at v2.6.23-rc2 111 kB view raw
1/* 2 * Linux Security plug 3 * 4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 5 * Copyright (C) 2001 Greg Kroah-Hartman <greg@kroah.com> 6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 7 * Copyright (C) 2001 James Morris <jmorris@intercode.com.au> 8 * Copyright (C) 2001 Silicon Graphics, Inc. (Trust Technology Group) 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2 of the License, or 13 * (at your option) any later version. 14 * 15 * Due to this file being licensed under the GPL there is controversy over 16 * whether this permits you to write a module that #includes this file 17 * without placing your module under the GPL. Please consult a lawyer for 18 * advice before doing this. 19 * 20 */ 21 22#ifndef __LINUX_SECURITY_H 23#define __LINUX_SECURITY_H 24 25#include <linux/fs.h> 26#include <linux/binfmts.h> 27#include <linux/signal.h> 28#include <linux/resource.h> 29#include <linux/sem.h> 30#include <linux/shm.h> 31#include <linux/msg.h> 32#include <linux/sched.h> 33#include <linux/key.h> 34#include <linux/xfrm.h> 35#include <net/flow.h> 36 37struct ctl_table; 38 39/* 40 * These functions are in security/capability.c and are used 41 * as the default capabilities functions 42 */ 43extern int cap_capable (struct task_struct *tsk, int cap); 44extern int cap_settime (struct timespec *ts, struct timezone *tz); 45extern int cap_ptrace (struct task_struct *parent, struct task_struct *child); 46extern int cap_capget (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted); 47extern int cap_capset_check (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted); 48extern void cap_capset_set (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted); 49extern int cap_bprm_set_security (struct linux_binprm *bprm); 50extern void cap_bprm_apply_creds (struct linux_binprm *bprm, int unsafe); 51extern int cap_bprm_secureexec(struct linux_binprm *bprm); 52extern int cap_inode_setxattr(struct dentry *dentry, char *name, void *value, size_t size, int flags); 53extern int cap_inode_removexattr(struct dentry *dentry, char *name); 54extern int cap_task_post_setuid (uid_t old_ruid, uid_t old_euid, uid_t old_suid, int flags); 55extern void cap_task_reparent_to_init (struct task_struct *p); 56extern int cap_syslog (int type); 57extern int cap_vm_enough_memory (long pages); 58 59struct msghdr; 60struct sk_buff; 61struct sock; 62struct sockaddr; 63struct socket; 64struct flowi; 65struct dst_entry; 66struct xfrm_selector; 67struct xfrm_policy; 68struct xfrm_state; 69struct xfrm_user_sec_ctx; 70 71extern int cap_netlink_send(struct sock *sk, struct sk_buff *skb); 72extern int cap_netlink_recv(struct sk_buff *skb, int cap); 73 74extern unsigned long mmap_min_addr; 75/* 76 * Values used in the task_security_ops calls 77 */ 78/* setuid or setgid, id0 == uid or gid */ 79#define LSM_SETID_ID 1 80 81/* setreuid or setregid, id0 == real, id1 == eff */ 82#define LSM_SETID_RE 2 83 84/* setresuid or setresgid, id0 == real, id1 == eff, uid2 == saved */ 85#define LSM_SETID_RES 4 86 87/* setfsuid or setfsgid, id0 == fsuid or fsgid */ 88#define LSM_SETID_FS 8 89 90/* forward declares to avoid warnings */ 91struct nfsctl_arg; 92struct sched_param; 93struct swap_info_struct; 94struct request_sock; 95 96/* bprm_apply_creds unsafe reasons */ 97#define LSM_UNSAFE_SHARE 1 98#define LSM_UNSAFE_PTRACE 2 99#define LSM_UNSAFE_PTRACE_CAP 4 100 101#ifdef CONFIG_SECURITY 102 103/** 104 * struct security_operations - main security structure 105 * 106 * Security hooks for program execution operations. 107 * 108 * @bprm_alloc_security: 109 * Allocate and attach a security structure to the @bprm->security field. 110 * The security field is initialized to NULL when the bprm structure is 111 * allocated. 112 * @bprm contains the linux_binprm structure to be modified. 113 * Return 0 if operation was successful. 114 * @bprm_free_security: 115 * @bprm contains the linux_binprm structure to be modified. 116 * Deallocate and clear the @bprm->security field. 117 * @bprm_apply_creds: 118 * Compute and set the security attributes of a process being transformed 119 * by an execve operation based on the old attributes (current->security) 120 * and the information saved in @bprm->security by the set_security hook. 121 * Since this hook function (and its caller) are void, this hook can not 122 * return an error. However, it can leave the security attributes of the 123 * process unchanged if an access failure occurs at this point. 124 * bprm_apply_creds is called under task_lock. @unsafe indicates various 125 * reasons why it may be unsafe to change security state. 126 * @bprm contains the linux_binprm structure. 127 * @bprm_post_apply_creds: 128 * Runs after bprm_apply_creds with the task_lock dropped, so that 129 * functions which cannot be called safely under the task_lock can 130 * be used. This hook is a good place to perform state changes on 131 * the process such as closing open file descriptors to which access 132 * is no longer granted if the attributes were changed. 133 * Note that a security module might need to save state between 134 * bprm_apply_creds and bprm_post_apply_creds to store the decision 135 * on whether the process may proceed. 136 * @bprm contains the linux_binprm structure. 137 * @bprm_set_security: 138 * Save security information in the bprm->security field, typically based 139 * on information about the bprm->file, for later use by the apply_creds 140 * hook. This hook may also optionally check permissions (e.g. for 141 * transitions between security domains). 142 * This hook may be called multiple times during a single execve, e.g. for 143 * interpreters. The hook can tell whether it has already been called by 144 * checking to see if @bprm->security is non-NULL. If so, then the hook 145 * may decide either to retain the security information saved earlier or 146 * to replace it. 147 * @bprm contains the linux_binprm structure. 148 * Return 0 if the hook is successful and permission is granted. 149 * @bprm_check_security: 150 * This hook mediates the point when a search for a binary handler will 151 * begin. It allows a check the @bprm->security value which is set in 152 * the preceding set_security call. The primary difference from 153 * set_security is that the argv list and envp list are reliably 154 * available in @bprm. This hook may be called multiple times 155 * during a single execve; and in each pass set_security is called 156 * first. 157 * @bprm contains the linux_binprm structure. 158 * Return 0 if the hook is successful and permission is granted. 159 * @bprm_secureexec: 160 * Return a boolean value (0 or 1) indicating whether a "secure exec" 161 * is required. The flag is passed in the auxiliary table 162 * on the initial stack to the ELF interpreter to indicate whether libc 163 * should enable secure mode. 164 * @bprm contains the linux_binprm structure. 165 * 166 * Security hooks for filesystem operations. 167 * 168 * @sb_alloc_security: 169 * Allocate and attach a security structure to the sb->s_security field. 170 * The s_security field is initialized to NULL when the structure is 171 * allocated. 172 * @sb contains the super_block structure to be modified. 173 * Return 0 if operation was successful. 174 * @sb_free_security: 175 * Deallocate and clear the sb->s_security field. 176 * @sb contains the super_block structure to be modified. 177 * @sb_statfs: 178 * Check permission before obtaining filesystem statistics for the @mnt 179 * mountpoint. 180 * @dentry is a handle on the superblock for the filesystem. 181 * Return 0 if permission is granted. 182 * @sb_mount: 183 * Check permission before an object specified by @dev_name is mounted on 184 * the mount point named by @nd. For an ordinary mount, @dev_name 185 * identifies a device if the file system type requires a device. For a 186 * remount (@flags & MS_REMOUNT), @dev_name is irrelevant. For a 187 * loopback/bind mount (@flags & MS_BIND), @dev_name identifies the 188 * pathname of the object being mounted. 189 * @dev_name contains the name for object being mounted. 190 * @nd contains the nameidata structure for mount point object. 191 * @type contains the filesystem type. 192 * @flags contains the mount flags. 193 * @data contains the filesystem-specific data. 194 * Return 0 if permission is granted. 195 * @sb_copy_data: 196 * Allow mount option data to be copied prior to parsing by the filesystem, 197 * so that the security module can extract security-specific mount 198 * options cleanly (a filesystem may modify the data e.g. with strsep()). 199 * This also allows the original mount data to be stripped of security- 200 * specific options to avoid having to make filesystems aware of them. 201 * @type the type of filesystem being mounted. 202 * @orig the original mount data copied from userspace. 203 * @copy copied data which will be passed to the security module. 204 * Returns 0 if the copy was successful. 205 * @sb_check_sb: 206 * Check permission before the device with superblock @mnt->sb is mounted 207 * on the mount point named by @nd. 208 * @mnt contains the vfsmount for device being mounted. 209 * @nd contains the nameidata object for the mount point. 210 * Return 0 if permission is granted. 211 * @sb_umount: 212 * Check permission before the @mnt file system is unmounted. 213 * @mnt contains the mounted file system. 214 * @flags contains the unmount flags, e.g. MNT_FORCE. 215 * Return 0 if permission is granted. 216 * @sb_umount_close: 217 * Close any files in the @mnt mounted filesystem that are held open by 218 * the security module. This hook is called during an umount operation 219 * prior to checking whether the filesystem is still busy. 220 * @mnt contains the mounted filesystem. 221 * @sb_umount_busy: 222 * Handle a failed umount of the @mnt mounted filesystem, e.g. re-opening 223 * any files that were closed by umount_close. This hook is called during 224 * an umount operation if the umount fails after a call to the 225 * umount_close hook. 226 * @mnt contains the mounted filesystem. 227 * @sb_post_remount: 228 * Update the security module's state when a filesystem is remounted. 229 * This hook is only called if the remount was successful. 230 * @mnt contains the mounted file system. 231 * @flags contains the new filesystem flags. 232 * @data contains the filesystem-specific data. 233 * @sb_post_mountroot: 234 * Update the security module's state when the root filesystem is mounted. 235 * This hook is only called if the mount was successful. 236 * @sb_post_addmount: 237 * Update the security module's state when a filesystem is mounted. 238 * This hook is called any time a mount is successfully grafetd to 239 * the tree. 240 * @mnt contains the mounted filesystem. 241 * @mountpoint_nd contains the nameidata structure for the mount point. 242 * @sb_pivotroot: 243 * Check permission before pivoting the root filesystem. 244 * @old_nd contains the nameidata structure for the new location of the current root (put_old). 245 * @new_nd contains the nameidata structure for the new root (new_root). 246 * Return 0 if permission is granted. 247 * @sb_post_pivotroot: 248 * Update module state after a successful pivot. 249 * @old_nd contains the nameidata structure for the old root. 250 * @new_nd contains the nameidata structure for the new root. 251 * 252 * Security hooks for inode operations. 253 * 254 * @inode_alloc_security: 255 * Allocate and attach a security structure to @inode->i_security. The 256 * i_security field is initialized to NULL when the inode structure is 257 * allocated. 258 * @inode contains the inode structure. 259 * Return 0 if operation was successful. 260 * @inode_free_security: 261 * @inode contains the inode structure. 262 * Deallocate the inode security structure and set @inode->i_security to 263 * NULL. 264 * @inode_init_security: 265 * Obtain the security attribute name suffix and value to set on a newly 266 * created inode and set up the incore security field for the new inode. 267 * This hook is called by the fs code as part of the inode creation 268 * transaction and provides for atomic labeling of the inode, unlike 269 * the post_create/mkdir/... hooks called by the VFS. The hook function 270 * is expected to allocate the name and value via kmalloc, with the caller 271 * being responsible for calling kfree after using them. 272 * If the security module does not use security attributes or does 273 * not wish to put a security attribute on this particular inode, 274 * then it should return -EOPNOTSUPP to skip this processing. 275 * @inode contains the inode structure of the newly created inode. 276 * @dir contains the inode structure of the parent directory. 277 * @name will be set to the allocated name suffix (e.g. selinux). 278 * @value will be set to the allocated attribute value. 279 * @len will be set to the length of the value. 280 * Returns 0 if @name and @value have been successfully set, 281 * -EOPNOTSUPP if no security attribute is needed, or 282 * -ENOMEM on memory allocation failure. 283 * @inode_create: 284 * Check permission to create a regular file. 285 * @dir contains inode structure of the parent of the new file. 286 * @dentry contains the dentry structure for the file to be created. 287 * @mode contains the file mode of the file to be created. 288 * Return 0 if permission is granted. 289 * @inode_link: 290 * Check permission before creating a new hard link to a file. 291 * @old_dentry contains the dentry structure for an existing link to the file. 292 * @dir contains the inode structure of the parent directory of the new link. 293 * @new_dentry contains the dentry structure for the new link. 294 * Return 0 if permission is granted. 295 * @inode_unlink: 296 * Check the permission to remove a hard link to a file. 297 * @dir contains the inode structure of parent directory of the file. 298 * @dentry contains the dentry structure for file to be unlinked. 299 * Return 0 if permission is granted. 300 * @inode_symlink: 301 * Check the permission to create a symbolic link to a file. 302 * @dir contains the inode structure of parent directory of the symbolic link. 303 * @dentry contains the dentry structure of the symbolic link. 304 * @old_name contains the pathname of file. 305 * Return 0 if permission is granted. 306 * @inode_mkdir: 307 * Check permissions to create a new directory in the existing directory 308 * associated with inode strcture @dir. 309 * @dir containst the inode structure of parent of the directory to be created. 310 * @dentry contains the dentry structure of new directory. 311 * @mode contains the mode of new directory. 312 * Return 0 if permission is granted. 313 * @inode_rmdir: 314 * Check the permission to remove a directory. 315 * @dir contains the inode structure of parent of the directory to be removed. 316 * @dentry contains the dentry structure of directory to be removed. 317 * Return 0 if permission is granted. 