = ts.tv_sec; 407 tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000; 408 409 return tv; 410} 411EXPORT_SYMBOL(ns_to_timeval); 412 413/* 414 * When we convert to jiffies then we interpret incoming values 415 * the following way: 416 * 417 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET) 418 * 419 * - 'too large' values [that would result in larger than 420 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too. 421 * 422 * - all other values are converted to jiffies by either multiplying 423 * the input value by a factor or dividing it with a factor 424 * 425 * We must also be careful about 32-bit overflows. 426 */ 427unsigned long msecs_to_jiffies(const unsigned int m) 428{ 429 /* 430 * Negative value, means infinite timeout: 431 */ 432 if ((int)m < 0) 433 return MAX_JIFFY_OFFSET; 434 435#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ) 436 /* 437 * HZ is equal to or smaller than 1000, and 1000 is a nice 438 * round multiple of HZ, divide with the factor between them, 439 * but round upwards: 440 */ 441 return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ); 442#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC) 443 /* 444 * HZ is larger than 1000, and HZ is a nice round multiple of 445 * 1000 - simply multiply with the factor between them. 446 * 447 * But first make sure the multiplication result cannot 448 * overflow: 449 */ 450 if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET)) 451 return MAX_JIFFY_OFFSET; 452 453 return m * (HZ / MSEC_PER_SEC); 454#else 455 /* 456 * Generic case - multiply, round and divide. But first 457 * check that if we are doing a net multiplication, that 458 * we wouldnt overflow: 459 */ 460 if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET)) 461 return MAX_JIFFY_OFFSET; 462 463 return (m * HZ + MSEC_PER_SEC - 1) / MSEC_PER_SEC; 464#endif 465} 466EXPORT_SYMBOL(msecs_to_jiffies); 467 468unsigned long usecs_to_jiffies(const unsigned int u) 469{ 470 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET)) 471 return MAX_JIFFY_OFFSET; 472#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ) 473 return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ); 474#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC) 475 return u * (HZ / USEC_PER_SEC); 476#else 477 return (u * HZ + USEC_PER_SEC - 1) / USEC_PER_SEC; 478#endif 479} 480EXPORT_SYMBOL(usecs_to_jiffies); 481 482/* 483 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note 484 * that a remainder subtract here would not do the right thing as the 485 * resolution values don't fall on second boundries. I.e. the line: 486 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding. 487 * 488 * Rather, we just shift the bits off the right. 489 * 490 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec 491 * value to a scaled second value. 492 */ 493unsigned long 494timespec_to_jiffies(const struct timespec *value) 495{ 496 unsigned long sec = value->tv_sec; 497 long nsec = value->tv_nsec + TICK_NSEC - 1; 498 499 if (sec >= MAX_SEC_IN_JIFFIES){ 500 sec = MAX_SEC_IN_JIFFIES; 501 nsec = 0; 502 } 503 return (((u64)sec * SEC_CONVERSION) + 504 (((u64)nsec * NSEC_CONVERSION) >> 505 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC; 506 507} 508EXPORT_SYMBOL(timespec_to_jiffies); 509 510void 511jiffies_to_timespec(const unsigned long jiffies, struct timespec *value) 512{ 513 /* 514 * Convert jiffies to nanoseconds and separate with 515 * one divide. 