318 * @inode_mknod: 319 * Check permissions when creating a special file (or a socket or a fifo 320 * file created via the mknod system call). Note that if mknod operation 321 * is being done for a regular file, then the create hook will be called 322 * and not this hook. 323 * @dir contains the inode structure of parent of the new file. 324 * @dentry contains the dentry structure of the new file. 325 * @mode contains the mode of the new file. 326 * @dev contains the device number. 327 * Return 0 if permission is granted. 328 * @inode_rename: 329 * Check for permission to rename a file or directory. 330 * @old_dir contains the inode structure for parent of the old link. 331 * @old_dentry contains the dentry structure of the old link. 332 * @new_dir contains the inode structure for parent of the new link. 333 * @new_dentry contains the dentry structure of the new link. 334 * Return 0 if permission is granted. 335 * @inode_readlink: 336 * Check the permission to read the symbolic link. 337 * @dentry contains the dentry structure for the file link. 338 * Return 0 if permission is granted. 339 * @inode_follow_link: 340 * Check permission to follow a symbolic link when looking up a pathname. 341 * @dentry contains the dentry structure for the link. 342 * @nd contains the nameidata structure for the parent directory. 343 * Return 0 if permission is granted. 344 * @inode_permission: 345 * Check permission before accessing an inode. This hook is called by the 346 * existing Linux permission function, so a security module can use it to 347 * provide additional checking for existing Linux permission checks. 348 * Notice that this hook is called when a file is opened (as well as many 349 * other operations), whereas the file_security_ops permission hook is 350 * called when the actual read/write operations are performed. 351 * @inode contains the inode structure to check. 352 * @mask contains the permission mask. 353 * @nd contains the nameidata (may be NULL). 354 * Return 0 if permission is granted. 355 * @inode_setattr: 356 * Check permission before setting file attributes. Note that the kernel 357 * call to notify_change is performed from several locations, whenever 358 * file attributes change (such as when a file is truncated, chown/chmod 359 * operations, transferring disk quotas, etc). 360 * @dentry contains the dentry structure for the file. 361 * @attr is the iattr structure containing the new file attributes. 362 * Return 0 if permission is granted. 363 * @inode_getattr: 364 * Check permission before obtaining file attributes. 365 * @mnt is the vfsmount where the dentry was looked up 366 * @dentry contains the dentry structure for the file. 367 * Return 0 if permission is granted. 368 * @inode_delete: 369 * @inode contains the inode structure for deleted inode. 370 * This hook is called when a deleted inode is released (i.e. an inode 371 * with no hard links has its use count drop to zero). A security module 372 * can use this hook to release any persistent label associated with the 373 * inode. 374 * @inode_setxattr: 375 * Check permission before setting the extended attributes 376 * @value identified by @name for @dentry. 377 * Return 0 if permission is granted. 378 * @inode_post_setxattr: 379 * Update inode security field after successful setxattr operation. 380 * @value identified by @name for @dentry. 381 * @inode_getxattr: 382 * Check permission before obtaining the extended attributes 383 * identified by @name for @dentry. 384 * Return 0 if permission is granted. 385 * @inode_listxattr: 386 * Check permission before obtaining the list of extended attribute 387 * names for @dentry. 388 * Return 0 if permission is granted. 389 * @inode_removexattr: 390 * Check permission before removing the extended attribute 391 * identified by @name for @dentry. 392 * Return 0 if permission is granted. 393 * @inode_getsecurity: 394 * Copy the extended attribute representation of the security label 395 * associated with @name for @inode into @buffer. @buffer may be 396 * NULL to request the size of the buffer required. @size indicates 397 * the size of @buffer in bytes. Note that @name is the remainder 398 * of the attribute name after the security. prefix has been removed. 399 * @err is the return value from the preceding fs getxattr call, 400 * and can be used by the security module to determine whether it 401 * should try and canonicalize the attribute value. 402 * Return number of bytes used/required on success. 403 * @inode_setsecurity: 404 * Set the security label associated with @name for @inode from the 405 * extended attribute value @value. @size indicates the size of the 406 * @value in bytes. @flags may be XATTR_CREATE, XATTR_REPLACE, or 0. 407 * Note that @name is the remainder of the attribute name after the 408 * security. prefix has been removed. 409 * Return 0 on success. 410 * @inode_listsecurity: 411 * Copy the extended attribute names for the security labels 412 * associated with @inode into @buffer. The maximum size of @buffer 413 * is specified by @buffer_size. @buffer may be NULL to request 414 * the size of the buffer required. 415 * Returns number of bytes used/required on success. 416 * 417 * Security hooks for file operations 418 * 419 * @file_permission: 420 * Check file permissions before accessing an open file. This hook is 421 * called by various operations that read or write files. A security 422 * module can use this hook to perform additional checking on these 423 * operations, e.g. to revalidate permissions on use to support privilege 424 * bracketing or policy changes. Notice that this hook is used when the 425 * actual read/write operations are performed, whereas the 426 * inode_security_ops hook is called when a file is opened (as well as 427 * many other operations). 428 * Caveat: Although this hook can be used to revalidate permissions for 429 * various system call operations that read or write files, it does not 430 * address the revalidation of permissions for memory-mapped files. 431 * Security modules must handle this separately if they need such 432 * revalidation. 433 * @file contains the file structure being accessed. 434 * @mask contains the requested permissions. 435 * Return 0 if permission is granted. 436 * @file_alloc_security: 437 * Allocate and attach a security structure to the file->f_security field. 438 * The security field is initialized to NULL when the structure is first 439 * created. 440 * @file contains the file structure to secure. 441 * Return 0 if the hook is successful and permission is granted. 442 * @file_free_security: 443 * Deallocate and free any security structures stored in file->f_security. 444 * @file contains the file structure being modified. 445 * @file_ioctl: 446 * @file contains the file structure. 447 * @cmd contains the operation to perform. 448 * @arg contains the operational arguments. 449 * Check permission for an ioctl operation on @file. Note that @arg can 450 * sometimes represents a user space pointer; in other cases, it may be a 451 * simple integer value. When @arg represents a user space pointer, it 452 * should never be used by the security module. 453 * Return 0 if permission is granted. 454 * @file_mmap : 455 * Check permissions for a mmap operation. The @file may be NULL, e.g. 456 * if mapping anonymous memory. 457 * @file contains the file structure for file to map (may be NULL). 458 * @reqprot contains the protection requested by the application. 459 * @prot contains the protection that will be applied by the kernel. 460 * @flags contains the operational flags. 461 * Return 0 if permission is granted. 462 * @file_mprotect: 463 * Check permissions before changing memory access permissions. 464 * @vma contains the memory region to modify. 465 * @reqprot contains the protection requested by the application. 466 * @prot contains the protection that will be applied by the kernel. 467 * Return 0 if permission is granted. 468 * @file_lock: 469 * Check permission before performing file locking operations. 470 * Note: this hook mediates both flock and fcntl style locks. 471 * @file contains the file structure. 472 * @cmd contains the posix-translated lock operation to perform 473 * (e.g. F_RDLCK, F_WRLCK). 474 * Return 0 if permission is granted. 475 * @file_fcntl: 476 * Check permission before allowing the file operation specified by @cmd 477 * from being performed on the file @file. Note that @arg can sometimes 478 * represents a user space pointer; in other cases, it may be a simple 479 * integer value. When @arg represents a user space pointer, it should 480 * never be used by the security module. 481 * @file contains the file structure. 482 * @cmd contains the operation to be performed. 483 * @arg contains the operational arguments. 484 * Return 0 if permission is granted. 485 * @file_set_fowner: 486 * Save owner security information (typically from current->security) in 487 * file->f_security for later use by the send_sigiotask hook. 488 * @file contains the file structure to update. 489 * Return 0 on success. 490 * @file_send_sigiotask: 491 * Check permission for the file owner @fown to send SIGIO or SIGURG to the 492 * process @tsk. Note that this hook is sometimes called from interrupt. 493 * Note that the fown_struct, @fown, is never outside the context of a 494 * struct file, so the file structure (and associated security information) 495 * can always be obtained: 496 * container_of(fown, struct file, f_owner) 497 * @tsk contains the structure of task receiving signal. 498 * @fown contains the file owner information. 499 * @sig is the signal that will be sent. When 0, kernel sends SIGIO. 500 * Return 0 if permission is granted. 501 * @file_receive: 502 * This hook allows security modules to control the ability of a process 503 * to receive an open file descriptor via socket IPC. 504 * @file contains the file structure being received. 505 * Return 0 if permission is granted. 506 * 507 * Security hooks for task operations. 508 * 509 * @task_create: 510 * Check permission before creating a child process. See the clone(2) 511 * manual page for definitions of the @clone_flags. 512 * @clone_flags contains the flags indicating what should be shared. 513 * Return 0 if permission is granted. 514 * @task_alloc_security: 515 * @p contains the task_struct for child process. 516 * Allocate and attach a security structure to the p->security field. The 517 * security field is initialized to NULL when the task structure is 518 * allocated. 519 * Return 0 if operation was successful. 520 * @task_free_security: 521 * @p contains the task_struct for process. 522 * Deallocate and clear the p->security field. 523 * @task_setuid: 524 * Check permission before setting one or more of the user identity 525 * attributes of the current process. The @flags parameter indicates 526 * which of the set*uid system calls invoked this hook and how to 527 * interpret the @id0, @id1, and @id2 parameters. See the LSM_SETID 528 * definitions at the beginning of this file for the @flags values and 529 * their meanings. 530 * @id0 contains a uid. 531 * @id1 contains a uid. 532 * @id2 contains a uid. 533 * @flags contains one of the LSM_SETID_* values. 534 * Return 0 if permission is granted. 535 * @task_post_setuid: 536 * Update the module's state after setting one or more of the user 537 * identity attributes of the current process. The @flags parameter 538 * indicates which of the set*uid system calls invoked this hook. If 539 * @flags is LSM_SETID_FS, then @old_ruid is the old fs uid and the other 540 * parameters are not used. 541 * @old_ruid contains the old real uid (or fs uid if LSM_SETID_FS). 542 * @old_euid contains the old effective uid (or -1 if LSM_SETID_FS). 543 * @old_suid contains the old saved uid (or -1 if LSM_SETID_FS). 544 * @flags contains one of the LSM_SETID_* values. 545 * Return 0 on success. 546 * @task_setgid: 547 * Check permission before setting one or more of the group identity 548 * attributes of the current process. The @flags parameter indicates 549 * which of the set*gid system calls invoked this hook and how to 550 * interpret the @id0, @id1, and @id2 parameters. See the LSM_SETID 551 * definitions at the beginning of this file for the @flags values and 552 * their meanings. 553 * @id0 contains a gid. 554 * @id1 contains a gid. 555 * @id2 contains a gid. 556 * @flags contains one of the LSM_SETID_* values. 557 * Return 0 if permission is granted. 558 * @task_setpgid: 559 * Check permission before setting the process group identifier of the 560 * process @p to @pgid. 561 * @p contains the task_struct for process being modified. 562 * @pgid contains the new pgid. 563 * Return 0 if permission is granted. 564 * @task_getpgid: 565 * Check permission before getting the process group identifier of the 566 * process @p. 567 * @p contains the task_struct for the process. 568 * Return 0 if permission is granted. 569 * @task_getsid: 570 * Check permission before getting the session identifier of the process 571 * @p. 572 * @p contains the task_struct for the process. 573 * Return 0 if permission is granted. 574 * @task_getsecid: 575 * Retrieve the security identifier of the process @p. 576 * @p contains the task_struct for the process and place is into @secid. 577 * @task_setgroups: 578 * Check permission before setting the supplementary group set of the 579 * current process. 580 * @group_info contains the new group information. 581 * Return 0 if permission is granted. 582 * @task_setnice: 583 * Check permission before setting the nice value of @p to @nice. 584 * @p contains the task_struct of process. 585 * @nice contains the new nice value. 586 * Return 0 if permission is granted. 587 * @task_setioprio 588 * Check permission before setting the ioprio value of @p to @ioprio. 589 * @p contains the task_struct of process. 590 * @ioprio contains the new ioprio value 591 * Return 0 if permission is granted. 592 * @task_getioprio 593 * Check permission before getting the ioprio value of @p. 594 * @p contains the task_struct of process. 595 * Return 0 if permission is granted. 596 * @task_setrlimit: 597 * Check permission before setting the resource limits of the current 598 * process for @resource to @new_rlim. The old resource limit values can 599 * be examined by dereferencing (current->signal->rlim + resource). 600 * @resource contains the resource whose limit is being set. 601 * @new_rlim contains the new limits for @resource. 602 * Return 0 if permission is granted. 603 * @task_setscheduler: 604 * Check permission before setting scheduling policy and/or parameters of 605 * process @p based on @policy and @lp. 606 * @p contains the task_struct for process. 607 * @policy contains the scheduling policy. 608 * @lp contains the scheduling parameters. 609 * Return 0 if permission is granted. 610 * @task_getscheduler: 611 * Check permission before obtaining scheduling information for process 612 * @p. 613 * @p contains the task_struct for process. 614 * Return 0 if permission is granted. 615 * @task_movememory 616 * Check permission before moving memory owned by process @p. 617 * @p contains the task_struct for process. 618 * Return 0 if permission is granted. 619 * @task_kill: 620 * Check permission before sending signal @sig to @p. @info can be NULL, 621 * the constant 1, or a pointer to a siginfo structure. If @info is 1 or 622 * SI_FROMKERNEL(info) is true, then the signal should be viewed as coming 623 * from the kernel and should typically be permitted. 624 * SIGIO signals are handled separately by the send_sigiotask hook in 625 * file_security_ops. 626 * @p contains the task_struct for process. 627 * @info contains the signal information. 628 * @sig contains the signal value. 629 * @secid contains the sid of the process where the signal originated 630 * Return 0 if permission is granted. 631 * @task_wait: 632 * Check permission before allowing a process to reap a child process @p 633 * and collect its status information. 634 * @p contains the task_struct for process. 635 * Return 0 if permission is granted. 636 * @task_prctl: 637 * Check permission before performing a process control operation on the 638 * current process. 639 * @option contains the operation. 640 * @arg2 contains a argument. 641 * @arg3 contains a argument. 642 * @arg4 contains a argument. 643 * @arg5 contains a argument. 644 * Return 0 if permission is granted. 645 * @task_reparent_to_init: 646 * Set the security attributes in @p->security for a kernel thread that 647 * is being reparented to the init task. 648 * @p contains the task_struct for the kernel thread. 649 * @task_to_inode: 650 * Set the security attributes for an inode based on an associated task's 651 * security attributes, e.g. for /proc/pid inodes. 652 * @p contains the task_struct for the task. 653 * @inode contains the inode structure for the inode. 654 * 655 * Security hooks for Netlink messaging. 656 * 657 * @netlink_send: 658 * Save security information for a netlink message so that permission 659 * checking can be performed when the message is processed. The security 660 * information can be saved using the eff_cap field of the 661 * netlink_skb_parms structure. Also may be used to provide fine 662 * grained control over message transmission. 663 * @sk associated sock of task sending the message., 664 * @skb contains the sk_buff structure for the netlink message. 665 * Return 0 if the information was successfully saved and message 666 * is allowed to be transmitted. 667 * @netlink_recv: 668 * Check permission before processing the received netlink message in 669 * @skb. 670 * @skb contains the sk_buff structure for the netlink message. 671 * @cap indicates the capability required 672 * Return 0 if permission is granted. 673 * 674 * Security hooks for Unix domain networking. 675 * 676 * @unix_stream_connect: 677 * Check permissions before establishing a Unix domain stream connection 678 * between @sock and @other. 679 * @sock contains the socket structure. 680 * @other contains the peer socket structure. 681 * Return 0 if permission is granted. 682 * @unix_may_send: 683 * Check permissions before connecting or sending datagrams from @sock to 684 * @other. 685 * @sock contains the socket structure. 686 * @sock contains the peer socket structure. 687 * Return 0 if permission is granted. 688 * 689 * The @unix_stream_connect and @unix_may_send hooks were necessary because 690 * Linux provides an alternative to the conventional file name space for Unix 691 * domain sockets. Whereas binding and connecting to sockets in the file name 692 * space is mediated by the typical file permissions (and caught by the mknod 693 * and permission hooks in inode_security_ops), binding and connecting to 694 * sockets in the abstract name space is completely unmediated. Sufficient 695 * control of Unix domain sockets in the abstract name space isn't possible 696 * using only the socket layer hooks, since we need to know the actual target 697 * socket, which is not looked up until we are inside the af_unix code. 698 * 699 * Security hooks for socket operations. 700 * 701 * @socket_create: 702 * Check permissions prior to creating a new socket. 703 * @family contains the requested protocol family. 704 * @type contains the requested communications type. 705 * @protocol contains the requested protocol. 706 * @kern set to 1 if a kernel socket. 707 * Return 0 if permission is granted. 708 * @socket_post_create: 709 * This hook allows a module to update or allocate a per-socket security 710 * structure. Note that the security field was not added directly to the 711 * socket structure, but rather, the socket security information is stored 712 * in the associated inode. Typically, the inode alloc_security hook will 713 * allocate and and attach security information to 714 * sock->inode->i_security. This hook may be used to update the 715 * sock->inode->i_security field with additional information that wasn't 716 * available when the inode was allocated. 717 * @sock contains the newly created socket structure. 718 * @family contains the requested protocol family. 719 * @type contains the requested communications type. 720 * @protocol contains the requested protocol. 721 * @kern set to 1 if a kernel socket. 722 * @socket_bind: 723 * Check permission before socket protocol layer bind operation is 724 * performed and the socket @sock is bound to the address specified in the 725 * @address parameter. 726 * @sock contains the socket structure. 727 * @address contains the address to bind to. 728 * @addrlen contains the length of address. 729 * Return 0 if permission is granted. 730 * @socket_connect: 731 * Check permission before socket protocol layer connect operation 732 * attempts to connect socket @sock to a remote address, @address. 733 * @sock contains the socket structure. 734 * @address contains the address of remote endpoint. 735 * @addrlen contains the length of address. 736 * Return 0 if permission is granted. 737 * @socket_listen: 738 * Check permission before socket protocol layer listen operation. 739 * @sock contains the socket structure. 740 * @backlog contains the maximum length for the pending connection queue. 741 * Return 0 if permission is granted. 742 * @socket_accept: 743 * Check permission before accepting a new connection. Note that the new 744 * socket, @newsock, has been created and some information copied to it, 745 * but the accept operation has not actually been performed. 746 * @sock contains the listening socket structure. 747 * @newsock contains the newly created server socket for connection. 748 * Return 0 if permission is granted. 749 * @socket_post_accept: 750 * This hook allows a security module to copy security 751 * information into the newly created socket's inode. 752 * @sock contains the listening socket structure. 753 * @newsock contains the newly created server socket for connection. 754 * @socket_sendmsg: 755 * Check permission before transmitting a message to another socket. 756 * @sock contains the socket structure. 757 * @msg contains the message to be transmitted. 758 * @size contains the size of message. 759 * Return 0 if permission is granted. 760 * @socket_recvmsg: 761 * Check permission before receiving a message from a socket. 762 * @sock contains the socket structure. 763 * @msg contains the message structure. 764 * @size contains the size of message structure. 765 * @flags contains the operational flags. 766 * Return 0 if permission is granted. 767 * @socket_getsockname: 768 * Check permission before the local address (name) of the socket object 769 * @sock is retrieved. 770 * @sock contains the socket structure. 771 * Return 0 if permission is granted. 772 * @socket_getpeername: 773 * Check permission before the remote address (name) of a socket object 774 * @sock is retrieved. 775 * @sock contains the socket structure. 776 * Return 0 if permission is granted. 777 * @socket_getsockopt: 778 * Check permissions before retrieving the options associated with socket 779 * @sock. 780 * @sock contains the socket structure. 781 * @level contains the protocol level to retrieve option from. 782 * @optname contains the name of option to retrieve. 783 * Return 0 if permission is granted. 784 * @socket_setsockopt: 785 * Check permissions before setting the options associated with socket 786 * @sock. 787 * @sock contains the socket structure. 788 * @level contains the protocol level to set options for. 789 * @optname contains the name of the option to set. 790 * Return 0 if permission is granted. 791 * @socket_shutdown: 792 * Checks permission before all or part of a connection on the socket 793 * @sock is shut down. 794 * @sock contains the socket structure. 795 * @how contains the flag indicating how future sends and receives are handled. 796 * Return 0 if permission is granted. 797 * @socket_sock_rcv_skb: 798 * Check permissions on incoming network packets. This hook is distinct 799 * from Netfilter's IP input hooks since it is the first time that the 800 * incoming sk_buff @skb has been associated with a particular socket, @sk. 801 * @sk contains the sock (not socket) associated with the incoming sk_buff. 802 * @skb contains the incoming network data. 803 * @socket_getpeersec: 804 * This hook allows the security module to provide peer socket security 805 * state to userspace via getsockopt SO_GETPEERSEC. 806 * @sock is the local socket. 807 * @optval userspace memory where the security state is to be copied. 808 * @optlen userspace int where the module should copy the actual length 809 * of the security state. 810 * @len as input is the maximum length to copy to userspace provided 811 * by the caller. 812 * Return 0 if all is well, otherwise, typical getsockopt return 813 * values. 814 * @sk_alloc_security: 815 * Allocate and attach a security structure to the sk->sk_security field, 816 * which is used to copy security attributes between local stream sockets. 817 * @sk_free_security: 818 * Deallocate security structure. 819 * @sk_clone_security: 820 * Clone/copy security structure. 821 * @sk_getsecid: 822 * Retrieve the LSM-specific secid for the sock to enable caching of network 823 * authorizations. 824 * @sock_graft: 825 * Sets the socket's isec sid to the sock's sid. 826 * @inet_conn_request: 827 * Sets the openreq's sid to socket's sid with MLS portion taken from peer sid. 828 * @inet_csk_clone: 829 * Sets the new child socket's sid to the openreq sid. 830 * @inet_conn_established: 831 * Sets the connection's peersid to the secmark on skb. 832 * @req_classify_flow: 833 * Sets the flow's sid to the openreq sid. 834 * 835 * Security hooks for XFRM operations. 836 * 837 * @xfrm_policy_alloc_security: 838 * @xp contains the xfrm_policy being added to Security Policy Database 839 * used by the XFRM system. 840 * @sec_ctx contains the security context information being provided by 841 * the user-level policy update program (e.g., setkey). 842 * Allocate a security structure to the xp->security field; the security 843 * field is initialized to NULL when the xfrm_policy is allocated. 844 * Return 0 if operation was successful (memory to allocate, legal context) 845 * @xfrm_policy_clone_security: 846 * @old contains an existing xfrm_policy in the SPD. 847 * @new contains a new xfrm_policy being cloned from old. 848 * Allocate a security structure to the new->security field 849 * that contains the information from the old->security field. 850 * Return 0 if operation was successful (memory to allocate). 851 * @xfrm_policy_free_security: 852 * @xp contains the xfrm_policy 853 * Deallocate xp->security. 854 * @xfrm_policy_delete_security: 855 * @xp contains the xfrm_policy. 856 * Authorize deletion of xp->security. 857 * @xfrm_state_alloc_security: 858 * @x contains the xfrm_state being added to the Security Association 859 * Database by the XFRM system. 860 * @sec_ctx contains the security context information being provided by 861 * the user-level SA generation program (e.g., setkey or racoon). 862 * @secid contains the secid from which to take the mls portion of the context. 863 * Allocate a security structure to the x->security field; the security 864 * field is initialized to NULL when the xfrm_state is allocated. Set the 865 * context to correspond to either sec_ctx or polsec, with the mls portion 866 * taken from secid in the latter case. 867 * Return 0 if operation was successful (memory to allocate, legal context). 868 * @xfrm_state_free_security: 869 * @x contains the xfrm_state. 870 * Deallocate x->security. 871 * @xfrm_state_delete_security: 872 * @x contains the xfrm_state. 873 * Authorize deletion of x->security. 874 * @xfrm_policy_lookup: 875 * @xp contains the xfrm_policy for which the access control is being 876 * checked. 877 * @fl_secid contains the flow security label that is used to authorize 878 * access to the policy xp. 879 * @dir contains the direction of the flow (input or output). 880 * Check permission when a flow selects a xfrm_policy for processing 881 * XFRMs on a packet. The hook is called when selecting either a 882 * per-socket policy or a generic xfrm policy. 883 * Return 0 if permission is granted, -ESRCH otherwise, or -errno 884 * on other errors. 885 * @xfrm_state_pol_flow_match: 886 * @x contains the state to match. 887 * @xp contains the policy to check for a match. 888 * @fl contains the flow to check for a match. 889 * Return 1 if there is a match. 890 * @xfrm_decode_session: 891 * @skb points to skb to decode. 892 * @secid points to the flow key secid to set. 893 * @ckall says if all xfrms used should be checked for same secid. 894 * Return 0 if ckall is zero or all xfrms used have the same secid. 895 * 896 * Security hooks affecting all Key Management operations 897 * 898 * @key_alloc: 899 * Permit allocation of a key and assign security data. Note that key does 900 * not have a serial number assigned at this point. 901 * @key points to the key. 902 * @flags is the allocation flags 903 * Return 0 if permission is granted, -ve error otherwise. 904 * @key_free: 905 * Notification of destruction; free security data. 906 * @key points to the key. 907 * No return value. 908 * @key_permission: 909 * See whether a specific operational right is granted to a process on a 910 * key. 911 * @key_ref refers to the key (key pointer + possession attribute bit). 912 * @context points to the process to provide the context against which to 913 * evaluate the security data on the key. 914 * @perm describes the combination of permissions required of this key. 915 * Return 1 if permission granted, 0 if permission denied and -ve it the 916 * normal permissions model should be effected. 917 * 918 * Security hooks affecting all System V IPC operations. 919 * 920 * @ipc_permission: 921 * Check permissions for access to IPC 922 * @ipcp contains the kernel IPC permission structure 923 * @flag contains the desired (requested) permission set 924 * Return 0 if permission is granted. 