516 */ 517 u64 nsec = (u64)jiffies * TICK_NSEC; 518 value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &value->tv_nsec); 519} 520EXPORT_SYMBOL(jiffies_to_timespec); 521 522/* Same for "timeval" 523 * 524 * Well, almost. The problem here is that the real system resolution is 525 * in nanoseconds and the value being converted is in micro seconds. 526 * Also for some machines (those that use HZ = 1024, in-particular), 527 * there is a LARGE error in the tick size in microseconds. 528 529 * The solution we use is to do the rounding AFTER we convert the 530 * microsecond part. Thus the USEC_ROUND, the bits to be shifted off. 531 * Instruction wise, this should cost only an additional add with carry 532 * instruction above the way it was done above. 533 */ 534unsigned long 535timeval_to_jiffies(const struct timeval *value) 536{ 537 unsigned long sec = value->tv_sec; 538 long usec = value->tv_usec; 539 540 if (sec >= MAX_SEC_IN_JIFFIES){ 541 sec = MAX_SEC_IN_JIFFIES; 542 usec = 0; 543 } 544 return (((u64)sec * SEC_CONVERSION) + 545 (((u64)usec * USEC_CONVERSION + USEC_ROUND) >> 546 (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC; 547} 548EXPORT_SYMBOL(timeval_to_jiffies); 549 550void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value) 551{ 552 /* 553 * Convert jiffies to nanoseconds and separate with 554 * one divide. 555 */ 556 u64 nsec = (u64)jiffies * TICK_NSEC; 557 long tv_usec; 558 559 value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &tv_usec); 560 tv_usec /= NSEC_PER_USEC; 561 value->tv_usec = tv_usec; 562} 563EXPORT_SYMBOL(jiffies_to_timeval); 564 565/* 566 * Convert jiffies/jiffies_64 to clock_t and back. 567 */ 568clock_t jiffies_to_clock_t(long x) 569{ 570#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0 571 return x / (HZ / USER_HZ); 572#else 573 u64 tmp = (u64)x * TICK_NSEC; 574 do_div(tmp, (NSEC_PER_SEC / USER_HZ)); 575 return (long)tmp; 576#endif 577} 578EXPORT_SYMBOL(jiffies_to_clock_t); 579 580unsigned long clock_t_to_jiffies(unsigned long x) 581{ 582#if (HZ % USER_HZ)==0 583 if (x >= ~0UL / (HZ / USER_HZ)) 584 return ~0UL; 585 return x * (HZ / USER_HZ); 586#else 587 u64 jif; 588 589 /* Don't worry about loss of precision here .. */ 590 if (x >= ~0UL / HZ * USER_HZ) 591 return ~0UL; 592 593 /* .. but do try to contain it here */ 594 jif = x * (u64) HZ; 595 do_div(jif, USER_HZ); 596 return jif; 597#endif 598} 599EXPORT_SYMBOL(clock_t_to_jiffies); 600 601u64 jiffies_64_to_clock_t(u64 x) 602{ 603#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0 604 do_div(x, HZ / USER_HZ); 605#else 606 /* 607 * There are better ways that don't overflow early, 608 * but even this doesn't overflow in hundreds of years 609 * in 64 bits, so.. 610 */ 611 x *= TICK_NSEC; 612 do_div(x, (NSEC_PER_SEC / USER_HZ)); 613#endif 614 return x; 615} 616 617EXPORT_SYMBOL(jiffies_64_to_clock_t); 618 619u64 nsec_to_clock_t(u64 x) 620{ 621#if (NSEC_PER_SEC % USER_HZ) == 0 622 do_div(x, (NSEC_PER_SEC / USER_HZ)); 623#elif (USER_HZ % 512) == 0 624 x *= USER_HZ/512; 625 do_div(x, (NSEC_PER_SEC / 512)); 626#else 627 /* 628 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024, 629 * overflow after 64.99 years. 630 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ... 631 */ 632 x *= 9; 633 do_div(x, (unsigned long)((9ull * NSEC_PER_SEC + (USER_HZ/2)) / 634 USER_HZ)); 635#endif 636 return x; 637} 638 639#if (BITS_PER_LONG < 64) 640u64 get_jiffies_64(void) 641{ 642 unsigned long seq; 643 u64 ret; 644 645 do { 646 seq = read_seqbegin(&xtime_lock); 647 ret = jiffies_64; 648 } while (read_seqretry(&xtime_lock, seq)); 649 return ret; 650} 651 652EXPORT_SYMBOL(get_jiffies_64); 653#endif 654 655EXPORT_SYMBOL(jiffies);