925 * 926 * Security hooks for individual messages held in System V IPC message queues 927 * @msg_msg_alloc_security: 928 * Allocate and attach a security structure to the msg->security field. 929 * The security field is initialized to NULL when the structure is first 930 * created. 931 * @msg contains the message structure to be modified. 932 * Return 0 if operation was successful and permission is granted. 933 * @msg_msg_free_security: 934 * Deallocate the security structure for this message. 935 * @msg contains the message structure to be modified. 936 * 937 * Security hooks for System V IPC Message Queues 938 * 939 * @msg_queue_alloc_security: 940 * Allocate and attach a security structure to the 941 * msq->q_perm.security field. The security field is initialized to 942 * NULL when the structure is first created. 943 * @msq contains the message queue structure to be modified. 944 * Return 0 if operation was successful and permission is granted. 945 * @msg_queue_free_security: 946 * Deallocate security structure for this message queue. 947 * @msq contains the message queue structure to be modified. 948 * @msg_queue_associate: 949 * Check permission when a message queue is requested through the 950 * msgget system call. This hook is only called when returning the 951 * message queue identifier for an existing message queue, not when a 952 * new message queue is created. 953 * @msq contains the message queue to act upon. 954 * @msqflg contains the operation control flags. 955 * Return 0 if permission is granted. 956 * @msg_queue_msgctl: 957 * Check permission when a message control operation specified by @cmd 958 * is to be performed on the message queue @msq. 959 * The @msq may be NULL, e.g. for IPC_INFO or MSG_INFO. 960 * @msq contains the message queue to act upon. May be NULL. 961 * @cmd contains the operation to be performed. 962 * Return 0 if permission is granted. 963 * @msg_queue_msgsnd: 964 * Check permission before a message, @msg, is enqueued on the message 965 * queue, @msq. 966 * @msq contains the message queue to send message to. 967 * @msg contains the message to be enqueued. 968 * @msqflg contains operational flags. 969 * Return 0 if permission is granted. 970 * @msg_queue_msgrcv: 971 * Check permission before a message, @msg, is removed from the message 972 * queue, @msq. The @target task structure contains a pointer to the 973 * process that will be receiving the message (not equal to the current 974 * process when inline receives are being performed). 975 * @msq contains the message queue to retrieve message from. 976 * @msg contains the message destination. 977 * @target contains the task structure for recipient process. 978 * @type contains the type of message requested. 979 * @mode contains the operational flags. 980 * Return 0 if permission is granted. 981 * 982 * Security hooks for System V Shared Memory Segments 983 * 984 * @shm_alloc_security: 985 * Allocate and attach a security structure to the shp->shm_perm.security 986 * field. The security field is initialized to NULL when the structure is 987 * first created. 988 * @shp contains the shared memory structure to be modified. 989 * Return 0 if operation was successful and permission is granted. 990 * @shm_free_security: 991 * Deallocate the security struct for this memory segment. 992 * @shp contains the shared memory structure to be modified. 993 * @shm_associate: 994 * Check permission when a shared memory region is requested through the 995 * shmget system call. This hook is only called when returning the shared 996 * memory region identifier for an existing region, not when a new shared 997 * memory region is created. 998 * @shp contains the shared memory structure to be modified. 999 * @shmflg contains the operation control flags. 1000 * Return 0 if permission is granted. 1001 * @shm_shmctl: 1002 * Check permission when a shared memory control operation specified by 1003 * @cmd is to be performed on the shared memory region @shp. 1004 * The @shp may be NULL, e.g. for IPC_INFO or SHM_INFO. 1005 * @shp contains shared memory structure to be modified. 1006 * @cmd contains the operation to be performed. 1007 * Return 0 if permission is granted. 1008 * @shm_shmat: 1009 * Check permissions prior to allowing the shmat system call to attach the 1010 * shared memory segment @shp to the data segment of the calling process. 1011 * The attaching address is specified by @shmaddr. 1012 * @shp contains the shared memory structure to be modified. 1013 * @shmaddr contains the address to attach memory region to. 1014 * @shmflg contains the operational flags. 1015 * Return 0 if permission is granted. 1016 * 1017 * Security hooks for System V Semaphores 1018 * 1019 * @sem_alloc_security: 1020 * Allocate and attach a security structure to the sma->sem_perm.security 1021 * field. The security field is initialized to NULL when the structure is 1022 * first created. 1023 * @sma contains the semaphore structure 1024 * Return 0 if operation was successful and permission is granted. 1025 * @sem_free_security: 1026 * deallocate security struct for this semaphore 1027 * @sma contains the semaphore structure. 1028 * @sem_associate: 1029 * Check permission when a semaphore is requested through the semget 1030 * system call. This hook is only called when returning the semaphore 1031 * identifier for an existing semaphore, not when a new one must be 1032 * created. 1033 * @sma contains the semaphore structure. 1034 * @semflg contains the operation control flags. 1035 * Return 0 if permission is granted. 1036 * @sem_semctl: 1037 * Check permission when a semaphore operation specified by @cmd is to be 1038 * performed on the semaphore @sma. The @sma may be NULL, e.g. for 1039 * IPC_INFO or SEM_INFO. 1040 * @sma contains the semaphore structure. May be NULL. 1041 * @cmd contains the operation to be performed. 1042 * Return 0 if permission is granted. 1043 * @sem_semop 1044 * Check permissions before performing operations on members of the 1045 * semaphore set @sma. If the @alter flag is nonzero, the semaphore set 1046 * may be modified. 1047 * @sma contains the semaphore structure. 1048 * @sops contains the operations to perform. 1049 * @nsops contains the number of operations to perform. 1050 * @alter contains the flag indicating whether changes are to be made. 1051 * Return 0 if permission is granted. 1052 * 1053 * @ptrace: 1054 * Check permission before allowing the @parent process to trace the 1055 * @child process. 1056 * Security modules may also want to perform a process tracing check 1057 * during an execve in the set_security or apply_creds hooks of 1058 * binprm_security_ops if the process is being traced and its security 1059 * attributes would be changed by the execve. 1060 * @parent contains the task_struct structure for parent process. 1061 * @child contains the task_struct structure for child process. 1062 * Return 0 if permission is granted. 1063 * @capget: 1064 * Get the @effective, @inheritable, and @permitted capability sets for 1065 * the @target process. The hook may also perform permission checking to 1066 * determine if the current process is allowed to see the capability sets 1067 * of the @target process. 1068 * @target contains the task_struct structure for target process. 1069 * @effective contains the effective capability set. 1070 * @inheritable contains the inheritable capability set. 1071 * @permitted contains the permitted capability set. 1072 * Return 0 if the capability sets were successfully obtained. 1073 * @capset_check: 1074 * Check permission before setting the @effective, @inheritable, and 1075 * @permitted capability sets for the @target process. 1076 * Caveat: @target is also set to current if a set of processes is 1077 * specified (i.e. all processes other than current and init or a 1078 * particular process group). Hence, the capset_set hook may need to 1079 * revalidate permission to the actual target process. 1080 * @target contains the task_struct structure for target process. 1081 * @effective contains the effective capability set. 1082 * @inheritable contains the inheritable capability set. 1083 * @permitted contains the permitted capability set. 1084 * Return 0 if permission is granted. 1085 * @capset_set: 1086 * Set the @effective, @inheritable, and @permitted capability sets for 1087 * the @target process. Since capset_check cannot always check permission 1088 * to the real @target process, this hook may also perform permission 1089 * checking to determine if the current process is allowed to set the 1090 * capability sets of the @target process. However, this hook has no way 1091 * of returning an error due to the structure of the sys_capset code. 1092 * @target contains the task_struct structure for target process. 1093 * @effective contains the effective capability set. 1094 * @inheritable contains the inheritable capability set. 1095 * @permitted contains the permitted capability set. 1096 * @capable: 1097 * Check whether the @tsk process has the @cap capability. 1098 * @tsk contains the task_struct for the process. 1099 * @cap contains the capability <include/linux/capability.h>. 1100 * Return 0 if the capability is granted for @tsk. 1101 * @acct: 1102 * Check permission before enabling or disabling process accounting. If 1103 * accounting is being enabled, then @file refers to the open file used to 1104 * store accounting records. If accounting is being disabled, then @file 1105 * is NULL. 1106 * @file contains the file structure for the accounting file (may be NULL). 1107 * Return 0 if permission is granted. 1108 * @sysctl: 1109 * Check permission before accessing the @table sysctl variable in the 1110 * manner specified by @op. 1111 * @table contains the ctl_table structure for the sysctl variable. 1112 * @op contains the operation (001 = search, 002 = write, 004 = read). 1113 * Return 0 if permission is granted. 1114 * @syslog: 1115 * Check permission before accessing the kernel message ring or changing 1116 * logging to the console. 1117 * See the syslog(2) manual page for an explanation of the @type values. 1118 * @type contains the type of action. 1119 * Return 0 if permission is granted. 1120 * @settime: 1121 * Check permission to change the system time. 1122 * struct timespec and timezone are defined in include/linux/time.h 1123 * @ts contains new time 1124 * @tz contains new timezone 1125 * Return 0 if permission is granted. 1126 * @vm_enough_memory: 1127 * Check permissions for allocating a new virtual mapping. 1128 * @pages contains the number of pages. 1129 * Return 0 if permission is granted. 1130 * 1131 * @register_security: 1132 * allow module stacking. 1133 * @name contains the name of the security module being stacked. 1134 * @ops contains a pointer to the struct security_operations of the module to stack. 1135 * @unregister_security: 1136 * remove a stacked module. 1137 * @name contains the name of the security module being unstacked. 1138 * @ops contains a pointer to the struct security_operations of the module to unstack. 1139 * 1140 * @secid_to_secctx: 1141 * Convert secid to security context. 1142 * @secid contains the security ID. 1143 * @secdata contains the pointer that stores the converted security context. 1144 * 1145 * @release_secctx: 1146 * Release the security context. 1147 * @secdata contains the security context. 1148 * @seclen contains the length of the security context. 1149 * 1150 * This is the main security structure. 1151 */ 1152struct security_operations { 1153 int (*ptrace) (struct task_struct * parent, struct task_struct * child); 1154 int (*capget) (struct task_struct * target, 1155 kernel_cap_t * effective, 1156 kernel_cap_t * inheritable, kernel_cap_t * permitted); 1157 int (*capset_check) (struct task_struct * target, 1158 kernel_cap_t * effective, 1159 kernel_cap_t * inheritable, 1160 kernel_cap_t * permitted); 1161 void (*capset_set) (struct task_struct * target, 1162 kernel_cap_t * effective, 1163 kernel_cap_t * inheritable, 1164 kernel_cap_t * permitted); 1165 int (*capable) (struct task_struct * tsk, int cap); 1166 int (*acct) (struct file * file); 1167 int (*sysctl) (struct ctl_table * table, int op); 1168 int (*quotactl) (int cmds, int type, int id, struct super_block * sb); 1169 int (*quota_on) (struct dentry * dentry); 1170 int (*syslog) (int type); 1171 int (*settime) (struct timespec *ts, struct timezone *tz); 1172 int (*vm_enough_memory) (long pages); 1173 1174 int (*bprm_alloc_security) (struct linux_binprm * bprm); 1175 void (*bprm_free_security) (struct linux_binprm * bprm); 1176 void (*bprm_apply_creds) (struct linux_binprm * bprm, int unsafe); 1177 void (*bprm_post_apply_creds) (struct linux_binprm * bprm); 1178 int (*bprm_set_security) (struct linux_binprm * bprm); 1179 int (*bprm_check_security) (struct linux_binprm * bprm); 1180 int (*bprm_secureexec) (struct linux_binprm * bprm); 1181 1182 int (*sb_alloc_security) (struct super_block * sb); 1183 void (*sb_free_security) (struct super_block * sb); 1184 int (*sb_copy_data)(struct file_system_type *type, 1185 void *orig, void *copy); 1186 int (*sb_kern_mount) (struct super_block *sb, void *data); 1187 int (*sb_statfs) (struct dentry *dentry); 1188 int (*sb_mount) (char *dev_name, struct nameidata * nd, 1189 char *type, unsigned long flags, void *data); 1190 int (*sb_check_sb) (struct vfsmount * mnt, struct nameidata * nd); 1191 int (*sb_umount) (struct vfsmount * mnt, int flags); 1192 void (*sb_umount_close) (struct vfsmount * mnt); 1193 void (*sb_umount_busy) (struct vfsmount * mnt); 1194 void (*sb_post_remount) (struct vfsmount * mnt, 1195 unsigned long flags, void *data); 1196 void (*sb_post_mountroot) (void); 1197 void (*sb_post_addmount) (struct vfsmount * mnt, 1198 struct nameidata * mountpoint_nd); 1199 int (*sb_pivotroot) (struct nameidata * old_nd, 1200 struct nameidata * new_nd); 1201 void (*sb_post_pivotroot) (struct nameidata * old_nd, 1202 struct nameidata * new_nd); 1203 1204 int (*inode_alloc_security) (struct inode *inode); 1205 void (*inode_free_security) (struct inode *inode); 1206 int (*inode_init_security) (struct inode *inode, struct inode *dir, 1207 char **name, void **value, size_t *len); 1208 int (*inode_create) (struct inode *dir, 1209 struct dentry *dentry, int mode); 1210 int (*inode_link) (struct dentry *old_dentry, 1211 struct inode *dir, struct dentry *new_dentry); 1212 int (*inode_unlink) (struct inode *dir, struct dentry *dentry); 1213 int (*inode_symlink) (struct inode *dir, 1214 struct dentry *dentry, const char *old_name); 1215 int (*inode_mkdir) (struct inode *dir, struct dentry *dentry, int mode); 1216 int (*inode_rmdir) (struct inode *dir, struct dentry *dentry); 1217 int (*inode_mknod) (struct inode *dir, struct dentry *dentry, 1218 int mode, dev_t dev); 1219 int (*inode_rename) (struct inode *old_dir, struct dentry *old_dentry, 1220 struct inode *new_dir, struct dentry *new_dentry); 1221 int (*inode_readlink) (struct dentry *dentry); 1222 int (*inode_follow_link) (struct dentry *dentry, struct nameidata *nd); 1223 int (*inode_permission) (struct inode *inode, int mask, struct nameidata *nd); 1224 int (*inode_setattr) (struct dentry *dentry, struct iattr *attr); 1225 int (*inode_getattr) (struct vfsmount *mnt, struct dentry *dentry); 1226 void (*inode_delete) (struct inode *inode); 1227 int (*inode_setxattr) (struct dentry *dentry, char *name, void *value, 1228 size_t size, int flags); 1229 void (*inode_post_setxattr) (struct dentry *dentry, char *name, void *value, 1230 size_t size, int flags); 1231 int (*inode_getxattr) (struct dentry *dentry, char *name); 1232 int (*inode_listxattr) (struct dentry *dentry); 1233 int (*inode_removexattr) (struct dentry *dentry, char *name); 1234 const char *(*inode_xattr_getsuffix) (void); 1235 int (*inode_getsecurity)(const struct inode *inode, const char *name, void *buffer, size_t size, int err); 1236 int (*inode_setsecurity)(struct inode *inode, const char *name, const void *value, size_t size, int flags); 1237 int (*inode_listsecurity)(struct inode *inode, char *buffer, size_t buffer_size); 1238 1239 int (*file_permission) (struct file * file, int mask); 1240 int (*file_alloc_security) (struct file * file); 1241 void (*file_free_security) (struct file * file); 1242 int (*file_ioctl) (struct file * file, unsigned int cmd, 1243 unsigned long arg); 1244 int (*file_mmap) (struct file * file, 1245 unsigned long reqprot, unsigned long prot, 1246 unsigned long flags, unsigned long addr, 1247 unsigned long addr_only); 1248 int (*file_mprotect) (struct vm_area_struct * vma, 1249 unsigned long reqprot, 1250 unsigned long prot); 1251 int (*file_lock) (struct file * file, unsigned int cmd); 1252 int (*file_fcntl) (struct file * file, unsigned int cmd, 1253 unsigned long arg); 1254 int (*file_set_fowner) (struct file * file); 1255 int (*file_send_sigiotask) (struct task_struct * tsk, 1256 struct fown_struct * fown, int sig); 1257 int (*file_receive) (struct file * file); 1258 1259 int (*task_create) (unsigned long clone_flags); 1260 int (*task_alloc_security) (struct task_struct * p); 1261 void (*task_free_security) (struct task_struct * p); 1262 int (*task_setuid) (uid_t id0, uid_t id1, uid_t id2, int flags); 1263 int (*task_post_setuid) (uid_t old_ruid /* or fsuid */ , 1264 uid_t old_euid, uid_t old_suid, int flags); 1265 int (*task_setgid) (gid_t id0, gid_t id1, gid_t id2, int flags); 1266 int (*task_setpgid) (struct task_struct * p, pid_t pgid); 1267 int (*task_getpgid) (struct task_struct * p); 1268 int (*task_getsid) (struct task_struct * p); 1269 void (*task_getsecid) (struct task_struct * p, u32 * secid); 1270 int (*task_setgroups) (struct group_info *group_info); 1271 int (*task_setnice) (struct task_struct * p, int nice); 1272 int (*task_setioprio) (struct task_struct * p, int ioprio); 1273 int (*task_getioprio) (struct task_struct * p); 1274 int (*task_setrlimit) (unsigned int resource, struct rlimit * new_rlim); 1275 int (*task_setscheduler) (struct task_struct * p, int policy, 1276 struct sched_param * lp); 1277 int (*task_getscheduler) (struct task_struct * p); 1278 int (*task_movememory) (struct task_struct * p); 1279 int (*task_kill) (struct task_struct * p, 1280 struct siginfo * info, int sig, u32 secid); 1281 int (*task_wait) (struct task_struct * p); 1282 int (*task_prctl) (int option, unsigned long arg2, 1283 unsigned long arg3, unsigned long arg4, 1284 unsigned long arg5); 1285 void (*task_reparent_to_init) (struct task_struct * p); 1286 void (*task_to_inode)(struct task_struct *p, struct inode *inode); 1287 1288 int (*ipc_permission) (struct kern_ipc_perm * ipcp, short flag); 1289 1290 int (*msg_msg_alloc_security) (struct msg_msg * msg); 1291 void (*msg_msg_free_security) (struct msg_msg * msg); 1292 1293 int (*msg_queue_alloc_security) (struct msg_queue * msq); 1294 void (*msg_queue_free_security) (struct msg_queue * msq); 1295 int (*msg_queue_associate) (struct msg_queue * msq, int msqflg); 1296 int (*msg_queue_msgctl) (struct msg_queue * msq, int cmd); 1297 int (*msg_queue_msgsnd) (struct msg_queue * msq, 1298 struct msg_msg * msg, int msqflg); 1299 int (*msg_queue_msgrcv) (struct msg_queue * msq, 1300 struct msg_msg * msg, 1301 struct task_struct * target, 1302 long type, int mode); 1303 1304 int (*shm_alloc_security) (struct shmid_kernel * shp); 1305 void (*shm_free_security) (struct shmid_kernel * shp); 1306 int (*shm_associate) (struct shmid_kernel * shp, int shmflg); 1307 int (*shm_shmctl) (struct shmid_kernel * shp, int cmd); 1308 int (*shm_shmat) (struct shmid_kernel * shp, 1309 char __user *shmaddr, int shmflg); 1310 1311 int (*sem_alloc_security) (struct sem_array * sma); 1312 void (*sem_free_security) (struct sem_array * sma); 1313 int (*sem_associate) (struct sem_array * sma, int semflg); 1314 int (*sem_semctl) (struct sem_array * sma, int cmd); 1315 int (*sem_semop) (struct sem_array * sma, 1316 struct sembuf * sops, unsigned nsops, int alter); 1317 1318 int (*netlink_send) (struct sock * sk, struct sk_buff * skb); 1319 int (*netlink_recv) (struct sk_buff * skb, int cap); 1320 1321 /* allow module stacking */ 1322 int (*register_security) (const char *name, 1323 struct security_operations *ops); 1324 int (*unregister_security) (const char *name, 1325 struct security_operations *ops); 1326 1327 void (*d_instantiate) (struct dentry *dentry, struct inode *inode); 1328 1329 int (*getprocattr)(struct task_struct *p, char *name, char **value); 1330 int (*setprocattr)(struct task_struct *p, char *name, void *value, size_t size); 1331 int (*secid_to_secctx)(u32 secid, char **secdata, u32 *seclen); 1332 void (*release_secctx)(char *secdata, u32 seclen); 1333 1334#ifdef CONFIG_SECURITY_NETWORK 1335 int (*unix_stream_connect) (struct socket * sock, 1336 struct socket * other, struct sock * newsk); 1337 int (*unix_may_send) (struct socket * sock, struct socket * other); 1338 1339 int (*socket_create) (int family, int type, int protocol, int kern); 1340 int (*socket_post_create) (struct socket * sock, int family, 1341 int type, int protocol, int kern); 1342 int (*socket_bind) (struct socket * sock, 1343 struct sockaddr * address, int addrlen); 1344 int (*socket_connect) (struct socket * sock, 1345 struct sockaddr * address, int addrlen); 1346 int (*socket_listen) (struct socket * sock, int backlog); 1347 int (*socket_accept) (struct socket * sock, struct socket * newsock); 1348 void (*socket_post_accept) (struct socket * sock, 1349 struct socket * newsock); 1350 int (*socket_sendmsg) (struct socket * sock, 1351 struct msghdr * msg, int size); 1352 int (*socket_recvmsg) (struct socket * sock, 1353 struct msghdr * msg, int size, int flags); 1354 int (*socket_getsockname) (struct socket * sock); 1355 int (*socket_getpeername) (struct socket * sock); 1356 int (*socket_getsockopt) (struct socket * sock, int level, int optname); 1357 int (*socket_setsockopt) (struct socket * sock, int level, int optname); 1358 int (*socket_shutdown) (struct socket * sock, int how); 1359 int (*socket_sock_rcv_skb) (struct sock * sk, struct sk_buff * skb); 1360 int (*socket_getpeersec_stream) (struct socket *sock, char __user *optval, int __user *optlen, unsigned len); 1361 int (*socket_getpeersec_dgram) (struct socket *sock, struct sk_buff *skb, u32 *secid); 1362 int (*sk_alloc_security) (struct sock *sk, int family, gfp_t priority); 1363 void (*sk_free_security) (struct sock *sk); 1364 void (*sk_clone_security) (const struct sock *sk, struct sock *newsk); 1365 void (*sk_getsecid) (struct sock *sk, u32 *secid); 1366 void (*sock_graft)(struct sock* sk, struct socket *parent); 1367 int (*inet_conn_request)(struct sock *sk, struct sk_buff *skb, 1368 struct request_sock *req); 1369 void (*inet_csk_clone)(struct sock *newsk, const struct request_sock *req); 1370 void (*inet_conn_established)(struct sock *sk, struct sk_buff *skb); 1371 void (*req_classify_flow)(const struct request_sock *req, struct flowi *fl); 1372#endif /* CONFIG_SECURITY_NETWORK */ 1373 1374#ifdef CONFIG_SECURITY_NETWORK_XFRM 1375 int (*xfrm_policy_alloc_security) (struct xfrm_policy *xp, 1376 struct xfrm_user_sec_ctx *sec_ctx); 1377 int (*xfrm_policy_clone_security) (struct xfrm_policy *old, struct xfrm_policy *new); 1378 void (*xfrm_policy_free_security) (struct xfrm_policy *xp); 1379 int (*xfrm_policy_delete_security) (struct xfrm_policy *xp); 1380 int (*xfrm_state_alloc_security) (struct xfrm_state *x, 1381 struct xfrm_user_sec_ctx *sec_ctx, 1382 u32 secid); 1383 void (*xfrm_state_free_security) (struct xfrm_state *x); 1384 int (*xfrm_state_delete_security) (struct xfrm_state *x); 1385 int (*xfrm_policy_lookup)(struct xfrm_policy *xp, u32 fl_secid, u8 dir); 1386 int (*xfrm_state_pol_flow_match)(struct xfrm_state *x, 1387 struct xfrm_policy *xp, struct flowi *fl); 1388 int (*xfrm_decode_session)(struct sk_buff *skb, u32 *secid, int ckall); 1389#endif /* CONFIG_SECURITY_NETWORK_XFRM */ 1390 1391 /* key management security hooks */ 1392#ifdef CONFIG_KEYS 1393 int (*key_alloc)(struct key *key, struct task_struct *tsk, unsigned long flags); 1394 void (*key_free)(struct key *key); 1395 int (*key_permission)(key_ref_t key_ref, 1396 struct task_struct *context, 1397 key_perm_t perm); 1398 1399#endif /* CONFIG_KEYS */ 1400 1401}; 1402 1403/* global variables */ 1404extern struct security_operations *security_ops; 1405 1406/* inline stuff */ 1407static inline int security_ptrace (struct task_struct * parent, struct task_struct * child) 1408{ 1409 return security_ops->ptrace (parent, child); 1410} 1411 1412static inline int security_capget (struct task_struct *target, 1413 kernel_cap_t *effective, 1414 kernel_cap_t *inheritable, 1415 kernel_cap_t *permitted) 1416{ 1417 return security_ops->capget (target, effective, inheritable, permitted); 1418} 1419 1420static inline int security_capset_check (struct task_struct *target, 1421 kernel_cap_t *effective, 1422 kernel_cap_t *inheritable, 1423 kernel_cap_t *permitted) 1424{ 1425 return security_ops->capset_check (target, effective, inheritable, permitted); 1426} 1427 1428static inline void security_capset_set (struct task_struct *target, 1429 kernel_cap_t *effective, 1430 kernel_cap_t *inheritable, 1431 kernel_cap_t *permitted) 1432{ 1433 security_ops->capset_set (target, effective, inheritable, permitted); 1434} 1435 1436static inline int security_capable(struct task_struct *tsk, int cap) 1437{ 1438 return security_ops->capable(tsk, cap); 1439} 1440 1441static inline int security_acct (struct file *file) 1442{ 1443 return security_ops->acct (file); 1444} 1445 1446static inline int security_sysctl(struct ctl_table *table, int op) 1447{ 1448 return security_ops->sysctl(table, op); 1449} 1450 1451static inline int security_quotactl (int cmds, int type, int id, 1452 struct super_block *sb) 1453{ 1454 return security_ops->quotactl (cmds, type, id, sb); 1455} 1456 1457static inline int security_quota_on (struct dentry * dentry) 1458{ 1459 return security_ops->quota_on (dentry); 1460} 1461 1462static inline int security_syslog(int type) 1463{ 1464 return security_ops->syslog(type); 1465} 1466 1467static inline int security_settime(struct timespec *ts, struct timezone *tz) 1468{ 1469 return security_ops->settime(ts, tz); 1470} 1471 1472 1473static inline int security_vm_enough_memory(long pages) 1474{ 1475 return security_ops->vm_enough_memory(pages); 1476} 1477 1478static inline int security_bprm_alloc (struct linux_binprm *bprm) 1479{ 1480 return security_ops->bprm_alloc_security (bprm); 1481} 1482static inline void security_bprm_free (struct linux_binprm *bprm) 1483{ 1484 security_ops->bprm_free_security (bprm); 1485} 1486static inline void security_bprm_apply_creds (struct linux_binprm *bprm, int unsafe) 1487{ 1488 security_ops->bprm_apply_creds (bprm, unsafe); 1489} 1490static inline void security_bprm_post_apply_creds (struct linux_binprm *bprm) 1491{ 1492 security_ops->bprm_post_apply_creds (bprm); 1493} 1494static inline int security_bprm_set (struct linux_binprm *bprm) 1495{ 1496 return security_ops->bprm_set_security (bprm); 1497} 1498 1499static inline int security_bprm_check (struct linux_binprm *bprm) 1500{ 1501 return security_ops->bprm_check_security (bprm); 1502} 1503 1504static inline int security_bprm_secureexec (struct linux_binprm *bprm) 1505{ 1506 return security_ops->bprm_secureexec (bprm); 1507} 1508 1509static inline int security_sb_alloc (struct super_block *sb) 1510{ 1511 return security_ops->sb_alloc_security (sb); 1512} 1513 1514static inline void security_sb_free (struct super_block *sb) 1515{ 1516 security_ops->sb_free_security (sb); 1517} 1518 1519static inline int security_sb_copy_data (struct file_system_type *type, 1520 void *orig, void *copy) 1521{ 1522 return security_ops->sb_copy_data (type, orig, copy); 1523} 1524 1525static inline int security_sb_kern_mount (struct super_block *sb, void *data) 1526{ 1527 return security_ops->sb_kern_mount (sb, data); 1528} 1529 1530static inline int security_sb_statfs (struct dentry *dentry) 1531{ 1532 return security_ops->sb_statfs (dentry); 1533} 1534 1535static inline int security_sb_mount (char *dev_name, struct nameidata *nd, 1536 char *type, unsigned long flags, 1537 void *data) 1538{ 1539 return security_ops->sb_mount (dev_name, nd, type, flags, data); 1540} 1541 1542static inline int security_sb_check_sb (struct vfsmount *mnt, 1543 struct nameidata *nd) 1544{ 1545 return security_ops->sb_check_sb (mnt, nd); 1546} 1547 1548static inline int security_sb_umount (struct vfsmount *mnt, int flags) 1549{ 1550 return security_ops->sb_umount (mnt, flags); 1551} 1552 1553static inline void security_sb_umount_close (struct vfsmount *mnt) 1554{ 1555 security_ops->sb_umount_close (mnt); 1556} 1557 1558static inline void security_sb_umount_busy (struct vfsmount *mnt) 1559{ 1560 security_ops->sb_umount_busy (mnt); 1561} 1562 1563static inline void security_sb_post_remount (struct vfsmount *mnt, 1564 unsigned long flags, void *data) 1565{ 1566 security_ops->sb_post_remount (mnt, flags, data); 1567} 1568 1569static inline void security_sb_post_mountroot (void) 1570{ 1571 security_ops->sb_post_mountroot (); 1572} 1573 1574static inline void security_sb_post_addmount (struct vfsmount *mnt, 1575 struct nameidata *mountpoint_nd) 1576{ 1577 security_ops->sb_post_addmount (mnt, mountpoint_nd); 1578} 1579 1580static inline int security_sb_pivotroot (struct nameidata *old_nd, 1581 struct nameidata *new_nd) 1582{ 1583 return security_ops->sb_pivotroot (old_nd, new_nd); 1584} 1585 1586static inline void security_sb_post_pivotroot (struct nameidata *old_nd, 1587 struct nameidata *new_nd) 1588{ 1589 security_ops->sb_post_pivotroot (old_nd, new_nd); 1590} 1591 1592static inline int security_inode_alloc (struct inode *inode) 1593{ 1594 inode->i_security = NULL; 1595 return security_ops->inode_alloc_security (inode); 1596} 1597 1598static inline void security_inode_free (struct inode *inode) 1599{ 1600 security_ops->inode_free_security (inode); 1601} 1602 1603static inline int security_inode_init_security (struct inode *inode, 1604 struct inode *dir, 1605 char **name, 1606 void **value, 1607 size_t *len) 1608{ 1609 if (unlikely (IS_PRIVATE (inode))) 1610 return -EOPNOTSUPP; 1611 return security_ops->inode_init_security (inode, dir, name, value, len); 1612} 1613 1614static inline int security_inode_create (struct inode *dir, 1615 struct dentry *dentry, 1616 int mode) 1617{ 1618 if (unlikely (IS_PRIVATE (dir))) 1619 return 0; 1620 return security_ops->inode_create (dir, dentry, mode); 1621} 1622 1623static inline int security_inode_link (struct dentry *old_dentry, 1624 struct inode *dir, 1625 struct dentry *new_dentry) 1626{ 1627 if (unlikely (IS_PRIVATE (old_dentry->d_inode))) 1628 return 0; 1629 return security_ops->inode_link (old_dentry, dir, new_dentry); 1630} 1631 1632static inline int security_inode_unlink (struct inode *dir, 1633 struct dentry *dentry) 1634{ 1635 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1636 return 0; 1637 return security_ops->inode_unlink (dir, dentry); 1638} 1639 1640static inline int security_inode_symlink (struct inode *dir, 1641 struct dentry *dentry, 1642 const char *old_name) 1643{ 1644 if (unlikely (IS_PRIVATE (dir))) 1645 return 0; 1646 return security_ops->inode_symlink (dir, dentry, old_name); 1647} 1648 1649static inline int security_inode_mkdir (struct inode *dir, 1650 struct dentry *dentry, 1651 int mode) 1652{ 1653 if (unlikely (IS_PRIVATE (dir))) 1654 return 0; 1655 return security_ops->inode_mkdir (dir, dentry, mode); 1656} 1657 1658static inline int security_inode_rmdir (struct inode *dir, 1659 struct dentry *dentry) 1660{ 1661 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1662 return 0; 1663 return security_ops->inode_rmdir (dir, dentry); 1664} 1665 1666static inline int security_inode_mknod (struct inode *dir, 1667 struct dentry *dentry, 1668 int mode, dev_t dev) 1669{ 1670 if (unlikely (IS_PRIVATE (dir))) 1671 return 0; 1672 return security_ops->inode_mknod (dir, dentry, mode, dev); 1673} 1674 1675static inline int security_inode_rename (struct inode *old_dir, 1676 struct dentry *old_dentry, 1677 struct inode *new_dir, 1678 struct dentry *new_dentry) 1679{ 1680 if (unlikely (IS_PRIVATE (old_dentry->d_inode) || 1681 (new_dentry->d_inode && IS_PRIVATE (new_dentry->d_inode)))) 1682 return 0; 1683 return security_ops->inode_rename (old_dir, old_dentry, 1684 new_dir, new_dentry); 1685} 1686 1687static inline int security_inode_readlink (struct dentry *dentry) 1688{ 1689 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1690 return 0; 1691 return security_ops->inode_readlink (dentry); 1692} 1693 1694static inline int security_inode_follow_link (struct dentry *dentry, 1695 struct nameidata *nd) 1696{ 1697 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1698 return 0; 1699 return security_ops->inode_follow_link (dentry, nd); 1700} 1701 1702static inline int security_inode_permission (struct inode *inode, int mask, 1703 struct nameidata *nd) 1704{ 1705 if (unlikely (IS_PRIVATE (inode))) 1706 return 0; 1707 return security_ops->inode_permission (inode, mask, nd); 1708} 1709 1710static inline int security_inode_setattr (struct dentry *dentry, 1711 struct iattr *attr) 1712{ 1713 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1714 return 0; 1715 return security_ops->inode_setattr (dentry, attr); 1716} 1717 1718static inline int security_inode_getattr (struct vfsmount *mnt, 1719 struct dentry *dentry) 1720{ 1721 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1722 return 0; 1723 return security_ops->inode_getattr (mnt, dentry); 1724} 1725 1726static inline void security_inode_delete (struct inode *inode) 1727{ 1728 if (unlikely (IS_PRIVATE (inode))) 1729 return; 1730 security_ops->inode_delete (inode); 1731} 1732 1733static inline int security_inode_setxattr (struct dentry *dentry, char *name, 1734 void *value, size_t size, int flags) 1735{ 1736 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1737 return 0; 1738 return security_ops->inode_setxattr (dentry, name, value, size, flags); 1739} 1740 1741static inline void security_inode_post_setxattr (struct dentry *dentry, char *name, 1742 void *value, size_t size, int flags) 1743{ 1744 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1745 return; 1746 security_ops->inode_post_setxattr (dentry, name, value, size, flags); 1747} 1748 1749static inline int security_inode_getxattr (struct dentry *dentry, char *name) 1750{ 1751 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1752 return 0; 1753 return security_ops->inode_getxattr (dentry, name); 1754} 1755 1756static inline int security_inode_listxattr (struct dentry *dentry) 1757{ 1758 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1759 return 0; 1760 return security_ops->inode_listxattr (dentry); 1761} 1762 1763static inline int security_inode_removexattr (struct dentry *dentry, char *name) 1764{ 1765 if (unlikely (IS_PRIVATE (dentry->d_inode))) 1766 return 0; 1767 return security_ops->inode_removexattr (dentry, name); 1768} 1769 1770static inline const char *security_inode_xattr_getsuffix(void) 1771{ 1772 return security_ops->inode_xattr_getsuffix(); 1773} 1774 1775static inline int security_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err) 1776{ 1777 if (unlikely (IS_PRIVATE (inode))) 1778 return 0; 1779 return security_ops->inode_getsecurity(inode, name, buffer, size, err); 1780} 1781 1782static inline int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 1783{ 1784 if (unlikely (IS_PRIVATE (inode))) 1785 return 0; 1786 return security_ops->inode_setsecurity(inode, name, value, size, flags); 1787} 1788 1789static inline int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 1790{ 1791 if (unlikely (IS_PRIVATE (inode))) 1792 return 0; 1793 return security_ops->inode_listsecurity(inode, buffer, buffer_size); 1794} 1795 1796static inline int security_file_permission (struct file *file, int mask) 1797{ 1798 return security_ops->file_permission (file, mask); 1799} 1800 1801static inline int security_file_alloc (struct file *file) 1802{ 1803 return security_ops->file_alloc_security (file); 1804} 1805 1806static inline void security_file_free (struct file *file) 1807{ 1808 security_ops->file_free_security (file); 1809} 1810 1811static inline int security_file_ioctl (struct file *file, unsigned int cmd, 1812 unsigned long arg) 1813{ 1814 return security_ops->file_ioctl (file, cmd, arg); 1815} 1816 1817static inline int security_file_mmap (struct file *file, unsigned long reqprot, 1818 unsigned long prot, 1819 unsigned long flags, 1820 unsigned long addr, 1821 unsigned long addr_only) 1822{ 1823 return security_ops->file_mmap (file, reqprot, prot, flags, addr, 1824 addr_only); 1825} 1826 1827static inline int security_file_mprotect (struct vm_area_struct *vma, 1828 unsigned long reqprot, 1829 unsigned long prot) 1830{ 1831 return security_ops->file_mprotect (vma, reqprot, prot); 1832} 1833 1834static inline int security_file_lock (struct file *file, unsigned int cmd) 1835{ 1836 return security_ops->file_lock (file, cmd); 1837} 1838 1839static inline int security_file_fcntl (struct file *file, unsigned int cmd, 1840 unsigned long arg) 1841{ 1842 return security_ops->file_fcntl (file, cmd, arg); 1843} 1844 1845static inline int security_file_set_fowner (struct file *file) 1846{ 1847 return security_ops->file_set_fowner (file); 1848} 1849 1850static inline int security_file_send_sigiotask (struct task_struct *tsk, 1851 struct fown_struct *fown, 1852 int sig) 1853{ 1854 return security_ops->file_send_sigiotask (tsk, fown, sig); 1855} 1856 1857static inline int security_file_receive (struct file *file) 1858{ 1859 return security_ops->file_receive (file); 1860} 1861 1862static inline int security_task_create (unsigned long clone_flags) 1863{ 1864 return security_ops->task_create (clone_flags); 1865} 1866 1867static inline int security_task_alloc (struct task_struct *p) 1868{ 1869 return security_ops->task_alloc_security (p); 1870} 1871 1872static inline void security_task_free (struct task_struct *p) 1873{ 1874 security_ops->task_free_security (p); 1875} 1876 1877static inline int security_task_setuid (uid_t id0, uid_t id1, uid_t id2, 1878 int flags) 1879{ 1880 return security_ops->task_setuid (id0, id1, id2, flags); 1881} 1882 1883static inline int security_task_post_setuid (uid_t old_ruid, uid_t old_euid, 1884 uid_t old_suid, int flags) 1885{ 1886 return security_ops->task_post_setuid (old_ruid, old_euid, old_suid, flags); 1887} 1888 1889static inline int security_task_setgid (gid_t id0, gid_t id1, gid_t id2, 1890 int flags) 1891{ 1892 return security_ops->task_setgid (id0, id1, id2, flags); 1893} 1894 1895static inline int security_task_setpgid (struct task_struct *p, pid_t pgid) 1896{ 1897 return security_ops->task_setpgid (p, pgid); 1898} 1899 1900static inline int security_task_getpgid (struct task_struct *p) 1901{ 1902 return security_ops->task_getpgid (p); 1903} 1904 1905static inline int security_task_getsid (struct task_struct *p) 1906{ 1907 return security_ops->task_getsid (p); 1908} 1909 1910static inline void security_task_getsecid (struct task_struct *p, u32 *secid) 1911{ 1912 security_ops->task_getsecid (p, secid); 1913} 1914 1915static inline int security_task_setgroups (struct group_info *group_info) 1916{ 1917 return security_ops->task_setgroups (group_info); 1918} 1919 1920static inline int security_task_setnice (struct task_struct *p, int nice) 1921{ 1922 return security_ops->task_setnice (p, nice); 1923} 1924 1925static inline int security_task_setioprio (struct task_struct *p, int ioprio) 1926{ 1927 return security_ops->task_setioprio (p, ioprio); 1928} 1929 1930static inline int security_task_getioprio (struct task_struct *p) 1931{ 1932 return security_ops->task_getioprio (p); 1933} 1934 1935static inline int security_task_setrlimit (unsigned int resource, 1936 struct rlimit *new_rlim) 1937{ 1938 return security_ops->task_setrlimit (resource, new_rlim); 1939} 1940 1941static inline int security_task_setscheduler (struct task_struct *p, 1942 int policy, 1943 struct sched_param *lp) 1944{ 1945 return security_ops->task_setscheduler (p, policy, lp); 1946} 1947 1948static inline int security_task_getscheduler (struct task_struct *p) 1949{ 1950 return security_ops->task_getscheduler (p); 1951} 1952 1953static inline int security_task_movememory (struct task_struct *p) 1954{ 1955 return security_ops->task_movememory (p); 1956} 1957 1958static inline int security_task_kill (struct task_struct *p, 1959 struct siginfo *info, int sig, 1960 u32 secid) 1961{ 1962 return security_ops->task_kill (p, info, sig, secid); 1963} 1964 1965static inline int security_task_wait (struct task_struct *p) 1966{ 1967 return security_ops->task_wait (p); 1968} 1969 1970static inline int security_task_prctl (int option, unsigned long arg2, 1971 unsigned long arg3, 1972 unsigned long arg4, 1973 unsigned long arg5) 1974{ 1975 return security_ops->task_prctl (option, arg2, arg3, arg4, arg5); 1976} 1977 1978static inline void security_task_reparent_to_init (struct task_struct *p) 1979{ 1980 security_ops->task_reparent_to_init (p); 1981} 1982 1983static inline void security_task_to_inode(struct task_struct *p, struct inode *inode) 1984{ 1985 security_ops->task_to_inode(p, inode); 1986} 1987 1988static inline int security_ipc_permission (struct kern_ipc_perm *ipcp, 1989 short flag) 1990{ 1991 return security_ops->ipc_permission (ipcp, flag); 1992} 1993 1994static inline int security_msg_msg_alloc (struct msg_msg * msg) 1995{ 1996 return security_ops->msg_msg_alloc_security (msg); 1997} 1998 1999static inline void security_msg_msg_free (struct msg_msg * msg) 2000{ 2001 security_ops->msg_msg_free_security(msg); 2002} 2003 2004static inline int security_msg_queue_alloc (struct msg_queue *msq) 2005{ 2006 return security_ops->msg_queue_alloc_security (msq); 2007} 2008 2009static inline void security_msg_queue_free (struct msg_queue *msq) 2010{ 2011 security_ops->msg_queue_free_security (msq); 2012} 2013 2014static inline int security_msg_queue_associate (struct msg_queue * msq, 2015 int msqflg) 2016{ 2017 return security_ops->msg_queue_associate (msq, msqflg); 2018} 2019 2020static inline int security_msg_queue_msgctl (struct msg_queue * msq, int cmd) 2021{ 2022 return security_ops->msg_queue_msgctl (msq, cmd); 2023} 2024 2025static inline int security_msg_queue_msgsnd (struct msg_queue * msq, 2026 struct msg_msg * msg, int msqflg) 2027{ 2028 return security_ops->msg_queue_msgsnd (msq, msg, msqflg); 2029} 2030 2031static inline int security_msg_queue_msgrcv (struct msg_queue * msq, 2032 struct msg_msg * msg, 2033 struct task_struct * target, 2034 long type, int mode) 2035{ 2036 return security_ops->msg_queue_msgrcv (msq, msg, target, type, mode); 2037} 2038 2039static inline int security_shm_alloc (struct shmid_kernel *shp) 2040{ 2041 return security_ops->shm_alloc_security (shp); 2042} 2043 2044static inline void security_shm_free (struct shmid_kernel *shp) 2045{ 2046 security_ops->shm_free_security (shp); 2047} 2048 2049static inline int security_shm_associate (struct shmid_kernel * shp, 2050 int shmflg) 2051{ 2052 return security_ops->shm_associate(shp, shmflg); 2053} 2054 2055static inline int security_shm_shmctl (struct shmid_kernel * shp, int cmd) 2056{ 2057 return security_ops->shm_shmctl (shp, cmd); 2058} 2059 2060static inline int security_shm_shmat (struct shmid_kernel * shp, 2061 char __user *shmaddr, int shmflg) 2062{ 2063 return security_ops->shm_shmat(shp, shmaddr, shmflg); 2064} 2065 2066static inline int security_sem_alloc (struct sem_array *sma) 2067{ 2068 return security_ops->sem_alloc_security (sma); 2069} 2070 2071static inline void security_sem_free (struct sem_array *sma) 2072{ 2073 security_ops->sem_free_security (sma); 2074} 2075 2076static inline int security_sem_associate (struct sem_array * sma, int semflg) 2077{ 2078 return security_ops->sem_associate (sma, semflg); 2079} 2080 2081static inline int security_sem_semctl (struct sem_array * sma, int cmd) 2082{ 2083 return security_ops->sem_semctl(sma, cmd); 2084} 2085 2086static inline int security_sem_semop (struct sem_array * sma, 2087 struct sembuf * sops, unsigned nsops, 2088 int alter) 2089{ 2090 return security_ops->sem_semop(sma, sops, nsops, alter); 2091} 2092 2093static inline void security_d_instantiate (struct dentry *dentry, struct inode *inode) 2094{ 2095 if (unlikely (inode && IS_PRIVATE (inode))) 2096 return; 2097 security_ops->d_instantiate (dentry, inode); 2098} 2099 2100static inline int security_getprocattr(struct task_struct *p, char *name, char **value) 2101{ 2102 return security_ops->getprocattr(p, name, value); 2103} 2104 2105static inline int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size) 2106{ 2107 return security_ops->setprocattr(p, name, value, size); 2108} 2109 2110static inline int security_netlink_send(struct sock *sk, struct sk_buff * skb) 2111{ 2112 return security_ops->netlink_send(sk, skb); 2113} 2114 2115static inline int security_netlink_recv(struct sk_buff * skb, int cap) 2116{ 2117 return security_ops->netlink_recv(skb, cap); 2118} 2119 2120static inline int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 2121{ 2122 return security_ops->secid_to_secctx(secid, secdata, seclen); 2123} 2124 2125static inline void security_release_secctx(char *secdata, u32 seclen) 2126{ 2127 return security_ops->release_secctx(secdata, seclen); 2128} 2129 2130/* prototypes */ 2131extern int security_init (void); 2132extern int register_security (struct security_operations *ops); 2133extern int unregister_security (struct security_operations *ops); 2134extern int mod_reg_security (const char *name, struct security_operations *ops); 2135extern int mod_unreg_security (const char *name, struct security_operations *ops); 2136extern struct dentry *securityfs_create_file(const char *name, mode_t mode, 2137 struct dentry *parent, void *data, 2138 const struct file_operations *fops); 2139extern struct dentry *securityfs_create_dir(const char *name, struct dentry *parent); 2140extern void securityfs_remove(struct dentry *dentry); 2141 2142 2143#else /* CONFIG_SECURITY */ 2144 2145/* 2146 * This is the default capabilities functionality. Most of these functions 2147 * are just stubbed out, but a few must call the proper capable code. 2148 */ 2149 2150static inline int security_init(void) 2151{ 2152 return 0; 2153} 2154 2155static inline int security_ptrace (struct task_struct *parent, struct task_struct * child) 2156{ 2157 return cap_ptrace (parent, child); 2158} 2159 2160static inline int security_capget (struct task_struct *target, 2161 kernel_cap_t *effective, 2162 kernel_cap_t *inheritable, 2163 kernel_cap_t *permitted) 2164{ 2165 return cap_capget (target, effective, inheritable, permitted); 2166} 2167 2168static inline int security_capset_check (struct task_struct *target, 2169 kernel_cap_t *effective, 2170 kernel_cap_t *inheritable, 2171 kernel_cap_t *permitted) 2172{ 2173 return cap_capset_check (target, effective, inheritable, permitted); 2174} 2175 2176static inline void security_capset_set (struct task_struct *target, 2177 kernel_cap_t *effective, 2178 kernel_cap_t *inheritable, 2179 kernel_cap_t *permitted) 2180{ 2181 cap_capset_set (target, effective, inheritable, permitted); 2182} 2183 2184static inline int security_capable(struct task_struct *tsk, int cap) 2185{ 2186 return cap_capable(tsk, cap); 2187} 2188 2189static inline int security_acct (struct file *file) 2190{ 2191 return 0; 2192} 2193 2194static inline int security_sysctl(struct ctl_table *table, int op) 2195{ 2196 return 0; 2197} 2198 2199static inline int security_quotactl (int cmds, int type, int id, 2200 struct super_block * sb) 2201{ 2202 return 0; 2203} 2204 2205static inline int security_quota_on (struct dentry * dentry) 2206{ 2207 return 0; 2208} 2209 2210static inline int security_syslog(int type) 2211{ 2212 return cap_syslog(type); 2213} 2214 2215static inline int security_settime(struct timespec *ts, struct timezone *tz) 2216{ 2217 return cap_settime(ts, tz); 2218} 2219 2220static inline int security_vm_enough_memory(long pages) 2221{ 2222 return cap_vm_enough_memory(pages); 2223} 2224 2225static inline int security_bprm_alloc (struct linux_binprm *bprm) 2226{ 2227 return 0; 2228} 2229 2230static inline void security_bprm_free (struct linux_binprm *bprm) 2231{ } 2232 2233static inline void security_bprm_apply_creds (struct linux_binprm *bprm, int unsafe) 2234{ 2235 cap_bprm_apply_creds (bprm, unsafe); 2236} 2237 2238static inline void security_bprm_post_apply_creds (struct linux_binprm *bprm) 2239{ 2240 return; 2241} 2242 2243static inline int security_bprm_set (struct linux_binprm *bprm) 2244{ 2245 return cap_bprm_set_security (bprm); 2246} 2247 2248static inline int security_bprm_check (struct linux_binprm *bprm) 2249{ 2250 return 0; 2251} 2252 2253static inline int security_bprm_secureexec (struct linux_binprm *bprm) 2254{ 2255 return cap_bprm_secureexec(bprm); 2256} 2257 2258static inline int security_sb_alloc (struct super_block *sb) 2259{ 2260 return 0; 2261} 2262 2263static inline void security_sb_free (struct super_block *sb) 2264{ } 2265 2266static inline int security_sb_copy_data (struct file_system_type *type, 2267 void *orig, void *copy) 2268{ 2269 return 0; 2270} 2271 2272static inline int security_sb_kern_mount (struct super_block *sb, void *data) 2273{ 2274 return 0; 2275} 2276 2277static inline int security_sb_statfs (struct dentry *dentry) 2278{ 2279 return 0; 2280} 2281 2282static inline int security_sb_mount (char *dev_name, struct nameidata *nd, 2283 char *type, unsigned long flags, 2284 void *data) 2285{ 2286 return 0; 2287} 2288 2289static inline int security_sb_check_sb (struct vfsmount *mnt, 2290 struct nameidata *nd) 2291{ 2292 return 0; 2293} 2294 2295static inline int security_sb_umount (struct vfsmount *mnt, int flags) 2296{ 2297 return 0; 2298} 2299 2300static inline void security_sb_umount_close (struct vfsmount *mnt) 2301{ } 2302 2303static inline void security_sb_umount_busy (struct vfsmount *mnt) 2304{ } 2305 2306static inline void security_sb_post_remount (struct vfsmount *mnt, 2307 unsigned long flags, void *data) 2308{ } 2309 2310static inline void security_sb_post_mountroot (void) 2311{ } 2312 2313static inline void security_sb_post_addmount (struct vfsmount *mnt, 2314 struct nameidata *mountpoint_nd) 2315{ } 2316 2317static inline int security_sb_pivotroot (struct nameidata *old_nd, 2318 struct nameidata *new_nd) 2319{ 2320 return 0; 2321} 2322 2323static inline void security_sb_post_pivotroot (struct nameidata *old_nd, 2324 struct nameidata *new_nd) 2325{ } 2326 2327static inline int security_inode_alloc (struct inode *inode) 2328{ 2329 return 0; 2330} 2331 2332static inline void security_inode_free (struct inode *inode) 2333{ } 2334 2335static inline int security_inode_init_security (struct inode *inode, 2336 struct inode *dir, 2337 char **name, 2338 void **value, 2339 size_t *len) 2340{ 2341 return -EOPNOTSUPP; 2342} 2343 2344static inline int security_inode_create (struct inode *dir, 2345 struct dentry *dentry, 2346 int mode) 2347{ 2348 return 0; 2349} 2350 2351static inline int security_inode_link (struct dentry *old_dentry, 2352 struct inode *dir, 2353 struct dentry *new_dentry) 2354{ 2355 return 0; 2356} 2357 2358static inline int security_inode_unlink (struct inode *dir, 2359 struct dentry *dentry) 2360{ 2361 return 0; 2362} 2363 2364static inline int security_inode_symlink (struct inode *dir, 2365 struct dentry *dentry, 2366 const char *old_name) 2367{ 2368 return 0; 2369} 2370 2371static inline int security_inode_mkdir (struct inode *dir, 2372 struct dentry *dentry, 2373 int mode) 2374{ 2375 return 0; 2376} 2377 2378static inline int security_inode_rmdir (struct inode *dir, 2379 struct dentry *dentry) 2380{ 2381 return 0; 2382} 2383 2384static inline int security_inode_mknod (struct inode *dir, 2385 struct dentry *dentry, 2386 int mode, dev_t dev) 2387{ 2388 return 0; 2389} 2390 2391static inline int security_inode_rename (struct inode *old_dir, 2392 struct dentry *old_dentry, 2393 struct inode *new_dir, 2394 struct dentry *new_dentry) 2395{ 2396 return 0; 2397} 2398 2399static inline int security_inode_readlink (struct dentry *dentry) 2400{ 2401 return 0; 2402} 2403 2404static inline int security_inode_follow_link (struct dentry *dentry, 2405 struct nameidata *nd) 2406{ 2407 return 0; 2408} 2409 2410static inline int security_inode_permission (struct inode *inode, int mask, 2411 struct nameidata *nd) 2412{ 2413 return 0; 2414} 2415 2416static inline int security_inode_setattr (struct dentry *dentry, 2417 struct iattr *attr) 2418{ 2419 return 0; 2420} 2421 2422static inline int security_inode_getattr (struct vfsmount *mnt, 2423 struct dentry *dentry) 2424{ 2425 return 0; 2426} 2427 2428static inline void security_inode_delete (struct inode *inode) 2429{ } 2430 2431static inline int security_inode_setxattr (struct dentry *dentry, char *name, 2432 void *value, size_t size, int flags) 2433{ 2434 return cap_inode_setxattr(dentry, name, value, size, flags); 2435} 2436 2437static inline void security_inode_post_setxattr (struct dentry *dentry, char *name, 2438 void *value, size_t size, int flags) 2439{ } 2440 2441static inline int security_inode_getxattr (struct dentry *dentry, char *name) 2442{ 2443 return 0; 2444} 2445 2446static inline int security_inode_listxattr (struct dentry *dentry) 2447{ 2448 return 0; 2449} 2450 2451static inline int security_inode_removexattr (struct dentry *dentry, char *name) 2452{ 2453 return cap_inode_removexattr(dentry, name); 2454} 2455 2456static inline const char *security_inode_xattr_getsuffix (void) 2457{ 2458 return NULL ; 2459} 2460 2461static inline int security_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err) 2462{ 2463 return -EOPNOTSUPP; 2464} 2465 2466static inline int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 2467{ 2468 return -EOPNOTSUPP; 2469} 2470 2471static inline int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 2472{ 2473 return 0; 2474} 2475 2476static inline int security_file_permission (struct file *file, int mask) 2477{ 2478 return 0; 2479} 2480 2481static inline int security_file_alloc (struct file *file) 2482{ 2483 return 0; 2484} 2485 2486static inline void security_file_free (struct file *file) 2487{ } 2488 2489static inline int security_file_ioctl (struct file *file, unsigned int cmd, 2490 unsigned long arg) 2491{ 2492 return 0; 2493} 2494 2495static inline int security_file_mmap (struct file *file, unsigned long reqprot, 2496 unsigned long prot, 2497 unsigned long flags, 2498 unsigned long addr, 2499 unsigned long addr_only) 2500{ 2501 return 0; 2502} 2503 2504static inline int security_file_mprotect (struct vm_area_struct *vma, 2505 unsigned long reqprot, 2506 unsigned long prot) 2507{ 2508 return 0; 2509} 2510 2511static inline int security_file_lock (struct file *file, unsigned int cmd) 2512{ 2513 return 0; 2514} 2515 2516static inline int security_file_fcntl (struct file *file, unsigned int cmd, 2517 unsigned long arg) 2518{ 2519 return 0; 2520} 2521 2522static inline int security_file_set_fowner (struct file *file) 2523{ 2524 return 0; 2525} 2526 2527static inline int security_file_send_sigiotask (struct task_struct *tsk, 2528 struct fown_struct *fown, 2529 int sig) 2530{ 2531 return 0; 2532} 2533 2534static inline int security_file_receive (struct file *file) 2535{ 2536 return 0; 2537} 2538 2539static inline int security_task_create (unsigned long clone_flags) 2540{ 2541 return 0; 2542} 2543 2544static inline int security_task_alloc (struct task_struct *p) 2545{ 2546 return 0; 2547} 2548 2549static inline void security_task_free (struct task_struct *p) 2550{ } 2551 2552static inline int security_task_setuid (uid_t id0, uid_t id1, uid_t id2, 2553 int flags) 2554{ 2555 return 0; 2556} 2557 2558static inline int security_task_post_setuid (uid_t old_ruid, uid_t old_euid, 2559 uid_t old_suid, int flags) 2560{ 2561 return cap_task_post_setuid (old_ruid, old_euid, old_suid, flags); 2562} 2563 2564static inline int security_task_setgid (gid_t id0, gid_t id1, gid_t id2, 2565 int flags) 2566{ 2567 return 0; 2568} 2569 2570static inline int security_task_setpgid (struct task_struct *p, pid_t pgid) 2571{ 2572 return 0; 2573} 2574 2575static inline int security_task_getpgid (struct task_struct *p) 2576{ 2577 return 0; 2578} 2579 2580static inline int security_task_getsid (struct task_struct *p) 2581{ 2582 return 0; 2583} 2584 2585static inline void security_task_getsecid (struct task_struct *p, u32 *secid) 2586{ } 2587 2588static inline int security_task_setgroups (struct group_info *group_info) 2589{ 2590 return 0; 2591} 2592 2593static inline int security_task_setnice (struct task_struct *p, int nice) 2594{ 2595 return 0; 2596} 2597 2598static inline int security_task_setioprio (struct task_struct *p, int ioprio) 2599{ 2600 return 0; 2601} 2602 2603static inline int security_task_getioprio (struct task_struct *p) 2604{ 2605 return 0; 2606} 2607 2608static inline int security_task_setrlimit (unsigned int resource, 2609 struct rlimit *new_rlim) 2610{ 2611 return 0; 2612} 2613 2614static inline int security_task_setscheduler (struct task_struct *p, 2615 int policy, 2616 struct sched_param *lp) 2617{ 2618 return 0; 2619} 2620 2621static inline int security_task_getscheduler (struct task_struct *p) 2622{ 2623 return 0; 2624} 2625 2626static inline int security_task_movememory (struct task_struct *p) 2627{ 2628 return 0; 2629} 2630 2631static inline int security_task_kill (struct task_struct *p, 2632 struct siginfo *info, int sig, 2633 u32 secid) 2634{ 2635 return 0; 2636} 2637 2638static inline int security_task_wait (struct task_struct *p) 2639{ 2640 return 0; 2641} 2642 2643static inline int security_task_prctl (int option, unsigned long arg2, 2644 unsigned long arg3, 2645 unsigned long arg4, 2646 unsigned long arg5) 2647{ 2648 return 0; 2649} 2650 2651static inline void security_task_reparent_to_init (struct task_struct *p) 2652{ 2653 cap_task_reparent_to_init (p); 2654} 2655 2656static inline void security_task_to_inode(struct task_struct *p, struct inode *inode) 2657{ } 2658 2659static inline int security_ipc_permission (struct kern_ipc_perm *ipcp, 2660 short flag) 2661{ 2662 return 0; 2663} 2664 2665static inline int security_msg_msg_alloc (struct msg_msg * msg) 2666{ 2667 return 0; 2668} 2669 2670static inline void security_msg_msg_free (struct msg_msg * msg) 2671{ } 2672 2673static inline int security_msg_queue_alloc (struct msg_queue *msq) 2674{ 2675 return 0; 2676} 2677 2678static inline void security_msg_queue_free (struct msg_queue *msq) 2679{ } 2680 2681static inline int security_msg_queue_associate (struct msg_queue * msq, 2682 int msqflg) 2683{ 2684 return 0; 2685} 2686 2687static inline int security_msg_queue_msgctl (struct msg_queue * msq, int cmd) 2688{ 2689 return 0; 2690} 2691 2692static inline int security_msg_queue_msgsnd (struct msg_queue * msq, 2693 struct msg_msg * msg, int msqflg) 2694{ 2695 return 0; 2696} 2697 2698static inline int security_msg_queue_msgrcv (struct msg_queue * msq, 2699 struct msg_msg * msg, 2700 struct task_struct * target, 2701 long type, int mode) 2702{ 2703 return 0; 2704} 2705 2706static inline int security_shm_alloc (struct shmid_kernel *shp) 2707{ 2708 return 0; 2709} 2710 2711static inline void security_shm_free (struct shmid_kernel *shp) 2712{ } 2713 2714static inline int security_shm_associate (struct shmid_kernel * shp, 2715 int shmflg) 2716{ 2717 return 0; 2718} 2719 2720static inline int security_shm_shmctl (struct shmid_kernel * shp, int cmd) 2721{ 2722 return 0; 2723} 2724 2725static inline int security_shm_shmat (struct shmid_kernel * shp, 2726 char __user *shmaddr, int shmflg) 2727{ 2728 return 0; 2729} 2730 2731static inline int security_sem_alloc (struct sem_array *sma) 2732{ 2733 return 0; 2734} 2735 2736static inline void security_sem_free (struct sem_array *sma) 2737{ } 2738 2739static inline int security_sem_associate (struct sem_array * sma, int semflg) 2740{ 2741 return 0; 2742} 2743 2744static inline int security_sem_semctl (struct sem_array * sma, int cmd) 2745{ 2746 return 0; 2747} 2748 2749static inline int security_sem_semop (struct sem_array * sma, 2750 struct sembuf * sops, unsigned nsops, 2751 int alter) 2752{ 2753 return 0; 2754} 2755 2756static inline void security_d_instantiate (struct dentry *dentry, struct inode *inode) 2757{ } 2758 2759static inline int security_getprocattr(struct task_struct *p, char *name, char **value) 2760{ 2761 return -EINVAL; 2762} 2763 2764static inline int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size) 2765{ 2766 return -EINVAL; 2767} 2768 2769static inline int security_netlink_send (struct sock *sk, struct sk_buff *skb) 2770{ 2771 return cap_netlink_send (sk, skb); 2772} 2773 2774static inline int security_netlink_recv (struct sk_buff *skb, int cap) 2775{ 2776 return cap_netlink_recv (skb, cap); 2777} 2778 2779static inline struct dentry *securityfs_create_dir(const char *name, 2780 struct dentry *parent) 2781{ 2782 return ERR_PTR(-ENODEV); 2783} 2784 2785static inline struct dentry *securityfs_create_file(const char *name, 2786 mode_t mode, 2787 struct dentry *parent, 2788 void *data, 2789 struct file_operations *fops) 2790{ 2791 return ERR_PTR(-ENODEV); 2792} 2793 2794static inline void securityfs_remove(struct dentry *dentry) 2795{ 2796} 2797 2798static inline int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 2799{ 2800 return -EOPNOTSUPP; 2801} 2802 2803static inline void security_release_secctx(char *secdata, u32 seclen) 2804{ 2805} 2806#endif /* CONFIG_SECURITY */ 2807 2808#ifdef CONFIG_SECURITY_NETWORK 2809static inline int security_unix_stream_connect(struct socket * sock, 2810 struct socket * other, 2811 struct sock * newsk) 2812{ 2813 return security_ops->unix_stream_connect(sock, other, newsk); 2814} 2815 2816 2817static inline int security_unix_may_send(struct socket * sock, 2818 struct socket * other) 2819{ 2820 return security_ops->unix_may_send(sock, other); 2821} 2822 2823static inline int security_socket_create (int family, int type, 2824 int protocol, int kern) 2825{ 2826 return security_ops->socket_create(family, type, protocol, kern); 2827} 2828 2829static inline int security_socket_post_create(struct socket * sock, 2830 int family, 2831 int type, 2832 int protocol, int kern) 2833{ 2834 return security_ops->socket_post_create(sock, family, type, 2835 protocol, kern); 2836} 2837 2838static inline int security_socket_bind(struct socket * sock, 2839 struct sockaddr * address, 2840 int addrlen) 2841{ 2842 return security_ops->socket_bind(sock, address, addrlen); 2843} 2844 2845static inline int security_socket_connect(struct socket * sock, 2846 struct sockaddr * address, 2847 int addrlen) 2848{ 2849 return security_ops->socket_connect(sock, address, addrlen); 2850} 2851 2852static inline int security_socket_listen(struct socket * sock, int backlog) 2853{ 2854 return security_ops->socket_listen(sock, backlog); 2855} 2856 2857static inline int security_socket_accept(struct socket * sock, 2858 struct socket * newsock) 2859{ 2860 return security_ops->socket_accept(sock, newsock); 2861} 2862 2863static inline void security_socket_post_accept(struct socket * sock, 2864 struct socket * newsock) 2865{ 2866 security_ops->socket_post_accept(sock, newsock); 2867} 2868 2869static inline int security_socket_sendmsg(struct socket * sock, 2870 struct msghdr * msg, int size) 2871{ 2872 return security_ops->socket_sendmsg(sock, msg, size); 2873} 2874 2875static inline int security_socket_recvmsg(struct socket * sock, 2876 struct msghdr * msg, int size, 2877 int flags) 2878{ 2879 return security_ops->socket_recvmsg(sock, msg, size, flags); 2880} 2881 2882static inline int security_socket_getsockname(struct socket * sock) 2883{ 2884 return security_ops->socket_getsockname(sock); 2885} 2886 2887static inline int security_socket_getpeername(struct socket * sock) 2888{ 2889 return security_ops->socket_getpeername(sock); 2890} 2891 2892static inline int security_socket_getsockopt(struct socket * sock, 2893 int level, int optname) 2894{ 2895 return security_ops->socket_getsockopt(sock, level, optname); 2896} 2897 2898static inline int security_socket_setsockopt(struct socket * sock, 2899 int level, int optname) 2900{ 2901 return security_ops->socket_setsockopt(sock, level, optname); 2902} 2903 2904static inline int security_socket_shutdown(struct socket * sock, int how) 2905{ 2906 return security_ops->socket_shutdown(sock, how); 2907} 2908 2909static inline int security_sock_rcv_skb (struct sock * sk, 2910 struct sk_buff * skb) 2911{ 2912 return security_ops->socket_sock_rcv_skb (sk, skb); 2913} 2914 2915static inline int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 2916 int __user *optlen, unsigned len) 2917{ 2918 return security_ops->socket_getpeersec_stream(sock, optval, optlen, len); 2919} 2920 2921static inline int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 2922{ 2923 return security_ops->socket_getpeersec_dgram(sock, skb, secid); 2924} 2925 2926static inline int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 2927{ 2928 return security_ops->sk_alloc_security(sk, family, priority); 2929} 2930 2931static inline void security_sk_free(struct sock *sk) 2932{ 2933 return security_ops->sk_free_security(sk); 2934} 2935 2936static inline void security_sk_clone(const struct sock *sk, struct sock *newsk) 2937{ 2938 return security_ops->sk_clone_security(sk, newsk); 2939} 2940 2941static inline void security_sk_classify_flow(struct sock *sk, struct flowi *fl) 2942{ 2943 security_ops->sk_getsecid(sk, &fl->secid); 2944} 2945 2946static inline void security_req_classify_flow(const struct request_sock *req, struct flowi *fl) 2947{ 2948 security_ops->req_classify_flow(req, fl); 2949} 2950 2951static inline void security_sock_graft(struct sock* sk, struct socket *parent) 2952{ 2953 security_ops->sock_graft(sk, parent); 2954} 2955 2956static inline int security_inet_conn_request(struct sock *sk, 2957 struct sk_buff *skb, struct request_sock *req) 2958{ 2959 return security_ops->inet_conn_request(sk, skb, req); 2960} 2961 2962static inline void security_inet_csk_clone(struct sock *newsk, 2963 const struct request_sock *req) 2964{ 2965 security_ops->inet_csk_clone(newsk, req); 2966} 2967 2968static inline void security_inet_conn_established(struct sock *sk, 2969 struct sk_buff *skb) 2970{ 2971 security_ops->inet_conn_established(sk, skb); 2972} 2973#else /* CONFIG_SECURITY_NETWORK */ 2974static inline int security_unix_stream_connect(struct socket * sock, 2975 struct socket * other, 2976 struct sock * newsk) 2977{ 2978 return 0; 2979} 2980 2981static inline int security_unix_may_send(struct socket * sock, 2982 struct socket * other) 2983{ 2984 return 0; 2985} 2986 2987static inline int security_socket_create (int family, int type, 2988 int protocol, int kern) 2989{ 2990 return 0; 2991} 2992 2993static inline int security_socket_post_create(struct socket * sock, 2994 int family, 2995 int type, 2996 int protocol, int kern) 2997{ 2998 return 0; 2999} 3000 3001static inline int security_socket_bind(struct socket * sock, 3002 struct sockaddr * address, 3003 int addrlen) 3004{ 3005 return 0; 3006} 3007 3008static inline int security_socket_connect(struct socket * sock, 3009 struct sockaddr * address, 3010 int addrlen) 3011{ 3012 return 0; 3013} 3014 3015static inline int security_socket_listen(struct socket * sock, int backlog) 3016{ 3017 return 0; 3018} 3019 3020static inline int security_socket_accept(struct socket * sock, 3021 struct socket * newsock) 3022{ 3023 return 0; 3024} 3025 3026static inline void security_socket_post_accept(struct socket * sock, 3027 struct socket * newsock) 3028{ 3029} 3030 3031static inline int security_socket_sendmsg(struct socket * sock, 3032 struct msghdr * msg, int size) 3033{ 3034 return 0; 3035} 3036 3037static inline int security_socket_recvmsg(struct socket * sock, 3038 struct msghdr * msg, int size, 3039 int flags) 3040{ 3041 return 0; 3042} 3043 3044static inline int security_socket_getsockname(struct socket * sock) 3045{ 3046 return 0; 3047} 3048 3049static inline int security_socket_getpeername(struct socket * sock) 3050{ 3051 return 0; 3052} 3053 3054static inline int security_socket_getsockopt(struct socket * sock, 3055 int level, int optname) 3056{ 3057 return 0; 3058} 3059 3060static inline int security_socket_setsockopt(struct socket * sock, 3061 int level, int optname) 3062{ 3063 return 0; 3064} 3065 3066static inline int security_socket_shutdown(struct socket * sock, int how) 3067{ 3068 return 0; 3069} 3070static inline int security_sock_rcv_skb (struct sock * sk, 3071 struct sk_buff * skb) 3072{ 3073 return 0; 3074} 3075 3076static inline int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 3077 int __user *optlen, unsigned len) 3078{ 3079 return -ENOPROTOOPT; 3080} 3081 3082static inline int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 3083{ 3084 return -ENOPROTOOPT; 3085} 3086 3087static inline int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 3088{ 3089 return 0; 3090} 3091 3092static inline void security_sk_free(struct sock *sk) 3093{ 3094} 3095 3096static inline void security_sk_clone(const struct sock *sk, struct sock *newsk) 3097{ 3098} 3099 3100static inline void security_sk_classify_flow(struct sock *sk, struct flowi *fl) 3101{ 3102} 3103 3104static inline void security_req_classify_flow(const struct request_sock *req, struct flowi *fl) 3105{ 3106} 3107 3108static inline void security_sock_graft(struct sock* sk, struct socket *parent) 3109{ 3110} 3111 3112static inline int security_inet_conn_request(struct sock *sk, 3113 struct sk_buff *skb, struct request_sock *req) 3114{ 3115 return 0; 3116} 3117 3118static inline void security_inet_csk_clone(struct sock *newsk, 3119 const struct request_sock *req) 3120{ 3121} 3122 3123static inline void security_inet_conn_established(struct sock *sk, 3124 struct sk_buff *skb) 3125{ 3126} 3127#endif /* CONFIG_SECURITY_NETWORK */ 3128 3129#ifdef CONFIG_SECURITY_NETWORK_XFRM 3130static inline int security_xfrm_policy_alloc(struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx) 3131{ 3132 return security_ops->xfrm_policy_alloc_security(xp, sec_ctx); 3133} 3134 3135static inline int security_xfrm_policy_clone(struct xfrm_policy *old, struct xfrm_policy *new) 3136{ 3137 return security_ops->xfrm_policy_clone_security(old, new); 3138} 3139 3140static inline void security_xfrm_policy_free(struct xfrm_policy *xp) 3141{ 3142 security_ops->xfrm_policy_free_security(xp); 3143} 3144 3145static inline int security_xfrm_policy_delete(struct xfrm_policy *xp) 3146{ 3147 return security_ops->xfrm_policy_delete_security(xp); 3148} 3149 3150static inline int security_xfrm_state_alloc(struct xfrm_state *x, 3151 struct xfrm_user_sec_ctx *sec_ctx) 3152{ 3153 return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0); 3154} 3155 3156static inline int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 3157 struct xfrm_sec_ctx *polsec, u32 secid) 3158{ 3159 if (!polsec) 3160 return 0; 3161 /* 3162 * We want the context to be taken from secid which is usually 3163 * from the sock. 3164 */ 3165 return security_ops->xfrm_state_alloc_security(x, NULL, secid); 3166} 3167 3168static inline int security_xfrm_state_delete(struct xfrm_state *x) 3169{ 3170 return security_ops->xfrm_state_delete_security(x); 3171} 3172 3173static inline void security_xfrm_state_free(struct xfrm_state *x) 3174{ 3175 security_ops->xfrm_state_free_security(x); 3176} 3177 3178static inline int security_xfrm_policy_lookup(struct xfrm_policy *xp, u32 fl_secid, u8 dir) 3179{ 3180 return security_ops->xfrm_policy_lookup(xp, fl_secid, dir); 3181} 3182 3183static inline int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 3184 struct xfrm_policy *xp, struct flowi *fl) 3185{ 3186 return security_ops->xfrm_state_pol_flow_match(x, xp, fl); 3187} 3188 3189static inline int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 3190{ 3191 return security_ops->xfrm_decode_session(skb, secid, 1); 3192} 3193 3194static inline void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl) 3195{ 3196 int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0); 3197 3198 BUG_ON(rc); 3199} 3200#else /* CONFIG_SECURITY_NETWORK_XFRM */ 3201static inline int security_xfrm_policy_alloc(struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx) 3202{ 3203 return 0; 3204} 3205 3206static inline int security_xfrm_policy_clone(struct xfrm_policy *old, struct xfrm_policy *new) 3207{ 3208 return 0; 3209} 3210 3211static inline void security_xfrm_policy_free(struct xfrm_policy *xp) 3212{ 3213} 3214 3215static inline int security_xfrm_policy_delete(struct xfrm_policy *xp) 3216{ 3217 return 0; 3218} 3219 3220static inline int security_xfrm_state_alloc(struct xfrm_state *x, 3221 struct xfrm_user_sec_ctx *sec_ctx) 3222{ 3223 return 0; 3224} 3225 3226static inline int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 3227 struct xfrm_sec_ctx *polsec, u32 secid) 3228{ 3229 return 0; 3230} 3231 3232static inline void security_xfrm_state_free(struct xfrm_state *x) 3233{ 3234} 3235 3236static inline int security_xfrm_state_delete(struct xfrm_state *x) 3237{ 3238 return 0; 3239} 3240 3241static inline int security_xfrm_policy_lookup(struct xfrm_policy *xp, u32 fl_secid, u8 dir) 3242{ 3243 return 0; 3244} 3245 3246static inline int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 3247 struct xfrm_policy *xp, struct flowi *fl) 3248{ 3249 return 1; 3250} 3251 3252static inline int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 3253{ 3254 return 0; 3255} 3256 3257static inline void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl) 3258{ 3259} 3260 3261#endif /* CONFIG_SECURITY_NETWORK_XFRM */ 3262 3263#ifdef CONFIG_KEYS 3264#ifdef CONFIG_SECURITY 3265static inline int security_key_alloc(struct key *key, 3266 struct task_struct *tsk, 3267 unsigned long flags) 3268{ 3269 return security_ops->key_alloc(key, tsk, flags); 3270} 3271 3272static inline void security_key_free(struct key *key) 3273{ 3274 security_ops->key_free(key); 3275} 3276 3277static inline int security_key_permission(key_ref_t key_ref, 3278 struct task_struct *context, 3279 key_perm_t perm) 3280{ 3281 return security_ops->key_permission(key_ref, context, perm); 3282} 3283 3284#else 3285 3286static inline int security_key_alloc(struct key *key, 3287 struct task_struct *tsk, 3288 unsigned long flags) 3289{ 3290 return 0; 3291} 3292 3293static inline void security_key_free(struct key *key) 3294{ 3295} 3296 3297static inline int security_key_permission(key_ref_t key_ref, 3298 struct task_struct *context, 3299 key_perm_t perm) 3300{ 3301 return 0; 3302} 3303 3304#endif 3305#endif /* CONFIG_KEYS */ 3306 3307#endif /* ! __LINUX_SECURITY_H */ 3308